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A Geometric Comparison of
Aerofoil Shape Parameterisation Methods

D. A. Masters*,

Department of Aerospace Engineering, University of Bristol

N. J. Taylor',
MBDA UK Ltd, Filton

T. C. S. Rendall*, C.B. Allen® and D. J. Poolel

Department of Aerospace Engineering, University of Bristol

A comprehensive review of aerofoil shape parameterisation methods that can be used for aerody-
namic shape optimisation is presented. Seven parameterisation methods are considered for a range
of design variables: CSTs; B-Splines; Hicks-Henne bump functions; a Radial Basis function (RBF)
domain element approach; Bezier surfaces; a singular value decomposition modal extraction method
(SVD); and the PARSEC method. Due to the large range of variables involved the most effective way
to implement each method is first investigated. Their performance is then analysed by considering
the geometric shape recovery of over 2000 aerofoils using a range of design variables, testing the effi-
ciency of design space coverage with respect to a given tolerance. It is shown that, for all the methods,
between 20 and 25 design variables are needed to cover the full design space to within a geometric tol-
erance with the SVD method doing this most efficiently. A set transonic aerofoil case studies are also
presented with geometric error and convergence of the resulting aerodynamic properties explored.
These results show a strong relationship between geometric error and aerodynamic convergence and
demonstrate that between 38 and 66 design variables may be needed to ensure aerodynamic conver-
gence to within one drag and one lift count.

Nomenclature

a; ith design variable
a Vector of design variables
Bi, Bernstein polynomial i of n
Cp Drag coefficient
Cr Lift coefficient
f Cubic spline function

Generic transformation matrix
h; Location Hicks-Henne bump function maxima
H RBF full transformation matrix
i, J Counters
k B-Spline order
m* NACA 4-series maximum camber parameter
M Number of training aerofoils
M, Freestream Mach number
n, m Number of basis functions or control points
N Number of aerofoil coordinates
Nik ith B-Spline basis function
pX) RBF polynomial function
p* NACA 4-series maximum camber position
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P;,P;; ithori,jth control point
S(x) CST shape function

Sr RBF support radius

t NACA 4-series thickness parameter

t Thickness of Hicks-Henne bump function
T Matrix of training aerofoils

u Scalar parameterisation variable

U Left singular vectors of M

v; ith SVD mode

v Right singular vectors of M

w; Weighting parameters

W Diagonal matrix of weighting parameters
X,z Continuous normalised coordinate directions
X Two-dimensional position variable (x, z)
X, Zi Position of ith aerofoil coordinate

X, Z Vector of all points x; or z;

X; ith vector coordinate position (x;, z;)

X Two-dimensional aerofoil (x,z)

Z Mean z coordinates

Z Transformed z coordinates

a Angle of attack

Bpr RBF coefficient vector

0% Cubic spline parameterisation

& Arc length from X, to X;

P Cubic spline smoothing parameter

z Diagonal matrix of singular values of M

di(x) ith basis function

Subscripts

lelte Leading edge / Trailing edge
min/max Minimum or maximum

upper Indicates the upper aerofoil surface
lower  Indicates the lower aerofoil surface

Superscripts

approx Least Squares approximation of target aerofoil
error  Positive aerofoil approximation error

initial  Initial aerofoil to be deformed

target  Target aerofoil to approximate

1. Introduction

With optimisation becoming more common in aerodynamic design, a significant effort is being made to improve
the effectiveness and efficiency ' of the full optimisation process. A typical CFD-based aerodynamic optimisation
consists of four stages: shape parametrisation/control; mesh creation/deformation; flow solution; and optimisation.
Within this context the efficiency is typically measured by the time or resources needed to complete the optimisation
and the effectiveness by the quality of the final solution. This paper focuses on how the shape parameterisation can
influence these properties for two-dimensional aerofoil design.

Shape parameterisation concerns the way the geometry is handled and deformed by the optimisation algorithm,
determining both the fidelity and range of control available. An effective and efficient parameterisation method is char-
acterised by the ability to cover a large design space with a limited set of design variables. This paper presents a direct
comparison of widely-used shape parameterisation methods, by considering geometric shape recovery and analysing
how accurately each can recover a large range of different aerofoils. A further study is then performed on a reduced
set of aerofoils to assess the influence of the geometric accuracy on the aerodynamic properties. For each method a
variety of techniques for implementing them have also been considered in order to identify the optimum conditions
for their use. This allows a fair final comparison to be made between all parameterisation methods considered.
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II. Background

A wide range of methods have previously been used for aerofoil geometry representation. These vary from general
geometry representation techniques such as B-Splines to aerofoil specific methods such as PARSEC® and all have a
wide range of characteristics and attributes. For the purpose of this study the various aerofoil parameterisation meth-
ods will be categorised as either constructive or deformative based on how the design variables/parameters influence
the aerofoil surface. Constructive methods represent the aerofoil surface based purely on the values of the param-
eters specified; examples of this include polynomials and splines’s, partial differential equation methods (PDE)’
and CSTs'%!". Deformative methods take an existing aerofoil then deform it to create the new shape; these include
discrete '2, analytical 13, basis vector ' and free-form deformation (FFD) '>!® methods.

One of the simplest forms of parameterisation is the discrete (or free-surface) method. This directly uses the
surface points of a discretely defined aerofoil as the design variables'?. The benefit of this is that it allows extremely
fine control over the shape with absolutely no restriction on the design space. The size and complexity of the resulting
optimisation problem can however cause significant difficulties. For example, as all the point displacements are
considered independently, the resulting sensitivities are often not smooth, which can present difficulties for flow solvers
if not appropriately handled'”. The large number of design variables involved can also lead to slow convergence
rates and extremely expensive finite-difference gradient calculations. For these reasons more robust and efficient
parameterisation methods are usually favoured over the discrete method.

