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This paper presents an investigation into the influence of shape parameterisation and dimensionality
on the optimisation of a benchmark case described by the AIAA Aerodynamic Design Optimisation
Discussion Group. This problem specifies the drag minimisation of a NACA0012 under inviscid flow
conditions at M = 0.85 and o = 0 subject to the constraint that local thickness must only increase. The
work presented here applies six different shape parameterisation schemes to this optimisation prob-
lem with between 4 and 40 design variables. The parameterisation methods used are: Bezier Sur-
face FFD; B-Splines; CSTs; Hicks-Henne bump functions; a Radial Basis Function domain element
method (RBF-DE) and a Singular Value Decomposition (SVD) method. The optimisation framework
used consists of a gradient based SQP optimiser coupled with the SU? adjoint Euler solver which
enables the efficient calculation of the design variable gradients. Results for the all the parameteri-
sation methods are presented with the best results for each method ranging between 25 and 56 drag
counts from an initial value of 469. The optimal result was achieved with the B-Spline method with 16
design variables. A further validation of the results is then presented and the presence of hysteresis
is explored.

1. Introduction

With the rise in the use of optimisation techniques in aerodynamic design, a significant effort is being made to improve
the effectiveness of all of its constituent parts. To aide this effort a series of benchmark cases have been set out by
AIAA Aerodynamic Design Optimisation Discussion Group (ADODG)? to allow for comparisons to be made between
different optimisation frameworks. This paper investigates the influence of dimensionality and shape parameterisation
on the optimisation of ADODG benchmark case one, an inviscid, symmetric drag minimisation case.

This case has previously been investigated with a variety of different parameterisation methods: Bezier Curves|[1,
2]; B-Splines[3, 4, 5, 6, 7]; NURBSI[8]; Class/Shape Transformations (CSTs)[9]; Hicks-Henne bump functions[10];
Bezier Surface FFD[11]; PARSEC[12]; Radial basis function domain element (RBF-DE) deformation[13, 14] and
Singular Value Decompositions (SVD)[14, 15]. Due to the large range of factors influencing the results it is difficult
to isolate contribution of the parameterisation method from these previous studies. For example, the choice of flow
solver[16] or optimisation algorithm[14] has been shown to have a significant impact on the optimisation results for
this case. For this reason this work tests this case with a large range of parameterisation methods under the same
optimisation framework across a range of design variables.

The aim of this paper is to apply a variety of shape parameterisation techniques to ADODG benchmark case one
and asses the suitability of each method with between four and 40 design variables. This has been carried out using
the gradient based SQP optimiser SNOPT[17] coupled with the SU?[18] Euler solver, calculating the design variable
gradients using the adjoint method. Further analysis and validation has then be applied to selected final optimised
shapes to further understand the flow behaviour and hysteresis at the specified design conditions.
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II. NACAO0012 Inviscid Drag Optimisation

A. Case Specifications

The benchmark case[19] considered in this paper is the inviscid, drag minimisation of a NACA0012 with freestream
Mach number (M) of 0.85 subject to a thickness constraint at zero degrees incidence (@). Formally described as

Minimise Cp
subject to: M = 0.85,

a=0,
7 > zP9seline on upper surface Vx € [0, 1],
z < 229t on lower surface Yx € [0, 1].

This problem is based on work by Vassberg et al.[2] though with a slight modification to the baseline NACA0012
geometry to ensure a sharp trailing edge. It is defined as:

ZPaseline = 10.6(0.2969vx — 0.1260x — 0.3516x> + 0.2843x — 0.136x%). 1)

B. Previous Work

This test case has been investigated a significant number of times previously and in all cases the drag has been reduced
by increasing the aerofoil thickness aft of the max thickness point. Meheut[20] compared a number of optimised
aerofoil shapes from six different institutes[4, 5, 7, 13, 14, 16] with the same flow solver. This produced a range of final
drag results (all similar to values declared in the original publications) ranging from 32 to 86 drag counts on a mesh
with 1024 points around the aerofoil. This paper also highlighted a number of unexpected flow characteristics present
for these highly optimised aerofoils. Most notable was the appearance of hysteresis at the specified Mach number.
They showed that for the aerofoil produced by Carrier et al.[4] two possible solutions existed, one with ~60 drag counts
and one with ~110 drag counts. Similar behaviour was found by Lee et al.[7] who found solutions with ~40 and ~130
drag counts; an even larger difference in drag. They also found solutions with non-zero lift and an asymmetric flow
field despite the fully symmetrical problem and mesh. They cited the occurrences of these unexpected lifting solutions
(which produce high drag values) in the gradient evaluations as a contributor to some of the optimisation procedures
stagnating prematurely. Nadarajah[5] found similar problems, with the flow converging to oscillatory results due to
the existence of multiple solutions. This was however overcome by enforcing a symmetry boundary condition along
the wake. This single change improved the final result of an optimisation procedure significantly, reducing the drag
from 55.3 to 37.5 counts on a 768 x 128 mesh. This result was then further reduced to 25.2 counts when run on a
super-fine 3072 x 512 mesh.

