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Populations in statistical genetic modelling and

inference

Daniel John Lawson∗

June 5, 2013

1 Introduction

It is human nature to look for patterns in the natural world. One pattern is the
grouping of individuals into populations based on observable features, be these
anatomical, physiological, cultural, socio-economic, political or linguistic. Many
of these groupings are for convenience – for example, we verbally group light
frequencies into colours, and in hypothesis testing we define ‘case’ vs ‘control’
populations – but some groupings are inherently meaningful. Variation within
biological species has long been described by grouping individuals into ‘popu-
lations’, though it is not clear a-priori whether this is a correct description of
genetic variation. Focusing on sexually reproducing organisms, most individuals
are genetically unique in some way, as typical organisms undergo numerous muta-
tions per generation Lynch (2010), and sex acts to re-assort the genome of both
parents Creighton and McClintock (1931) leading to these mutations being
found in complex patterns in later generations Hudson (1983). Given that full
pedigree1 reconstruction is not possible in general, can we rigorously use the pop-
ulation concept to understand genetic variation? We argue that the answer is yes
– a very clear and unambiguous definition of a population is available using the
well-understood statistical properties of inheritance. But also no – applying this
population concept to real organisms cannot be easily done in all cases. Despite
these limitations, the statistical concept of a population is extremely useful, both
for conceptual understanding and detailed modelling of genetic variation.

There are two main approaches we can take to defining a population. The first
of these is a generative modelling approach, in which populations are a component
in an explicit model for how genetic variation arises. The second approach uses

∗Heilbronn Institute for Mathematical Research, University of Bristol, Bristol, BS8 1TW, UK
1A pedigree is the full description of who was the parent of whom, until all individuals are

traced back to the the most-recent common ancestor of the whole sample.
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statistical modelling, in which populations are inferred from genetic data. In both
approaches, there is in fact a generative model for the genetic structure within a
population – they differ on how differences between populations are treated. A
population can be defined statistically as a group of individuals that cannot be
distinguished on the available data, a less precise definition than is needed when
using generative models. Under certain ideal – but reasonable – conditions that
we discuss below, these two definitions overlap, allowing a very clear definition
of what we mean by ‘population’. Under this framework, current tools allow
for significant progress in understanding many features of genetic structure. Of
course, reality can be more complicated and there are at least some cases for which
the specifics of genetic inheritance and demography can make even sophisticated
attempts at classification into populations seem clumsy and arbitrary.

Central to the majority of theoretical approaches is the idea that, over relevant
timescales, all individuals within a single population can be viewed as mating at
random within that population (see e.g. Wright (1984)). This timescale caveat
is extremely important, as we know that real individuals of any species do not ran-
domly mate. Yet mating decisions – based on chance factors such as geographical
location and certain individual preferences – are, in most circumstances, ‘self-
averaging’2 such that over many generations, random mating is an appropriate
approximation. Random mating is a useful assumption as it describes the simplest
unit of population structure, on which complexity can be built. But – particularly
with modern advances in data acquisition Schuster (2008); Mardis (2011) –
detection of structure within populations is possible Lawson et al. (2012). Were
sufficiently detailed data available, all individuals would form their own ‘popu-
lation’. This occurs because even though we cannot infer the full pedigree, we
can still detect the presence of familial relationships Pemberton et al. (2010);
Kyriazopoulou-Panagiotopoulou et al. (2011); Stevens et al. (2011) such
as distant cousins, which violates the random mating assumption. We will dis-
cuss relaxations to allow for this type of relatedness, which requires an appropriate
description of the sort of deviation we expect within a population.

Population concepts transcend species boundaries and we aim to be as gen-
eral as possible. The random mating assumption is the starting point for the
theoretical justification of the approach, and applies with varying degrees of ac-
curacy depending on the genetic and life cycle details of organisms. Generally
speaking, sexual species are well modelled by this approach, varying from a near-
perfect description of Drosophila Henderson and Lambert (1982), an adequate
description for humans (e.g. Rosenberg et al. (2002), see below), to a difficult
fit for fungi Milgroom (1996) and plants Platt et al. (2010).