Hicks and Henne’s '? early analytical approach based on bump functions represents one alternative. It takes a base
aerofoil and then adds a linear combination of single-signed sine functions to deform its upper and lower surfaces to
create a new aerofoil shape. This concept of adding a linear combination of simple basis functions to a base shape has
also been used in a constructive manner, for instance, Kulfan’s CST'? method which adds a combination of Bernstein
polynomials to a simple, analytical ‘aerofoil class’ shape. Both of these methods have seen frequent use within the
framework of aerodynamic optimisation '#-24,

Other, more classical methods, such as B-Splines or polynomial fitting are also commonly used. B-Splines repre-
sent a class of versatile, piecewise polynomial, control point based curves with variable continuity and support. Due to
their intuitiveness and flexibility they have been applied to a wide range of applications with extensive use throughout
shape optimisation including a range of aerofoil specific cases *>~°. Sobieczky’s® PARSEC (Parameterised Sections)
method is also popular, approximating each surface by a 6! order polynomial. One positive feature of this method is
that it uses real geometric properties such as the aerofoil’s crest location and curvature as the design variables, allowing
more intuitive control of the shape. However, as the method is limited to only 12 design variables it does not provide
the range or flexibility in fidelity made available by many of it’s alternatives.

Attempts have also been made to mathematically derive a set of orthogonal modes to represent an aerofoil. This is
typically done through proper orthogonal decomposition (POD) of a set of training aerofoils which will create a set of
optimal orthogonal shape modes based on a range of training data. Studies of this nature have been produced by Toal
et al.**, Ghoman et al.*' and then by Poole et al.*> who used a large, varied collection of aerofoils and singular value
decompositions to produce a universal set of modes representing the deformation of aerofoil shapes.

Another approach to shape parameterisation is to use FFD which is a method typically used in soft object anima-
tion. This creates a smooth continuous volume transformation based on the change in position of a series of control
points. This volume transformation can also be used to deform computational volume meshes seamlessly with the
aerofoil. This can have significant cost benefits particularly in three dimensions. The two principal FFD techniques
in use are radial basis functions (RBFs)'> applied on an arbitrary domain element (a series of user positioned initial
control points), and Beézier surfaces** (often referred to as just ‘FFD’) which use a structured lattice of initial control
points. These control points are commonly grouped together to create global transformations such as thickness and
camber, or twist and sweep in three dimensions, to reduce the total number of design variables. The RBF domain
element method also allows the local fidelity of movement to be controlled through the proximity and density of the
point distribution. Both of these methods have shown promising optimisation results '3

A range of other comparative shape parameterisation studies have been previously investigated*’~*’. Castonguay
and Nadarajah37 considered the discrete method, Hicks-Henne, B-Splines and PARSEC for inverse design and drag
minimisation on an ONERA M6 (D section) aerofoil. They found, for the inverse design test case, that the B-spline
needed 32 control points (64 design variables) to obtain a satisfactory fit for the geometry but only 16 control points
(32 design variables) to get a satisfactory fit on the pressure distribution. They used a fixed bump position, fixed bump
width configuration of Hicks-Henne and found they needed 32 bumps to get a satisfactory fit for both the geometry
and the pressure. B-Splines, for equal design variables, always out-performed Hicks-Henne, and PARSEC failed to
approximate the ONERA M6 to a useful degree of accuracy. For the drag minimisation test case both the B-Splines
and Hicks-Henne bumps gave comparable results.

This study was extended by Mousavi, Castonguay and Nadarajah*® who also performed an inverse design case on
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the ONERA M6 aerofoil and a drag minimisation (though on a NACAO0012) but instead used the discrete, B-spline
and CST parameterisation methods. They found very similar results for B-Splines as Castonguay and Nadarajah*” and
found that the CST method gave good results with 22 design variables (comparable to the best B-spline cases) but then
decreased in accuracy with additional design variables due to the influence of high frequency oscillations. The drag
optimisation showed comparable results across both methods and all orders of accuracy with the CST method using
only 10 design variables attaining a 40% drag reduction.

The objective of this study is to present a comprehensive comparison of the shape parameterisation methods
available for aerodynamic optimisation. This adds to the previous studies in this area by including a larger range of
methods and testing them over a significantly broader range of aerofoils. Furthermore each parameterisation scheme
is tested under a variety of conditions in order to identify best practice for implementing them; this allows a fair and
effective comparison to be made between all the methods investigated. Selected aerofoil case studies are also included
to provide insight into the relationship between the geometric accuracy and their aerodynamic properties.

III. Methodology

Seven parameterisation methods have been considered in this work; B-Splines, CST, SVD, PARSEC, Hicks-Henne
bump functions, Bezier surface FFD and RBF domain elements. Each method has first been presented individually
with varying configurations to determine the optimal method of implementation. A further comparison of all the
methods has then been completed where the success of each parameterisation method is evaluated on its ability to
geometrically reconstruct a library of aerofoils to a prescribed tolerance. The percentage of these aerofoils that can
be reconstructed to this tolerance can then be quantified to give a good estimate of the available design space for each
method. This was then calculated for a sweep in design variables, giving a perspective on the efficiency of the total
design space coverage.

A further set of case studies has also been performed on five common aerofoils. For each of these investigations
a full set of aerofoil approximations has been constructed for each parameterisation method along with aerodynamic
solutions calculated using the full potential flow solver VGK*'. The aim of this is to compare how the aerodynamic
quantities of the aerofoils (Cr, Cp) converge as the number of design variables increases. Before performing these
tests the associated methodology must first be examined.

A. Aerofoil Libraries

For the large database geometry tests two distinct aerofoil libraries have been used; a library of NACA 4-series aero-
foils and a library of aerofoils taken from the UITUC aerofoil database®. A further ‘combined’ library that consists of the
union of these two sets is also considered. In order to accommodate the broad range of parameterisation methods con-
sidered, the geometry of all the aerofoils has been normalised and discretized such that they satisfy all the constraints
imposed by the methods themselves and provide an impartial and consistent testing platform. Further explanation of
this can be found in appendix A.

The NACA aerofoil library has been created by taking all the possible integer combinations of the three input
parameters ¢*, m* and p* for the NACA 4-series definition (Appendix B) in the ranges t* € [6,24], m* € [0,9] and
p* € [3,7]. The aerofoils were then normalised and discretized as described in appendix A producing a final library of
874 unique aerofoils.

