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Abstract

IT based Healthcare platforms have been widely recognized by
research communities and institutions as key players in the fu-
ture of home-based health monitoring and care. Features like
personalised care, continuous monitoring, and reduced costs
are fostering the research and use of these technologies. In this
paper, we describe the design and implementation of the video
monitoring system of the SPHERE platform (Sensor Platform
for Healthcare in a Residential Environment). SPHERE aims to
develop a smart home platform based on low cost, non-medical
sensors. We present a detailed description of the hardware and
software infrastructure designed and tested in real life scenar-
ios, with particular emphasis on the design considerations em-
ployed to foster collaboration, the real time and budget con-
straints, and mid-scale deployment plan of our case study.

1 Introduction

Medical progress has increased life expectancy causing a dra-
matic increase in the elderly population. By 2050, 20% of the
population will be over 60 years old [19]. Not only does old
age impact on daily life with its associated chronic age-related
diseases, but it also brings additional societal challenges. Our
health-care services experience extra pressure, especially in
terms of cost and shortages in caregivers [19]. These factors,
and the fact that in general patients prefer to stay in the more
familiar and comfortable environment of their home, has stim-
ulated research and development into new technologies to fa-
cilitate health care practices in residential environments. Re-
search interest in smart homes for eHealth and Active and
Assisted Living (AAL) has continuously grown in the recent
years. This research has examined different diseases and target
groups [19, 4] and technologies ranging from wearable devices
gathering movement information [27] and vital signals [4], to
environmental sensors [1] and video based platforms [9].

An important feature of video based sensing is that it fa-
cilitates, in principle, the acquisition of useful and continuous
information pertaining to human movement and activities that
can be used to quantitatively and qualitatively assess the sta-
tus of patients after specific treatments or after a rehabilitation
period. For example, a depth camera based system was pre-

sented in [3], where video data was used to analyze patients’
functional movements. A similar experimental setup was de-
ployed in [22] where a movement quality assessment measure
based on manifold learning and a Markovian assumption was
presented. Video based systems are efficient for implementing
alert systems to detect dangerous events like falls, as in [20].
Furthermore, video data analysis allows one to identify spe-
cific actions, long term activities, and behavioural patterns [9],
with some exploiting contextual information [11]. While video
based platforms offer the opportunity to extract unique, contin-
uous, and rich information from the home environment, they
also present a number of disadvantages, such as privacy issues
[9], user acceptance and system cost and scalability. Finally,
the accepted challenges of computer vision, such as arbitrary
body poses, changing illumination, occlusion, and low cost/low
resolution are still unsolved problems [23] even if depth data is
combined with colour [6]. Furthermore, these issues are greatly
amplified for AAL monitoring applications that operate in un-
constrained environments and in long term scenarios. Different
video acquisition architectures of widely varying complexities
have been used for AAL applications. For example, a single
camera was used in [16] to target specific functional mobility
actions taking place in the living room area,with only snapshots
and descriptions of detected actions stored. A centralised sys-
tem was employed in the senior housing complex, TigerPlace
[13], where depth data is stored in a central server which also
contains labels, such as movement, inactivity, fall, etc. Re-
searchers can access the stored data via a web interface. More
flexible approaches based on smart cameras and distributed
processing have been also employed, for example in [14, 15],
where colour data was processed in each node and process-
ing results transmitted to central storage nodes. As previously
mentioned, RGBD cameras are becoming increasingly more
deployed in AAL applications, such as [9, 20, 27, 21, 22, 11].
For a review of video based AAL systems, the reader is referred
to [7, 8].

In this paper we present our video monitoring system de-
veloped for the SPHERE project (Sensor Platform for Health-
care in a Residential Environment). It aims to develop a low-
cost, unobtrusive sensor platform for monitoring adults of any
age in the home environment. We will focus on the main de-
sign challenges and choices, in terms of hardware (Section 2)
and software (Section 3), for the development of the SPHERE
video infrastructure. In particular, we shall highlight the im-



portance and impact of real time considerations, budget con-
straints, and the reliability needed for our mid-scale develop-
ment plan and user acceptance. Furthermore, we present a sum-
mary of the computer vision applications (Section 4) tested and
implemented within the proposed system.

