
                          Scholtyssek, C., Osorio, D., & Baddeley, R. (2016). Color generalization
across hue and saturation in chicks described by a simple (Bayesian) model.
Journal of Vision, 16(10), 1-10. [8]. DOI: 10.1167/16.10.8

Publisher's PDF, also known as Version of record

License (if available):
CC BY-NC-ND

Link to published version (if available):
10.1167/16.10.8

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Journal Of Vision
at https://doi.org/10.1167/16.10.8. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/78901011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1167/16.10.8
http://research-information.bristol.ac.uk/en/publications/color-generalization-across-hue-and-saturation-in-chicks-described-by-a-simple-bayesian-model(a6f5edeb-11bc-455c-a1ac-daa877572c18).html
http://research-information.bristol.ac.uk/en/publications/color-generalization-across-hue-and-saturation-in-chicks-described-by-a-simple-bayesian-model(a6f5edeb-11bc-455c-a1ac-daa877572c18).html


Color generalization across hue and saturation in chicks
described by a simple (Bayesian) model

Christine Scholtyssek $

School of Experimental Psychology, University of Bristol,
Bristol, United Kingdom

School of Life Sciences, University of Sussex, Brighton,
United Kingdom

Daniel C. Osorio $
School of Life Sciences, University of Sussex, Brighton,

United Kingdom

Roland J. Baddeley $
School of Experimental Psychology, University of Bristol,

Bristol, United Kingdom

Color conveys important information for birds in tasks
such as foraging and mate choice, but in the natural
world color signals can vary substantially, so birds may
benefit from generalizing responses to perceptually
discriminable colors. Studying color generalization is
therefore a way to understand how birds take account of
suprathreshold stimulus variations in decision making.
Former studies on color generalization have focused on
hue variation, but natural colors often vary in saturation,
which could be an additional, independent source of
information. We combine behavioral experiments and
statistical modeling to investigate whether color
generalization by poultry chicks depends on the
chromatic dimension in which colors vary. Chicks were
trained to discriminate colors separated by equal
distances on a hue or a saturation dimension, in a
receptor-based color space. Generalization tests then
compared the birds’ responses to familiar and novel
colors lying on the same chromatic dimension. To
characterize generalization we introduce a Bayesian
model that extracts a threshold color distance beyond
which chicks treat novel colors as significantly different
from the rewarded training color. These thresholds were
the same for generalization along the hue and saturation
dimensions, demonstrating that responses to novel
colors depend on similarity and expected variation of
color signals but are independent of the chromatic
dimension.

Introduction

Birds have four spectral types of narrowly tuned
single cones allowing them to discriminate a huge

variety of colors. The ability to discriminate small
color differences is important for some behaviors,
such as judging potential mates (Cuthill, Bennett,
Partridge, & Maier, 1999; Fitzpatrick, 1998), but fine
distinctions on the color continuum may be undesir-
able in other contexts, as when food items are edible
or inedible over a range of discriminable colors. It
would not pay to learn separately about the inedibility
of every possible color of ladybirds—and the fact that
warning colors of ladybirds vary (Bezzerides,
McGraw, Parker, & Husseini, 2007) suggests that this
is not what birds do. Even the color of a single object
can vary between encounters, for instance when
viewed on different backgrounds or when color
constancy fails (Osorio, 2009). Hence, to understand
how birds use color to recognize objects, it is
important to study how they generalize across
discriminable, yet similar colors.

Most studies of how birds generalize color have
used monochromatic stimuli (see, e.g., Ghirlanda &
Enquist, 2003, and references therein). Birds, often
pigeons, are trained to respond to a certain wave-
length, say 550 nm, and their responses to novel
wavelengths, say 555 and 560 nm, are then compared
to the trained wavelength to obtain a generalization
gradient. These gradients can be described by either a
Gaussian or an exponential function of the distance
from the training wavelength (Ghirlanda & Enquist,
2003). A difficulty in studying color generalization on
a wavelength continuum is that it disregards the
birds’ ability to discriminate between the different
wavelengths in the test; the discrimination threshold
varies substantially as a function of wavelength

Citation: Scholtyssek, C., Osorio, D. C., & Baddeley, R. J. (2016). Color generalization across hue and saturation in chicks
described by a simple (Bayesian) model. Journal of Vision, 16(10):8, 1–10, doi:10.1167/16.10.8.