III. Parameterisation Methods

This work considers the impact of parameterisation on the case outlined above. The six methods considered are: Bezier
Surface FFD; B-Splines; CSTs; Hicks-Henne bump functions; a Radial Basis Function domain element method (RBF-
DE) and a Singular Value Decomposition (SVD) method. This section outlines these methods and their definitions.

A. Bezier Surface FFD

A Bezier surface is a B-spline surface of Bezier curves. Although these are usually used to create surfaces in three-
dimensional space, they can also be used as a deformation tool in two-dimensional space by constraining the control
points to a plane. To create a deformable domain from this surface a rectangular lattice of (m + 1) X (n + 1) uni-
formly spaced control points, P;;, is placed around an initial aerofoil. Then, given an undeformed domain A(x, z) €
[Xmins Xmax] X [Zmin> Zmax], the initial control point positions are defined as

it i j
sza = (-xmin + E (xmax - -xmin) > Zmin T ; (Zmax - Zmin) > O) (2)

fori=0,...,m,j=0,...,n
The two-dimensional Bezier surface, (i, v), spanning the deformed domain D(x, z), is then given by

W)= D Bin@Biu(Py @

=0 i=0
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where u, v € [0, 1] and B, are Bernstein polynomials.
To create the one-to-one deformation mapping required, the undeformed domain (A is then normalised to the unit
domain N(u,v) € [0, 1] x [0, 1] by the transformation

u(x) = M, v(z) = M’ )

Zmax — Zmin Xmax = Xmin

which implies that the required deformation transformation, from A(x, z) — D(x, z), is given by

W), v(@) = Y > Bim(u(x)Bju(v()P;j. (5)

j=0 i=0

The deformation of the initial aerofoil with respect to the control point positions P;; is therefore defined as

n m
X = Z Z Bi’m(M(Xinitia[))Bj]n(Zmitial)Pl‘j. (6)

j=0 i=0
For this paper this method has been implemented with four rows in the control point lattice. This configuration
has been used as it was shown to provide the most efficient coverage of the aerofoil design space[21]. Movement of
each control point has been restricted to the z-direction and symmetry has been preserved by pairing equivalent upper
and lower control points symmetrically to a single design variable. The number of design variables for each case is
therefore equal to twice the number of columns in the control point lattice. Figure 1a shows an example deformation

for an 8 design variable configuration with associated basis functions shown in 1b.

051
Outer DV Basis Functions
Initial Inner DV Basis Functions
011 Aerofoil 0.4 7
Control Lattice <
0.05f - | 03|
I B
N 0r
I 0.2
-0.05 \_<
0.1
-0.1r
-0.15 . . . . . 1 0 i ——
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
a) b)

Figure 1. Example deformation of 4 x6 Bezier surface control lattice and NACA0012 where (a) shows the surface and control point positions
and (b) shows the basis functions for the symmetric design variables that act on the upper surface of the aerofoil.

B. B-Splines

B-Splines are a widely used method for producing piecewise polynomial curves. Much like many of the other
parametrisation methods, B-Splines rely on a set of basis functions, however in this case, the coefficients are de-
fined spatially by a set of discrete control points P; € R3. Given these assumptions a B-Spline curve parametrised by
the scalar u € [rg, r;], is defined as

n—1
G) = )" NipwP; (7)
i=0
where the n = [ — k basis functions of order k are given by

1 S u<r;
NigGuy =4~ 12T ®)
0 otherwise

u-—r
Nij(u) = r—lNi,k—l(u) +

ivk — Ti Vitvk+1 — Tix1

Vivk+1 — U

Nig1x-1(u), &)
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with the increasing knot vector

r=[ro,...,7l, ri < Tyl (10)
The knot vector then takes the form
W= [Fo,.es 705 ThtlsenesPntsFlsenns ] (11
— ——
k+1 k+1
where the values ry.1,...,7,-1 indicate the knot points where the basis functions meet. In this case, the B-Spline

uniformity requires that the knots 7, ..., r, are equally distributed. Additionally if & = n, and consequently / = 0, the
B-Splines are called ‘Bézier Curves’ and if u € [0, 1] the basis functions are the Bernstein polynomials of order k — 1.

