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Abstract 

This study has compared hydrological model performances under different sub-annual period calibration 

schemes using two conceptual models, IHACRES and HYMOD. In several publications regarding sub-annual 

period calibration, the authors showed that such an approach generally performed better than the conventional 

whole period method. Hence, there are advantages in dividing (or clustering) the data into sub-annual periods 

for calibration. However, little attention has been paid to the issue of how to calibrate the non-continuous sub-

annual period. It is therefore important to explore reliable calibration schemes for such a situation. Unlike the 

conventional whole period calibration which assumes time-invariant parameters for the entire calibration 

period, the model parameters vary in sub-annual calibration. We have explored two sub-annual calibration 

schemes, serial calibration scheme (SCS) and parallel calibration scheme (PCS). We assume that the 

relationships between the rainfall and runoff could be different for each sub-annual period and consider intra-

annual variations of the system. The models are then evaluated for a different validation period to avoid over-

fitting (or, over parameterisation) and the optimal sub-annual calibration period is explored. Overall, we have 

found that PCS performed slightly better than SCS and the optimal calibration periods are seasonal and 

bimonthly for IHACRES and biannual for HYMOD at the study catchment. Since there are pros and cons in 

both SCS and PCS, we recommend choosing the method depending on the purpose of the model usage. 

Although the catchment is specific in the study, the methodology proposed is general and applicable to other 

catchments. 

 

Keywords: calibration, sub-annual, hydrological model, model performance, optimal calibration period   
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INTRODUCTION 

Hydrological modelling is an essential tool for understanding the hydrological behaviour of a catchment 

(Madsen, 2000; Wagener et al., 2003), and  it is a complicated task (De Vos et al., 2010). The most common 

method for identifying the optimised model parameters is through the calibration with the use of historical 

observation data. Objective functions, such as Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970) are used to 

minimise the difference between the observed and simulated flows. This calibrating scheme is widely applied 

(Sorooshian, 1991; Gan and Biftu, 1996; Gupta et al., 1998; Gupta et al., 2009). The validation is a standard 

practice in hydrological modelling (Andréassian et al., 2009) to test the model with the data outside of 

calibration period to evaluate the model performance.  

A recognised issue in hydrological modelling is uncertainties which are attributed to the model structural 

errors and parameterisation errors. The uncertainty due to model structure errors is generally quantified by 

using several different models, and numerous methods are proposed regarding quantification of the 

uncertainty of parameterisation problem. The time varying parameters which may arise from catchment 

change (such as land use/cover change), climate variability and climate change (such as change of 

evapotranspiration dynamics of vegetation due to higher or lower temperatures) may be another source of 

uncertainty. Such changes may be significant within a year (e.g., contrasting vegetation cover between winter 

and summer in many parts of the world). Recently, there have been some studies about the stability of the 

model performances and the effect of parameter values (Xu, 1999; Li et al., 2014; Patel and Rahman, 2014; 

Yan and Zhang, 2014). The reasons of time varying model parameters can be explained by several reasons 

(Merz et al., 2011). First, the hydrological model has structure errors and the calibrated parameters may 

change for different time periods in order to compensate these problems with the model structures (Wagener 

et al., 2003). Secondly, catchment characteristic change (Brown et al., 2005) such as land use and vegetation 

variations (Merz and Blöschl, 2009) can also lead to the change of calibrated parameters. However, the 

correlation between parameters is complicated (Wagener, 2007) which make it hard to understand the reason 

of the parameter changes in time (Wagener et al., 2010).  

Therefore, most parameterisation scheme in hydrological model is based on the assumption that the 

parameters do not change for the entire calibration period. There has been some research about the adequate 

data length for calibration (Xu and Vandewiele, 1994; Zeng et al., 2016). In addition, some researchers have 
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attempted to develop more accurate models by adapting sub-annual calibration, which is based on seasonal or 

monthly time periods (i.e. non-continuous periods) in order to better simulate temporal variations of the 

varying catchment condition within the year. In such a scheme, intra-annual variation of the data is taken into 

account. For example, Luo et al. (2012) examined ten different parameterisation schemes at the catchments in 

Australia. Their results have shown that calibrating the model for each individual month separately makes the 

model performance better than the other schemes, which is particularly evident for the dry months when the 

flow is low and difficult to forecast. Levesque et al. (2008) conducted seasonal calibration, in which summer 

and winter seasons were calibrated separately. When the model was calibrated based on the summer (dry 

period) data, the model performance improved considerably. However, there was no advantage when only the 

winter (wet period) data were used for calibration compared with the conventional calibration method which 

used the entire data over the whole period. Paik et al (2005), Kim and Lee (2014), Zhang et al (2015) and Kim 

et al (2016) also used the seasonal calibration method.  