Journal of Vision (2016) 16(10):8, 1–10 1

doi: 10 .1167 /16 .10 .8 ISSN 1534-7362Received February 18, 2016; published August 18, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/935592/ on 03/02/2017

mailto:cs508@sussex.ac.uk
mailto:cs508@sussex.ac.uk
mailto:D.Osorio@sussex.ac.uk
mailto:D.Osorio@sussex.ac.uk
mailto:roland.baddeley@bristol.ac.uk
mailto:roland.baddeley@bristol.ac.uk
https://creativecommons.org/licenses/by-nc-nd/4.0/


(Emmerton & Delius, 1980), which distorts the shape
of the generalization gradients so that most studies
cannot distinguish responses to novel colors due to
perceptual confusion from those due to sensory
generalization. This study accounts for sensory
confusion by specifying the discriminable distance of
novel colors from the training colors by an empir-
ically verified model of color discrimination (Vor-
obyev & Osorio, 1998).

Monochromatic lights, used in most former studies
of color generalization, cannot excite more than two
single cone types at once in the bird eye, and
therefore they vary almost exclusively in hue. By
comparison, our experiments use printed stimuli,
which reflect light like natural surfaces, and their
broad reflectance spectra can excite multiple cone
types, allowing the color to vary along an additional
chromatic dimension: saturation, which is the dif-
ference of a color from an achromatic gray (Wys-
zecki & Stiles, 1982).

Hue and saturation are familiar to humans as
distinct aspects or dimensions of color, but their
significance in animal perception and visual communi-
cation signals is little known. In general, one might
expect that while hue will depend on the chemical
composition of the pigment, saturation of a color will
depend on both the pigment concentration and possibly
any surface covering, such as dust. Great tits (Parus
major) vary in the level of yellow pigment of their
breast feathers, and it has been suggested that hue
signals individual foraging success and saturation
overall body condition, providing independent signals
during mate choice (Senar, Negro, Quesada, Ruiz, &
Garrido, 2008). More generally, the light reflected from
a uniform specular surface (such as a feather or beetle
elytron) will vary in saturation but not hue, with the
chromaticity of points on the surface lying on a line
between the color locus of the illumination (i.e.,
achromatic) and the locus of the material seen with
minimum specular reflectance. Consequently, hue and
saturation may give different types of information
about objects and surfaces and hence have different
behavioral significance.

If birds differentiate hue from saturation as
independent sources of information in decision mak-
ing, do they react differently to suprathreshold color
differences in these two aspects of color? Birds
encountering novel colors could innately weight
changes in one dimension more strongly than changes
in the other dimension, resulting in different degrees
of generalization along the different chromatic di-
mensions. Alternatively, birds might weight changes in
either dimension according to their experience of how
the signals vary. If birds learned that the same
magnitude of color change signals equal changes in
profitability (e.g., mate quality or nutritional value of

food), then generalization of hue and saturation
should be the same. To our knowledge, generalization
gradients have not been described along the saturation
dimension in birds or in any other animal (including
humans). Here, to directly compare how poultry
chicks generalize to novel colors along either dimen-
sion, we use behavioral experiments and statistical
modeling of generalization of hue and saturation.
Chicks are excellent subjects for tests of color
generalization: They learn colors fast and accurately,
and from hatching we can control their color
experience and hence knowledge about color varia-
tion. Also, because the spectral sensitivities of chicken
cone photoreceptors and color discrimination thresh-
olds are known, we can produce colors of known
discriminability from one another to test generaliza-
tion.

In our experiments chicks learned to forage on
colored food containers and to identify colors signaling
the presence or absence of a reward. The rewarded and
unrewarded colors were thereby separated by the same
suprathreshold color distance on either continuum,
dominated either by hue or by saturation changes in the
chicks’ receptor space (Figure 1).

In tests we simultaneously presented food contain-
ers printed in the training colors and novel interme-
diate colors, and we recorded the chicks’ choice
preferences under extinction (i.e., in the absence of a
food reward). We hypothesize, in accordance with the

Figure 1. Training and testing colors represented in the chicks’