A useful property of B-Splines is that the basis order k controls the locality of the influence of the control points,
meaning that for a low order curve the influence of any change in control point position will be more localised com-
pared to if a high order curve was used. Using low order splines can, however, impact the smoothness and overall
fidelity of the curve.

B-splines can be used to represent aerofoils in a variety of different ways but for this study each aerofoil is repre-
sented by two distinct B-splines. For each B-spline Py is fixed at the leading edge (0, 0), P, is at the trailing edge
(1,0) and P, is aligned vertically with the leading edge. The other points P; are then distributed on a half cosine scale
between (0,1) in the chord-wise direction and only allowed to vary in the vertical direction, i.e.

Py =(0,0), P;= (% [1 - cos(’L_l))} ,ai), P, =(1,0), (12)

n+1

where a; denotes a design variable. Again symmetrical control points are paired to create one design variable that
controls the local thickness of the aerofoil. Figure 2a shows an example of this configuration.

Initial 0.7 r
0.08 | nitia
Aerofoil
0.06 ®  Free Point 0.6
B Fixed point
0.04 0.5
0.02
0.4
N o
0.3
0.02
0.04 0.2
0.06 0.1
0.08
: : : : . 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
a) b)

Figure 2. Example deformation of a cubic B-Spline configuration with 10 symmetric design variables where (a) shows the surface and
control point positions and (b) shows the basis functions for the symmetric design variables that act on the upper surface of the aerofoil.

C. Class Function/ Shape Function Transformations (CST)

The CST method was developed by Kulfan[22, 23] primarily as a method of defining a wide range of aerofoils with
relatively few design variables; however, the method can also be extended to other shapes such as square-like and
circle-like objects. It is defined as

Zupper = le\\/g(x) : Supper(x) + X * Zieuppers (13)
Zlower = le\\g(x) . Slower(x) + X * Zte Jowers (14)
where the class function
Cha() = X' (1 - 0™, (15)
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and z,, defines the trailing edge thickness and x € [0, 1].

The values of N1 and N2 control the overall shape of the parameterisation, where a value of 1 creates a sharp edge,
0.5 a rounded edge and 0 < € < 1 a flat box shape. The aerofoil class is therefore defined by N1 = 0.5 and N2 = 1,
giving the round leading edge and sharp trailing edge required.

Kulfan[24] suggested defining S (x) as the linear combination of Bernstein polynomials i.e.

n

S(0) = ) aiBu(x) (16)
i=0
where
Bin(x) = (’Z)xi(l —x)" a7

a; is the Bernstein coefficient and n is the degree of the polynomials. The class of Bernstein polynomials are a set of
single sign C" continuous functions defined on the interval x € [0, 1] and, in this region, are mathematically equivalent
to the set of standard polynomials of the form c;x’ .

Kulfan[25] later presented a leading edge modification (LEM) to the CST method, including an extra polynomial
and coefficient, to improve the fidelity at the leading edge. This proposed adding an additional shape term such that

n

S0 = D" aiBiy(x) + @y x™(1 - x)'07, (18)
i=0

For the tests performed in this paper the leading edge modification was always used. This is done because in other
work from the authors[21] it was shown that the leading edge modification significantly helps with geometric accuracy
of the parameterisation for aerofoils with high or low leading edge radius and previous work done on this case[20]
suggests that a very large leading edge radius can be expected. The upper and lower surfaces will again be taken to
be symmetric, reducing the number of design variables by half. The basis functions for a six design variable CST
configuration are shown in 3a.

02r 1
08|

0.15
06 -

011
0.4

0.05
02+

0 ‘ ‘ ) ‘ ‘ 0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X
a) b)

Figure 3. Basis functions for six design variable configurations of the CST method (a) and Hicks-Henne bump functions (b).

D. Hicks-Henne Bump Functions

Hicks-Henne bump functions use a base aerofoil definition plus a linear combination of a set of n basis functions
defined between O and 1 to determine the final aerofoil shape. Each surface is defined by

n
2=2" 1+ " aigi(x) (19)
i=0
for basis functions ¢;(x) and coefficients g; fori = 1,...,n.
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The basis functions proposed by Hicks and Henne[26] were the sine functions
$i(x) = sin" (ﬂxln(O.S)/ln(h,»)) , (20)

where /; is the location of the maxima of the basis function and ¢; controls the width of the functions. Each bump
function is therefore defined by three variables, each of which can be optimised or fixed. It is however preferable in
many cases to fix both the position and width as this ensures the parameterisation is a linear function of the design
variables; this is the approach used here. The bump positions will be defined as

1 in .
hi—z[l—cos(n_'_l)], i=1,...,n. 201
as used by Wu[27] and Masters[21, 28] and thickness parameters will be set to #; = 1.