The original UIUC aerofoil library® consists of raw data for 1517 aerofoils taken from a wide range of aerospace
applications. The aerofoils are discretized with between 24 and 205 points with varying levels of precision and no
information as to how they were formed. For these reasons care has been taken to appropriately refine them and
normalise them to the specifications outlined in appendix A. It was also found that if an interpolating cubic spline was
used, small oscillations between the raw data points were created for some of the aerofoils, particularly for those that
are coarsely defined. For this reason an energy minimizing smoothing spline*” was employed to re-sample the original
aerofoil data. This is defined as the spline f such that the function

p Y k= fonl + (1=p) [ 177F M)

is minimised for some parameter p, taken as the optimum determined by de Boor*?, and a spline parameterisation ;.

*http://aerospace.illinois.edu/m-selig/ads/coord_database.html accessed 5th June 2014.
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The spline parameterisation was chosen to be

2

_ [+V& for i € upper surface
7= —+& fori € lower surface

where &; is the arc length between points X; and X;.. This was used as it helped increase the smoothness around the
high curvature (often densely discretized) leading edge.

Given an appropriate spline f the aerofoil could then be sampled and normalised to satisfy the geometry normali-
sation criteria. A final visual check was performed on the set of aerofoils where any aerofoils that were not deemed to
be suitable for the tests were discarded. Aerofoils were mainly discarded due to errors in the raw data or unsatisfactory
surface smoothness, giving a final database of 1300 aerofoils for testing.

In previous work by the authors* a similar study to this was carried out, though it used a simple smoothing spline
for the re-sampling procedure opposed to the smoothing spline described above. This had a negative influence on the
final results and is thought to be the major contributing factor to the variation between the results presented in** and
this work.

B. Initial Aerofoil for Deformative Methods

For all of the deformative parameterisation methods an initial aerofoil shape must be provided which is then deformed
to provide the final aerofoil; for tests in this work a NACAO0O012 has been used. This choice was made due to its analytic
description and its smooth shape, which should provide a well-rounded starting point for deformation to the full range
of aerofoils provided in both the NACA and UIUC libraries. It should however be noted that the NACAO0O012 (as
defined by equation 37) has a sharp trailing edge yet the final UIUC database consists of aerofoils with both blunt and
sharp trailing edges. As the deformative methods will be unable to overcome these topological difficulties a slightly
modified NACAOO012 shape has been used. It has been defined as

NACA0012*(x) = 0.6 (0.2969\/} —0.126x — 0.3516x% + 0.2843x° — 0.1036x4) +x-70 (3)

where the target aerofoil half trailing edge thickness zﬁf’ger is provided as a known quantity. This value is also supplied
to all the constructive methods in order to provide a fair and unbiased testing environment.

C. Solution Calculation and Error Tolerance

For each individual test the best approximation (or reconstruction) has been calculated through a least squares solution,
from which the errors in the geometry can then be calculated.
The least squares solution X“PP™% = (xPProx 74PPro¥) ig the solution that minimises the expression

N

1

D = 2y )
i=1

. . I 1 .
for some set of weights w; given that x*“ = x/"""** = x; fori=1: N.

i

For each of the parameterisation methods, z*”P"** can be expressed in the form of a linear combination
Fa = zPrrox &)

where F is the transformation matrix defined by the shape parameterisation method and a is a column vector of the
design variables. The weighted least squares squares solution can then be calculated as

a= (WF)+WZmrgel (6)

where the superscript + denotes the Moore-Penrose pseudoinverse and W is a diagonal matrix where W;; = w; Vi.

To obtain measurable, comparable results it is important that the approximation data is processed into a well
defined error metric that reflects the aims of the experiment; in this case the ability of shape parameterisation methods
to replicate different aerofoil shapes. In a study by Kulfan'?, confined to the CST method, the geometric errors in the
solution aerofoils were frequently compared to a ‘typical wind tunnel tolerance’ defined as

(7

ooy |AX 107 if x/c < 0.2
2" <
8x10™* ifx/c>02
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with solutions deemed acceptable if they were within this range. For a metre long chord this tolerance is equivalent to
0.4mm for the leading edge and 0.8mm everywhere else. Kulfan then showed for two cases, the RAE2822 and NASA
NSC 2-0714, that L/D converged to within ~ 2% for errors within this bound.

This tolerance (equation 7) has be used throughout the testing in this paper as a benchmark for a successful
approximation. Each method is then typically assessed on the percentage of the aerofoil library approximated to this
geometric tolerance versus the number of design variables used. Further tolerances have also been considered which
have been expressed in terms of weighted z error where

®)

werror |2 X287 if x/c < 0.2
Z =
zerrer if x/c > 0.2.

In this notation, Kulfan’s geometric tolerance is equal to 77" < 8 x 107*. These tolerances motivate using the least
squares weighting

2 ifx; <02
w; = (9)

1 ifx;>02

to provide a tighter fit in the leading edge area.

D. Large Database Tests

The large database tests performed in this work consist of testing whether a range of aerofoils can be successfully
reconstructed for each parameterisation method across a large range of design variables. Each individual test is im-
plemented by applying a least squares approximation to a given target aerofoil for a particular parameterisation. If
the resulting parameterised aerofoil is within the a prescribed tolerance of the target it is deemed successful. For the
majority of the tests this tolerance is defined as Kulfan’s geometric tolerance (equation 7), though the influence of
scaling this has also been investigated. The success of this test therefore defines if the particular target aerofoil is
included in the design space of the parameterisation method tested. This process is then repeated for all the aerofoils
in the UIUC and NACA aerofoil libraries and for between 1 and 100 design variables. This enables the percentage of
the testing database successfully reconstructed to be calculated for each design variable interval and therefore give an
estimation of the total aerofoil design space covered. The resulting data is then used to quantify the efficiency of the
aerofoil design space coverage for the particular parameterisation method.

E. Case Studies

In addition to the large database tests, five case studies have also been considered. For each case study aerofoil, a
full range of reconstructions have been calculated for each parameterisation method at each design variable interval.
An aerodynamic flow solution is then calculated for each of these approximations using the Euler solver SU?**. This
allows the behaviour of the aerodynamic properties and the max weighted z error with respect to the number of design
variables to be analysed.