2A self averaging process Lifshitz (1952); Kadanoff (2000) is one for which averaging over
a single realisation results in the same answer as averaging over many realisations, and occurs
most simply when random fluctuations are additive, i.e. not state-dependent.
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Not all species reproduce sexually. Sexual species (including most animals)
have two (or possibly more in the case of plants) copies of each chromosome,
one of which is inherited from each parent. In contrast, single-celled organisms
(prokaryotes such as Bacteria and Archaea) have a very different genetic struc-
ture with only a single copy of each chromosome. Standard sexual reproduction
is therefore not possible and it might be assumed that random mating is not an
appropriate description at all. However, many such species can be represented
using this approach if their recombination rate is sufficiently high Falush et al.
(2003) – Bacteria can still exchange DNA via non-sexual reproduction, by tak-
ing a small fragment of DNA from another organism either accidentally from
the environment or via various deliberate (evolved) mechanisms. The amount of
recombination bacteria engage in is highly species dependent.

When recombination is rare or absent, a different population concept is needed.
Individuals that occupy the same ecological niche compete neutrally, in which case
individuals are sampled under an important genetic distribution called the ‘co-
alescent’ Kingman (1982), discussed in detail below. The genetic distribution
within a non-recombining population is very different to that for a recombining
population. Rather than variation around a single genetic type being associa-
ble with a population, very distinct genetic subtypes can arise due to random
fluctuations (since individuals do not exchange genetic information). The coales-
cent fully describes how genetic variation is distributed, but this typically splits
up into multiple separate sub-types when variation is viewed in few dimensions
Lawson and Jensen (2007). Therefore, for non-recombining organisms, a pop-
ulation concept exists as more of an ecological constraint on evolution. Although
this population concept is interesting, it is very different from that which is seen
in our focus of recombining organisms.

Data collection is predominantly based around sequencing or genotyping many
individuals from a small set of sample locations (e.g. Rosenberg et al. (2002);
International HapMap Consortium (2007)). This naturally leads to finding
population-like structures in the data because individuals found at the same lo-
cation tend to have similar genetic history. However, as sampling becomes more
dense, and genomic techniques more precise, a more continuous picture arises.
Strong substructure can be found within single sampling locations (e.g. Lawson
et al. (2012)) and yet no clear demarcation may exist between samples. Whilst
the concept of a randomly mating population is helpful for understanding the
genetic structure, we will be increasingly required to work with more complex
descriptions. Although there is no clear solution to these issues, we will discuss
some possible approaches and how they relate to standard methods.
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2 Generative models

Mathematical or computer models that can simulate artificial datasets are called
generative models. The concept of a population, and the generation of the fea-
tures of the population, are explicitly defined in the model and individuals can
be sampled from them. Generative models typically allow for very complex fea-
tures to be included, but are hard to perform inference with. The concept of
a population used by such models can be very flexible and cannot be generally
defined. Typically however, populations appear as randomly mating groups of
individuals, with additional and often complex modelling for how individuals in
different populations can interact.

Many population modelling approaches involve generative models, and we fo-
cus on two strands here. The first grew from ‘statistical phylogeography’ which
used ‘multiple locus coalescent models’ Knowles and Maddison (2002); Chikhi
et al. (2002) that consider several ‘independent’ genomic regions (loci) within
which recombination is absent. On a single locus, a ‘population’ has the same
meaning as for non-recombining species described above. Loci are then combined
assuming a randomly mating population. Modern incarnations (e.g. Thorn-
ton and Andolfatto (2006)) consider fully sexual populations in a historical
scenario in which an ancestral population experiences separation and subsequent
genetic drift (i.e. populations are related via a tree, possibly with migration).
Throughout this history, populations randomly mate. Inference of the full demo-
graphic history requires complex inference tools such as Approximate Bayesian
Computation Beaumont (2010). However, some historical hypotheses, such as
the presence of gene-flow between populations (i.e. admixture), can be tested for
directly (e.g. Durand et al. (2011)) in certain restricted ways. Model organisms
such as the fruit fly drosophila Thornton and Andolfatto (2006) and humans
(e.g. Cornuet et al. (2008) and references within) have been treated to the full
modelling approach. However, the multiple locus approaches are widely applica-
ble to non-model organisms Knowles (2009) from plants Herrera and Bazaga
(2008) to frogs Bonin et al. (2006) as costly data collection is not needed.