Similar to the sub-annual discrete calibration, Hartmann and Bardossy (2005) investigated the transferability 

of hydrological models by dividing the observation period into different climatic conditions (i.e. warm, cold, 

wet and dry). They conducted the calibration only for the chosen years which were discontinuous, and the 

model was running continuously for the entire observation period. De Vos et al (2010) proposed clustering 

time series according to hydrological similarities and allowing the parameters to vary over the clusters during 

calibration. Seiller et al. (2012) selected five non-continuous hydrologic years for four contrasting climate 

conditions: dry/warm, dry/cold, humid/warm and humid/cold. Calibration was done on each period and 

validation was conducted on contrasting climate conditions. The model was kept running continuously on the 

entire time series while the optimisation was done only for the chosen years. The above mentioned studies 

demonstrate that model parameter values can vary over time in accordance with seasonal variations and 

indicate that there are some advantages in using this scheme, although further investigation and improvements 

are needed. 

In this study, regarding sub-annual period calibration, we focus on two issues that should be resolved, which 

have not been considered yet in the literature. First, guidance on calibration scheme for non-continuous time 

periods should be provided. Most studies have conducted calibrations based on only the chosen sub-annual 

period (i.e. only the selected sub-annual period data are used for parameter optimisation in the objective 
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function) while the entire time series data were used to run the model continuously. However, the downside of 

such an approach is that there are discontinuities in the time series of soil moisture when the separately 

calibrated flows from individual sub-annual periods are combined to examine the performance of the entire 

time period. Another calibration scheme is to optimise the entire varying parameters simultaneously. De Vos 

et al (2010) divided the data into 12 clusters and the model parameters were set differently for each of the 12 

clusters which resulted in the number of degrees of freedom equal to 12 clusters times the number of 

parameters. Then these parameters are optimised simultaneously. These different methodologies point towards 

the need for a guidance on the non-continuous sub-period calibration scheme. Second, most non-continuous 

sub-period calibration studies are not interested in the model performance of the total time series but that of 

the particular time periods (e.g. dry season or wet season). Therefore the questions are, “How can we assess 

the model efficiency of the entire time series using non-continuous sub-annual period calibration? Is it 

reasonable to just combine the flows calibrated separately?”, “In this case, what about the issue of 

discontinuity in soil moisture simulation?” Third, different sub-annual calibration periods may present 

different model efficiencies due to underfitting or overfitting issues and there may be an optimal period which 

can be evaluated by using cross validation. So far, there is no consensus method in the literature regarding 

how to calibrate non-continuous sub-annual time period. Given such a background, this paper explores the 

following questions: 

(1) What schemes are applicable for non-continuous sub-annual calibration? 

(2) Which schemes are both logical and practical? 

(3) What are the pros and cons of these schemes? 

(4) What is the optimal time period for sub-annual calibration? 

In this study, two sub-annual calibration schemes are employed to explore these questions, i.e., serial 

calibration and parallel calibration schemes. The sub-annual calibration has been performed on five different 

time scales: annual, biannual, seasonal, bimonthly and monthly. We assume that the system is changing due to 

various reasons such as vegetation change (e.g., seasonal change of deciduous vegetation and crop rotation), 

soil structure change (e.g., seasonal soil compaction by farm animals or farming machines),  etc. Therefore the 

system response, i.e. the relationships between the rainfall and runoff may be different for different time 

scales and there may be an optimal time period for sub-annual calibration. In other words, different sets of 
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varying parameters are optimised to consider intra-annual variations. As the number of sub-annual calibration 

period increases (i.e. from annual to monthly) the model is more likely to fit to the observations since it has 

more flexibility to cope with the change of the system. On the other hand it is more likely to fit to the noise 

which is the well-known trade-off between the bias and variance in mathematical modelling. 

Therefore the models are evaluated for different validation periods to overcome the overfitting (or. over-

parameterisation) issue and to explore the best sub-annual model. 