IV. Parameterisation Methods

The following section outlines each of parameterisation methods tested in this papers and investigates the various op-
tions for their implementation. The methods have been categorised as either a constructive method or a deformative
method based on the relationship between the design variables/parameters and the aerofoil surface. Constructive meth-
ods define the aerofoil surface geometry purely based on the magnitude of the design variables whereas deformative
methods take an existing aerofoil shape and deform it to create the new shape. The constructive methods investigated
in this paper are: B-Splines, CSTs, and the SVD method and the deformative methods are: Hicks-Henne bump func-
tions, Bezier surface FFD and the RBF domain element method. For each method, its formal definition is described
and then an investigation into the best technique for its implementation is performed. This has been done in an attempt
to provide the best results possible for each method and therefore a fair and unbiased comparison of their performance.

A. Constructive Methods
1. B-Splines

B-Splines are a widely used family of method used for producing multi-dimensional smooth curves that are defined
based on the product of a set of basis functions and a set of spatially defined discrete control points P; € R3. Typically
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they have up to three degrees of freedom based on spatial position for every control points used plus, in the case of
non-uniform rational B-Splines (NURBS), additional degrees of freedom in the form of a weighting for each basis
function and variable knot positions. Though these additional parameters do increase the flexibility of the B-Splines
the increase in the design variables and complexity is not deemed beneficial for this study. Therefore only the case of
uniform, non-rational B-Splines will be considered in this work.

Given these assumptions the B-Spline curves are parametrised by the scalar u € [0, 1], and are defined by the curve

n—1
X@) = )" NP, (10)
i=0

for n basis functions N;; of order k < n and control points P;. Additionally if kK = n—1 the B-Splines are called ‘Bezier
curves’ and the basis functions are the Bernstein polynomials of order k. A full and detailed description of B-Spline
curves can be found in Piegel and Tiller®.

A useful property of B-Splines is that the basis order k controls the locality of the influence of the control points,
meaning that for a low order curve the influence of any change in control point position will be more localised com-
pared to if a high order curve was used.

B-Splines can be used to represent aerofoils in a variety of different ways but in order to satisfy the constraints
imposed by the other parameterisation methods the following configuration has been used. Each aerofoil is represented
by two B-Splines; one for each of the upper and lower surfaces. For each B-spline, Py is fixed at the leading edge
(0,0), P,_; is fixed at the trailing edge and P; is aligned vertically with the leading edge. The movement of each point
has also been restricted to just the vertical z-axis. This constrains each control point to just a single design variable
and allows a simple linear least squares solution to be used. The distribution of the control points in the chord-wise
direction, however, is not restricted by this. Two possible distributions will be investigated: a uniform and a cosine
distribution.

For the uniform distribution the positions of the control points are formally described as

Po=(0,0), P, = (%a) Py = (1,20, (11

whereas for the cosine distribution they are defined as

PO = (O’ O)& Pi = (% [1 — COs (@)] ’ai)s Pn,I = (l,Zte)3 (12)

where ag; denotes a design variable and z,, the z-wise component of the trailing edge position.

Each of these configurations has been tested using the methodology for the ‘large database tests’ outlined in section
IIL.D for increasing orders of B-Spline (up to a maximum of 15). It was found that the influence of the order on results
was significantly different for the two chord-wise control point configurations. For the uniformly distributed case
increasing the order of the spline significantly improves the accuracy whereas increasing the number of control points
has less influence. For the cosine distributed case improvements in accuracy are primarily driven by increasing the
number of control points used, with only marginal gains made by increasing the order of the spline.

For the uniformly distributed case the best results are obtained when the order is at its maximum value for the given
number of control points. This relates to an order of k = min(n — 1, 15) where n is the number of control points in
the spline. For the cosine distributed configuration it is less clear which order to use, however it was found that using
k = min(n — 2, 15) gave consistently good results. Comparing the results for these best choices of order it was found
that both configurations provided very similar performance. The dependence of the uniform distribution on using a
high order is however not considered desirable as the computation time for initialising the B-spline is exponentially
related to the order. For this reason the cosine distributed configuration will be considered hereafter.

2. Class Function/ Shape Function Transformations (CST)

The CST method was developed by Kulfan '*!! primarily as a method of analytically defining a wide range of aerofoils
with relatively few design variables; however, the method can also be extended to other shapes such as square-like and
circle-like objects. Each aerofoil surface is defined by

z(x)z(x0‘5~(1 —x))«S(x)+x«z,e (13)
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where z,, defines the trailing edge half thickness, S (x) is a ‘shape function’ and x € [0, 1].
Kulfan ' suggested defining S (x) as the linear combination of Bernstein polynomials i.e.

S(0) = > @iBin(0) + @pix"(1 = "0 (14)

=0 LEM
where B;,(x) is a Bernstein polynomial of degree n and coefficient a;. The second term is an optional leading edge
modification (LEM) presented later*° to improve the fidelity at the leading edge - thought at the cost of an additional
design variable.

Large database tests were performed using the CST method both with and without the LEM. It was found that
using the LEM significantly improved the over all results. For example, in order to successfully reconstruct 80% of
the ‘combined’ library to the geometric tolerance without the LEM, 22 design variables were needed, opposed to just
16 design variables when it was used. For this reason the CST method will be implemented with the LEM for the rest
of this work.

3. Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD) method uses proper orthogonal decomposition to derive a set of ordered,
orthogonal basis modes from a set of pre-determined training aerofoils. New aerofoil shapes can then be constructed as
a linear combination of these modes where the fidelity of the construction is determined by the number of modes used.
This technique was first employed by Toal et al.*” then by Ghoman et al.*' and Poole et al. **. Ghoman et al.*' used
a series of supercritical aerofoils to derive the modes and showed that other supercritical aerofoils could efficiently be
reconstructed. Poole at al.*” then extended this to show that a broad range of aerofoils could be represented given a
wide choice of training aerofoils.