A lot is understood about the genetic structure produced under a tree model
for population history, i.e. if individuals mate randomly within populations that
have been subjected to arbitrary genetic drift without admixture. The observed
genetic variation typically takes the form of Single Nucleotide Polymorphisms
(SNPs, which are 0 or 1, either present or not). While the raw distribution is dif-
ficult to visualise, differences between individuals (and their populations) can still
be plotted. McVean (2009) describes how simple generative models project into
their Principle Components (PCs) based on decomposing the genetic structure
into independent directions of variation3. These directions are ordered so that

3We use a Singular Value Decomposition (SVD), a generalisation of PC analysis. The SNP
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the direction of largest variation appears first; see Figure 1 C-D. Individuals that
share many SNPs tend to be close, and SNPs that vary consistently between indi-
viduals tend to dominate the higher PCs (those that are typically plotted). The
lower PCs describe SNPs that show no particular pattern and are usually consid-
ered to be ‘noise’, e.g. random sampling. Individuals within a single population
are characterised by having the same SNP frequencies, and hence approximately
share the same location in PC space.

Differences between populations in a PC analysis can be interpreted. Genetic
drift affects the PCs by separating the mean position of populations, as shown
in Figure 1 A,C with distances d1 and d2 becoming separations f(d1) and f(d2).
Additionally, an individual who is admixed between two populations is located
between them in PC space (Section 4). Unfortunately, sample size strongly affects
both the location and order of drift effects in the PCs, and interacts with both
drift and admixture in a non-trivial way to determine the location of populations
in PC space. Even worse, although an admixture scenario has a predictable effect
on the PCs, this is not always inferable (see Section 3).

Another generative model is demic diffusion Ammerman and Cavalli-Sforza
(1984); Sokal et al. (1991) which captures complex geographical structure. Waples
and Gaggiotti (2006) perform a thorough review of this approach, with specific
emphasis on what a population means in this context. Again, populations are
randomly mating groups of individuals living in demes at a specific geographic
location, and migration occurs between nearby demes (see Figure 1 B,D). Like
the explicit historical model above, complex histories can be specified. However,
the full history of a population is only implicitly described in this approach, as
individuals migrate between demes. Recent migrations (e.g. within the last few
generations) do not fit neatly into a population description.

Demic diffusion models and PC analysis are usually used together to make
inference about the nature of historical and geographical processes shaping evo-
lution. Unfortunately, there are many historical scenarios consistent with the
major PCs François et al. (2010) which casts doubt on the inferences that can
be directly made. In principle, there is more information contained in the lower
PCs, describing e.g. genetic drift unique to each population, but this is difficult
to extract. This is in contrast to simple statistical populations (Section 3) which
can be inferred using PC analysis Lawson and Falush (2012). The inference
problems are related to the presence of strong admixture in these models, which
is discussed in Section 4. The utility of PC analysis for inference about population
structure is therefore a contentious topic.

data matrix X containing l rows (SNPs) and n columns (individuals) is decomposed into UDV T

