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NEW SUM-PRODUCT TYPE ESTIMATES OVER FINITE FIELDS

OLIVER ROCHE-NEWTON, MISHA RUDNEV AND ILYA D. SHKREDOV

Abstract. Let F be a field with positive odd characteristic p. We prove a variety of new
sum-product type estimates over F . They are derived from the theorem that the number
of incidences between m points and n planes in the projective three-space PG(3, F ), with
m ≥ n = O(p2), is

O(m
√
n+ km),

where k denotes the maximum number of collinear planes.
The main result is a significant improvement of the state-of-the-art sum-product in-

equality over fields with positive characteristic, namely that

(1) |A±A|+ |A ·A| = Ω
(

|A|1+ 1
5

)

,

for any A such that |A| < p
5
8 .

1. Introduction

Let F be a field with positive odd characteristic p, i.e. F = Fq, where q is a power of
the prime p. In this paper we prove combinatorial-geometric estimates on sum and product
sets over F , which are in a certain sense similar to those over the real and complex fields,
obtained geometrically via the Szemerédi-Trotter theorem after the work of Elekes, [9]. See
also [10], [11], [28], [23], [21]. Our new results appear considerably stronger that what has
been known so far in the finite field setting, where the main techniques were arithmetic-
combinatorial and were among other sources laid down in [5], [4], see also [32] as a general
reference.

For instance, we establish a new sum-product bound

|A±A|+ |A ·A| = Ω
(

|A|1+ 1
5

)

,

for any A ⊂ F such that |A| < p
5
8 . This is a considerable improvement over the previously

established best results in [25], [22], which were based on purely arithmetic techniques. In
spirit, our main result is akin to the well-known sum-product estimate of Elekes, [9], yielding
the exponent 1 + 1

4 for reals.
As usual, we use the notation | · | for cardinalities of finite sets. Symbols ≪, ≫, suppress

absolute constants in inequalities, as well as respectively do the symbols O and Ω. Besides,
X = Θ(Y ) means that X = O(Y ) and X = Ω(Y ). The symbols C and c stand for absolute
constants, which may change from line to line. When we turn to sum-products, we use the
standard notation

A+A = {a1 + a2 : a1, a2 ∈ A}
for the sumset A+A of A ⊆ F , and similarly for the product set AA, alias A ·A. Sometimes
we write nA for multiple sumsets, e.g. A+A+A = 3A, as well as A−1 = {a−1 : a ∈ A\{0}}.
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We use in the paper the same letter to denote a set S ⊆ F and its characteristic function
S : F → {0, 1}. We write E(A,B) for the additive energy of two sets A,B ⊆ F , that is

E(A,B) = |{a1 + b1 = a2 + b2 : a1, a2 ∈ A, b1, b2 ∈ B}| .
If A = B we simply write E(A) instead of E(A,A). Similarly,

Ek(A) = |{a1 − a′1 = · · · = ak − a′k : aj , a
′
j ∈ A}|.

Throughout the paper P will denote a set of m points in F 3 or PG(3, F ) and Π a set of
n planes.

Given an arrangement {P,Π} of planes and points in F 3, the set of incidences is defined
as

I(P,Π) = {(ρ, π) ∈ P ×Π : ρ ∈ π}.
The main tool in this paper is an incidence theorem proven by the second author, [26],

as follows.

Theorem 1. Let P,Π be sets of points and planes, of cardinalities respectively m and n, in
PG(3, F ), with m ≥ n. Suppose, F has positive characteristic p 6= 2 and n = O(p2). Let k
be the maximum number of collinear planes.

Then

(2) |I(P,Π)| = O(m
√
n+ km).

The assumption m ≥ n can be reversed in an obvious way using duality. In fact, for
our applications one has roughly m = n. Note that the trivial km term may dominate the
estimate (2) only if k = Ω(

√
n).

Remark 2. On the technical level, to prove Theorem 1, it suffices to adapt the algebraic proof
of Theorem 2.10 in [13]. This enables one to bypass the polynomial partitioning technique,
which relies on the order properties of reals, and hence, at least in its present form, does
not extend beyond the real case.