Due to the symmetry of the problem being investigated the upper and lower surface design variables were again
taken to be equal.

E. Radial Basis Function Domain Element Method

The RBF domain element (RBF-DE) approach is a full domain deformation method like the Bézier surface, so creates
new aerofoil shapes based on the deformation of an initial aerofoil. The deformation method itself differs however,
deforming by preserving the exact movement of a set of control points then creating a deformation field defined by
radial basis function interpolation. The general theory of RBFs is outlined by Wendland[29] and Buhmann[30]; the
formulation used here is presented extensively in Rendall and Allen[31] and its use as a parametrisation technique in
Morris et al.[32].

The general solution for the deformation from the undeformed domain A(X) to the deformed domain D(X) is
given by

I'(X) = Z,BDE,.fﬁ(IIX — Xpell) + pX) (22)
i=1

where DE; indicates the ith domain element control point, Xpg, its centre and B, its coefficient vector. p(x) is a
linear polynomial used to ensure that translation and rotation are captured without added shape deformation.

The coefficients B, are found by requiring the exact recovery of the original function when the control points are
in their original positions. The system is then completed by the additional requirement

N
> Bok,-a(X) =0 (23)
i=1
where ¢(X) is a polynomial with order less than or equal to p(X).
When a discrete set of points in the original domain is to be transformed the problem can be formulated with matrix
multiplication. Exact recovery of original points implies that

XDE = DA (24)
where .
0 0 my M
0 0 M
0 0 oo
Xpe = XpE, ZDE; |’ A= ﬁBE] BE)EI (25)
XDEy  ZDEy XDEN ﬁE)EN
and
0 0 0 1 1 e 1
0o 0 0 XDE, XDE, e XDEy
0 0 0 IDE, ZDE, cee ZDEy
D=1 Xpg, ZDE, 9¥DE\DE, ®DEDE, ‘°* ®DEDEy (26)
' xpey, 2ZpEy @$DEyDE, ®DEyDE, *** ®DEyDE,
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with

~ {¢<||XDEi — XpI/Sk)  for IXpe, — Xpe | < Sk o7

®DE,DE; =
7o for || Xpg, — Xpe |l > Sr

indicating the basis function on the distance between Xpg, and Xpg, and the subscript DE representing a domain
element control point. S g denotes the support radius which specifies the radius of the influence of each control point.

To locate the deformed points the following matrix must be formed where the subscript a indicates the original
position of an aerofoil point:

I x4 24y QapE, @aDE;, “** PaDEy
A=l : : : : . (28)

1 Xuy Zay PayDE, PayDE, ***  PayDEy

The matrix of the deformed aerofoil points, Xdeform s then calculated as

xdefom = AA (29)
= AD'Xpg (30)

Note that as H is invariant of the current control point positions it only needs to be calculated once. It should be noted
that this method can also be applied without the first three ‘polynomial’ rows or columns. The effect of this is that
translations and rotations are not retained exactly but it ensures that deformations do not propagate past the support
radius.

There are a few factors that affect the use of the RBF-DE method for reconstructing aerofoils; the support radius,
the radial basis function, the initial aerofoil used, the number and initial position of the control points as well as the
direction of their movement. For this study a support radius of 1 chord will be used throughout as well a radial basis
function of Wendland’s C2 function

P(x) = (1 — x)*(4x + 1). (32)

This leaves the positions of the initial control point positions to be defined. Contrary to the Bezier surface method
where the control points must be defined on a fixed uniform lattice, the initial RBF-DE control points can be placed
anywhere. This flexibility gives the user great control over the influence and locality of the deformation though means
that a comprehensive search for their best locations is challenging[33].

For this study, two different initial control point schemes were be considered. A set of ‘off surface’ control
points defined on an ellipse around the aerofoil and a set of ‘on surface’ control points defined on the surface of the
initial NACAO0O012, both shown in figure 4. For both configurations it should be noted that each configuration always
contains the points included in the coarser levels with an additional set of bisecting points. Similarly to the other
methods the design variables are chosen to be the symmetric pairs moving symmetrically in the z direction to create
a local thickness change. Additional for the ‘on surface’ configuration the control points at the leading and trailing
edges are held stationary.