Both calibration schemes are applied to one catchment located in the southwest of England. Since the main 

aim of this study is to introduce the concept and the logic of non-continuous sub-period calibration scheme, 

we believe only one catchment is sufficient to prove the concept and it is hoped that a wide application of the 

proposed methodology in other catchments under different conditions will help the hydrological community to 

find useful patterns on this important issue.  

This paper is organised as follows. The study area and hydrological models used are presented in Section 2. 

The methodology used to examine the calibration schemes are described in Section 3. The results are 

presented in Section 4 followed by the discussion and conclusion in Section 5 and Section 6. 

 

CASE STUDY AREA AND THE HYDROLOGICAL MODELS 

Study area and data 

The Thorverton catchment is used in this study, which has an area of 606km2, and is a sub-catchment of the 

Exe catchments. The Exe catchment is located in the southwest of England with an area of 1,530 km2 and an 

average annual rainfall of 1,088 mm. Figure 1 shows the overview of the Thorverton catchment area. Daily 

time series of the observed precipitation, potential evapotranspiration and flow data (1961-1990) over the 

Thorverton catchment is obtained from the UK Met Office and daily temperature data has been downloaded 

from the UKCP09 gridded observation data sets. 
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Figure 1. Location of the Thorverton catchment (the thick highlighted line) in the UK.  

 

Hydrological model 

IHACRES 

The first model used in this paper is a conceptual rainfall-runoff model IHACRES (Jakeman and Hornberger, 

1993) which has eight parameters. This model has been widely applied to a variety of catchments for 

hydrological analysis and climate impact studies (Jakeman et al., 1993; Littlewood, 1999; Letcher et al., 2001; 

Kim and Lee, 2014). The model is composed of a non-linear module and a linear module as shown in Figure 2 

and model parameters are listed in Table 1. A non-linear module converts rainfall to effective rainfall which is 

calculated from the following equations. 

𝑈𝑘 = [𝐶(∅𝑘 − 𝑙)]
𝑝𝑟𝑘          (1) 

where, rk is the observed rainfall, 𝐶 is the mass balance, 𝑙 is the soil moisture index threshold and 𝑝 is the 

power on soil moisture respectively. The soil moisture (∅𝑘) is calculated from: 

∅𝑘 = 𝑟𝑘 + (1 −
1

𝜏𝑘
)∅𝑘−1         (2) 

where, 𝜏𝑘 is the drying rate given by: 

𝜏𝑘 = 𝜏𝑤exp[0.062𝑓(𝑡𝑟 − 𝑡𝑘)]         (3) 

where, 𝜏𝑤  is the drying rate at reference temperature, 𝑓 is the temperature modulation, 𝑡𝑟  is the reference 

temperature, and 𝑡𝑘 is the observed temperature. A linear module assumes that there is a linear relationship 

between the effective rainfall and flow. Two components in this module, quick flow and slow flow, can be 
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connected in parallel or in series. In this study two parallel storages in the linear module is used because it 

reflects the catchment conditions and the streamflow (𝑥𝑘) at time step k is defined by the following equations: 

𝑥𝑘 = 𝑥𝑘
(𝑞)
+ 𝑥𝑘

(𝑠)
          (4) 

𝑥𝑘
(𝑞)
= 𝛽𝑞𝑈𝑘 − 𝛼𝑞𝑥𝑘−1

(𝑞)
          (5) 

𝑥𝑘
(𝑠)
= 𝛽𝑠𝑈𝑘 − 𝛼𝑠𝑥𝑘−1

(𝑠)
         (6) 

where, 𝑥𝑘
(𝑞)

 and 𝑥𝑘
(𝑠)

 are quick flow and slow flow respectively, and α and β are recession rate and peak 

response respectively. The relative volumes of quick flow and slow flow can be calculated from: 

𝑉𝑞 = 1 − 𝑉𝑠 =
𝛽𝑞

1+𝛼𝑞
= 1 −

𝛽𝑠

1+𝛼𝑠
         (7) 

Therefore, one parameter is determined if the other three parameters are known among the four linear module 

parameters (αq, αs, βq, βs). 

 

Figure 2.  Structure of the IHACRES model. 