receptor space. Vertices of the Maxwellian triangle correspond

to the excitation of the chicks’ L, M, and S cones. (a, b) Training

and testing stimuli along opposite directions in the hue and

saturation dimensions, respectively. T� 1–4 label unrewarded

training stimulus for Groups 1–4; Tþ labels the rewarded

training stimulus. The symbol þmarks the location of the

achromatic background.
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matching law (Herrnstein, 1970), that the relative
frequency with which the chicks choose the different
testing colors is proportional to their estimation of the
probability of a reward. To characterize how chicks
generalize the association of a reward from the
training to the testing colors, we introduce a Bayesian
model that converts the chicks’ choice behavior to a
probability function of the distance of each testing
color from the rewarded training color. To compare
generalization between the different training and
testing conditions, we propose a summary statistic of
generalization behavior, which is not provided by
former studies on sensory generalization. This Bayes-
ian model allows us to interpolate a generalization
threshold from our fitted probability function and to
compute the confidence in this measure. The threshold
describes a color distance beyond which the chicks
treat novel colors as significantly different from the
rewarded training color. This new method for
calculating psychophysical discrimination thresholds
has advantages over standard psychophysical methods
of generating a psychometric function, which require
the successive comparison of the rewarded standard
stimulus to a variety of comparison stimuli in a large
number of separate trials (Gescheider, 1976). In
contrast, our Bayesian method of computing the
threshold allows the simultaneous comparison of an
arbitrarily large number of physical or perceptual
alternatives to generate the psychometric or general-
ization function. At the cost of an assumption of a
constant threshold in any given dimension, this
method requires an order of magnitude less data than

the standard method. Furthermore, the Bayesian
method presented here can return a threshold that is
beyond the range tested. Therefore, our model
provides not only a long-overdue approach to directly
comparing generalization performance within or
between stimulus dimensions but also a useful
opportunity to study sensory discrimination.

Methods

Stimulus design

Stimulus patterns were printed on standard plain
paper with a Canon PIXMA Pro9500 ink-jet printer
and folded into conical food containers (Osorio,
Vorobyev, & Jones, 1999). The patterns consisted of 48
tiles (each 6 3 2 mm); 15 randomly assigned tiles were
printed in the stimulus color, and the remaining 33 were
printed in gray. To eliminate luminance cues, colors
were chosen to be isoluminant for the chicks’ double
cones (Table 1; Supplementary Figure S1). In addition,
the luminance of the 33 gray tiles was varied with a
Michelson contrast of 30%. Two shades of gray were
identified that were 15% brighter and darker than the
stimulus color. Between these two gray values, 33
homogeneous gray intervals were calculated and
randomly assigned to the 33 achromatic tiles. This way,
the average luminance of all gray tiles matched the
luminance of the colored tiles.

Distance from Tþ R G B x y Log brightness

Hue

4.03 0.604 0.484 0 0.114 �0.206 4.45

2.19 0.631 0.451 0 0.075 �0.193 4.45

1.15 0.649 0.429 0 0.138 �0.215 4.47

0 0.672 0.402 0 0.165 �0.219 4.47

1.11 0.694 0.374 0 0.192 �0.225 4.47

1.98 0.717 0.347 0 0.211 �0.230 4.44

4.03 0.766 0.286 0 0.258 �0.243 4.45

Saturation

4.11 0.617 0.558 0.5 0.04 �0.064 4.45

2.14 0.627 0.532 0.436 0.075 �0.105 4.44

0.98 0.633 0.519 0.405 0.091 �0.125 4.44

0 0.637 0.508 0.378 0.107 �0.146 4.45

1.05 0.654 0.489 0.333 0.127 �0.167 4.45

2.02 0.651 0.473 0.295 0.139 �0.179 4.46

4.11 0.662 0.445 0.222 0.167 �0.209 4.49

Mean background 0.6 0.6 0.6 0 0 4.46

Table 1. Properties of the training and testing stimuli and the achromatic background. Notes: From left to right, the table shows the
discriminable distance (in just-noticeable differences) of each color from Tþ, the RGB values of the lookup table used to generate the
colors in MATLAB (from 0 to 1), x- and y-coordinates in the chicks’ receptor space (Figure 1), and log brightness (relative quantum
catches) as calculated for the chicks’ double cones.
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The stimuli were illuminated by a quartz halogen
light source, which was long-pass filtered (Schott
GG475, Schott, Mainz, Germany) to remove most of
the spectrum that stimulates the VS cones. As can be
seen from Supplementary Figure S1, the amount of
light that could stimulate the VS cones is small, and
given the low numbers of VS cones (e.g., Bowmaker,
Heath, Wilkie, & Hunt, 1997), quantum catch is very
low, so that VS cones are most unlikely to have made a
contribution to color discrimination. Therefore, the
chicks discriminated colors with the remaining three
types of single cones (S, M, L; Osorio et al., 1999).

The colors were chosen to fall on straight lines in the
chicks’ receptor space (Figure 1). Colors varied either
exclusively in saturation or simultaneously in hue and
saturation. This is due to the use of isoluminant printed
stimuli. ‘‘Yellower’’ colors at similar saturations are
brighter for the chick double cones than ‘‘redder’’
colors. To exclude brightness cues, we had to adjust the
luminance of the printed colors, which made colors less
saturated as they contained more yellow. Color
measurements and modeling of the color coordinates
are described in Supplementary Figure S1. The
perceptual distance between colors was calculated using
the receptor-noise limited model of Vorobyev and
Osorio (1998; see also Table 1; Supplementary Figure
S1), which has recently been validated experimentally
(Olsson, Lind, & Kelber, 2015). Furthermore, it is
reasonable to assume that equally distant stimuli in
color space are also equally discriminable (unlike
monochromatic stimuli, where discriminability will
systematically vary with wavelength).