where U is an l by n matrix, D is a rectangular diagonal matrix of the eigenvalues, and V is the
n by n eigenvector matrix relating individuals. Columns of V are the PCs (which are usually
what is plotted), and each row is an individual. Lawson and Falush (2012) has more details
about the interpretation.
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Figure 1: Simple population scenarios* and the resulting PC decomposition. A)
A Simple hierarchical tree model for population splitting. d1 and d2 represent
genetic drift times. B) A deme-based spatial migration scenario in which migra-
tion occurs at constant rate along edges and each node contains a population.
C) The PC decomposition of the scenario in A. Each PC is associated with an
independent drift component, with genetic drift time affecting both the Eigen-
value, and the distance relative to the within-population variation (i.e. f(d1) and
f(d2)). D) the PC decomposition of C recapturing the spatial structure in this
case. Were sample sizes not even, this may not have occurred, and higher PCs
contain a complex pattern created by local drift and historical admixture.
*For A, 1000 unlinked SNPs simulated as in Lawson et al. (2012). For B, Simulated
using the software msms Ewing and Hermisson (2010) sampling 20 individuals per
population with the parameters ‘-r 500 -t 50’ resulting in 6754 linked SNPs, and recent
migrants removed to reduce the dataset to 10 individuals per population.

There is more that can be said about PC analysis; in particular, methods
accounting for linkage (Section 3, details in Lawson and Falush (2012) and
Lawson et al. (2012)) can be used to improve PC decomposition. However,
complex genomic scale datasets are not completely described by the top few PCs
and so we view PC analysis as a useful visualisation tool rather than a primary
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analysis technique for understanding populations.

3 Statistical definitions of a population

Statistical approaches such as STRUCTURE Pritchard et al. (2000) define
a population as a cluster of statistically equivalent individuals. For SNP data
taking the value of either 0 or 1, this means that there is a single frequency for
each SNP within each population, and a population is defined by the full set
of SNP frequencies. Although a single SNP is not very informative (unless it
perfectly segregates populations), multiple SNPs can be averaged to identify fine
population differences.

Each SNP in an Individual in the STRUCTURE model is sampled ‘inde-
pendently and identically distributed’ (IID) from the population SNP frequency.
This means that SNPs are both independent, and are all drawn with the same
frequency, so there can be no correlation between the SNPs from e.g. related in-
dividuals. More generally, we can define a population as a collection of individual
who are genetically exchangeable Bernardo (1996). Exchangeability within a
population is less restrictive than IID sampling – the SNPs between individuals
may be correlated, providing that the order that individuals are placed within the
population does not matter4.

In the STRUCTURE model, related individuals are assigned their own pop-
ulation which has a different SNP frequency from the population the individuals
were sampled from (and may be close to 0 or 1). More general definitions of a
population based around exchangeability would allow individuals to be sampled
as e.g. a mixture between a random individual (i.e. using the population fre-
quency) and a previously sampled individual. The number of related individuals
within a population and the degree of relatedness would be additional parame-
ters to be inferred. Such models are more complex to implement (and hence are
not considered in any major inference algorithm), but should remain part of our
conceptual understanding of a population.

To say that individuals belong to different populations, we only need a model
of how individuals within a single population vary, as STRUCTURE does via
the SNP frequency. In a simple statistical approach, a correct model for how
differences between populations arise is not needed (Figure 2B). This contrasts
with generative models (Figure 2A) which require an explicit description of how
the current genetic distribution was reached. Despite this, a model for population

4A classical example is the Pólya urn Johnson and Kotz (1977) in which a red and blue
ball are placed in an urn, and then a ball is repeatedly removed at random and replaced by two
balls of the same colour. The probability of drawing a red ball depends on the history of the
process but knowing only the number of each ball in the Urn is enough - the order does not
matter. The coalescent process in genetics Kingman (1982) is but one very important example
of exchangeability in action.
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differences is very helpful as it increases statistical power to separate populations
(Figure 2C). In this example, the underlying generative model (Figure 2A) is
diffusion along a tree. Because the underlying population separation method
was hierarchical, a tree-based statistical model can capture the main differences
between populations. Models of population differences are sometimes omitted
because a) sufficiently flexible models should all tend to the truth as the amount
of data gets large, even if they ignore between-population differences, and b) if
the model is incorrect, it can lead to problems.
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Figure 2: Populations as they may hypothetically appear in different types of
model. A) A fully generative historical model describing the genetic drift process
(grey tree) differentiating populations (‘peaked’ curves centred on marked loca-
tions on the x-axis) in genetic space (i.e. a direction in PC space). The details
of the drift process must be specified. B) A simple statistical model, in which
only the within-population model (here the means and variances) must be cor-
rectly described, and population-level parameters are inferred. Populations may
be merged (right-most populations) if they are not sufficiently distinct. C) A
sufficiently flexible statistical model for the population-level parameters can allow
these to be inferred more accurately; here a hierarchical model matches the data
better and therefore infers the subtle population differences correctly.