F. SVD Method

The Singular Value Decomposition (SVD) method uses proper orthogonal decomposition to derive a set of ordered,
orthogonal basis modes from a set of pre-determined training aerofoils. New aerofoil shapes can then be constructed
as a linear combination of these modes where the fidelity of the construction is determined by the number of modes
used. This technique was first employed by Toal et al.[34] then by Ghoman et al.[35] and Poole et al.[36]. Ghoman
et al.[35] used a series of supercritical aerofoils to derive the modes and showed that other supercritical aerofoils
could efficiently be reconstructed. Poole at al.[36] then extended this to show that a broad range of aerofoils could be
represented given a wide choice of training aerofoils.

When constructing the aerofoil shape modes it is crucial that the training library is normalised such that the aerofoil
shapes are defined equivalently and discretized by the same number of points. In this work they are transformed to
have a sharp trailing edge and discretized such that all the aerofoils have an equal distribution of points along the
x-axis. This second condition means that, in this instance, the modes only need to be constructed in the z direction.
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1
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a) b)

Figure 4. Comparison of ‘on surface’ and ‘off surface’ RBF-DE configurations for 10 symmetric design variables. (a) Shows the initial
control point positions used and (b) shows a couple of the the basis function associated with this configuration (acting on the upper surface).

To formulate these modes the z coordinates of the training aerofoils are first used to form the rows of the matrix

g 4 o
2 2 - 2

T=|. . . ) (33)
MM M
MM M

for M training aerofoils each of length N.
This matrix is then decomposed into the singular value decomposition

T=U-X-V (34)

where columns of V = [vy, V2, ..., Vuyinv,a ] represent the ordered, orthogonal aerofoil modes and the diagonal values
of X represent the energy of each mode. The energy is a measure of the importance of the modes within the training
library and equivalently can be considered as a ‘typical value’ for its use.

New aerofoils are then constructed as a linear combination of these modes such that

zZ= Z a;s;v; 35)

for some scaling s;and where a; represents the design variables. Two possible scalings are considered in this work,
Si = 1 and Si = Eii-

For this work the training library consisted of all the symmetric aerofoils from the UTUC aerofoil library® (smoothed
and normalised as described in Masters[28]) and the symmetric NACA 4 series aerofoils with max thickness coeffi-
cients from 6 to 24. This made up a training library of 122 aerofoils. The modes produced are shown in figure 5 with
the associated energies shown in figure 6.

Phttp://aerospace.illinois.edu/m-selig/ads/coord_database.html
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Figure 5. The first 6 SVD modes created with the training library of symmetric aerofoils.

Mode

Figure 6. Energy associated with the first 40 SVD modes.
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IV. Optimisation Framework

In this work the open-source, unstructured CFD code SU?[18] was used for all the optimisations, and surface sensi-
tivities were calculated through the adjoint equations. Each flow solution was converged down to a maximum change
in the drag coefficient of less than 10~7 and convergence acceleration was achieved through the use of multigrid. Due
to the symmetry of the problem only half of the aerofoil was solved for each simulation with a symmetry condition
applied along the line z = 0.

The computational meshes were created as structured O-meshes with a distance to the far-field of 50 chord lengths
and an equal ratio of cells around the aerofoil to cells to the far-field. The original problem specification[19] recom-
mends that the initial mesh is grid independent to within 0.1 drag counts. A full mesh convergence study for this grid
generator is presented in Poole ef al.[14] (though with the alternative solver used in section VI), which identified that
this condition was sufficiently met for the 257 x 257 mesh. These tests have been repeated with SU? which confirmed
these results. For this reason all of the optimisation procedures were performed with the 257 x 257 mesh shown in
figure 7a. In addition the final results were also run on the finer 513 X 513 mesh to confirm the results. These two
mesh sizes will be referred to here on after as the ‘optimisation mesh’ and ‘fine mesh’ and are shown in figure 7.

lgy treg g0y t0g 0]
LRI
ettt

s
TR R R
R

N
SO

e ittt "
SRR TR
R

it
ettt
ety R,
Wi Wrget 0y g 04
:‘3:“3“:?““““"“ R,
SRS

S

T

a) 257 x 257 Optimisation Mesh b) 513 x 513 Fine Mesh

Figure 7. Mesh resolutions used for optimisation, (a), and final tests, (b).

The optimisation mesh is used for each optimisation procedure throughout with the surface and volume mesh
deformed using RBFs for each flow solve. This is done by applying the same method as for the RBF domain element
parameterisation with ‘control points’ placed on each surface point though without the use of the ‘polynomial’ terms.
This is applied with a support radius of 10 chord lengths and Wendland’s C4 RBF,

d(x) = (1 — x)°(35x% + 18x + 1), (36)

to ensure the surface deformations are dissipated smoothly across the volume to maintain mesh quality.