 

Table 1. Parameters in the IHACRES model 

Module Parameter Description Range 

Non-linear 

c Mass balance 0-0.04 

τw Reference drying rate 0-50 

f Temperature modulation of drying rate 0-4 

l Soil moisture index threshold 0-50 

p Power on soil moisture 0-3 

Linear 
αq, αs, Quick and slow flow recession rate -1-0 

βq, βs Fractions of effective rainfall for peak response -1-0 
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HYMOD 

Another conceptual rainfall-runoff model used in this study is HYMOD which has five parameters. The model 

consists of a simple rainfall excess model based on the probability distributed principle (Moore, 1985) and 

was applied by several recent studies (Boyle, 2001; Wagener et al., 2001; Vrugt et al., 2003; De Vos et al., 

2010). The model parameters are described in Table 2 and the model structure is illustrated in Figure 3. The 

cumulative distribution function of the water storage capacity C is in the following form. 

𝐹(𝐶) = 1 − (1 −
𝐶(𝑡)

𝐶𝑚𝑎𝑥
)𝑏𝑒𝑥𝑝,  0 ≤ 𝐶(𝑡) ≤ 𝐶𝑚𝑎𝑥     (8) 

where, 𝐶𝑚𝑎𝑥 is the maximum soil moisture storage capacity in the catchment and 𝑏𝑒𝑥𝑝 controls the degree of 

spatial variability of the soil moisture capacity. The excess rainfall is treated as the runoff which is divided 

into quick flow and slow flow based on the partitioning factor a. The runoffs are routed through three identical 

quick flow tanks and a parallel slow flow tank. The flow rates are determined by the recession coefficient for 

quick flow tank (𝑅𝑞) and slow flow tank (𝑅𝑠). 

 

Table 2. HYMOD model parameters. 

Parameter  Unit  Range  Description 

Cmax  mm  1-500  Maximum soil moisture storage capacity 

bexp  -  0.01-1.99  Spatial variability of soil moisture capacity 

α  -  0.01-0.99  Quick/slow flow distribution factor 

Rs  day  0.01-0.99  recession coefficient for slow flow tank 

Rq  day  0.01-0.99  recession coefficient for quick flow tank 

 

 

Figure 3. Structure of the HYMOD model (adopted from Vrugt et al.[2002]).  
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METHODOLOGY 

Optimisation method 

For the optimisation algorithm, we used dynamically dimensioned search (DDS) (Tolson and Shoemaker, 

2007) which is a simple, single objective, heuristic global search algorithm. DDS searches the parameter 

space globally and incrementally localises as the number of iterations reaches the maximum allowable number 

of simulations. The procedure from global to local scales is done by probabilistically decreasing the number of 

model parameters in the neighbourhood. New search avoids poor local optima and parameter values are 

updated by perturbing the current solution values in the randomly selected dimensions with perturbation 

magnitudes randomly sampled from a normal distribution with a zero mean. More detail can be found in 

Tolson and Shoemaker (2007). 

 

Model parameterisation schemes 

The calibration has been conducted with the use of root mean square error (RMSE) to minimise the difference 

between the observed and simulated flow and the optimised parameters have been tested in the validation 

period. 

𝑅𝑀𝑆𝐸 =√
∑ (𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑠𝑖𝑚,𝑖)

2𝑁
𝑖=1

𝑁
(9) 

where, 𝑄𝑠𝑖𝑚 and 𝑄𝑜𝑏𝑠 are the simulated and observed runoff, respectively. i is the ith day, and N is the number 

of days in the calibration period. In this study, only RMSE is used as the objective function. Exploration of the 

effect of different objective functions and their combinations in calibrating rainfall-runoff models can be 

another research topic to extend the current study (e.g. Jie et al, 2016). 

We conducted three different calibration schemes, i.e., the conventional whole period calibration scheme and 

dynamic sub-annual calibration scheme. The common assumption of the conventional calibration scheme is to 

use time invariant parameters. The model parameters do not change during the entire calibration period. On 

the other hand, the dynamic calibration schemes are based on the idea that the optimised parameter values can 

vary according to different climatic and catchment conditions. In this study we have assumed sub-annually 

(annual, biannual, seasonal, bimonthly and monthly) varying parameters. With regard to a monthly model, for 
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instance, the model parameters are the same for each month for all years but differ between the months. This 

scheme can be conducted in two different ways: serial calibration scheme (SCS) and parallel calibration 

scheme (PCS). Among 5 different time scales for sub-annual calibration, illustrations of the monthly 

calibration schemes are presented in Figure 4. SCS optimises the whole parameter sets simultaneously, i.e., 12 

monthly models are calibrated at the same time. For example, 96 parameters (8 parameters times 12 sets) in 

IHACRES and 60 parameters (5 parameters times 12 sets) in HYMOD are optimised simultaneously. On the 

other hand, PCS optimises 12 different monthly models separately. Only the data from individual months are 

used in the objective function while the model is running for the whole period. The calibrated flow data from 

each separate monthly model are then combined together to compare with the observed flow.   

