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Abstract:  

It is acknowledged that an effective bias correction procedure using gauge measurement is a 

significant step for radar data processing to reduce the systematic error in hydrological applications. 

In these bias correction methods, the spatial matching of precipitation patterns between radar and 

gauge network is an important premise. However, the wind-drift effect on radar measurement 

induces an inconsistent spatial relationship between radar and gauge measurements as the 

raindrops observed by radar do not fall down vertically to the ground. As a consequence, a rain 

gauge does not correspond to the radar pixel based on the projected location of radar beam. In this 

study, we introduce an adjustment method of wind-drift effect into a bias correlation scheme. We 

firstly simulate the trajectory of raindrops in the air using the downscaled three-dimensional wind 

data by the weather research and forecasting model (WRF) and calculate the final location of 

raindrops on the ground. The displacement of rainfall is estimated and radar-gauge spatial 

relationship is reconstructed. Based on this, the local real-time biases of the bin-average radar data 

are estimated for the selected 12 events. Then the reference mean local gauge rainfall, mean local 

bias and adjusted radar rainfall calculated with and without consideration of wind-drift effect are 

compared for different events and locations. There are considerable differences for three estimators, 

indicating the wind drift has a considerable impact on the real-time radar bias correction. Based 

on these facts, we suggest bias correction schemes based on the spatial correlation between radar 

and gauge measurements should consider the adjustment of the wind-drift effect and the proposed 

adjustment method is a promising solution to achieve this. 
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1. Introduction 

The radar measurement has to be carefully processed to adjust a series of physical fundamental 

problems such as ground clutter, anomalous propagation, signal attenuation (includes radome 

wetting), beam blockage and vertical variability of the reflectivity (Jordan et al., 2000; Ulbrich 

and Atlas, 2002; Michelson and Sunhede, 2004; Berne et al., 2005; Anagnostou et al., 2006; 

Campos et al., 2006; Germann et al., 2006; Villarini et al., 2008; Villarini and Krajewski, 2010). 

Besides, volumetric estimation of rainwater from radar is subject to systematic bias in nature 

(Austin, 1987; Smith et al., 1996; Dai et al., 2014). After the aforementioned processes, real-time 

correction of bias in radar-rainfall data using reference rainfall such as rain gauge is an essential 

step (Collier et al., 1983; Collier, 1986; Smith and Krajewski, 1991). The performance of bias 

correction is extremely important to hydrological applications with radar data as input or initial 

conditions. The real-time bias correlation schemes could be carried out for the entire study area or 

local domain, which are both adopted in National Weather Service (NWS) system (Hudlow, 1988; 

Fulton et al., 1998). The mean-field correction schemes use a uniform bias for the whole study 

area (Smith and Krajewski, 1991; Anagnostou and Krajewski, 1998; Seo et al., 1999), while the 

local correction schemes consider the spatial variation of radar measured bias (Wilson, 1970; 

Brandes, 1975; Collinge, 1991; Seo and Breidenbach, 2002).  

For these bias correction methods, the spatial matching of precipitation patterns between radar and 

gauge network is a significant premise. However, due to the wind effects, the raindrops observed 

by the radar do not always fall vertically to the ground. In other words, wind can cause the drift of 

raindrops to induce an inconsistent spatial correlation of radar and gauge measurements. Several 

previous studies have realized and aimed to solve this issue (Collier, 1999; Mittermaier et al., 2004; 

Lack and Fox, 2005; Lack and Fox, 2007; Lauri et al., 2012; Dai and Han, 2014; Dai et al., 2013). 



But no one has considered this problem in real-time bias correction. To obtain correct spatial 

correlation, adjustment of wind effect on radar-gauge comparison should be carried out, which 

should be undertaken after the aforementioned physical processes and before bias correction. For 

this reason, this study integrates the wind-drift adjustment method and bias correlation scheme to 

present a displacement-based bias correlation. We simulate the movement of raindrops in the air 

using the downscaled three dimensional hourly wind data by the weather research and forecasting 

model (WRF). Then the final locations of radar measured raindrops on the ground are estimated, 

which are used to construct the new radar-gauge pairs. A real-time local bias correction method is 

introduced which considers the spatial and temporal sampling errors in radar and gauge 

measurements. The adjusted spatial relationship of radar and gauge data is used to correct the bias 

of radar data.   