The geometric concept enabling such a conversion in [26] was to interpret incidences
between points and planes in the “physical” projective three-space PG(3, F ) in the “phase
space” of lines in PG(3, F ), namely the Klein quadric K ⊂ PG(5, F ). See e.g. [27] for
theoretical foundations. In short, unless F has characteristic 2, K has two rulings by two-
planes, called α- and β-planes. A point in PG(3, F ) gives rise to a two-plane in K, a so called
α-plane, being the Klein image of the set of lines incident to the above point in the physical
space. A plane in PG(3, F ) corresponds in K to a two-plane, a so called β-plane, the Klein
image of the set of lines lying in the above plane in the physical space. Two distinct planes of
the same type always intersect in K at a point. Two planes of different types intersect in K if
and only if the corresponding point and plane in PG(3, F ) are incident to one other. In this
case, the corresponding α and β-plane in K then intersect degenerately, along a line. Thus
one can restrict the corresponding incidence problem in K to the transverse intersection
G of K with a random subspace PG(4, F ) in PG(5, F ). G is called a non-degenerate line
complex. Replacing F with its algebraic closure, the random non-degenerate line complex
G may be chosen so that it does not contain any of the finite number of points in K, where
planes of the same type intersect. This is what makes it possible then to proceed with the
proof of Theorem 1 along the lines of Theorem 2.10 in [13].

But if F has characteristic 2, the whole paradigm seems to break down, for the two rulings
of K with α- and β-planes (arising respectively from the sets of orthogonal 3 × 3 matrices
with determinants ±1) coincide. Hence, even though Theorem 1 is vacuous for the small
characteristic p, we have chosen to explicitly exclude the case p = 2.
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Some applications of Theorem 1 were pointed out in [26], here we aim to extend their
scope, combining the estimate (2) with other tools that have been developed in the area.
Note that Theorem 1 is formulated in a way so that it applies to all fields with characteristic
p, in particular the prime residue field Fp. Thus p inevitably appears in the hypotheses
of the theorem, and hence a set A ⊂ F for which we develop sum-product type estimates
cannot be too large in terms of p. It is likely that under additional assumptions, p can be
replaced by q both in Theorem 1 and its applications herein in the general finite field case
Fq. This essentially comes down to removing the restriction in terms of p in the classical
Monge proof of the Cayley-Salmon theorem about flechnodal points on surfaces, underlying
the proof of Theorem 1. In general, this cannot be done, for there are counterexamples.
However, one may conjecture an only if condition as to the scope of these counterexamples.
See [34], [17] and the references contained therein for more discussion in this direction.
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3. Sum-product type estimates

This section contains the short proof of our main result. It is followed by a series of
remarks, placing it in the context of the current state of the art. In a separate subsection
we show how the exponents can be improved slightly, once longer sum sets have been taken.

Theorem 1 enables one to count the maximum number of solutions of bilinear equations
with six variables in some discrete sets.

Theorem 3. Let A,B,C ⊆ F , let M = max(|A|, |B|, |C|). Then

|A+BC| = Ω

[

min

(

√

|A||B||C|, 1

M
|A||B||C|, p

)]

.

Proof. Suppose, |A||B||C| ≤ cp2, with c implicit in Theorem 1. If this condition is not
satisfied, pass to subsets A,B,C to ensure it is just satisfied, so that the first and the third
term in the claimed estimate are of the same order of magnitude.

Let E be the number of solutions of the equation

(3) a+ bc = a′ + b′c′, (a, b, c, a′, b′, c′) ∈ A×B × C ×A×B × C.

Let P,Π be sets of points and planes in F 3, as follows:

P = {(a, c, b′)},
Π = {π : x+ by − c′z = a′}.

Hence, there are m = |A||B||C| points and m planes. The maximum number k of collinear
points or planes is M .
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Applying Theorem 1 yields

(4) E = O
(

m
3
2 +Mm

)

.

By the Cauchy-Schwarz inequality,

|A+BC| ≥ |A|2|B|2|C|2
E

.

The claim of the theorem follows, the characteristic p appearing therein in the case when
|A||B||C| ≫ cp2 . �

Corollary 4. Let A ⊆ F . Then, for any a 6= 0,

|aA±AA| = Ω
[

min(|A| 32 , p)
]

, |A±AA±AA| = Ω
[

min(|A| 74 , p)
]

.

Suppose, in addition, that |AA| = K|A|, for some K ≥ 1. Then

|AA±AA| = Ω
[

min(K
1
2 |A| 32 , p)

]

, |AA+AA±AA| = Ω
[

min(K
1
4 |A| 74 , p)

]

.