The genetic structure within a randomly mating population is well understood,
and is characterised by the mathematical model known the Ancestral Recombina-
tion Graph (ARG) Griffiths (1981); Hudson (1983) (Figure 3A). This describes
the genetic history of all individuals using three basic ingredients. Firstly, exactly
when their ancestors were shared with ancestors of other individuals in the sample
(coalescent events; times T2-4). Secondly, when ancestors mated with ancestors
of other individuals (i.e. recombination events which split the genome between
these two parents, time T1). Thirdly, when mutations arose (although for our
purposes mutation times need not be inferred as these can be integrated out).
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As such, the ARG is a complete probability model of a closed population5. Note
that an ARG without recombination reduces to the coalescent model, which is
a tree with a probability model for the coalescent times. Although the ARG is
a statistical model, it is equivalent to a generative model of a neutrally compet-
ing population with fixed recombination rate, mutation rate, and population size
Hein et al. (2005), and a wide variety of different modelling assumptions all lead
to the ARG under reasonable limiting conditions, such as large population sizes
so that mating can be considered to occur randomly.

Unfortunately, it is not practical to perform inference with the ARG, and so
most approaches are based around approximations to it. Almost all population
inference methods start by assuming that genetic drift is weak, because this is
relatively harmless as we can always detect the difference between populations
when drift is strong. Another common approximation is that the recombination
rate is high enough to treat SNPs independently. The most widely used tools,
including STRUCTURE Pritchard et al. (2000), STRUCTURAMA Huelsen-
beck and Andolfatto (2007), PARTITION Dawson and Belkhir (2001) and
ADMIXTURE Alexander et al. (2009) start with this assumption, which leads
to modelling SNPs only via their SNP frequency as described above.

The SNP frequency approach works well when SNPs are approximately inde-
pendent, but becomes increasingly inaccurate in the presence of linkage disequilib-
rium (LD). LD is the correlation between SNPs along the genome due to sharing
the same genetic history; for example, in Figure 3A, SNPs 1-2 are in LD because
they are each described by similar (and in this case, the same) trees. As more
recombination events split the genome between two SNPs they become less cor-
related. Therefore, LD is stronger in genomic-scale sequencing datasets produced
by modern sequencing technologies than in older techniques that sampled fewer
loci. Modelling LD is becoming more important, and although STRUCTURE
has an option Falush et al. (2003) for this, the approach is too computationally
costly for most applications.

A powerful approach for handling LD, which has an additional benefit of
speeding the computation, is that of ChromoPainter Lawson et al. (2012). This
uses the ‘painting’ algorithm of Li and Stephens (2003) to identify long tracts of
genetic material that have been inherited as a single contiguous chunk, which can
be seen as an approximation to the ARG (Figure 3). Each haplotype6 is described

5The ARG specifies the probability of a particular set of recombination and coalescent events.
We start with k = N lineages, one for each genetic sample. Coalescence between lineages occurs
at rate 1 between all k(k − 1)/2 pairs of lineages, and recombination occurs on each lineage
at rate ρ. Therefore the time between events is exponential with rate k(k − 1)/2 + kρ. The
coalescent model is the ARG with ρ = 0.