This paper is organized as follows. Section 2 describes the data and models used in this study. 

Section 3 introduces the adjusted method for wind-drift effects, and Section 4 describes the real-

time bias correction scheme. The results and discussion of the proposed scheme are given in 

Section 5. Conclusions and future work are summarized in Section 6. 

2. Study area and data source 

Two kinds of rainfall datasets are used in this study: weather radar and dense rain gauge network 

available through the British Atmospheric Data Centre (BADC). The Brue catchment in Somerset, 

south-west England (51.08°N and 2.58°W), is chosen as the experimental catchment for this study. 

The maps of the Brue catchment and locations of rain gauges and radar pixels are shown in Figure 

1. In the left map of Figure 1, 49 rain gauges are shown in blue dots, which are tipping bucket 

gauges (TBRs) with 0.2mm resolution (Dai et al., 2014). There are 9×8 radar pixels in the map 



with 2 km as the pixel size. Among them, 52 pixels are overlapped by the Brue catchment, and 28 

pixels are covered with the most area. One can observe there are at least one rain gauge in each of 

28 radar pixel cells, increasing to two gauges along two parallel southwest to northeast lines across 

the catchment. The radar data are from the Wardon Hill radar, located at a range around 40 km 

from the center of the catchment. The right map of Figure 1 shows the river network and the terrain 

elevation of the catchment. It can be seen from the figure that the elevation of the catchment is 

from about 35 m to 190 m above the sea level. 

The dataset used to drive WRF model to downscale the wind data is taken from the ERA-40 

reanalysis data produced by the European Centre for Medium-range Weather Forecasts (ECMWF). 

ERA-40 is assimilated from many sources using a three-dimensional variation assimilation system 

with a 6-h analysis cycle. 

To evaluate the performance of the proposed scheme, 12 typical events with around 24 hour 

duration are chosen from the period when all the above mentioned datasets are available, which 

are listed in Table 1. To avoid bringing in new uncertainty, we do not adopt any methods to fill 

the gap if part of radar pixels or rain gauges record missing data. Table 1 shows the event ID, start, 

end time and duration of the events, together with the accumulated event rainfall. The accumulated 

values are calculated using gauge measurements. To better compare the estimated real-time biases 

among different events, the selected events all have fixed duration of 24 hours. To be consistent 

with the ECMWF data, the start and end times are set to 00, 06, 12 and 18 UTC. 

3. Adjustment of wind drift effect 

To adjust the inconsistent spatial relationship between radar and gauge measurements, we need to 

simulate the trajectory of raindrop observed by radar and its final location on the ground. There 



are four major factors that influence the magnitude of the wind-drift effect: three-dimensional wind 

field from radar beam to the ground; the distance of the study area to the radar; the type of 

hydrometeors and the radar and gauge rainfall accumulation periods. The detailed algorithm works 

as follows:  

In the first step, we divide the space between the ground surface and radar beam into multiple 

vertical layers and multiple horizontal squared pixels, which are consistent to the configuration of 

the WRF model. In such a way the individual atmospheric element is assumed as uniform within 

a sub-space. There are two initial conditions that are to be configured. The initial diameter of 

raindrop can be derived from the drop size distribution (DSD), and the normalized gamma DSD 

is adopted in this study. In addition, the initial raindrop position includes the horizontal coordinates 

and the vertical height. The former is set to the center point of each radar pixel and the latter uses 

the center beam height. The derivation of the initial information is discussed by Dai et al. (2013). 