Calibration has been done for three time periods 1960s, 1970s and 1980s. Normally a warm-up period (e.g. 

one or two years) is used during calibration to reduce the influence of the initial values of state variables. In 

this study, instead of using a warm-up period, we set the initial value of soil moisture as a parameter to be 

optimised to avoid the warm-up problem (this is fine for calibration, but not suitable for validation in which a 

warm-up period of one year is still needed because the initial value of soil moisture is not a model parameter).  
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Figure 4. Illustration of the conventional calibration, SCS and PCS for the calibration period from 1961 to 

1970. 

 

Evaluation of the parameterisation schemes and the optimal calibration period 

To explore the optimal time period (i.e. optimal number of groups) of sub-annual calibration which is based 

on a balance between the bias and the variance (Figure 5), the model performance is evaluated in the 

validation period with the use of root mean square error (RMSE). If the sub-annual calibration period is too 

long it may not be flexible to capture the change of the system and may lose the temporal information due to 

underfitting (high bias and low variance). On the other hand if the period is too short even the noise of the 

system will be matched due to overfitting (low bias and high variance). Hence, it is possible that there could 

be an optimal sub-annual calibration period. So far there are no reported studies on this issue.  
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Figure 5. Trade-off between the bias and the variance to explain the model over-fitting and under-

fitting (Han, 2011). 

 

The three-fold cross validation is applied to evaluate the performance of the model and to find the optimal 

sub-annual calibration period (Figure 6). The RMSE values are averaged for all the six validation periods.   

 

Figure 6. Three fold cross-validation scheme (θ is optimised parameter set).  

 

Sub-annually optimised parameters from SCS and PCS can be applied in two ways for validation: serial run 

and parallel run. For a monthly model, for instance, the serial run is to apply the monthly varying parameters 

in series at one model run, while the parallel run is to apply 12 sets of parameters individually (i.e. run from 

January parameters to December parameters separately). Therefore, the parameters from SCS can be applied 
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in series and the parameters from PCS can be applied in parallel. The parameters optimised from SCS and 

PCS are expressed as follows. 

𝜃𝑦
𝑐,𝑚,𝑦 = {

60, for1960s
70, for1970s
80, for1980s

,𝑐 = {
𝑆, forSCS
𝑃, forPCS

,𝑚 = numberofgroups     (10) 

where, y is the calibration period, c is the type of the calibration scheme and m is the number of groups (e.g. 

12 for monthly calibration). 

For example, 1960s monthly parameter sets from SCS (𝜃60
𝑠,𝑚

) are applied to the validation period in which the 

monthly parameters are switched every month while the model runs continuously ((1) in Figure 7). One 

hydrograph is produced in this way. On the other hand, applying monthly parameter sets from PCS (𝜃60
𝑝,𝑚

) in 

parallel runs result in 12 hydrographs. Each monthly parameter set is applied separately while the model is run 

for the whole validation period ((2) in Figure 7). Note that in this figure, the hydrographs are represented only 

for the corresponding month for illustration purpose, although the hydrographs are continuous in reality. The 

flow data from each month period is picked up and combined to build the entire flow data for comparison with 

the observed flow. 

As previously noted the initial value of the soil moisture is set as if it is a ‘model parameter’ and is optimised 

during calibration. However, in reality, the soil moisture is not a hydrological model parameter but a state 

variable, hence, the optimised initial soil moisture value estimated from the calibration period should not be 

used in the validation period. If we know the correlation between the soil moisture and the flow, the initial soil 

moisture value in the validation period could be estimated from the initial flow value. However, since this is 

not the main point of the study, we just assume that the initial soil moisture value evolves to an appropriate 

value after one year instead of building the soil moisture and flow relationship. Therefore, the first one year of 

the validation period has not been taken into account in evaluating the model efficiency. 
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Figure 7. Illustration of the evaluation of 1960s monthly calibrated parameters. The flows are simulated by 

applying the parameters to 1970s (or 1980s) rainfall. 