When constructing the aerofoil shape modes it is crucial that the training library is normalised such that the aerofoil
shapes are defined equivalently and discretized by the same number of points. In this work they are transformed to
have a sharp trailing edge and discretized such that all the aerofoils have an equal distribution of points along the
x-axis. This second condition means that, in this instance, the modes only need to be constructed in the z direction.

To formulate these modes the z coordinates of the training aerofoils, translated around the mean z such that Z = z—Z,
are used to form the rows of the matrix

303 Y

1 %2 N
T=]|. o . (15)

M M M

% y

for M training aerofoils each of length N.
This matrix is then decomposed into the singular value decomposition

T=U-X-V (16)
where columns of V = [vy, V2, ..., Viuinv, 0] Tepresent the ordered, orthogonal aerofoil modes.
New aerofoils are then constructed as a linear combination of these modes such that
z=i+Zaivi+ztex (17)
i

where a; represents the design variables and z;, represents the trailing edge half thickness.

The design space of the SVD method is totally dependent on the library of aerofoils used to make the modes. For
this reason three different mode sets have been investigated in this work; one that has been created using the UITUC
library, one that has been created using the NACA library and another that used the combined UIUC and NACA
libraries. Figure | shows the mean aerofoil shape and first five mode shapes created using the combined UTUC and
NACA libraries. One feature of modes created in this fashion is that their frequency increases linearly. Figure 2
then compares the large database results for these three different cases when tested on each of the three libraries.
Unsurprisingly, for each case the best results came when the testing library and the mode creation library were the
same. The results when the modes are created with the NACA library show a large variation in accuracy. When tested
on the NACA library over 99% of the library are approximated to Kulfan tolerance with just 6 modes, however when
tested on the UIUC library the results are very poor. This indicates the consequences of creating the mode library from
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a restricted set of aerofoils. In contrast it can be seen that when the modes are created using the broad UIUC library
the results are fairly consistent across the three testing libraries. Due to the large variation in these results, all three
SVD mode libraries will be tested in the method comparison.

Mean Mode 1 Mode 2

Mode 3 Mode 4 Mode 5

Figure 1. The mean aerofoil shape and the first S modes created using the combined UIUC and NACA library.
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Figure 2. Library reconstruction results for the SVD method for modes created with three different libraries (different lines types) tested
on the three different libraries (a)-(c).

4. PARSEC

The PARSEC method was developed by Sobieczky® as a system to create analytically defined aerofoils based on
meaningful properties such as the upper/lower crest position, max thickness, leading edge radius and boat-tail angle.
This was done by proposing that the upper and lower surfaces should each be defined by the following 6th order

polynomial

6

2(x) = Z a;xi 03, (18)

i=1

Twelve equations, subject to twelve free parameters that define the characteristics of an aerofoil, were then defined
with the resulting system solved to form the PARSEC parameters. It should however be noted that as the trailing edge
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positions are taken to be a known quantity in these tests (see section III.B) the number of free design variables has
been reduced from 12 to 10.

B. Deformative Methods
1. Hicks-Henne Bump Functions

Hicks-Henne bump functions ' use a base aerofoil definition plus a linear combination of a set of # basis (or bump)
functions. The bumps are defined using an augmented sine function so each surface is defined by

n
7 = ginirial Z a; sin’ (ﬂ,xln(O.S)/ln(hi)) (19)
i=0

for coefficients a; for i = 1, ..., n where h; determine location of the bump function maxima and ¢; their width.

Each bump function is therefore defined by three variables, each of which can be optimised or fixed. Various
combinations of fixing and optimising these variables have been performed, for example Wu '® opted to fix #; = 4 and
let

1 in
hi=—=|1- , i=1,...,n 20
s[1-eon ()] = @
whereas Khurana*’ varied all three variables.

For this study the initial aerofoil has been taken as the modified NACA(0012 defined in equation 3, a; have been
varied and represent the design variables, /; have been defined as equation 20 and the thickness parameters f; have
been taken as

i3
z,-=2(” i)+1 fori=1,....n. @1

n—

This gives the forward most basis functions, #; = 3, and the rear most basis function, #, = 1. This configuration has
been found to give the most efficient design space coverage.

2. Bezier Surface FFD

The Bezier surface FFD technique used here follows the work originally proposed by Sederberg and Parry*®. This
deforms a two-dimensional shape by embedding it with a Bezier surface constrained to a plane then controlling the
associated control points. The method used here is outlined in detail in Sederberg®’. This describes the deformation
of an initial aerofoil X/ia! = [xinitial ginitial] aerofoi] with respect to a set of m x n Bézier surface control points P;; ; by

zlmtwl — Zunin
X = Z Z Bin(x""hB, ( )P,- " (22)

j=0 i=0 = Zmin
where B;,, are the set of Bernstein polynomials of degree m. The initial control point positions are then given by

! ) J
Pmma (xmm + n_1 (xmax - xmin) > Zmin T ; (Zmax - Zmin)) - (23)

For this analysis, in agreement with the other methods, the modified NACAO012 (equation 3) has been chosen
as the initial aerofoil and the control points have been constrained to just move in the z direction. This leaves the
configuration of the control point lattice as the main option to be determined. To investigate the various options the
large database tests have been performed on a range of different row and column combinations. Interestingly the results
for the two different libraries convey different trends with the ‘3 row’ configuration showing to be the most efficient
the NACA library whereas for the UIUC results the ‘4 row’ configuration was the best. This could be due to the fact
that the NACA library is formed based on a symmetric thickness projection from a camber line. This means that for
Bezier surface lattices with an odd number of rows the central row can approximate the camber line, and the outer rows
the thickness projection. The required thickness profile would also be embedded in the initial NACA0012 shape used,
providing further benefits when approximating the NACA library. It seems, however, for the UIUC aerofoil library,
where the upper and lower aerofoil surfaces may have unrelated shapes, that a ‘4 row’ lattice is most accurate. Due to
this variation in results, both the ‘3 row’ and ‘4 row’ configurations will be considered hereafter. The comparison of
these two configurations can be seen in the final results graphs, figures 5-7.
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Figure 3. Example deformation of a NACA0012 using a 3 x 4 Bezier surface control point lattice.