The movements of raindrops driven by gravitational force and drag forces are simulated in each 

sub-space by solving the particle motion equations (Choi, 1997). The trajectories of the raindrops 

in each layer are computed separately as described by Dai et al. (2013): 
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where m and D represent the raindrop mass and diameter, Re is the Reynolds number, ρa and ρw 

refer to the densities of air and water respectively, µ is the air viscosity, Cd denotes the drag 

coefficient on the raindrop. U, V and W are the x-, y- and η-components of the wind field 

respectively. The numerical simulation process is performed in each time step, which is iterated 

until the raindrops move out of the sub-space. Then the simulation is performed in the new sub-

space. The final location on the ground is named as revised raindrop points (RRPs), whose 

coordinates (Xi,R, Yi,R) for pixel i are obtained using: 
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where (Xi,O, Yi,O) are the original horizontal coordinates of raindrops (ORP). dxi,k, and dyi,k  are the 

displacements for layer k in the x and y directions respectively. kn denotes the layer number. Thus 

we obtain the final positions on the ground of the observed raindrops by radar. Only short 

description of the algorithm is given here, and the interested reader can refer to Dai et al. (2013) 

and Dai and Han (2014) for more information. 

4. Real-time correction of bias in radar data 

The procedure of real-time bias correction includes three steps. Firstly, the point rain gauge 

measurement is estimated for the areal rainfall. Then local bias is calculated for each event and 

radar pixel. Finally, the bias is used to adjust the original radar measurement. More specifically, 

to describe the spatially nonuniform bias in radar-rainfall data, we define the real-time local bias 

with the center location of each radar pixel at (x0, y0) as:  
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where G and R refer to the hourly accumulations of pixel-averaged gauge and radar data at time k 

respectively. As the gauge only measures rainfall at one point, the pixel-averaged gauge data refer 

to the spatial average at the center of radar pixel. On the contrary, radar measures areal rainfall at 

one time step, so pixel-averaged radar data represents the temporal average at time k. Equation (4) 

can be rewritten to: 
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where (xn, yn) refers to each gauge location located within the given domain with A(x0, y0) as the 

area and n as the gauge index. The domain A represent the search area. T denotes the duration of 

accumulations and t refers to the time step. Traditionally, the spatial matching between radar and 

gauge is based on their horizontal coordinates. As shown in Figure 2, a blue circle centered at the 

center point of a radar pixel (ORP) contains three rain gauges, which are called highlighted rain 

gauges. The radius of the circle is called the search distance. However, due to the wind-drift effects, 

the rainfall observed by radar at ORP drifts to a new location (RRP), say, the red point in Figure 

2. The location of RRP is calculated based on the algorithm in Section 3. The rain gauges engaged 

in Equation (5) change to a new group. In Figure 2, they are highlighted in orange. The other radar-

gauge spatial relationship should also be changed in the same way with the consideration of wind 

drift. In fact, the area of the sampled rain gauges should be equal to the area of the radar pixel. The 

Brue catchment is designed to configure at least one rain gauge at each of its 28 radar pixels. But 

due to the wind-drift effects, this condition is no longer satisfied as the spatial relationship between 



radar and gauge is changed. As a consequence, many radar pixels may have no corresponding rain 

gauges. So the area of the search circle is set to be a bit larger than the radar pixel to enable radar 

pixels to contain at least one rain gauge for most situations. 

To implement the bias correction, we define a Spatial Correction Matrix (SCM) that describes the 

spatial connections of all radar pixels and rain gauges. For each radar pixel, SCM illustrates 

whether it has a relationship with each rain gauge. Values equal to 1 mean the radar pixel and the 

gauge are related to each other, and these equal to 0 mean no correlation. The row and column 

numbers of SCM correspond to the number of radar pixels and rain gauges. Without considering 

the wind drift, SCM is fixed and determined only by the separated distances among radar pixels 

and rain gauges. On the contrary, SCM varies with each event when taking account of wind-drift 

effect.   

As gauge measures continuous rainfall at a point, it is subject to spatial sampling. Radar rainfall 

has to be sampling at space and time, so it is subject to both spatial and temporal sampling errors. 