2 The SPHERE video monitoring system

SPHERE aims to develop a smart home platform comprising
non-medical networked sensors, to obtain a rich description
of the home environment and occupants’ behaviour. Three
main groups of sensors have been employed: (a) environmen-
tal sensors, which monitor temperature, humidity, luminosity,
noise level, air quality, room occupancy, electricity metering,
and water consumption, (b) RGBD vision sensors, and (c) low
power wearable sensors that use accelerometers to measure
body movements and to identify specific actions. SPHERE has
already installed the first version of its system in a test house in
Bristol (UK) used for short-to long-term user studies and archi-
tecture validation. The final goal of SPHERE is to deploy the
sensor platform in up to 100 homes in Bristol for long-term, in-
the-wild studies. The SPHERE system architecture (see Figure
1) includes a back-end (SPHERE Data Hub), which is made-up
of a number of storage devices to collect and analyze all data
collected from the 100 houses. Each house will be connected
to the Data Hub through the SPHERE Home Gateway, that has
several additional functions, including collecting data from the
sensor network and monitoring the system status. Wireless and
BLE links are used to ensure connectivity between the hetero-
geneous sensor networks and the Home Gateway. At the appli-
cation layer, the SPHERE system makes extensive use of the
MQ Telemetry Transport (MQTT) protocol for data collection
as well as for system monitoring. More details about the over-
all SPHERE architecture can be found in [25, 27].
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Figure 1. SPHERE system architecture [25].

2.1 Hardware platform

The video monitoring component of the SPHERE system is a
real-time multi-camera system, which is tasked not only with
tracking people in their home environment, but also with pro-
viding continuous quality of movement and activity recogni-
tion data. More details of these is reported in Section 4.

The selection of the hardware for the video monitoring sys-
tem has been driven by different factors, such as ease of in-
tegration with other sensors, user acceptance, and deployment
cost. Considering the 100 houses deployment plan and its fi-
nancial viability, the low cost consumer RGBD camera, Asus
Xtion, was selected. Furthermore, as previously mentioned,
RGBD devices now represent the state of the art for indoor ac-
tivity monitoring [9, 20, 21, 22, 11]. For the SPHERE project,
the camera needs to be coupled with a machine with suitable
processing capacity, minimal intrusion on the user, and mini-
mal cost. The Intel Next Unit of Computing (NUC) with 8GB
of RAM and an i5 processor meets these requirements. Its
compact size and relatively low cost, when compared to most
workstations, allows it to be placed strategically close to other
sensors. Another important attribute of the NUC is its four
USB 3.0 ports, which provide ample bandwidth for simultane-
ous capture from up to four RGBD cameras with an acquisition
rate of 30fps for each camera at VGA resolution. This gives the
system more versatility in deployment. Specifically, a range of
configurations is possible: one NUC operating all of the cam-
eras, (that was the first design choice for SPHERE [25]), one
NUC per camera (Figure 2), or hybrid configurations, depend-
ing on users’ needs as well as the circumstances of each de-
ployment. We can store up to 64GB of data locally in each
NUC, corresponding approximately to 2 hours in a single cam-
era configuration, including RGBD and tracking results. This
data can then be streamed using a buffering strategy to the cen-
tral MySQL and Mongo databases (see Section 3). There is no
ceiling on the number of NUCs that can be utilised in a single
deployment given appropriate network capacity and server per-
formance. In any eventual deployment in real homes, our con-
figuration will have minimal storage requirements as only the
processed results (i.e. tracking, segmentation) will be stored
and not the raw video data.

Figure 2. NUC and Asus Xtion sensor in SPHERE house.

A vital consideration for all of the SPHERE sensors, and
the video subsystem in particular, is installation time and long
term reliability. Recalling that the current plan is for SPHERE
to deploy its system into as many as 100 homes, with up to
three NUCs and ASUS Xtions per home, the installation and
management of such a large enterprise rapidly becomes impos-



sible without optimised installation procedures and ultra reli-
able subsystems. In order to fulfil these requirements, each
NUC runs Ubuntu with the video system set up to run as a ser-
vice, when the machine boots up. This makes the system robust
in the event of a temporary loss of power. To facilitate quick
configuration, a standardised system image is employed. The
set up process is streamlined such that a brand new NUC in its
box can be ready for deployment in about 10 minutes.

Figure 3 illustrates how the NUC and Asus Xtion fit into the
hardware infrastructure. Note that the NUCs’ clocks are syn-
chronised via NTP and the captured frames are time-stamped
at the time of capture, before being buffered for subsequent
transfer to the main gateway.

Figure 3. Video Monitoring System Architecture.

3 Collaborative Software Platform for Data
Management and Analysis

SPHERE produces enormous amounts of video data and a vari-
ety of features associated with it. This data is used in a number
of pure and applied computer vision research projects, includ-
ing person re-identification, quality of movement assessment,
calorific expenditure, robust real-time tracking, and activity
recognition. The data recorded by the SPHERE system, as with
any other vision system, is not perfect and sometimes contains
false detections and tracking errors. Furthermore, for particular
studies it is necessary to ground truth the data when supervised
approaches to learning are employed. For example, the bound-
ing boxes/tracklets relating to particular individuals need to be
given a consistent identity for person re-identification as do the
start and end times of particular activities.