Procedure

Five- to 10-day-old untrained male poultry chicks
were trained to discriminate between paper cones of a
rewarded and an unrewarded color separated by four
just-noticeable differences (JNDs) on either a hue or a
saturation continuum (Figure 1; Table 1;
Supplementary Figure S1). Twenty-four pairs of chicks
were assigned to four different training groups. Groups
1 and 2 received differential training along the hue
continuum. Both groups were trained on the same
rewarded color (Tþ), which appeared orange to human
observers, but the unrewarded color (T�) was located
at opposite ends of the hue continuum, with Group 1
being trained with a ‘‘redder’’ T—, and Group 2 with a
‘‘yellower’’ T— (Figure 1; Table 1). Groups 3 and 4
received differential training along the saturation
dimension (Figure 1; Table 1). Here as well, both
groups were trained on the same Tþ, which was an
intermediate saturated orange, but the T� was either
more saturated (Group 3) or less saturated (Group 4)
than the Tþ.

Chicks were trained in pairs to forage on four Tþ
and four T� containers, which were randomly dis-
persed over the floor of a 30 3 30 cm arena. Tþ
containers were filled with chicken crumbs, while T�
containers remained empty. The chicks rapidly learned
to extract food from the containers by pecking on
them. Tþ containers were refilled at 1-min intervals, six
times during a training session. Two sessions were run
per day, for a total of three training days.

Two tests were run on two subsequent days, with one
additional training session preceding each test. Before
training and testing, chicks were deprived of food for 2
hr. Tests were carried out in extinction (i.e., without
reward). Chicks were presented with the Tþ color, the
T� color, and two intermediate colors (Figure 1), which
were separated from the Tþ by approximately one and
two JNDs (Table 1). Each color was present twice. In
each test, choice frequencies for the four colors were
recorded for one chick in each pair, until eight choices
were completed. The number of responses to each
stimulus were pooled for the six chicks within a group
and plotted as a function of the discriminable distance
of the test stimuli from Tþ.

All experiments were conducted in line with the
United Kingdom’s Animals (Scientific Procedures) Act.

The Bayesian model

Our data consist of the number of choices made by
the chicks from N alternatives, each characterized by its
discriminable distance from the Tþ color. To compare
generalization between conditions, it is useful to
translate our choice data into a model of the chicks’
certainty about a reward and how that certainty
depends on the perceptual distance of novel colors from
the Tþ color. We assume that the chicks peck on the N
alternative stimuli with a probability proportional to
the probability that the stimulus is rewarded (Herrn-
stein, 1970). In accordance with the ideal observer
theory (e.g., Geisler, 2003), the probability that a chick
will choose a stimulus k with a discriminable distance
Xk to the rewarded training stimulus Tþ can be
determined by invoking Bayes’s rule:

Pðchoice¼ kjXkÞ ¼
PðXkjchoice ¼ kÞPðchoice ¼ kÞX

j
PðXjj choice ¼ jÞPðchoice ¼ jÞ

: ð1Þ

The expression P(choice¼ k) is our belief about the
probability of a chick’s choosing stimulus k prior to
any training. If we assume no pretraining bias such as
innate color preferences, P(choice¼ k) is the same for
all N stimuli, and is therefore simply 1/N. The
expression P(Xkjchoice ¼ k) is the probability of Xk

given the choice of stimulus k. This term is called the
likelihood function. Since the prior probability
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P(choice¼ k) is constant, the likelihood function is the
only term we have to fit to describe the probability of a
chick’s choosing stimulus k given its discriminability Xk

from Tþ (Equation 1). The denominator is the total
probability of Xj for all stimuli.

We compare the fits of two likelihood functions to
the data. First, given that decision making is likely to
be influenced by a number of factors, including neural
noise, speed-versus-accuracy trade-off, and the estimate
of the costs and benefits of the choice, the central limit
theorem predicts that the likelihood function is
Gaussian, so that

PðXkjchoice ¼ kÞ ¼ 1

r
ffiffiffiffiffiffi
2p
p exp �ðXk � TÞ2

2r2

 !
: ð2Þ

(Xk � T) measures the number of JNDs a given
stimulus is away from the rewarded pattern. This
means that the standard deviation r is the only
parameter that needs to be fitted.