For this reason, Equation (4) should be average over time to obtain an unbiased estimate of bias. 

The local bias estimator is written as: 
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To harmonize the calculation of displacement of raindrops and real-time bias correction, all events 

selected in this study cover a period of 24 hours. Local bias in Equation (6) is averaged over the 

given fix window (24 hours). The estimated local bias is then multiplied with the radar rainfall 

measurement at a given location and event to obtain the adjusted radar estimate.  

5. Results and discussion 



5.1 Derivation of three-dimensional wind data 

The derivation of three-dimensional wind data by WRF is the first step in simulating the trajectory 

of raindrops in the air. The WRF model is configured with three nested domains. The finest spatial 

and temporal resolutions of WRF are set to 3.3 km and 1 hour. Pixel numbers, domain sizes and 

downscaling ratios of three domains are listed in Table 2. To obtain detailed variation of the 

vertical wind field, 28 layers are configured on a hydrostatic-pressure vertical coordinate system. 

As the derivation of wind data is a fundamental component of WRF, we adopt the commonly used 

settings of major WRF physical schemes, such as microphysics, cumulus, planetary boundary, 

land surface model, shortwave radiation and longwave radiation schemes. The schemes used in 

this study together with their references are listed in Table 3 (Dai et al., 2013). The model is run 

for 12 chosen events and the wind data is extracted from the output NetCDF file. 

5.2 Simulation of raindrops trajectory in the air 

The trajectory of raindrops in the air is simulated and their final location on the ground is estimated 

based on the proposed algorithm. Figure 3 displays the estimated displacements of raindrops under 

the wind-drift effect for Event 1 (05/01/1994). The orange dots are the centered locations of radar 

pixels, while the red ones are their adjusted positions. There are four time steps drawn in the figure. 

It is clear that different patterns of drift directions and distances can be observed in one event. For 

Figures 3 (a) and (b), the drift distances are quite large, covering two or almost three radar pixels. 

On the contrary, the drift distances are relatively small in Figure 3 (c) and the RRPs are almost in 

the same pixel as ORPs. In the same time step, there is also a considerable variation of drift 

distances and directions for different radar pixels. Take Figure 3 (b) for example, the drift distances 



in northern pixels (e.g. three pixels with center Northing coordinates of 141 km) are larger than 

those in southern part (e.g. two pixels with center Northing coordinates of 131 km).  

Table 4 details the estimated results and information of ground measurements for Event 1. The 

ground measurements include mean gauge rainfall, ground wind direction and wind speed. All 

statistics are averaged values for the study area. The ground winds represent ones at 2 m height. 

The drift directions and distances are the mean values of the 28 radar pixels. The drift distance is 

mainly determined by rainfall intensity and three-dimensional wind from the radar beam to the 

ground. Comparing the drift distance to the ground wind speed, one can observe a possible relation 

between them. For example, the largest drift distance is 2.6 km at 12:00 of the event, and the wind 

speed is the strongest at the same time. In addition, the drift distances are quite small (0.9 and 0.7 

km) at time 20:00 and 21:00, and their corresponding ground wind speeds are very weak (1.3 and 

1.2 m/s) as well. However, this is not true for all the time steps. A strong ground wind is observed 

at 07:00 (3.2 m/s), while the induced drift distance is only 1.8 km. Therefore, the ground wind data 

can only partially reflect the wind drift effects, but cannot substitute the three-dimensional wind 

field from the radar beam to the ground. In terms of the relationship between rainfall intensity and 

drift distance, a weaker relation is observed. At time 12:00, although the rainfall intensity is very 

small (0.27 mm), the drift distance is quite large just because the wind speed is strong. Finally, for 

drift direction, no clear pattern can be found with the comparison to the ground wind direction, 

indicating the ground data cannot replace the three-dimensional wind field.    