Proof. The estimates follow by applying Theorem 3, with B,C = A and A = aA, , A ±
AA, AA,AA±AA, respectively. �

Remark 5. If A is a set of positive reals, an elementary order-based argument shown to
us by M. Garaev proves that for some a, b, c ∈ A, |aA + (b − c)A| ≥ |A|2. Just take a the
maximum element of A, and b, c such that |b− c| is the smallest possible and non-zero. This
clearly implies that |AA + AA − AA| ≥ |A|2 (but without one being able to replace the
left-hand side with |AA+AA+AA|). A similar well-known argument gives the lower bound
for |A±AA| ≥ |A|2 in the positive integer case.

This can be compared with the claims of the above Corollary, which works for any field,
except being vacuous in the small positive characteristic case. But the above-mentioned
elementary arguments do not enable one (as far as we understand) to get a more general
energy-type bound similar to (4). This type of bound in the context of the set AA ± AA
was obtained in [26], via Theorem 1.

Now we can derive a pure sum–product result in F .

Theorem 6. Let A,B,C ⊆ F , let M = max(|A|, |BC|). Suppose that |A||B||BC| ≪ p2.
Then

(5) E(A,C) ≪ (|A||BC|)3/2|B|−1/2 +M |A||BC||B|−1 .

In particular, for any A with |A| < p5/8 the following holds

(6) max{|A±A|, |AA|} ≫ |A|1+ 1
5 ,

and

(7) max{|A±A|, |A : A|} ≫ |A|1+ 1
5 .

Proof. The main estimate for the purpose of this proof is for the energy

E(A,C) = |{a+ c = a′ + c′ : a, a′ ∈ A, c, c′ ∈ C}|.
We may clearly assume that 0 6∈ B and that the sets are non-empty. Then

(8)
E(A,C) = |B|−2|{a+ cb/b = a′ + c′b′/b′ : a, a′ ∈ A, c, c′ ∈ C, b, b′ ∈ B}|

≤ |B|−2|{a+ st = a′ + s′t′ : a, a′ ∈ A, s, s′ ∈ BC, t, t′ ∈ B−1}|.
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We now apply the key estimate (3) in the proof of Theorem 3 with A = A, B = BC,
C = B−1. It follows that

|B|2E(A,C) ≪ m3/2 +mM,

with m = |A||B||BC| and M = max(|A|, |B|, |C|). This proves (5).
Moving on to proving (6), we assume |AA| ≪ |A| 65 , or there is nothing to prove. We

therefore use (5) with A = B = C = A. Then the condition |A| < p5/8 guarantees that
|A|2|AA| ≪ p2, and therefore we can apply the the bound (5), and the first term dominates
therein.

Then, by the Cauchy–Schwarz inequality, we obtain

|A|4
|A±A| ≤ E(A) ≤ |A||AA|3/2,

which gives

(9) |A±A|2|AA|3 ≫ |A|6,
and we are done. The bound (7) is established in exactly the same way, but instead taking
B = A−1 in the application of (5). This concludes the proof. �

We make a few observations, putting our bounds in the context of other results concerning
various sum-product type questions.

Remark 7. For large enough subsets of the finite field F = Fq, that is usually when |A| ≫ √
q,

sum-product estimates can be obtained by calculations which may involve exponential sums,
see e.g. [12], but in essence can often be reduced just to linear algebra, see [33], scarcely
making a difference between Fq and the prime residue field Fp.

So let F = Fp. It is known that there exists A, such that

max{|A±A|, |AA|} ≪ √
p
√

|A|.

Garaev, [12], uses exponential sums to reverse the above inequality, provided that |A| ≫ p
2
3 .

But he can only do

(10) |A±A||AA| ≫ |A|4
p

for smaller |A|. In this paper the condition |A| < p5/8 arises to ensure that Theorem 1
applies. However, this is precisely when, assuming |AA| ≈ |A±A|, the estimate (9) becomes
stronger than (10).