We also explore a Laplace likelihood function (a
likelihood that is an exponentially decaying function
from the reference rather than a Gaussian), as
suggested by Shepard (1987) and Tenenbaum and
Griffiths (2001):

PðXkj choice ¼ kÞ ¼ 1

2a
exp

�jXk � Tj
a

� �
: ð3Þ

Exponential likelihood functions can plausibly be
motivated by in fact having Gaussian likelihoods but
with an unknown standard deviation. Averaging (mar-
ginalizing) over this uncertainty can in some situations
result in a so-called Laplace likelihood. Like the
standard deviation r in Equation 2, a determines the
width of the function and is the only parameter to fit.

Fit

To estimate parameters and compute the confidence
in the estimate, we use established methods, as for
instance described in the reviews of Wichmann and Hill
(2001a, 2001b). To obtain a point estimate of the
parameter for the Laplace or the Gaussian fit, the
model uses maximum log likelihood estimation re-
cruiting a MATLAB (The MathWorks, Natick, MA)
built-in unconstrained nonlinear minimization search
algorithm (fminsearch.m).

To decide which type of function best describes our
data, the model performs nonparametric bootstraps.
For n¼ 1,000 iterations, new data sets are created by
randomly sampling from the original data set with a
sample size equivalent to the original data. For each new
data set the model performs a maximum (log) likelihood
estimation for both types of fit and compares them in a
likelihood ratio test. Since we compute log likelihoods,

we can calculate the difference instead of the ratio:

r ¼ logLðrjD0Þ � logLðajD0Þ; ð4Þ
with L(ajD0) being the likelihood given the Laplace
function and L(rjD0) being the likelihood given the
Gaussian function for a given data set D0. This way we
obtain a distribution of n likelihood ratios r, of which
the mean and the 95% confidence limits are calculated
(explicitly, the values of the 97.5 and 2.5 percentiles).
This nonparametric bootstrap is performed by the
function fit_exp_and_gauss.m in MATLAB (available
on request), which returns a distribution of boot-
strapped log likelihood ratios.

After deciding which type of fit describes the data
best, the model computes the confidence in the fit by
sampling from the posterior distribution using a
Metropolis–Hastings algorithm (see, e.g., Wichmann &
Hill, 2001b). After an initial burn-in period, for n
iterations this algorithm approximates the posterior
distribution of the parameter values by a set of samples,
as is standard Bayesian modeling practice.

For simplification, from now on the symbol b will be
used for the parameter, standing for either a or r
depending on the outcome of the likelihood ratio tests.

To minimize burn-in time, the Metropolis–Hastings
algorithm uses the initial estimate of the value of b that
maxmizes the likelihood, as the initial value bt. It
proposes a candidate value b0 that is randomly sampled
from a normal distribution P(b0jbt) centered around bt,
and then compares the posterior (which here is the
same as the likelihood, since we assume a uniform
prior) of the current and the proposed model using the
following standard Metropolis–Hastings acceptance
ratio test. The posterior ratio (likelihood ratio, since we
have equal priors) is calculated as

r ¼ Lðb0jDÞ
LðbtjDÞ

: ð5Þ

Here L(b0jD) and L(btjD) are the posterior proba-
bilities (likelihoods) of the proposed and the current
model, respectively, given our choice-frequency data D.

If the proposed model is more likely than the current
model (r . 1), b0 is chosen as a sample of the posterior
probability distribution of b. If the proposed model is
less likely than the current model (r , 1), b0 is rejected
with a probability equivalent to r and bt is chosen
instead. The chosen value will then serve as the current
value bt in the next iteration. Repeating this process
allows us to obtain samples from the posterior
probability distribution together with its 97.5 and 2.5
percentiles (serving as a measure of our 95% confidence
interval).

To estimate how well the model describes the data,
we calculate the respective correlation coefficient R2

that describes the percentage of variance in the data
that the model accounts for.
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Threshold interpolation