6A haplotype is a particular copy of a chromosome; recall that humans and other animals
have two copies of each chromosome, which are called haplotypes. Current sequencing technology
cannot tell which copy of DNA a particular mutation is on, and therefore we observed the
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at each genomic location by finding the haplotype from a pool of potential donors
that most closely matches it. The donor at a particular genomic location has to
be inferred, and there is a constant probability per unit recombination distance7

that the donor will change to any of the other possible donors. The result is that
‘chunks’ of DNA are found in which relatively few SNPs differ between the donor
and the haplotype being painted. The model takes a computationally convenient
form called a Hidden Markov Model8, which allows for a fast inference of a wide
range of useful summaries with complete accounting for statistical uncertainty.
We focus on the ‘chunk count’ matrix Xij – the (expected) number of chunks
donated to individual i from individual j.

Under reasonable assumptions (details in Lawson et al. (2012)), a shared
haplotype chunk can be viewed as a single observation of coinheritance between
two populations in a similar way to the sharing of a SNP. The FineSTRUCTURE
model combines this information over all individuals by treating a population as
having a characteristic rate of donating chunks to, and receiving from, each other
population. The only information required is the number of chunks donated
between each pair of individuals9, which is a matrix of dimension N × N – a
significant reduction in the amount of data that must be processed as there is
no dependence on the number of SNPs. Additionally, there are no population-
level parameters to be inferred, which makes inference both very fast and very
reliable, as the parameter sampling does not tend to get stuck in local modes. SNP
frequency based approaches (e.g. STRUCTURE and ADMIXTURE) must infer
the underlying SNP frequencies which can be multimodal. FineSTRUCTURE can
therefore handle large sample sizes; thousands using MCMC10, and potentially
many more using greedy optimisation approaches. However, whilst fast, greedy
methods usually do not find the best solution and may get stuck at sub-optimal
parameter values that cannot be improved by small changes.

Figure 4 shows an example of what a population looks like to FineSTRUC-
TURE, using 102 African individuals from the Human Genetic Diversity Panel

‘genotype’, i.e. the mixture of the two. Haplotypes are inferred using a technique called phasing
to separate out which mutations appear on which copy of the chromosome.

7Recombination does not occur uniformly over the genome but most frequently occurs at
‘recombination hotspots’ Myers et al. (2010). This can be accounted for in the model by
measuring distance along the genome in recombination distance.

8In our context, the presence of a mutation at a genomic location i depends only on who the
donor haplotype xi is (which is ‘hidden’). In turn, the probability of the donor haplotype xi
depends only on the donor haplotype at the previous location xi−1 and not on any other genomic
positions (this is what is meant by ‘Markov’).

9This is a sufficient statistic for the model likelihood.
10Markov-Chain Monte Carlo (e.g. Gamerman (1997)) is a very general and powerful inference

technique based around sampling parameters near to previously sampled parameters, as these
are likely to be ‘good’ at describing the data (i.e. have a high likelihood). The MCMC samples
converge to independent samples from the Posterior distribution if the sampler is run for ‘long
enough’, which may take a long time.
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Figure 3: Cartoon illustrating the ChromoPainter model as an approximation to
the ARG on a simple sequence. A) The ARG describes the full history of recom-
bination and coalescence between individuals, terminating with a Most Recent
Common Ancestor. The ARG consists of a series of coalescence events (times
T2–4), and recombination events (time T1). Recombinations split the genome
into segments that have (possibly) distinct tree relationships between individuals
(red and blue trees, in the genomic regions shown by the bars). B) The Chro-
moPainter chunkcount matrix counting the number of haplotype chunks shared
between each pair of individuals (which is asymmetric in general). It counts the
expected number of haplotypes blocks used by the painting (C-E), rather than
the number of SNPs. C-E) The chunkcount matrix approximates the ARG by
describing only the most recent relationship for each individual separately at each
genomic location. Coalescence and recombination events are forbidden between
other individuals. Where multiple individuals are equally close (dashed lines in
C and E), these are averaged and fractions of the chunk are assigned from each.
For example, In Painting Ind 1 (Figure C), SNPs 1-2 are on the same haplotype
which is uncertain between Inds 2-3, using 0.5 chunks from each. Due to requiring
fewer mutations, SNPs 3-4 can be inferred as from Ind 2 (using a single chunk),
leading to the top row of (B).
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(HGDP) - a collection of 1043 individuals from throughout the world Pickrell
et al. (2009). If the ‘randomly-mating’ population model is applicable, all individ-
uals in population a will receive the chunks at the same rate from individuals in
population b – there is no further dependence on who the individual is. This leads
to a ‘block’ structure, clearly visible in the figure, with some labelled populations
perfectly described this way (e.g. the Yoruba). However, FineSTRUCTURE has
identified substructure within population labels – for example, there are related
pairs of individuals. Related individuals are split off in the tree and have high
diagonal elements (e.g. within the BantuKenya, the Mandenka, MbutiPygmy
and BiakaPygmy). They can still be identified as being from a particular pop-
ulation because they otherwise share DNA similarly with all of the non-related
populations. Admixture induced substructure can also be seen, e.g. the Bantu-
SouthAfrica consist of two main sub-populations: one related to the BantuKenya,
and the other closer to the San (but not the Pygmy populations, who the San
are also related to). In this case the population model is still a useful description,
even though it does not directly model the admixture.