Remark 8. Let us call the weak Erdős-Szemerédi conjecture a claim that for a set A in a
field F (small enough if F has large positive characteristic p), if |AA| = O(|A|1+δ), then
|A+ A| = Ω(|A|2−ǫ) where the small parameters δ, ǫ are related algebraically. Let us write
this statement in shorthand as

(11) |AA| . |A| ⇒ |A+A| & |A|2.
The question is open for any field but rationals, for it has been resolved in the integer
setting by Bourgain and Chang, [2]. This furthered an earlier paper by Chang, [6], which
showed that |A+A| & |A|2, given that |AA| does not exceed |A| by a just factor of log |A|.
Moreover, Chang then showed that the latter result readily extends over R, owing to the
subspace theorem, [7].
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Remark 9. Techniques and concepts engaged to explore the weak Erdős-Szemerédi conjec-
ture have been quite different from the geometric incidence approach, which is also the scope
of this paper. The latter approach has been fruitful to establish quantitative sum-product
inequalities in all ranges of |AA|, |A+A|.

If F = R or C, Elekes and Elekes-Ruzsa – see respectively [9], [11] – showed that the
following inequalities can be derived from the Szemerédi-Trotter theorem:

|A±A|2|AA|2 ≫ |A|5,(12)

|A±A|4|AA| log |A| ≫ |A|6.(13)

Solymosi’s inequality

(14) |A+A|2|AA| log |A| ≫ |A|4

also holds over R and C, [31], [21]. Observe that the above-mentioned inequalities (12), (14),
as well as our inequality (9) all imply only that

(15) |AA| . |A| ⇒ |A+A| & |A|3/2.
The same threshold exponent 3

2 in the context of large sets in finite fields is implicit in the

constraint |A| ≫ p
2
3 mentioned in the previous remark.

The worst possible case for incidence-based sum-product inequalities is precisely the case
when |AA| is relatively small, that is the scope of the weak Erdős-Szemerédi conjecture.
See the second line of estimates in Corollary 4 in this paper, as well as Section 6.1 in
[26]. This agrees with Chang’s observation in [7] that general geometric incidence theorems
of Szemerédi-Trotter type appear to be insufficient for the resolution of the weak Erdős-
Szemerédi conjecture.

Remark 10. The current state of the art has not yet enabled one to efficiently combine the
results and techniques addressed in the above two remarks. Still, the inequality (15) has
been given some improvement for real and complex fields, owing to the idea of using higher
degree convolutions, which has been exploited in a series of works of the third author and
collaborators. See e.g. [28], [23], as well as [35], where this was done in the context of sums
of multiplicative subgroups in Fp.

A recent work [18] of the third author and S.V. Konyagin sets a new “world record”,
replacing the exponent 3

2 in the inequality (15) over the real and complex fields by 19
12 . More-

over, over these fields the paper succeeds in establishing the state-of-the-art sum-product
inequality

|A+A|+ |AA| ≫ |A|4/3+c,

for some small c > 0, having improved the previously best known exponent 4
3 , established

by Solymosi, [31], back in 2008.

Remark 11. Our sum-product exponent 6
5 in Theorem 6 coincides with the one established

in a different way by Bloom and Jones for the filed Fq(x
−1) of Laurent series over Fq, the

implicit constants depending on q, as well as the p-adic field Qp. In principle, our result
implies that the above constants can be made q-independent, for sets of the size O(p2).
Indeed, one can take for F the algebraic closure of Fp. Then Theorem 6 extends to the
polynomial ring F [x] and the rational field F (x), since a polynomial has a finite number of
zeroes and therefore one can find x = x0, such that the evaluation map from F (x) to F ,
acting simply as setting x = x0 preserves the structure of sums and products. Presumably,
the same can be done with semi-infinite Laurent series after suitably truncating them.
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We have learnt this basic evaluation argument for how to extend sum-product estimates
from a ring F to F [x] from the paper of Croot and Hart, [8]. They prove a very strong
statement that |AA| < |A|1+c for some c > 0 implies |A+A| ≫ |A|2 for any set A of monic
polynomials in the polynomial ring C[x], and in principle for any set of polynomials, once
no two polynomials are scalar multiples of each other. Their proof for polynomials extends
verbatim for positive integers, conditional on a certain version of the Last Fermat Theorem.

3.1. Estimates for longer sum sets. By iteratively applying Theorem 6, and in partic-
ular the inequality (9), it is possible to obtain slightly improved estimates for longer sum
sets. Here we confine ourselves to inequalities involving the sets 3A and 4A versus AA.
These estimates can be compared with those for convex sets of reals, obtained by iteratively
applying the Szemerédi-Trotter theorem by Elekes, Nathanson and Ruzsa, [10].