5.3 Bias correction using the adjusted radar-gauge pairs 

With the drift locations of radar pixels, we can reassign the new radar-gauge pairs for real-time 

bias correction of radar data. The estimated results are shown in Figures 4 and 5. The procedure 



includes three sub-processes: estimation of the mean rainfall values of the highlighted gauges; 

estimation of the local bias and adjustment of the radar rainfall. In Figures 4 and 5, we display the 

mean rainfall values of the highlighted gauges with and without consideration of wind drift for 

radar Pixels 1 (Easting: 365 km, Northing: 141 km) and 15 (Easting: 361 km, Northing: 135 km) 

respectively. Radar Pixel 1 is located in the northwest of the study area with one rain gauge inside 

it and only 3 rain gauges in the surrounding 8 radar pixels. On the contrary, radar Pixel 15 contains 

8 rain gauges and additional 9 rain gauges in its surrounding 8 pixels. The search radius is set to 

1.7 km in this study. One may observe from Figure 4 that the impact of wind drift on the mean 

gauge rainfall of the highlighted gauges is small for some events, such as E1, E3 and E12. However, 

the differences of the mean values calculated with and without consideration of wind drift are large 

for most events, and even show total different patterns in some events, such as E4, E5, E9 and E10. 

The differences between two lines are relatively small in Figure 5 for radar Pixel 15. Except some 

events (e.g., E8 and E9), most events are insensitive to the effects of wind drift.  

Real-time local bias of radar rainfall data is calculated using Equation (6), which are shown in 

Figure 6 for Events 2 and 12. The left figures refer to the biases estimated based on the original 

radar-gauge spatial relationship, while the right ones display the estimated ones using the revised 

relationships. For Event 2, there are considerable changes of bias estimates in most radar pixels, 

especially the pixels around the boundary of the study area. There are great variations of biases 

among different radar pixels. The biases vary from less than 0.1 at Pixel 22 (Easting: 363 km, 

Northing: 133 km) to around 0.3 at Pixel 13 (Easting: 375 km, Northing: 137 km). Low bias 

estimate (less than 1) indicates the mean gauge measurement in the given event is quite smaller 

than radar measurement. In more serious cases, the radar measures rainfall while the rain gauge 

reports no rain. In such cases, the bias estimates are equal to zero. The majority biases in Event 12 



are relatively smaller than the ones in Event 2 and most estimates are generally less than 0.2. The 

biases estimated with the consideration of wind-drift effect do not vary greatly compared to the 

original ones.  

Figures 7 and 8 show the adjusted radar rainfall with and without consideration of wind drift for 

radar Pixels 1 and 15. The solid lines in the figures show the adjusted values based on the original 

local bias. The blue dots correspond to the adjusted rainfall using the revised local bias. It is 

observed that the peak rainfall seems to be more sensitive to the wind drift. The differences 

between them are huge in peak rainfall values such as Events E7, E9, E10 and E11. Among them, 

the adjusted rainfalls based on the original radar-gauge relationship are underestimated in Events 

E9 and E11, and overestimated in Events E7 and E10. The adjusted rainfall is computed by the 

original radar measurement multiply bias. So the peak rainfall corresponds to the large differences 

for the certain bias. For light rainfall, considerable changes can also be observed in Figure 7. 

However, the differences of the adjusted rainfall with and without consideration of wind are 

relatively small for Pixel 15.  

6. Conclusions 

Real-time bias correction based on gauge rainfall is a simple and effective way to improve the 

radar rainfall quality and enable it to be better applied in hydrological applications. However, the 

wind-drift effect induces an inconsistent spatial relationship between radar and gauge 

measurements. An adjusted method of wind-drift effect for real-time bias correction mechanism 

is proposed in this study. It firstly simulates the trajectory of raindrops in the air using the 

downscaled three-dimensional wind data and calculates the final location of raindrops on the 

ground. The displacement of rainfall is estimated and the radar-gauge spatial relationship is 



reconstructed. Based on this, the local bias of the pixel-average radar data is estimated for the 

selected 12 events. The adjusted radar data with consideration of wind-drift effect shows different 

patterns compared to the ones without consideration, indicating the wind-drift effect has significant 

impact on real-time radar bias correction. For this reason, we suggest the procedure to lesson wind-

drift effect should be introduced into the bias correlation scheme. In summary, there are two major 

findings in this study. Wind-drift effect can induce inconsistent spatial relationship of radar and 

gauge measurements, which will contaminate the process of real-time local bias correction. In 

addition, the simulation of raindrop trajectory can be used to reconstruct the radar-gauge spatial 

relationship. 