The design variable gradients are calculated using the adjoint method which allows all the gradients to be calculated
for a computational cost in the order of one flow solve. This is done by solving the adjoint equations[37] to calculate
the sensitivity of drag coefficient with respect to the unit normal at each surface mesh point, i.e.

oCp
0x;

(37

for unit surface normal %; = [X;,Z;]. Then as the surface perturbations in this work will be applied in the z direction
only, the required surface sensitivities are given by

aCp _, 8Cp

%Cp _, %0 38
0z o (38)

The required gradients of Cp with respect to the design variables, a;, are then calculated by multiplying this with the
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Jacobian of the surface geometry with respect to the chosen design variables,

aCp 9Cp
da, & N % 9z
%Q ay ay %CD
as 22
I N N (39)
: oz, O :
ICp day, da, 11 9Cp
Oay, — Oz
~—— Geometric —
Gradients Sensitivities Surface
Sensitivities

The optimisations were then performed using the multi-purpose large-scale optimiser SNOPT[17]. This is a
gradient-based sequential-quadratic programming (SQP) method that employs a reduced-Hessian BFGS search di-
rection and a cubic line-search technique. The surface profile restriction was applied as ‘linear’ constraint and was
enforced at every fifth percentile for x/c < 20% and x/c > 40% and every second percentile for 30% < x/c < 40% as
well as at 99% chord. This ensures strict compliance in the maximum thickness region.

Convergence of the optimisation was typically determined through SNOPT which terminated from one of two
conditions. Either the KKT optimality condition[17] satisfied the tolerance of 1 x 10~ or the optimiser was unable to
improve the objective function after multiple attempts. In some cases the optimisations were also stopped manually if
no significant improvement was made after a large number of iterations.

V. Optimisation Results

A. Initial Optimisation Results

For an initial investigation, design variables sweeps from 4 to 40 were conducted for CST, Bezier Surface, Cubic
B-Spline, Hicks-Henne, RBF-DE on surface and SVD (unit scaled) methods. Figure 8 shows the optimisation results
for these cases. It can be seen that there is a clear distinction between the performance of the methods for larger
numbers of design variables. The Bézier surface, CST and Hicks-Henne methods seem to give reasonably consistent
results for greater than 20 design variables, whereas the B-Spline, RBF-DE and SVD methods get consistently worse
over this period. For all these methods it is clear that better solutions exist than those found by the optimiser; this
suggests that the optimiser has been unable to fully exploit the available design space. Figure 9 then shows the
optimiser convergence history for the six methods for 36 design variables. At this design point it can be seen that the
convergence path for the RBF-DE, B-spline and SVD methods is significantly worse than for the Bezier surface, CST
and Hicks-Henne methods.

To investigate this, the parameterised surface sensitivity was calculated for each method at the optimisation starting
point with 40 design variables. This was calculated by multiplying the geometric sensitivities by the design variable
gradients. For an unconstrained optimisation this is equivalent to the surface deformation direction, however due to the
active profile constraints in this problem this deformation could provide an infeasible shape so merely represents an
‘ideal’ step direction. The parameterised sensitivities for all of the methods have been plotted in figure 10. This figure
shows a clear distinction between the Bezier surface, CST and Hicks Henne methods, and the B-Spline, RBF-DE
and SVD methods. The B-Spline, RBF-DE and SVD methods follow the exact adjoint sensitivity much closer than
the other methods and as a consequence have significantly sharper, higher frequency curves. For the RBF-DE and
B-Spline methods this is because the support of the basis functions reduces as the fidelity increases whereas for the
SVD method it is as result of the increasing frequency of the modes. The impact of this is that the resulting surface
perturbation may reduce the smoothness of the aerofoil. It has previously been identified that ensuring the smoothness
in the aerofoil optimisation sequence is crucial to the success of aerofoil optimisation[38, 39] which suggests that this
capacity to create unsmooth aerofoils may be negatively influencing the optimisation process.

To ensure smoother sensitivities were created, two different approaches have been taken. For the RBF-DE and B-
spline methods, configurations have been chosen that create larger smoother basis functions. For the RBF-DE method
this is done by moving the initial control points positions away from the aerofoil surface and for the B-Spline method a
larger polynomial order, equal to half the number of control points, is used. For the SVD method a different approach
was taken due to the form of the basis functions; in this case the modes were scaled by the modal energy such that the
later, higher frequency modes had a lower maximum value.