Correctly labelled data sets are extremely valuable to the
community for development of different algorithms and com-
parative evaluation. In a large project, with a number of col-
laborators, the risk of duplication of effort is high when pro-
ducing these data sets. Different researchers commonly use
different tools, languages and strategies for labelling. This
may also include relatively ad hoc decisions regarding data for-
mats. This fragmented approach produces barriers to collabo-
ration as researchers have to not only obtain code and data from
their peers, but also learn how to use it and incorporate it into

Figure 4. Collaborative infrastructure for data analysis.

their normal work-flow. To combat this fragmentation and fos-
ter synergies between individuals, work packages, and groups
within SPHERE, we have developed a collaborative infrastruc-
ture for data analysis (Figure 4). Our infrastructure features
a central data repository, consisting of MySQL and Mongo
databases. During data capture, raw video and depth streams,
bounding boxes, silhouettes, and skeletons are buffered and
then stored in this central repository. For a particular capture
session, metadata, including participant ids and start and end
time-stamps, are stored in a separate database. When a re-
searcher wishes to work on a particular data set, they simply
look up the time-stamps and then enter them into either the
C++ or MATLAB interfaces. Any labelling undertaken by that
researcher, is stored centrally in tables that are accessible by
collaborators and linked to the original data set. In this way
teams can work on the same problem concurrently, on a plat-
form and language of their choice.

Figure 5. Database entity relationship diagram

Figure 5 illustrates this video database design. The top
four rows represent the ‘core’ data which is obtained at the
time of capture. The labels represent annotations added sub-



sequently by researchers working with the data. In this case
the labels refer to the identities of individuals navigating the
SPHERE house, with outliers (false detections) being given a
consistent label. This data may now serve as a ground truth for
tracking and detection algorithms or research into person re-
identification for example. We have found this has made very
real productivity differences, with researchers discussing and
prototyping ideas in hours rather than days.

3.1 Software architecture

Software reliability is critical for facilitating long term opera-
tional periods without regular physical access. To enable this,
we have employed an object oriented design and popular soft-
ware design patterns where possible. The design principles un-
derpinning the software system reflect our ambitions to build a
collaborative platform which naturally encourages cooperation
and the development of reusable and easy to extend code.

The software system is centred around the observer design
pattern. This is useful for decoupling the problems of data ac-
quisition, processing, and storage into separate classes which
can be developed independently. The acquisition is encap-
sulated in a camera class, that controls camera functionality
providing RGBD, and basic tracking information as bounding
boxes and skeleton joints. This class is the subject and it keeps
an observer collection. These observers are notified when new
data is available through a standard interface. This allows for
rapid prototyping and deployment by researchers without need-
ing to understand the underlying hardware, or the SPHERE in-
frastructure. In addition to employing this low-level design pat-
tern, we add a set of simple operators which allow for a higher
level designs to be produced, using observers as components.
These operators are combine, filter and par.

combine : Observers×Observers→ Observers

filter : Observers×Observers→ Observers

par : Observers→ Observers

combine is a binary operator which takes two observers and
wraps them in the interface of a single one. This newly created
observer has the behaviour of the two given observers. filter is
a binary operator which takes a pair of observers and creates a
new observer. This newly created observer has the behaviour
of the original observers, but sequences them so that the first
observer can mutate the data before it is passed to the second.
par is a unary operator which takes a single observer and cre-
ates a new observer which behaves in exactly the same way,
except that its input is buffered and it is executed on another
thread. This allows us to make use of all the computational re-
sources available on the target hardware. The par operator is
not strictly necessary at this level. We could have chosen for
this decision to be made inside the observers, but this would
introduce performance overheads that were not visible at the
high level. Hence, we decided that observers’ parallelisation
should be exposed at a higher level so that the overhead in-
troduced is explicit and the benefit is clear. This also means
that researchers do not need to consider how, or when, their
observer will be executed when developing their experiments.

Concrete applications of the described high-level design
patterns used in the proposed system are shown in Figure
6. Depth based human detector (DepthBasedDetector) and
unique user Id allocation (UniqueUserID) to the tracklets are
examples of filters as they modify the data stream adding ad-
ditional information and passing to the next stage. For ex-
ample DepthBasedDetector is used to boost the confidence
of the basic tracking performed in the camera module, and
the UniqueUserID is used to assign each tracklet a unique id
among all of the cameras. Parallelisation is used to provide a
buffer between the high performance processing pipeline and
the potentially slow network and storage medium.