To compare the generalization among the four
groups, we compare difference thresholds: a color
distance beyond which novel colors are treated signifi-
cantly different from Tþ, or in other words a distance at
which the chick discriminates between Tþ and novel
colors. We adopt the threshold criterion from standard
psychophysical methods to determine sensory discrimi-
nation thresholds. Both types of thresholds are deter-
mined by uncertainty. Whereas in sensory
discrimination, performance is limited by actual noise in
the sensory neurons or by stimulus-inherent variations in
appearance, in the present study performance is limited
by uncertainty about the presence of a reward (Lynn,
2010). In the case of sensory discrimination, the
threshold describes the minimal physical distance
necessary to yield a just-noticeable (perceptual) differ-
ence. In terms of discrimination thresholds, ‘‘just
noticeable’’ was defined as the difference that is detected
some proportion of the time. Likewise for generaliza-
tion, this means that the stimulus is treated differently (is
discriminated from Tþ) some proportion of the time. In
psychophysics, this proportion, known as the threshold
criterion, is usually a performance halfway between
chance level and 100% Tþ choices, and is used to
interpolate the threshold from a model fitted to the data.
In a two-alternative forced-choice task in which the
subject is asked to choose the Tþ over a simultaneously
presented comparison stimulus, the chance level is 50%.
Therefore the threshold would be a distance from Tþ at
which Tþ is chosen in 75% of all presentations. In a
simultaneous four-alternative forced-choice task, the
chance level would be 25%, so the threshold criterion
would be 62.5%. However, this is only true if the three
comparison stimuli are identical. Here, we compare four
different colors simultaneously, which all have a
different choice probability that has to be considered
(Equation 1). Since our model converts choice frequen-
cies into probabilities we can apply a two-alternative
forced-choice threshold criterion, despite using a multi-
ple-choice paradigm to generate the data by asking for
the relative probability Pr(Tþ) of Tþ compared to any
novel color with a measurement value X:

PrðTþÞ ¼
PðTþÞ

PðTþÞ þ PðXÞ ; ð6Þ

with P(Tþ) as the probability of Tþ and P(X) as the
probability of a color at a discriminable distance X. For
colors very close to Tþ, Pr(Tþ) is around 50% and
increases with increasing discriminability of novel colors
from Tþ until it reaches 100% for colors that are very
different from Tþ. Therefore, we can interpolate the
difference threshold using a criterion of Pr(Tþ)¼ 75%. If
we assume a Gaussian or a Laplace likelihood function
(Equations 2 and 3), and disregard normalization,

Equation 6 can be written as

PrðTþÞ ¼
1

1þ exp
�
� X 2=ð2r2Þ

� ð7Þ

for a Gaussian likelihood function and

PrðTþÞ ¼
1

1þ expð�jXj=aÞ ð8Þ

for a Laplace likelihood function. As becomes obvious
from Equations 7 and 8, the thresholds can be directly
calculated from the estimated parameters (r or a).
Assuming a threshold criterion of 0.75 (75%), solving for
X reveals a linear relationship between the parameter
and the threshold, with Xthreshold¼ 1.482r for a
Gaussian likelihood function and Xthreshold¼ 1.099a for
a Laplace likelihood function. This threshold interpola-
tion is performed for each parameter value in the
posterior distribution, which was obtained using the
Metropolis–Hastings algorithm, as described in the
previous section (Equation 5). This way a probability
distribution of thresholds with mean and upper and
lower 95% confidence limits of the mean can be obtained
as summary statistics and a measure of confidence to
compare generalization between conditions.

The function (fit_softmax.m) that fits the model and
interpolates the threshold was programmed in MAT-
LAB. The only input fit_softmax.m needs is a vector
containing the distances of the test stimuli from Tþ, a
vector containing the corresponding choice frequencies,
and the threshold criterion. The output of the function
is the mean threshold, the standard error of the
thresholds, the 95% confidence interval of the thresh-
old, and a figure illustrating the relative choice
frequencies, the fitted model (Figure 3), and, optional-
ly, the distribution of the thresholds.

For the illustration, the function computes the
likelihood function for the entire posterior distribution
of the parameter b obtained using the Metropolis–
Hastings algorithm (see Fit) and plots the mean as well
as the standard deviation as a function of the
perceptual distance X from Tþ (Figure 3).

Results

Four groups of chicks were trained to discriminate
colors separated by about four JNDs on a continuum
dominated by changes in either hue (Groups 1 and 2) or
saturation (Groups 3 and 4). We then tested the chicks’
generalization performance in extinction on each
continuum by recording their choice frequencies for the
Tþ, the T�, and two novel intermediate colors
separated by roughly one and two JNDs from the Tþ
(Figure 1; Table 1). Each condition comprised a total of
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96 choices (six chicks each making 16 choices in two
tests). To compare performance along the hue and
saturation dimensions, we employed a Bayesian model
that converts choice frequency into a posterior
distribution of the discriminable distance of novel
colors from Tþ. We explored a Gaussian and a Laplace
function to fit our choice-frequency data. To estimate
which of the two functions best describes the color-
generalization data, we performed a nonparametric
bootstrap and compared the maximum likelihoods for
the Gaussian and the Laplace function in likelihood
ratio tests (Equation 4).