We have:

Corollary 12. Let A ⊂ Fq such that |A| < cp18/35. Then

(16) |A+A+A|4|AA|9 ≫ |A|16,
and in particular

max{|A+A+A|, |AA|} ≫ |A|16/13.
Proof. Let us assume that |A + A|4|AA|9 ≤ |A|16, as otherwise there is nothing to prove.
Therefore,

(17) |A+A||A||AA| = (|A+A|4|AA|9)1/9|A+A|5/9|A| ≤ |A|35/9 ≤ cp2.

This means that the inequality (5) can be applied, as well as Cauchy-Schwarz, to deduce
that

|A|2|A+A|2
|A+A+A| ≤ E(A+A,A)

≪ (|A+A||AA|)3/2|A|−1/2 +M |A+A||AA||A|−1

≤ (|A+A||AA|)3/2|A|−1/2 + |A+A|2|AA||A|−1 + |A+A||AA|2|A|−1,

where M = max{|A + A|, |AA|} ≤ |A + A| + |AA|. It is straightforward to check that
the first term on the right-hand side of the latter estimate is dominant. Indeed, since
|A+A|1/2 ≤ (|A||AA|)1/2, we have

|A+A|2|AA||A|−1 ≤ |A+A|3/2|AA||A|−1(|A||AA|)1/2 = (|A+A||AA|)3/2|A|−1/2,

and a similar calculation can be made in order to verify that the third term is dominated
by the first. It follows that

|A+A+A||AA|3/2 ≫ |A|5/2|A+A|1/2.
Finally, since |A| < cp18/35 ≤ p3/5, we can apply (9). This is not quite immediate, since

the latter estimate was obtained under the assumption that |A| < p
5
8 and |AA| ≪ |A| 65 .

However, (9) holds regardless of the latter assumption, provided that |A| ≪ p3/5. Indeed, if
|AA| ≫ |A|4/3 then

|AA|3|A+A|2 ≫ |A|4|A+A|2 ≥ |A|6,
i.e., (9). On the other hand, if |AA| ≪ |A|4/3 then, if |A| ≪ p3/5, one has

|A|2|AA| ≪ |A|10/3 ≪ p2.

But the latter condition was exactly the one to result in (9) in the proof of Theorem 6.
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We therefore use (9) to get

|A+A+A||AA|3/2 ≫ |A|5/2|A+A|1/2 ≫ |A|5/2 |A|3/2
|AA|3/4 .

Rearranging this inequality gives

(18) |A+A+A|4|AA|9 ≫ |A|16,
as required.

�

If one continues to iterate this procedure, further small improvements are obtained for
longer sum sets. For instance, it follows that if |A| < cp58/101 then

max{|A+A+A+A|, |AA|} ≫ |A|36/29.
For longer sum sets, the proofs of such estimates become increasingly long, whilst the gains
become increasingly small, and so the details are omitted here.

Remark 13. Comparing the last two estimates in Corollary 4 with, respectively, (9) and (16),
one sees that the former two get better and the latter two, in terms of the size of A+A and
A+A+A, get worse, when the size of the product set AA increases. Corresponding pairs of
estimates meet when |AA| ∼ |A|, i.e. when A is an approximate multiplicative subgroup, in

which case, for small enough A, one has |A+A|, |AA+AA| ≫ |A| 32 and |3A|, |3AA| ≫ |A| 74 .
Exponents in these estimates coincide with those for convex sets of reals in [10]. If A is a
genuine multiplicative subgroup, the estimates, at least over prime fields, can be improved
slightly, see [35] and [14], by using higher order convolutions and a Stepanov method-based
estimate twice, rather than once. The same trick works for applications of Szemerédi-
Trotter type bounds for sum-product estimates over the real and complex fields, enabling
the improvements in [28] and [23] over the foundational result in [9]. It is not clear whether
Theorem 1 provides enough flexibility to allow for a more involved application in a similar
vein. Even though this is a technical question, the positive answer would enable one to
“break” the threshold, in terms of the method’s efficiency, exponent 3

2 for the size of the
sumset of an approximate multiplicative subgroup in the positive characteristic case. See
Remarks 8–10.