Although the proposed scheme considers the influence of wind in real-time bias correction and 

improves the reliability of radar data, there are still some unsolved issues that require further study. 

Firstly, spatial and temporal sampling uncertainties have not been solved in the current bias 

correction. Radar scans areal rainfall at the spatial scale of 2 km in this study while rain gauge can 

only measure rainfall at one point (or at the scale of roughly 20 cm). We use the average value of 

the highlighted rain gauges to represent the estimated areal rainfall in this study. In terms of 

temporal scale, both radar and gauge suffer temporal sampling errors as temporal gaps exist in 

their measurements. The former one scans atmospheric condition every 5 minutes while the latter 

records the number of tips in 10-seconds intervals. The possible uncertainties due to the spatial 

and temporal scale discrepancies between radar and gauge measurements have been studied in the 

previous studies (Ciach and Krajewski, 1999; Jordan et al., 2000; Villarini et al., 2008) and we 

will investigate it in the future study. In addition, the real-time bias correlation proposed in this 

study reflects not only the bias when the radar successfully detected rainfall, but also when the 

radar observed rainfall while the gauge recorded no rain. The chosen 12 events all contain heavy 



storm, so it is acceptable for this work. However, in real-time practice, the bias estimation may be 

strongly biased by the majority of the time steps without any precipitation. A possible solution is 

to calculate the mean rainfall conditioned on the occurrence of the rainy situations (Seo et al., 1999; 

Seo and Breidenbach, 2002). Moreover, there are 49 rain gauges located in the study area, but it is 

not an essential condition for this study. In fact, limited rain gauges are available in most 

catchments. The proposed scheme should be further investigated in other areas to evaluate its 

performance. 

Besides, there are also some unsolved problems associated with wind drift simulation. To simplify 

the computational process, we assume the raindrops start from the radar beam center and the 

movement of raindrops within each radar pixel is uniform. For the former, we have carried out 

sensitivity analysis to explore the effects of initial location on the simulated results in Dai et al. 

(2013). With the growth of distance to the radar location, the differences of estimated 

displacements using different initial locations within the beam are larger. However, we only 

investigate its influence on radar-gauge correlation coefficient in Dai et al. (2013), and the possible 

uncertainty introduced to radar bias correction should still be investigated. In terms of the latter 

assumption, the mass-weighted drop diameter should be used to calculate the trajectories of drops. 

In other words, the raindrops in the same pixel has the same drift distance and direction. The 

current scheme can only reveal the principal trajectory of raindrops. But in fact, with different 

distributions of rainfall and wind field within a pixel, the raindrops could move to different 

locations on the ground. As a consequence, the spatial relationship between radar and gauge should 

be reconstructed and the R-G correlation matrix is not just limited to either 0 or 1. It may be 

possible to tackle this issue using Agent-Based modelling. To simulate this process, a more 

accurate drop size distribution (DSD) is required. The DSD model has a close relation to storm 



types, seasonal and atmospheric conditions. Except an accurate DSD model, the wind data with a 

finer spatial resolution may be required. We can explore this by configuring the WRF model to 

further downscale the ECMWF data.  
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Figure 1. Maps of the study area. The left map shows the rain gauge network and radar pixels 

(2×2 km). The indexes of the radar pixels are labeled in the map. The circle dots represent the 

rain gauge locations. The right map displays the rive network and the terrain elevation of the 

catchment. Both maps are drawn based on the British National Pixel coordinate system.  
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Figure 2. A schematic chart of the effect of wind-drift on the spatial relationship among radar 

pixels and rain gauges. The solid points refer to the center of radar pixels while the triangles 

represent the rain gauges. Due to the wind drift, the raindrops observed by radar move to a new 

location, which is drawn as a red point.  