3. Radial Basis Function Domain Elements

The RBF domain element approach, is a full domain deformation method like the Bézier surface so creates new aero-
foil shapes based on the deformation of an initial aerofoil. The deformation method itself differs however, preserving
the exact movement of a set of control points then creating a deformation field defined by radial basis function inter-
polation. The general theory of RBFs is outlined by Wendland" and Buhmann®'; the formulation used here is then
presented extensively in Rendall and Allen ' and its use as a parametrisation technique in Morris et al. **. They define
that an aerofoil X" deformed relative to the position of a set of RBF domain element control points P;, is given by

X =" Bor (X"l — Pj|/S g) + pX™ie) (24)

i=1

where B is coefficient vector dependant on the initial control point positions, ¢ is the radial basis function, S is the
support radius and p(X™“) is a linear polynomial used to ensure that translation and rotation are captured without
added shape deformation. It is then further shown that this can be decomposed into a simple matrix transformation

X = HP. (25)

where H is invariant of the current control point positions so is only needed to be calculated once.

There are a few factors that affect the use of the RBF method for reconstructing aerofoils; the support radius,
the radial basis function, the initial aerofoil used, the number and initial position of the control points as well as the
direction of their movement. For this study a support radius of 1 chord will be used throughout as well a radial basis
function of Wendland’s C2 function”’. Similarly to Bézier Surface FFD, the modified NACA0012 (equation 3) will
be used as the initial aerofoil and the control points will be constrained to the z direction.

This leaves the positions of the initial control point positions to be defined. Contrary to the Bezier surface method
where the control points must be defined on a fixed uniform lattice, the initial RBF control points can be placed
anywhere. This flexibility gives the user great control over the influence and locality of the deformation though means
that a comprehensive search for their best locations is challenging . For this reason two simple control point schemes
have been proposed and optimised under a series of constraints, with both the unoptimised and optimised forms tested
on the full aerofoil database.

The two initial control point schemes that have been considered are, an ‘off-surface’” and an ‘on-surface’ configura-
tion. The off-surface configuration is specified symmetrically about the x-axis on an ellipse around the initial aerofoil
with the first, 6 point, configuration having points located at x = —0.1,0.5 and 1.1. The on-surface configuration is
specified on the surface where the initial 4 points are specified at the leading and trailing edges as well as at the half
chord points on the upper and lower surface. Note the leading and trailing edge points for this configuration will
always be held fixed.

Additional points are then placed using either a ‘standard’ or ‘optimised’ procedure. For the ‘standard’ method
additional points are placed symmetrically with x locations bisecting two points from the previous configuration;
points are placed alternately at the largest interval towards the leading edge and then the trailing edge (figure 4). For
the ‘optimised’ method the bisection of each possible interval from the previous configuration is tested, with points
again added symmetrically about the x-axis. The interval which provides the best results, where ‘best’ is defined as the
largest percentage of the full aerofoil library (both NACA and UIUC) reconstructed to within the geometric tolerance,
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is then used. Both of these methods are repeated iteratively to provide a range of control point configurations of
increasing density.

Large database tests were then performed for the on-surface and off-surface control point schemes for both their
standard an optimised configurations. It was found that the on-surface RBF configuration performed the best with
the optimisation procedure significantly improving the efficiency of the design space coverage. This is selected here,
however for practical optimisation manual placement may sometimes be preferable.

04r
]
] ]
0.2
] ]
SRR - ——
] ]
-0.2
] ]
]
I
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

X

Figure 4. Initial control point positions for the standard on-surface (¢) and standard off-surface (H) configurations with 10 design variables.

V. Results
A. Large Database Tests

Figures 5-7 show the results of the large database tests on the UIUC and NACA aerofoil libraries plus the union of the
two, the combined library. For each library the seven parameterisation methods have been used to approximate all of
the aerofoils across a wide range of design variables. The results graphs then show, for each design variable interval,
the percentage of the aerofoil library that has been successfully reconstructed to within Kulfan’s geometric tolerance
(equation 7). This gives an estimation of the coverage of the design space represented by that method.

Figure 5 shows the results when the parameterisation methods are tested on the UIUC library. It shows that, in
these circumstances, the SVD method built from the UTUC library gives the most efficient coverage, closely followed
by the SVD method built from the combined library. It also shows that the Beézier Surface method with 3 rows and
the SVD method built from the NACA aerofoils perform the worst. However, discounting these two methods, it
can be seen that all the results show a similar trend with roughly a five design variable gap in performance across
the spectrum. Approximately 13-18 design variables are needed to approximate 80% of the library to the geometric
tolerance or 20-25 for the full library. There also seems to be a distinction between the results from the constructive
methods (CST, B-Spline and SVD) and the deformative methods (Bezier Surface, RBF and Hicks-Henne) where the
constructive methods seem to give slightly better coverage across the library, in particular for fewer design variables.

Figure 6 shows the results of the large database tests for the NACA library. It shows that the SVD method built
from the NACA library gives by far the most efficient coverage under this configuration, successfully approximating
99% of the library for just 6 design variables. The success of this can be attributed to the SVD method constructing the
design space such that it covers just the relatively narrow range represented by the NACA library. This is reinforced
by the poor performance of this method in figure 5. It should however be noted that the NACA library was originally
defined by varying just three parameters so six design variables does not represent the absolute best possible coverage
(though may present the best linear reconstruction). The other parameterisation methods also perform better in general,
with a particular improvement for the lower design variable cases. For example between 8 and 10 design variables are
needed to reconstruct 50% of the NACA library successfully opposed to 11-15 for the UIUC. This is most likely due
to the relative simplicity of the NACA library; the deformative methods may also be positively influenced by using the
NACAOQO12 as the starting aerofoil.

The large database results for the full set of 2174 avilable aerofoils is shown in figure 7. Here, in agreement
with the other two libraries, the SVD method built from the testing library performs best, this is followed by the
other constructive methods (excluding the SVD built from NACA case) and then the deformative methods. It should
be noted that the steep rise for the SVD built from NACA case with between 3-6 design variables represents the
approximation the NACA library aerofoils (= 40% of the combined library) and coincides with figure 6.