Figure 6. Data flow diagram of our video monitoring system

Given these operators and a set of observers we are able to
quickly design and deploy complex applications which con-
tain research experiments with minimal effort from the re-
searchers themselves. The class hierarchy is shown in Fig-
ure 7. In the SPHERE video monitoring system the Observers
are UniqueUserID and DepthBasedDetector discussed above,
and SPHEREIoTDataMon that manages MQTT connection
to SPHERE data HUB, SPHEREIoTCTRL that handles con-
trol commands from the SPHERE platform, such as start/stop
recording and system initialisation, and Database that manages
video storage. These, with our observer operators, are used to
specify our software system as shown in Figure 6. The above
application description illustrates how combining combine or
filter and the Observers forms a tree. This combination of the
observer design pattern and these operators comes close to de-
scribing functional reactive programming (FRP), specifically
discreet push oriented FRP. With the addition of a single oper-
ator, to merge branches in the tree to create a graph, this would
be equivalent to FRP [12]. In this model, our observers are
behaviours and the data from the camera is an event stream.

Another practical example exploiting this design strategy
is the way the video system is integrated into the SPHERE
platform as an IoT device. This is achieved via the class
SPHEREIoTDataMon which takes the video data, excluding
the colour and depth frames themselves, and serialises all the
processed data (such as bounding boxes and tracklets informa-
tion) into JSON strings. These strings are then transmitted via



MQTT to the SPHERE data HUB. The choice to apply this
structure at both the high and low level of the video monitoring
system has given us a structure which is robust and flexible.
This gives researchers the power to test and deploy research
systems to our video system as shown in the following section.

Figure 7. Video monitoring system class hierarchy

4 SPHERE vision based Applications

We now summarize how the HW and SW architectures pre-
sented above are employed to accomplish several eHealth ap-
plications within SPHERE. The complete vision based pipeline
in each NUC device is shown in Figure 8. The data acquisition
module gathers the camera stream synchronized with the other
sensors’ data. Depth and colour data are processed by a per-
son detector and tracking module to continuously estimate the
residents’ position. The system currently used in the SPHERE
house is the depth based OpenNI tracker [18] which also pro-
vides the estimation of user skeletal joints. This tracker and
its enhanced output have been widely used in eHealth appli-
cations, e.g. [2, 20, 22]. Nevertheless, the proposed modular
software system allows us to plug and play different detectors
and trackers. Other real time detectors based on colour and
depth data, such as [17] and real time trackers [17, 5], have
been tested and tuned into the proposed system.

Even without the rest of the SPHERE platform’s data, the
video system’s output is still a rich source of information. The
aspect ratio, velocity, and location of the bounding boxes gives
useful clues for detecting activities and behaviours. These
bounding box characteristics are analysed by a cascade of SVM
classifiers to identify basic low level functional movements,
such as sitting, standing, lying, walking and their correspond-
ing transitions. They allow us to accumulate statistics about
speed of motion and hence to infer important clinical measure-
ments in the wild. Some example studies that we have carried
out so far are recognising actions [21], and quality and inten-
sity of movement [22], and identifying typical indoor activities
of daily living and routine modeling [26], amongst others. To
overcome the unreliability of skeleton data, provided by the
OpenNI tracker, for non-frontal views we have designed a new
depth based pose estimation system that can support a large
range of views [10]. Our low-level movement recognition work
can be enriched by higher level analysis based on fusing video
features with other sensor data, such as accelerometer data, and

we hope to report on these in the near future.
Alongside these research activities, we have also released

several datasets1 for the research community. In [21], we pre-
sented a dataset, based on RGBD and wearable data, that con-
tains actions of daily life collected in the SPHERE house. An
RGBD and skeleton dataset for quality of motion estimation
was released in [22]. Finally, multi-sensor data of single users
living in the SPHERE house was released in [24].

Figure 8. NUC processing pipeline for each camera.

5 Conclusions

In this paper we presented the video monitoring system devel-
oped within the SPHERE project. Designing a reliable video
monitoring infrastructure for residential environments is a chal-
lenging task as many factors, such as cost, user acceptance, and
application domains deeply affect design choices. We intro-
duced a flexible hardware architecture based on NUCs which
can deal with different camera configurations required for dif-
ferent installation setups during the deployment phase. Low
cost RGBD devices are fundamental hardware components of
the proposed system as the combination of colour and depth
data provides a richer description of environments and humans.
Furthermore, we proposed an efficient and highly modular and
lightweight software architecture that allows to easily adapt the
system to different recording devices, i.e new depth devices
coming into the market, and to target different application sce-
narios, as the acquisition and the processing phase are decou-
pled and independent. Finally, our collaborative platform for
data management and analysis ensures the huge amounts of
data gathered are accessible to researchers in SPHERE and in
the research community in a flexible way such that researchers
can work on the same or different problems whilst seamlessly
sharing annotations and other extra metadata with one another.
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