 

  



 

Figure 3. The estimated displacements of raindrops under the effects of wind-drift for Event 1 

(05/01/1994). The orange dots are the locations of radar pixel centers, while the red ones are 

their adjusted positions.  
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Figure 4. The mean rainfalls of highlighted gauges with (red squares line) and without (green 

points line) consideration of wind drift for the radar Pixel 1 (Easting: 365 km, Northing: 141 

km). 
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Figure 5. The same as Figure 4 but for Pixel 15 (Easting: 361 km, Northing: 135 km). 
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Figure 6. The real-time local bias of radar rainfall data for Events 2 and 12. The left two figures 

refer to the biases estimated using the original radar-gauge spatial relationship, and right ones 

display the estimated ones using the revised spatial relationships. 
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Figure 7. The adjusted radar rainfall with (blue points) and without (solid line) consideration of 

the wind-drift effect for the radar Pixel 1 (Easting: 365 km, Northing: 141 km).  
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Figure 8. The same as Figure 7 but for Pixel 15 (Easting: 361 km, Northing: 135 km). 
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Table 1. Information of the selected events. The accumulated rainfall is the averaged gauge 

measurements in the Brue catchment. 

Event ID Storm start time Storm end time Accumulated Rainfall (mm) 

1 1994-01-05:00 1994-01-06:00 20.24 

2 1994-05-21:18 1994-05-22:18 24.90 

3 1994-10-29:12 1994-10-30:12 41.96 

4 1994-11-08:12 1994-11-09:12 35.51 

5 1994-12-08:00 1994-12-09:00 16.20 

6 1994-12-27:00 1994-12-28:00 30.09 

7 1995-02-22:12 1995-02-23:12 14.74 

8 1995-04-22:00 1995-04-23:00 24.37 

9 1995-09-06:18 1995-09-07:18 29.20 

10 1995-11-26:12 1995-11-27:12 16.60 

11 1996-11-19:00 1996-11-20:00 34.55 

12 1997-08-24:12 1997-08-25:12 19.01 

 

  



Table 2. The WRF model configuration for the three nested domains. 

Domain Pixel spacing (km) Pixel number Domain size (km) Downscaling ratio 

Domain1 30 18×18 540×540  

Domain2 10 19×19 190×190 1:3 

Domain3 3.3 22×22 73×73 1:3 

  



Table 3. The physical schemes used in the WRF model. 

Items Parameters/schemes References 

Dynamics solvers ARW - 

Microphysics scheme 
WRF single-moment three 

class 
Hong et al. [2004] 

Cumulus 

Parameterisation scheme 
Kain-Fritsch Kain [2004] 

Planetary boundary 

scheme 
Yonsei university scheme Hong et al. [2006] 

Land surface model Noah model Chen and Dudhia [2001] 

Shortwave radiation 

scheme 
Dudhia model Dudhia [1989] 

Longwave radiation 

scheme 

Rapid radiative transfer 

model 
Mlawer et al. [1997] 

 

  



Table 4. The information of ground measurements and adjusted values of wind-drift for Event 1 

(05/01/1994). All statistics are averaged values for the study area.  

Time 
Rainfall 

(mm) 

Ground wind 

direction (0) 

Ground wind 

speed (m/s) 

Drift 

direction 

(0) 

Drift 

distance 

(km) 

05/01 01:00 0.52 161 1.9 69 1.7 

05/01 05:00 4.01 214 2.8 22 2.0 

05/01 06:00 2.57 252 2.8 17 2.0 

05/01 07:00 2.13 258 3.2 9 1.8 

05/01 12:00 0.27 249 4.2 8 2.6 

05/01 20:00 2.29 86 1.3 58 0.9 

05/01 21:00 2.77 144 1.2 67 0.7 

05/01 22:00 0.69 77 1.1 75 1.1 

 

 