The FineSTRUCTURE definition of a population appears very different to
that in STRUCTURE - being based on the sharing of haplotypes, rather than the
frequency of SNPs. Yet surprisingly, the model of a population in FineSTRUC-
TURE applied to unlinked (i.e. ignoring LD, although it may be present) Chro-
moPainter data is formally equivalent to that in STRUCTURE11. Despite this
strong similarity, there are very important features that differ between the var-
ious models available to perform population clustering, which can lead to quite
different inferences about populations. The most important is the model for dif-
ferences between populations, which are usually expressed as a model for the
population-level parameters. Figure 2 shows how these might be important, and
Table 1 gives some common approaches.

None of the methods discussed makes powerful use of the difference between
individuals being exchangeable within a population, and them being IID. The
closest is the FineSTRUCTURE approach, in which populations are initially in-
ferred on the basis of individuals being drawn IID from a population, but then
familial relationships are immediately merged in a ‘tree-building’12 step, using a
heuristic model for kinship. The heuristic model assumes that related individuals
will be placed into the same population and will have additional chunks shared
with each other, but the same distribution of other chunks as they would have
if the related individual were not in the sample. Related individuals that share

11Formally, FineSTRUCTURE and STRUCTURE share the same asymptotic likelihood when
SNPs are treated as independent, drift is weak, and number of individuals sampled is large, proof
by Simon Myers in the appendix of Lawson et al. (2012).

12We omit the details of the tree-building, but broadly, the merging of populations that is
‘least bad’, i.e. causes the lowest increase in the likelihood, is repeatedly applied until only a
single population remains.
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Figure 4: FineSTRUCTURE applied to the African samples of the HGDP
dataset*. The main figure shows the chunk count matrix donated between pairs of
individuals, as output by ChromoPainter. FineSTRUCTURE generates MCMC
samples of the population structure, which for clarity are not shown; instead the
maximum aposteriori population assignment (i.e. the best single guess) is shown
by the white lines which separate populations, and in the top tree: individuals in
the same population are in the same lowest level branch. Each edge in the tree
produced a bipartition; if this is not perfectly observed in all MCMC samples,
the proportion is shown on the tree. Thick white lines separate major ‘clades’. A
‘population’ to FineSTRUCTURE is the average of the chunk counts within that
population to (columns), and from (rows) all other populations, so within each
white square all values should be the same except for noise. Redrawn from data
described in Lawson et al. (2012).
*ChromoPainter was applied to the whole HGDP dataset as described in Lawson et al.
(2012), but for simplicity chunks donated to/from other continents are not displayed,
although they were used during population assignment.
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a population can then be merged with their underlying population. Although
this works well in many examples (e.g. Figure 4), the technical details of this
two-stage approach are not perfect and new methods are required.