4. Sets A(A +A) and (A+A)(A+A).

In the main result of the section we obtain a lower bound for the cardinalities of the sets
A(A + A) and (A + A)(A + A). Technically, the proofs are based on the fact that we can
variate over B in formula (5) of Theorem 6 and that the common additive energy E(A,A±A)
is known to be large, see [28].

Heuristically, the results in this section relate to the converse of the question discussed in
Remarks 8–10, that is how large should the product set be, given that the sumset is small.
Our main tool is still a version of the inequality (9), which implies that if |A| is small enough
relative to the characteristic p,

|A+A| . |A| ⇒ |AA| & |A|4/3,
in the notation of Remark 8. This is weaker than (15) and much weaker than the optimal
consequence in this vein of (13), (14), holding for real and complex numbers. See also
Theorem 9 in [18].
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Theorem 14. Let A,B,C ⊆ F . Suppose that |B||C||(A + C)B| ≪ p2. Then

(19) |A||B||C| ≪ (|B||C|)1/2|(A+ C)B|3/2 + |(A+ C)B|2 .
In particular, for any set A ⊆ F , |A| < p3/5, we obtain

(20) |A(A ±A)| ≫ |A|4/3 .
Further for any A,B,C,D ⊆ F with |B +D||C||(A+ C)(B +D)| ≪ p2 the following holds

(21) |A||B +D||C| ≪ (|B +D||C|)1/2|(A+ C)(B +D)|3/2 + |(A+ C)(B +D)|2 .
In particular, for any set A ⊆ F , |A+ εA|4/3|A|2 ≪ p2, we get

(22) |(A±A)(A + εA)| ≫ |A||A + εA|1/3 ,
where ε = {−1, 1}.
Proof. Let us calculate the common additive energy E(A+ C,C) in two ways. On the one
hand by Katz–Koester trick (see [16]), we have for any s ∈ C − C that

|(A + C) ∩ (A+ C + s)| ≥ |A+ C ∩ (C + s)| ≥ |A|
and hence

(23) |A||C|2 ≤
∑

s

|(A+ C) ∩ (A+ C + s)||C ∩ (C + s)| = E(A+ C,C) .

On the other hand, applying Theorem 6 with A = C, B = B, and C = A+ C, we get

(24) E(A+ C,C) ≪ |C|3/2|(A + C)B|3/2|B|−1/2 + |(A+ C)B|2|C||B|−1 .

Combining bounds (23), (24), we obtain formula (19). To get (20) just note that if we put
in formula (19) that A = A, B = A, C = ±A then the first term in (24) dominates. To
prove (21) replace in (19) the set B to B+D. Finally, to have (22) just put A = A, B = A,
C = ±A, D = εA. This completes the proof. �

The same observation gives us new connections between different energies of a set. We
write E

×
k (A) to underline that we are considering the corresponding multiplicative energy.

For simplicity we have dealt with the symmetric case only.

Theorem 15. Let A ⊆ F be a set, |A|2|AA| ≪ p2. Then for all k ≥ 1, we have

(25) E
2k(A)E×

k (A) ≪ |A|3kE×
3k(AA) ,

and

(26) |A|2k(E×
5k(A))

2 ≪ E
×
6k(AA)E

×
4k(A±A) .

Proof. For any set Q ⊆ F put Q×
s = Q∩ sQ. By Katz–Koester trick, we have for any x ∈ A

that (AA×
s ∗ (A×

s )
−1)(x) ≥ |A×

s | as well as (AA×
s ∗ A−1)(x) ≥ |A| for all x ∈ A×

s . Applying
the arguments of the proof of Theorem 6 with A = A, B = AA×

s , and C = (A×
s )

−1, we get

(27) |A×
s |1/2E(A) ≪ |A|3/2|AA×

s |3/2 .
Taking 2k power of the last inequality, using

∑

s |A×
s |k = E

×
k (A), and Katz–Koester inclusion

AA×
s ⊆ (AA)×s again, we obtain (25). Recall that by E1(A), E

×
1 (A) we mean |A|2.