Figures 8 (a)-(f) show how the large database results (tested on the combined library) are affected by changing the
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Figure 7. Large database results for all the parameterisation methods when tested on both libraries.

error tolerance. The weighted z tolerance values used are scaled such that errors in the leading 20% of the chord are
doubled to coincide with Kulfan’s geometric tolerance (equation 7). The tolerance used for the previous tests therefore
represents a weighted z tolerance of 8 x 1074, this is presented as a solid black line. Each colour band then represents
a change in the tolerance by a factor of two.

For all the methods, as the tolerance is decreased from the original geometric tolerance (in black) the shape of
the contours stay reasonably consistent, with between 5 and 10 extra design variables initially needed to decrease the
maximum weighted errors by half. This behaviour then drops off as tolerance continues to decrease, with the gradient
of the contours gradually reducing. This represents the methods struggling to accurately reconstruct the more difficult
aerofoils in the library to a tighter tolerance. The rate at which the contours change shape gives a good indication as
to how the performance of each method translates when the required level of accuracy is increased.

The SVD method (figure 8f) shows the best performance for the lower tolerance bounds, with about 65% of the
UIUC library successfully reconstructed to with a weighted z tolerance of 3.1x107° for 80 design variables. In contrast,
the other methods approximate between 10-20% of the library under similar conditions. The B-Spline, CST, Beézier
surface and RBF methods (figures 8 (a)-(f)) show broadly comparable results through the design variable spectrum, all
struggling to match many aerofoils to the lowest tolerance bound even for 100 design variables (despite still showing
steady improvements for higher tolerances). The Hicks-Henne method (figure 8e) shows similar behaviour up until
approximately 70 design variables where it struggles to significantly improve results for increased fidelity.

Figure 9 then shows similar results for the SVD method built from the NACA library tested on just the NACA
library. It can be seen that the accurate approximation of the library at original tolerance tolerance shown in figure 6 is
continued as the weighted z tolerance is decreased. In particular 99% of the library can be approximated to the lowest
tolerance of 7.8 x 1077 for just 34 design variables.

B. Case Studies

In addition to the large database tests a series of five case study aerofoils have been investigated: RAE 2822, NACA
4412, ONERA M6, NLR 7301 and NACA 66(3)-418. For each of these aerofoils a full range of reconstructions
have been calculated using the same method as for the large database tests i.e. least squares approximation using
each parameterisation methods for between 1 and 100 design variables. For these case studies however, only the best
implementation of each parameterisation method is used. An aerodynamic solution has then been calculated for each
reconstruction, as well as for the exact aerofoil, using the Euler solver SU?%#*. Each simulation was run on a 513 x 257
O-mesh, generated using a conformal mapping approach where all surface cells have aspect ratio one with a farfield
distance of 50 chord lengths. The flow conditions used, as well as aerodynamic loads calculated on the exact aerofoils
are displayed in table 1. These results enabled the convergence of the lift and drag coefficient (C; and Cp) with respect
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Figure 8. Percentage of combined aerofoil database approximated to varying weighted geometric tolerances.
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built from the NACA library.

to the geometric error and number of design variables to be analysed. A tolerance of one drag count (10™*) and one
lift count (107?) is used throughout this analysis to represent a benchmark for convergence. The geometric accuracy

of the approximation is again presented in the form of the ‘max weighted z error’ (equation 8).

Aerofoil M, a(®°) Cp(counts) Cp (counts)
RAE2822 0.7 3.2 1029.7 89.0
NACA4412 0.7 0.0 766.5 142.4
ONERA M6 (D section) 0.7 3.0 538.2 90.2
NLR 7301 0.7 1.0 770.8 53.3
NACA 66(3)-418 0.7 0.0 544.7 181.3

Table 1. Case study flow conditions and aerodynamic loads.

For the RAE2822 and NACA 66(3)-418 case studies full convergence results are presented in figures 10 and
11°. For both of these cases it can be seen that the lift and drag coefficients converge to the target value for all the
parameteristion methods. It can however be seen that it takes many more design variables to do this for the NACA
66(3)-418. For example the RAE 2822 case requires between 28 and 44 design variables to converge both the force
coefficients to within the one count tolerance whereas it requires between 39 and 72 to do this for NACA 66(3)-
418. An additional star () symbol is also presented on the aerodynamic convergence figures; this represents the
first point at which Kulfan’s geometric tolerance is satisfied. For both cases it can be seen that the aerodynamic
properties have not sufficiently converged for any of parameterisation methods at this point; this is an indication that
for these cases Kulfan’s geometric tolerance is not tight enough to ensure aerodynamic convergence. In fact, in both
instances aerodynamic convergence to within a lift or drag count requires a geometric error that is more than an order
of magnitude lower than Kulfan’s geometric tolerance.

A summary of the number of design variables required to converge the lift and drag to a single count for the five
case studies is presented in table 2. For the different parameterisation methods it was found that the SVD method
converged both of the aerodynamic coefficients for the fewest design variables; 40 on average. The CST and B-
Spline methods required 42, followed by the RBF method with 44 and the Bezier Surface method with 50, though
this is significantly influenced by difficulties in converging the lift for the NLR 7301. The Hicks-Henne method then
represented the worst aerodynamic performance, requiring on average 60 design variables to converge both the lift
and drag to the one count tolerance. In addition, it can be seen that for NACA4412, NLR 7301 and NACA 66(3)-418
cases it required significantly more design variables than any of the other methods. Interestingly across all the cases
it can be seen that the Hicks-Henne method gives a very similar geometry error to the RBF method (figures 10c, 11c
and supplementary figures Slc, S2¢ and S3c¢), yet performs significantly worse aerodynamically.