 

RESULTS OF MODEL EVALUATION 

Figure 8 presents the models performance for SCS and PCS. The calibration and validation results show the 

typical trend of bias trade-off (Figure 5). The more calibration groups we divide the data into the more flexible 

the model becomes and the smaller the error becomes for the calibration scheme. However, the improvement 

in the calibration period comes with the cost of a worsened validation results due to overfitting (or over-

parameterisation). For the study catchment, the optimal sub-annual calibration periods, where the RMSE of 

the validation result is the smallest, are bimonthly and seasonal for SCS and PCS respectively for the 

IHACRES. For HYMOD, biannual is the optimal period for both SCS and PCS. The implication of this result 

is that it is reasonable to assume that the catchment response is gradually changing within the year and to 

capture the change of the system intra-annual variation should be considered for calibrating a hydrological 

model. 
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Figure 8. Calibration and validation results for SCS and PCS for IHACRES and HYMOD. 

 

Figure 9 compares the SCS and PCS performance of the validation results. It is reasonable to suppose that the 

SCS will be better than the PCS since the SCS has a sound logic by continuously running the model like the 

real system from the first to the last in series, while the PCS considers only the chosen time period for 

estimating the model efficiency although each sub-annual model runs continuously. However, both IHACRES 

and HYMOD show that the PCS is better than SCS. This might be because the parameters in PCS are adjusted 

to provide the best fit to one specific period without being affected by other periods, where the optimal 

parameter values are different, while the SCS has an issue of optimisation in high dimensional spaces and the 

interdependency of numerous parameters. 
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Figure 9. Comparison of SCS and PCS performance for IHACRES and HYMOD. 

 

DISCUSSION  

Sub-annual calibration and over-parameterisation 

There is a possible concern that the sub-annual calibration scheme has an over-parameterisation (over-fitting) 

problem. For example, the monthly calibration scheme in IHACRES has 96 parameters (8 parameters times 

12 sets), which could be recognised as 12 monthly models of 8 parameters equivalent to one model of 96 

parameters. However, this argument is not exactly right due to misinterpretation of multiplying the model 

parameter numbers by the number of models. Figure 10 explains why the two concepts are not equivalent. 

Suppose we have a linear model which is calibrated on monthly basis. Each monthly model has one parameter 

(a1, a2 … a12). However, when these 12 separately calibrated models are combined (Figure 10(a)) to evaluate 

the annual performance, it is apparent that this combined model is different to a single model with 12 

parameters (Figure 10(b)) since the model structure between the two is different. Therefore the two models, a 

combined model and one model with 12 parameters are not equivalent and should not be confused among 

them.  
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Figure 10. Schematic of 12 monthly models of one parameter and one model of 12 parameters. 

 

We have done an experiment with a synthetic flow to prove that these two models are not equivalent. It is 

assumed that the system does not change in order to simplify the problem and SCS is applied for five different 

time scales: annual, biannual, seasonal, bimonthly and monthly. To make a stationary system, we assumed the 

1960s parameters calibrated in the conventional method as a ‘true parameter set’ which are used to generate 

the ‘true flow’. A random error (noise) is added to the ‘true flow’ to make it as a real flow data (Eq(11)). 

𝑄𝑟 = 𝑄𝑡 + 𝑄𝑡 × 𝛼𝑟 × 𝜇         (11) 

where, 𝑄𝑟is the random error added flow, 𝑄𝑡 is the ‘true flow’, 𝛼𝑟 is a random error intensity coefficient, 

which is 0.2 in this study and μ is a random sample from a Gaussian distribution. This flow series generated 

from a stationary system is then used to calibrate the hydrological model, IHACRES.  