A comparison of the Laplace and the Gaussian fits
and the distributions of the log likelihood ratios for

each of the four groups are shown in Figure 2a through
d. If either of the functions were to provide a
significantly better description of the data, the 95%
confidence interval of the likelihood ratio should
exclude 0 (at which both functions have the same
likelihood given the data). However, this is not the case
for any of the four groups (Figure 2a through d, right
panels), showing that both functions are suitable for
describing color generalization by chicks. Assuming the
same likelihood for all four groups, the Gaussian
function seems to fit better (yet not significantly so)
than the Laplace function (Figure 2e), with a mean log
likelihood ratio of �5.66 and confidence limits at
�14.53 and 2.75. Therefore, we decided to use this type
of function to further explore the chicks’ generalization
performance.

Figure 3 depicts the mean and standard deviation of
the Gaussian fits obtained by the Metropolis–Hastings
algorithm (Equation 5). For all four groups, the model
provides a very good description of the chicks’
generalization performance, accounting for 93%–100%
of the variance in the data (R2 values of the mean fit for
Groups 1–4 are, respectively, 0.97, 0.95, 0.93, and 1).

The mean and the upper and lower 95% confidence
limits of r obtained using parametric bootstrapping for
Groups 1–4 are, respectively, 2.13 [1.73, 2.78], 1.67
[1.36, 2.12], 1.76 [1.43, 2.17], and 1.96 [1.59, 2.43].

As a measure of the degree to which chicks
generalize the training behavior across novel colors, we
interpolated generalization thresholds from the fitted
model. The distributions of the thresholds are illus-
trated in Figure 4 as violin plots with mean and 95%

Figure 2. Comparison of a Laplace and a Gaussian fit using

maximum likelihood estimation. The solid gray line in the left

panels shows the relative choice frequencies for the four testing

stimuli. Error bars depict standard errors for n ¼ 6 chicks. The

solid black line represents the Gaussian fit, and the dotted line

the Laplace fit. The right panels depict histograms of the log

likelihood ratios computed by means of nonparametric boot-

strapping. Negative values prefer the Gaussian fit, positive

values the Laplace fit. (a) Group 1, trained with an ‘‘orange’’ Tþ
and a ‘‘redder’’ T�. (b) Group 2, trained with the same Tþ but a

‘‘yellower’’ T�. (c) Group 3, trained with more saturated T�. (d)
Group 4, trained with a less saturated T�. (e) Distribution of the

log likelihood ratios for all four groups.

Figure 3. Generalization functions and threshold distributions

for chicks tested along opposite directions on the hue and

saturation dimensions. The solid gray line in the left panels

shows the relative choice frequencies. Error bars depict

standard errors for n ¼ 6 chicks. The black curve shows the

mean and the standard deviation of the Gaussian function fitted

to our data. a–d represent fits for Group 1–4, respectively.
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confidence limits. The mean and the upper and lower
95% confidence limits of the thresholds obtained for
generalization along the two opposite directions of the
hue continuum are 3.16 [2.55, 4.1] (Group 1) and 2.48
[2, 3.15] (Group 2). The mean and upper and lower 95%
confidence limits of the thresholds obtained for
generalization along the saturation continuum are 2.62
[2.15, 3.2] (Group 3) and 2.9 [2.35, 3.6] (Group 4).
Although the mean generalization threshold of Group
1 is higher than that of Group 2, the 95% confidence
intervals of the means between Groups 2, 3, and 4, as
well as between Groups 1 and 4, strongly overlap,
indicating a lack of any significant difference between
generalization. Hence, generalization does not depend
on the chromatic dimension in which training and
testing colors varied. Furthermore, mean thresholds
obtained for the two opposite testing directions on each
dimension are remarkably similar, at 2.82 JNDs for hue
and 2.76 JNDs for saturation.

Discussion

Modeling generalization and determining
thresholds

We have introduced a Bayesian model that describes
generalization as a probability or likelihood function of
the discriminable distance between novel and known
stimuli. Earlier analysis suggested that the shape of
generalization gradients follows either a Gaussian or a
Laplace function (Ghirlanda & Enquist, 2003; Shepard,
1987). Figure 2 shows that either distribution accounts
very well for the chicks’ generalization of color. This

might be due to the fact that we tested generalization
over a small number of discriminable distances from
Tþ. To discriminate between Laplace and Gaussian
likelihood functions, denser sampling would be bene-
ficial, especially close to Tþ. However, the minimum
discriminable distance of our test stimuli is approxi-
mately one JND from Tþ, and sampling below that
would reflect responses made due to perceptual
confusion rather than sensory generalization. Hence,
determining the exact shape of the generalization
gradient appears to be difficult: The predictions of the
two models are sufficiently similar that discriminating
them would require considerably larger data sets than
these.