Similarly, to obtain (26) apply the arguments of the proof of Theorem 6 with A = A×
s ,

B = AA×
s , and C = A−1, and using the Cauchy–Schwarz inequality, we get

(28)
|A×

s |4
|A×

s ±A×
s |

≤ E(A×
s ) ≪ |A|−1/2|A×

s |3/2|AA×
s |3/2 .
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By the Katz–Koester trick we have A×
s ± A×

s ⊆ (A ± A)×s and, again, AA×
s ⊆ (AA)×s , so

that rearranging (28) and raising everything to the power of 2k yields

(29) |A|k|A×
s |5k ≪ |(AA)×s |3k|(A±A)×s |2k.

Finally, sum both sides of this inequality over all s and apply Cauchy-Schwarz so that
∑

s

|A|k|A×
s |5k ≪

∑

s

|(AA)×s |3k|(A±A)×s |2k

≤
(

∑

s

|(AA)×s |6k
)1/2(

∑

s

|(A±A)×s |4k
)1/2

= (E×
6k(AA))

1/2(E×
4k(A±A))1/2,

and a rearrangement of this gives (26).
�

The next corollary shows that in the critical sum–product case the quantity E
×
2 (AA) is

large.

Corollary 16. Let A ⊆ F be a set, |A|2|AA| ≪ p2. Then

E
2(A) ≤ |A|E×

3 (AA) ≤ |A||AA|E×(AA) .

Hence, either Theorem 6 can be improved or E
×(AA) ≫ |A||AA|2 > |A|2|AA|.

Using methods from [30] one can prove that either a ”trivial” lower bound E(A,A±A) ≥
|A|3 can be improved by M = |A|ε1 , where ε1 > 0 is a small number and, hence, estimate
(20) can be improved by |A|ε2 with another ε2 > 0 or our set A has a rather rigid structure.
We finish the section by giving a sketch of the proof under an additional assumption that
E
2
3/2(A) ≫ E(A)|A|2. Indeed, if not, i.e. E(A,A ± A) ≤ M |A|3 then by the connection

between E3/2(A) and E3(A) (see e.g. [30], Lemma 14), we have

E
2
3/2(A)|A|2 ≤ E3(A)E(A,A±A) ≤ ME3(A)|A|3 .

Thus, using our assumption, we get E3(A) ≥ E(A)|A|/M . It means by Proposition 20
of paper [30] that A ≈M,Kε H ∔ Λ, where K = |A|3/E(A), and ε > 0 is an arbitrary
given number. In other words, there are two sets H and Λ such that |H −H | ≪M,Kε |H |,
|H | ≫M,Kε E(A)|A|−2, |Λ| ≪M,Kε |A|/|H | and |A∩(H+Λ)| ≫M,Kε |A|. Thus the structure
of A is very rigid.

5. Applications to multiplicative subgroups

In the section we derive some consequences of Theorems 3, 6 to multiplicative subgroups.
They constitute a classical object of Number Theory, extensively studied over the past
decades, see e.g. [19].

Let us start with Theorem 3, which implies a result on the additive energy of multiplicative
subgroups in F . Bound (31) of the proposition below was proved in [29] in the case of the
prime field. The advantage of our more general result is the avoidance of using Stepanov’s
method, [15] (even though the proof of Theorem 1 does use the polynomial method). We
write F ∗ for F \ {0}.
Proposition 17. Let Γ ⊆ F ∗ be a multiplicative subgroup, A be any subset of F , and Q be

an arbitrary Γ–invariant set such that |A||Γ||Q| ≤ p2. Put M = max{|A|, |Γ|, |Q|}. Then
(30) E(A,Q) ≪ |A|3/2|Q|3/2|Γ|−1/2 +M |A||Q||Γ|−1 .
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In particular, if |Γ|2|Q| ≤ p2 then

(31) E(Γ, Q) ≪ |Γ||Q|3/2 .

Proof. We have |A||Γ||Q| ≤ p2. In the notation of Theorem 3 the number E of the solutions
of the equation

a+ bc = a′ + b′c′ ,

where a, a′ ∈ A, b, b′ ∈ Γ, c, c′ ∈ Q is bounded by m3/2+mM . But Q is Γ–invariant set and
thus bQ = Q for any b ∈ Γ. It follows that

|Γ|2E(A,Q) = E ≪ m3/2 +mM .