The hypothesis is that a simple model (m parameters) which is separately calibrated on a sub-annual basis (n 

groups) is equivalent to a complicated single model with  m × n parameters (Eq(12)).  

y = 𝐶𝑛𝑥
𝑛 +𝐶𝑛−1𝑥

𝑛−1 +⋯+𝐶1𝑥 𝑛 = 

{
 
 

 
 
1forannualcalibration
2forbiannualcalibration
4forseasonalcalibration
6forbimonthlycalibration
12formonthlycalibration

  (12) 
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The hypothesis will be rejected if the errors are similar even though the number of sub-annual calibration 

groups (n) increase. This is because given that the hypothesis is true, the model becomes more complicated 

(i.e. one model with m × n parameters) when the number of groups n increases, which results in less error due 

to overfitting (Figure 11). The calibration has been performed on annual, biannual, seasonal, bimonthly and 

monthly time scale based on SCS. The model performances are presented in Table 3. The RMSE values are 

similar among different time scales which mean that the sub-annual calibration scheme does not improve the 

model performance. Therefore the hypothesis should be rejected. The reason of no improvements in the 

complicated model is that the model structures are still the same although the sub-annual calibration has been 

performed in different time scales. Hence, the sub-annually (n groups) calibrated model (m parameters) is not 

equivalent to a single model with m × n parameters. 

 

 

Figure 11. Schematic of overfitting issue when the number of groups increases. (a) a model with one 

parameter; (b) a model with two parameters; (c) a model with 4 parameters.  

 

Table 3. RMSE of different calibration period. 

Calibration period 
 

annual 
 

biannual 
 

seasonal 
 

bimonthly 
 

Monthly 

RMSE (m3/s) 4.24 4.23 4.31 4.40 4.33 

 

Another possible concern is that a time-variant parameter is not a parameter any more but a state variable. 

This shouldn’t be a problem because such a time-variant parameter scheme has already been widely adopted 

in the “adaptive control” (Tao, 2003) which is used to control the system with varying parameters. 

 

Calibration of nonstationary system and the optimal calibration period 
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As mentioned in the previous section, if the system is stationary there is no advantage in applying the sub-

annual calibration scheme. However, in real life the system is nonstationary and it is changing with time. The 

response of the nonstationary system may be different dependent on the catchment change (e.g. seasonal 

vegetation change, and seasonal soil structure change, etc.) which means that different hydrological model 

parameters may be needed. In this changing system, the more calibration groups divided, the less the error 

will be since the model has more flexibility to fit to the observation. Since there is a trade-off between bias 

and variance, there is an optimal calibration period between annual and monthly models as shown in Figure 8. 

It is understandable that IHACRES (8 parameters) has shorter optimised calibration period than HYMOD (5 

parameters) since IHACRES has more parameters than HYMOD, which can cope with the change of the 

system better. 

 

Comparison of soil moisture 

As stated in Section 1, the sub-annual parameterisation scheme mostly applied in hydrological model 

calibration is PCS. The model is kept running continuously on the entire time series while the optimisation is 

done only for the chosen sub-annual period (e.g. monthly or seasonal). However, this method has a drawback. 

Figure 12 presents a part of the time series of soil moisture from the monthly model for SCS and PCS. It is 

apparent that in the PCS the time series shows discontinuity at each monthly boundary, which is illogical and 

a downside of this method although the flow simulation performance is excellent as presented in the previous 

sections. On the other hand, in the SCS the time series is continuous, which is a realistic simulation. This is 

because in the serial calibration, the model runs continuously, while in the parallel calibration, although each 

monthly model runs continuously only the corresponding month data are picked up and combined together.  
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Figure 12. Time series of soil moisture for different calibration schemes. 

 

To see whether the time varying parameter is reasonable between different time periods of calibration, we 

have investigated the state variable, soil moisture for IHACRES and HYMOD. In Figure 13, we can see that 

among sub-annual calibration schemes, the patterns of soil moisture of monthly and seasonal calibrations have 

been ruined compared with the conventional annual calibration method (low in summer, high in winter), while 

the biannual calibration result shows a similar pattern. From flow point of view, the optimal calibration period 

for SCS is the bimonthly model (Fig 9 (a)) while, from soil moisture point of view, at least the biannual model 

should be used although the RMSE between the flows is not the least in this case. If the calibration period is 

divided more in detail than the biannual period, the pattern of soil moisture would not be realistic.   
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Figure 13. Time series of soil moisture from 1965-1967 in different calibration periods for IHACRES.  

 

In contrast to the IHACRES, the HYMOD generates more reasonable soil moisture patterns (Figure 14). 

Although the sub-annual calibration period is divided in more detail, the pattern of soil moisture is maintained. 