Figure 13 shows the impact this has on the parameterised surface sensitivities; it can be seen that for the new
configurations they are significantly smoother. The impact of this on the optimisation results and convergence history
at 36 design variables is then shown in figures 11 and 12. Both of these figures show a significant improvement in the
results. This suggests that the smoothness of the surface sensitivities has a large impact on the robustness and rate of
convergence of this optimisation procedure.
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Figure 8. Optimisation results for the initial set of parameteri-
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B. Improved Optimisation Results

Figure 14 shows the final optimisation results achieved, with the inclusion of the improved methods for the B-Spline,
RBF-DE and SVD methods. These show that the B-Spline method provides the best result with 12 design variables
achieving a drag count of 28.2; this equates to a 94% reduction in drag. The other methods, bar Hicks-Henne, seem
to produce very similar, consistent, results across the full design variable spectrum investigated, with the SVD method
generally attaining a slightly better result than the rest. The Hicks-Henne method on the other hand shows the most
variation in results. This may be due to the formation of the basis functions used, as an increase in the number of
design variables does not necessarily strictly increase the design space[21]. This can mean that lower design variable
solutions are not included in higher design variable space.

Each of the optimum solutions was then re-meshed and run at the ‘fine’, 513 X 513, mesh resolution to confirm
the results and reduce grid dependence. These results can be seen in figure 15. It was expected that all of the results
would either decrease or stay the same based on previous work[5, 14]. It can however be seen that for some of the
results (indicated by a A), a large increase in drag is observed. Figure 16 shows the pressure distributions for two of
these cases for the two different mesh resolutions tested. It can be seen that they have produced completely different
shock structures near the trailing edge. This is evidence of non-unique solutions for these aerofoils and is similar to
the behaviour identified by Meheut ef al.[20]. Further analysis of this hysteretic behaviour is presented in the next
section. Ignoring these results it can be seen that figures 14 and 15 show very similar trends with a general reduction
in drag shown for the finer mesh.

The best results obtained by each method at the fine mesh resolution are then compared in table 1, from this it
can be seen that the B-Spline method gives the best overall result with 16 design variables attaining a drag count
of 25.1 counts, which equates to a 95% reduction in drag. The aerofoil shapes and pressure distributions associated
with these best results are then shown in figures 17 and 18. From the aerofoil shapes it can be seen that there are
two distinct surface results. The two best results, for the B-spline and Hicks-Henne methods, can be seen to have a
thicker trailing edge region and an increase in thickness around 50% chord. The other results however maintain the
maximum thickness of the original NACAQ0O012 and have slightly thinner shape around the trailing edge; these results
produced between 5 and 35 counts more drag. The Cp plots (figure 18) show a similar pattern with the B-Spline and
Hicks-Henne giving a different trailing edge shock structure to the other methods. These, lower drag, results display
a single normal shock at around 97% chord whereas the other cases appear to form a partially reflected oblique shock
at 92% chord followed by a normal shock at 94%.

Cp (counts) Cp (counts)

Method #ofDVS 5574257 mesh)  (513x513 mesh)
NACAO0012 - 469.3 469.4

CST 20 56.8 56.0
Beézier Surface 32 51.2 50.0
B-Spline (Order = N/2) 16 314 25.1
Hicks-Henne 32 39.8 31.9
RBEF-DE (off) 28 57.7 56.4

SVD (scaled) 24 38.6 37.2

Table 1. Table showing the best results attained by each method on the 257 x 257 optimisation mesh and 513 x 513 refined mesh.
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Figure 14. Final optimisation results for each parameterisation method on the 257 x 257 optimisation mesh.
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Figure 15. Final optimisation results for each parameterisation method run on the 513 x 513 fine mesh. A indicates a solution that may
have converged to the upper branch of a hysteresis loop.
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Figure 16. Comparison of trailing edge pressure distributions for two aerofoils at the two mesh resolutions.
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Figure 18. Comparison of the aerofoil shapes for the optimum result achieved with each method

VI. Validation and Hysteresis Study

It is clear from figure 17 that the six different parameterisation methods tested produce two distinct optimised shapes.
The CST, Bezier Surface, RBF-DE and SVD methods produce a shape with a lower thickness over the aft half of the
aerofoil chord with a shallower boat-tail angle, whilst the B-spline, Hicks-Henne and SVD methods produce a thicker
aerofoil with a higher boat-tail angle. The thicker of the two distinct shapes produced drag values, according to SU?,
of around 25-30 counts on the fine mesh. The other, slightly thinner shape, produces drag values between 35 and 55
counts on the fine mesh.