bFull results for the NACA 4412, ONERA M6 and NLR 7301 can be found in supplementary figures S1 - S3
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Figure 10. Convergence of aerodynamic and geometric properties for increasing design variables for each parameterisation method for the
RAE 2822 case study; s represents first point Kulfan’s geometry tolerance is satisfied.
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Figure 11. Convergence of aerodynamic and geometric properties for increasing design variables for each parameterisation method for the
NACA 66(3)-418 case study; % represents first point Kulfan’s geometry tolerance is satisfied.
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RAE 2822 NACA4412 ONERA M6 NLR 7301 NACA 66(3)-418
Lift Drag Lift Drag Lift Drag Lift Drag Lift Drag

Bezier Surface (4 row) 36 32 44 32 28 32 92 56 44 32
CST w/ LEM 28 26 34 28 24 40 58 44 50 52
Hicks Henne 42 30 68 52 26 36 82 58 72 68
B-Spline (cos) 36 32 40 34 24 32 58 56 44 42
RBF on surface (opt) 44 32 40 22 16 32 44 50 54 32
SVD (built from combined) 30 24 25 16 45 36 63 46 39 37

Table 2. Number of design variables required to converge lift and drag to within one count (103 for lift, 10~* for drag) of the exact aerofoil.

Comparing the different cases it can be seen that for the RAE 2822, NACA4412 and ONERA M6, the number of
design variables required for convergence is broadly similar (between 25 and 45, omitting the Hicks-Henne results);
for the NLR 7301 and NACA 66(3)-418 however, more are required.

Finally the relationship between the aerodynamic convergence and geometric error was also investigated. This
compared the convergence of lift and drag against the max weighted z error for all 1600 case study CFD simulations.
The convergence of Cy is represented as

Czonv — szng%/){s‘wm |CLDV _ C;flrget| (26)
i.e. the maximum Cy, error for equal or more design variables for a given parameterisation and test case; an analogous
definition also holds for Cp.

It was found that a strong positive linear correlation exists between the convergence of the aerodynamic forces
and the geometric error where C;" and C{°""/10 are of equivalent order to the max weighted z error (full dataset is
presented in supplementary figure S4). This implies that geometry error may indeed be a suitable metric for approx-
imating aerodynamic error in Euler flow. It was however found that Kulfan’s geomeric tolerance may only indicate
aerodynamic convergence to within approximately 10 counts. Consequently a reduced tolerance of 5x 107 is required
to ensure convergence of the lift and drag to the single count benchmark proposed. This reduction does however rep-
resent a 16 fold increase in accuracy which will require significantly more design variables to achieve. The dashed
lines on figures 8 and 9 show the influence of using this ‘reduced tolerance’ on the large database tests. It shows that to
approximate 80% of the combined aerofoil library with this tolerance between 38 and 66 design variable are required,
compared to 13-18 for Kulfan’s. This is approximately three times the number of design variables.

VI. Conclusions

In this work a detailed comparison of seven aerofoil parameterisation methods has been presented. The large database
tests provided a good overview of the general design space coverage achieved by the shape parameterisation methods.
It has been shown that to cover the full set of 2174 aerofoils to Kulfan’s geometric tolerance between 20 and 25 design
variables were required or to cover 80%, between 13 and 18 were required. Of all the methods the SVD method was
found to give the most efficient coverage of the aerofoil design space.

The effect of changing the success tolerance was investigated and, in general, it was found that as the tolerance
was reduced, an increasing number of design variables were needed to increase the design space coverage. For
example, to increase the design space coverage from 80% to 90% using Kulfan’s geometric tolerance approximately
two additional design variables were needed, though for a weighted tolerance of 5 x 107> this increased to as many
as 40 design variables. This degradation in performance however varied between the methods, with SVD method
showing the least degradation and the Hicks-Henne the worst. As a result of this the SVD method shows significantly
better design space coverage than the other methods for lower tolerances.

Investigation of specific transonic aerofoils case studies helped assess the link between the geometric convergence,
driven by the increase in design variables, and the convergence of the aerodynamic properties. These results show
that the convergence of the geometric position correlates well with the convergence of the aerodynamic properties.
They decrease at a very similar rate such that an order of magnitude decrease in geometry error should correspond
to an order of magnitude reduction in the aerodynamic error. It was found that Kulfan’s geometric tolerance ensured
aerodynamic convergence to approximately 10 lift or drag counts and to reduce this to a single count a max weighted
z error of approximately 5 x 107 was required. It was also shown that to cover 80% of the full design space to this
tolerance requires between 38 and 66 design variables. This indicates that a significant number of design variables
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may be required in order to cover the aerofoil design space to a fine aerodynamic accuracy.
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A. Geometry Normalisation

All aerofoils in this work have been normalised such that the leading edge is situated at [0,0] and the trailing edge is defined
symmetrically about the point [1, 0], and have been discretized by 301 half cosine squared distributed points for x € [0, 1]. To
ensure this the leading edge has been defined as the point situated furthest away from the trailing edge. This normalisation procedure
satisfies the following equations:

X; = (x;,z;), for i=1:301 7)
Xie = X151 = (0,0), (28)
Xie = (X1 + X301)/2 = (1,0), (29)
X1 =x301 = 1, (30)
21 = —2301 = ~Ze <0, 31

i— 150\’
X = (1 - cos(%)) /4, (32)
1Xie = Xeell > 11X = Xeell Vi # le, (33)

where X; denotes the ith point of the aerofoil and the subscripts /e and te denote the leading and trailing edges, respectively.

B. NACA 4-series Definition

The NACA 4-series aerofoils used throughout this paper are defined by

where

Xupper = X — %4 sin 97 Zupper = Zc +Z,cos 97 (34)
Xiower = X+ Z; sin 9, Zlower = Z¢ — %4t COS 9? (35)
z = 5007 (0.2969\/} —0.126x — 0.3516x% + 0.2843x> — 0.1036x4) , (36)
100m* %5 2p’ — x for0<x<p
2= pr @y = P (37
100m* (l_p’,‘)z(l +x-2p) forp'<x<1
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and
dz,
6 = arctan (—‘ (38)
dx
for given values of the maximum thickness parameter #*, maximum camber parameter m*, and maximum camber location p* = 10p’.

This definition is equivalent to the original definition apart from a common modification to the x* coefficient has been applied to
ensure a sharp trailing edge thickness.
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