Therefore, the biannual calibration period which is the optimal for SCS (Fig 9 (b)) is valid for HYMOD. 
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Figure 14. Time series of soil moisture from 1965-1967 for different calibration period for HYMOD.  

 

From this result, it is found that realistic flow and soil moisture simulations may not  be both achieved at the 

optimal state. Sometimes we may get the right answers (predicting the best flow for practical purposes) for the 

wrong reasons (unrealistic soil moisture). That is, the flow may be optimum at the expense of soil moisture 
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due to the drawback of the hydrological model itself. There have been relevant researches regarding this issue 

by Zhuo and Han (2016a and 2016b). 

 

Which calibration scheme is more reliable? 

We have explored three options of the calibration schemes for hydrological modellers to choose from: 1) the 

conventional method considering inter-annual variations of the data, 2) SCS and 3) PCS considering intra-

annual variations of the data. Logically, the SCS should be better than the PCS since the model should run in 

series by logic but the results show that the PCS beats the SCS. A possible interpretation of this result may be 

in part due to the issue of optimisation in a high dimensional space and the interdependency of numerous 

parameters in SCS.   

Then the question is which method is more reliable? Our recommendation depends on the purpose of the 

calibration. If one is interested in the volume of the flow water, we recommend the PCS since it represents the 

best flow simulation result and is easy to calibrate due to the small number of parameters although there are 

discontinuities in the time series of soil moisture. On the other hand, when one is interested in soil moisture as 

well as flow, we recommend the SCS which is more logical and the performance is not much worse in flow 

but shows continuity in soil moisture simulation. However, the downside of this method is that it is not 

efficient and takes longer time to calibrate than PCS since the number of degrees of freedom equals to the 

number of sub-annual period (e.g. 12 for monthly calibration) times the number of parameters.  

 

CONCLUSIONS 

This study has compared the hydrological model performances under different sub-annual period calibration 

schemes using two conceptual models, IHACRES and HYMOD. There are some studies regarding sub-annual 

period calibration methods, but little attention has been paid to the issue of how to calibrate (e.g. in series or in 

parallel) the non-continuous time series and what is an optimal time period for sub-annual calibration. It is 

therefore important to investigate reliable calibration schemes for non-continuous sub-annual period 

calibration. In this study, we have proposed two alternative approaches to calibrate hydrological models by 

sub-annual calibration schemes in which unique model parameter sets are estimated for each sub-period 

(annual, biannual, seasonal, bimonthly and monthly). In one approach unique parameter sets for each sub-
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period is calibrated simultaneously and parameter values are thus changes for each sub-period - the serial 

calibration scheme (SCS). In the second approach the model is calibrated n (the number of groups, e.g. 4 for 

seasonal) times but only using data from one sub-period at the time. The n models are then combined to get 

the result of a complete time series - the parallel calibration scheme (PCS). Then three fold cross validation is 

used to find the optimal sub-annual calibration period and it is possible that this optimal calibration period is 

related to local catchment change and the purpose of the data usage. Overall, we have found that the model 

calibrated on the sub-annual period schemes generally perform better than the model calibrated in the 

conventional way, which implies that it is worth considering intra-annual variations in calibrating 

hydrological models in a changing environment. For the study catchment, from the flow point of view 

(predicting flow only for practical purposes), the optimal calibration periods for IHACRES are bimonthly and 

seasonal for SCS and PCS respectively. For HYMOD, biannual is the best sub-annual model for both SCS 

and PCS. However, from the soil moisture point of view, dividing sub-annual calibration period sometimes 

may not produce realistic a soil moisture pattern, which indicates the improvement of hydrological model 

structure is needed to achieve both the simulated flow and soil moisture at the optimal state. Therefore, not 

only the simulated flow but also the soil moisture needs to be considered to find the optimal calibration period. 

Among the dynamic calibration schemes, PCS performed slightly better than SCS. Since there are pros and 

cons in both SCS and PCS, we recommend choosing the method depending on the purpose of the sub-period 

calibration. Although the study catchment is specific in southwest England, the methodology proposed in this 

study is generic and applicable to other catchments. Since only one catchment is explored in this investigation, 

it is clear that such a study has not completely solved this problem and we hope this paper will stimulate the 

hydrological community to explore a variety of sites with different hydrological models so that valuable 

experiences and knowledge could be gained to improve our understanding on such a complex model 

calibration issue. 
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