A. Mesh Convergence Study

To validate the results from SU?, a mesh convergence study was performed using another solver on an example of each
of the two distinct designs. The best results for the B-spline method (order=N/2, 16 DV) and Beézier surface method
(32 DV) were the two aerofoils tested. The flow-solver used was the structured multiblock finite-volume, upwind
code of Allen[40], which uses the flux vector splitting of van Leer[41]. Convergence acceleration is achieved through
multigrid [42]. The meshes used were the ‘fine’ 513x513 meshes used in SU2, which were then mirrored to produce
full, 1025x513, meshes. Each of these was then coarsened twice in each direction to produce three distinct mesh levels
for the mesh convergence study: 1025x513, 513x257 and 257x129. It should be noted that to avoid lifting solutions
(a hysteresis study is presented below to explain this more fully) a symmetric wake was enforced. The results of the
mesh convergence studies are shown in table 2. The mesh convergence study for the NACAO0O012 is also shown. It can
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be seen that the results from the mesh convergence study on the structured multi-block solver correlate well with those
produced on SU?.

Cp (counts)
Mesh Density NACAO0012 B-spline Bezier Surface

257x129 487.5 38.5 60.8
513%257 471.7 27.8 51.2
1025%513 469.6 25.0 49.8

Table 2. Table of mesh convergence studies on structured multi-block code.

B. Hysteresis Study

As noted above, to avoid lifting solutions, which were otherwise very common, a symmetric wake was enforced in the
mesh convergence study above. The presence of lifting solutions means that multiple solutions are possible for these
types of aerofoils at this design point. This is a result that has also been found by other researchers in the ADODG
[5, 7, 20], and has also been subject to research by Jameson er al. [43, 44, 45].

To investigate hysteresis in the two aerofoil sections highlighted (those designed using B-spline and Bezier surface
parameterisations), firstly a large sweep in Mach number up and down is performed. The sweep is performed on both
the 257x129 mesh and the 513x257 mesh, and the results are shown in figure 19. As has previously been found by
other researchers, these types of aerofoils exhibit multiple solutions at the optimization point.

0.04 —————+—"——"—" """ .4 — 1T
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[ Bezier ] [ Bezier
0.03} 0.03F
0.025 F 0.025
3 0.02F 3 o.02f
0.015F 0.015F
0.01} 0.01}F
0.005 F 0.005
07\ - T R N T R - T - T R ] 07 T - T R T R N L
0.6 0.65 0.7 0.75 0.8 0.85 0.6 0.65 0.7 0.75 0.8 0.85
M M
a) 257x129 b) 513x257

Figure 19. Large Mach sweeps

To further investigate this point, a smaller Mach sweep was run on a smaller deviation around M = 0.85 on the
same meshes. The results for these are shown in figure 20. It is interesting to note that the hysteresis occurs at a very
small window of freestream Mach number and is highly mesh dependent. For example, for the B-spline parameterised
aerofoil on the 513x257 mesh, there is no hysteresis at the design point, and instead this occurs at a lower Mach
number. The Mach flow contours are shown in figures 21 and 22 for both aerofoils on the 257x129 mesh (both the
upper and lower branches are shown on the same plot). The upper branch of both of the aerofoils has a double shock
flow structure with drag values approximately double the lower branch, which has a single shock. This is in agreement
with the original problem set by Vassberg et al.[2], where it was believed that this is the lowest Mach number at which
a shock free optimized solution is not possible.

VII. Conclusions

In this work the NACAO0O012 symmetric, inviscid drag optimisation benchmark case has been run with six different
parameterisation methods (B-splines, Bézier surfaces, CST, Hicks-Henne, RBF-DE and SVD) with between 4 and
40 design variables. Firstly it was found that the smoothness had a significant impact on the robustness and rate of
convergence of the optimisations, with the capacity for some of the parameterisation methods to create un-smooth
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Figure 20. Hysteresis loops produced for small Mach sweeps. Arrows indicated sweep direction.

aerofoils negatively impacting their results for higher design variables. This lead to improvements for the the B-spline
and RBF-DE methods, by increasing the support of the basis functions and, for the SVD method, by reducing the
influence of the higher frequency modes.

A set of final optimisation results were then presented at two mesh resolutions; a 257 x 257 mesh used for the
optimisations themselves and a fine 513 x 513 mesh. They showed that the best result was achieved by the B-spline
method with 16 design variables, producing a result with 25.1 drag counts on the 513 x 513 mesh. Two distinct surface
solutions were found with the B-spline and Hicks-Henne methods producing a thicker, larger boat-tail angle compared
to those produced by the Beézier surface, CST, RBF-DE and SVD methods. The thicker shapes correlate with lower
drag results and different shock structures.

A further investigation of the hysterestic behaviour encountered was then presented for the best results achieved
with the B-spline and Beézier surface methods. This showed that for both aerofoils hysteresis loops could be formed
by sweeping up and down in Mach number within a range of +£0.001 of the M = 0.85 design point.
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