As a measure of the degree of generalization we
interpolated discriminable distances beyond which
novel colors are treated as significantly different from
Tþ. Our model thereby computes a posterior proba-
bility distribution of thresholds, which allows a
measure of confidence in our threshold estimation. By
comparing these posterior distributions of generaliza-
tion thresholds, we found that color generalization in
chicks does not depend on the chromatic dimension in
which the colors vary. Instead, there was a minor
difference in the distribution of the generalization
thresholds for opposite directions of colors varying
predominantly in the hue dimensions. This difference
might result from an innate preference for red over
yellow, as has been shown for imprinting by newly
hatched chicks (Salzen, Lily, & Mckeown, 1971). If
chicks also have a red preference during foraging, this
may increase the probability with which they choose
novel training colors after being trained with a redder
T� (Group 1). Conversely, the same preference may
have decreased the probability with which the chicks
choose novel colors following training with a yellower
T� (Group 2). Interestingly, the threshold distributions
of the two opposite directions in the saturation
dimension were similar, although untrained young
poultry chicks have an innate preference for more
saturated oranges during foraging (Ham & Osorio,
2007).

The distinction between hue and saturation as
different sources of information

In normal discourse and in color science, we
conventionally distinguish hue and saturation (or color
purity) as separate aspects of color, perhaps because
changes in hue and saturation are likely to have
different physical causes (see Introduction); but differ-
ences in perception of hue and saturation are little
studied in animals. It has been suggested that hue and
saturation in the yellow breast plumage of the great tit
(Parus major) convey different types of information

Figure 4. Violin plots of the thresholds. The violins are rotated

and mirrored kernel-density estimations of the threshold

distributions, illustrated with means and 95% confidence limits.
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about the bird’s quality (Senar et al., 2008), and if hue
and saturation can generally provide complementary
information, then the ability to analyze these two
chromatic dimensions of color independently when
encountering novel colors would allow birds to
optimize decisions—for example, about what to eat or
which mate to choose. This raises the question of
whether the chromatic dimension influences the degree
to which birds generalize responses to novel colors.

Here we describe color-generalization gradients after
training young domestic chicks to discriminate between
rewarded and unrewarded colors, which are separated
by the same suprathreshold color distance, for colors
varying either mainly in hue or solely in saturation.
Hence, chicks trained in either condition should have
learned the same correlation between color variation
and the presence or absence of a reward. We did not
achieve isosaturation for the colors used to test
generalization along the hue dimension. This is due to
the problem of creating isoluminant colors. In fact,
tests found no difference in the degree to which chicks
generalize the association of a reward across novel
colors, showing that generalization is not dependent on
whether color differences are constituted by a change in
saturation alone or by a simultaneous change in hue
and saturation. Furthermore, tests found no bias
toward more- or less-saturated colors. What seems to
be important is perceptual similarity, defined by the
number of JNDs separating known and novel colors,
combined with knowledge about how colors vary.
These findings are therefore consistent with Fechner’s
law, which predicts that the perceived magnitude of
suprathreshold color differences should be propor-
tional to their separation in JNDs (Ham & Osorio,
2007; Renoult, Kelber, & Schaefer, in press; Wyszecki
& Stiles, 1982). Learning about variation in general-
ization behavior is likely to be adaptive, since it allows
birds to constantly update their assumptions of the
variation of object colors and therefore to adjust the
probability with which they generalize behaviors to
novel colors depending on their experience with
previous colors. It may also allow them to generalize
differently in different contexts. In the context of mate
choice, for instance, small suprathreshold color
changes may make all the difference between a high-
and a low-quality mate, whereas in the context of
foraging, small color differences may be negligible.

We have not tested here whether birds can learn that
variation in one chromatic dimension is more or less
important than variation in the other chromatic
dimension, nor whether birds differentiate between hue
and saturation as independent signals. To bring us one
step closer to this understanding, we are currently
training chicks to discriminate between two-dimen-
sional color distributions that have defined variances in
hue and saturation. The rewarded and unrewarded

color distributions are thereby separated by only one
dimension, hue or saturation, making variation along
the other dimension completely irrelevant. We will then
test whether color generalization along the relevant
dimension is influenced by the extent to which colors
vary in the irrelevant dimension, and will be able to
make inferences about the degree to which birds are
able to disentangle the two chromatic dimensions (or
any other possible dimensions) of color.

Keywords: color generalization, hue, saturation,
Bayesian inference, multiple-choice paradigm, psycho-
metric function
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