After some calculations, we obtain (30).
To get (31) apply the previous bound with A = Γ and note that M = |Q|. Thus, the

result follows in the case |Q| ≪ |Γ|2. But in the opposite case estimate (31) takes place
automatically in view of a trivial bound E(Γ, Q) ≤ |Γ|2|Q|. This completes the proof. �

Note that one can derive Proposition 17 from Theorem 6.
Using Theorem 6, we obtain a new bound for double exponential sum over powers of a

primitive root. Results in this direction can be found in [3], [4], [19], [20].

Theorem 18. Let p be a prime number, g be a primitive root, and X, Y be integers,

X,Y < p2/3. Then for any a ∈ F∗
p one has

(32)

∣

∣

∣

∣

∣

X
∑

x=1

Y
∑

y=1

e
2πiagx+y

p

∣

∣

∣

∣

∣

≪ (XY )13/16p1/8 .

Proof. Set A = {gx}Xx=1, consider B = C = A. Clearly, |BC| ≤ 2|B|. Applying Theorem 6,
we obtain E(A) ≪ X5/2.

Now set B = {gy}Yy=1. A similar application of Theorem 6 gives us E(B) ≪ Y 5/2. On
the other hand, our double sum (32) can be estimated as

∣

∣

∣

∣

∣

∣

∑

x∈A

∑

y∈B

e
2πiaxy

p

∣

∣

∣

∣

∣

∣

≤ (|A||B|)1/2(E(A)E(B))1/8p1/8,

see e.g. [19]. Substituting the estimate into the last universal bound, we obtain the required
result. �

Bound (32) is nontrivial in the range p1/3 ≪ X,Y < p2/3. An argument as in [20] gives
us the following.

Corollary 19. Let p be a prime number, g be a primitive root, and N be a positive integer,

N < p2/3. Then for any a ∈ F∗
p one has

(33)

∣

∣

∣

∣

∣

N
∑

n=1

e
2πiagn

p

∣

∣

∣

∣

∣

≪ min{p1/8N5/8, p1/4N3/8} .

Proof. Let S(a,N) denote the sum in (33). Put

σ(N) = max
1≤K≤N

max
a 6=0

|S(a,K)| .
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Clearly, for any integer K one has
∣

∣

∣

∣

∣

S(a,N)− 1

K

K
∑

k=1

N
∑

n=1

e
2πiagk+n

p

∣

∣

∣

∣

∣

≤ 2σ(K) .

Taking K = [N/4] and applying Theorem 18 with X = K, Y = N , we get

σ(N) ≤ 2σ(N/4) +O(p1/8N5/8) .

Thus, by induction, we obtain the first inequality of (33).
To obtain the second estimate just use the previous arguments, Theorem 6 and the

Hölder’s inequality:
∣

∣

∣

∣

∣

K
∑

k=1

N
∑

n=1

e
2πiagk+n

p

∣

∣

∣

∣

∣

4

≤ K3
K
∑

k=1

∣

∣

∣

∣

∣

N
∑

n=1

e
2πiagk+n

p

∣

∣

∣

∣

∣

4

≤ K3
∑

k

∣

∣

∣

∣

∣

N
∑

n=1

e
2πiagk+n

p

∣

∣

∣

∣

∣

4

.

This completes the proof. �

It easy to check that our estimate (33) is better than Theorem 1 from [20]. Another direct
consequence of Theorem 6 is as follows.

Corollary 20. Let p be a prime number, g a primitive root, and N a positive integer, with

N < p2/3. Then for any a ∈ F∗
p one has

(34)
∑

a

∣

∣

∣

∣

∣

N
∑

n=1

e
2πiagn

p

∣

∣

∣

∣

∣

4

≪ pN5/2 .

Corollary 20 is better than Theorem 1.4 of paper [3]. Using the corollary and combining
it with the arguments of [20] one can improve the main result of the latter paper on the
maximal size H(N) of a hole in the sequence {agn}Nn=1. Let us consider just one particular
example, which Konyagin and Shparlinski have dealt with in [20]. They set N = ⌈p1/2⌉ and
prove that

H(⌈p1/2⌉) ≤ p1−
c
8−

1
8ν +o(1) + p1−

c
6+

1
12ν(ν+1)

+o(1) ,

where ν is an integer parameter and c is a constant such that inequality (34) takes place
with pN3−c. So, in our case c = 1/2. Taking ν = 6, we arrive at the inequality H(⌈p1/2⌉) ≤
p1−

41
504+o(1).
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