We have described several methods in this section, and claimed that some are
‘fast’ whilst others are not. However, the speed of these algorithms is strongly
dependent on the amount of data available – ‘fast’ here describes algorithms that
scale well with number of genomic loci (and the number of individuals) sampled.
Unfortunately, this is difficult to quantify exactly for MCMC algorithms because
how quickly the algorithms converge is dependent on the data. Broadly though,
the ChromoPainter/FineSTRUCTURE approach is fast because the computa-
tional cost is linear in the number of loci L; the STRUCTURE/STRUCTURAMA
approach is at least quadratic. All these approaches scale similarly with the num-
ber of individuals N . The exception to these issues is ADMIXTURE which is
faster (by roughly a factor of N) because it does not perform MCMC. For ref-
erence, the absolute computational cost of running genomic scale datasets (700K
SNPs) containing a thousand individuals, is that ChromoPainter/FineSTRUCTURE
may take a week to run (although much of this cost is parallelisable); STRUC-
TURE and STRUCTURAMA would take months, and ADMIXTURE may take
only hours/days but usually fails to converge to the global solution, and typically
a stable approximation at low k is used. All approaches run accurately within

Table 1: Population separation models in popular software

Software Model
STRUCTURE
Pritchard et al.
(2000)

SNP frequencies are correlated due to common descent, mean-
ing that each SNP frequency drifts independently from a single
ancestral frequency in a ‘star’ structure - each population is inde-
pendent conditional on the ancestral frequency. Because the same
number of SNP frequencies as SNPs must be inferred, this prior
is quite strong. See Falush et al. (2003) for details.

ADMIXTURE
Alexander et al.
(2009)

A frequentist method with no explicit population prior, effectively
assuming that each population is sampled IID with a uniform SNP
distribution.

STRUCTURAMA
Huelsenbeck
and Andolfatto
(2007)

As STRUCTURE, but with a model for the number of populations
(a Dirichlet Process prior Ferguson (1973)) that is convenient
for fast inference.

FineSTRUCTURE
Lawson et al.
(2012)

Haplotype sharing rates between different populations are IID
with a Multinomial prior. Because there are only K haplotype
rates to infer, this is a weaker prior than used by STRUCTURE.
A Dirichlet Process prior is also used for computational conve-
nience.
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minutes or hours on smaller datasets (say, 10000 SNPs and 100 individuals).

4 Admixture models

Both STRUCTURE and ADMIXTURE have a model permitting an individual to
relate to multiple populations, known as admixture. These important models are
widely applied in practise as they are typically closer to reality than no-admixture
approaches, and – when LD is ignored – little more computationally costly. Some
high profile examples for Humans are Rosenberg et al. (2002) which examined
the human population genetic structure, and Redon et al. (2006); Sladek et al.
(2007) which analysed functional genetic features, using admixture models to
account for the confounding effect of population structure.

The admixture likelihood of a SNP is the same as in the standard no-admixture
model, if we knew which population the SNP came from. However, an individual is
no longer assigned to a single population - each SNP within an individual is viewed
as coming from one of K unobserved, ‘pure’ populations, and individuals are seen
as mixtures of these populations. Therefore the model for ‘what a population is’
remains the same, only now we do not observe populations directly, but mixtures
from them. Figure 5 illustrates how this can form standard, inferable populations
(even without new genetic material in the form of drift) as well as continuous lines
in PC space that do not correspond to a population.

Populations are defined similarly to no-admixture models – as genetically sta-
tistically distinct. However, discrete models will use additional populations to
describe mixtures of ‘real’ populations that have undergone genetic drift. As we
shall see, if the distribution is complex then admixture models can have multiple
interpretations, and a lack of visualisation tools makes assessment more difficult.
For example, we cannot plot pure populations in PC space. However, PC analysis
can still help visualise the results (Figure 5).

Part of the difficulty in interpreting mixture models for admixture is that they
are an incomplete description of how the present day genetic distribution arose.
Differences between pure populations can be described by complex models such
as trees Falush et al. (2003), but the mixing only happens at the present time.
However, admixture may have occurred at any point in history. For SNP fre-
quency models such as ADMIXTURE and STRUCTURE, the mixture approach
captures much of the available information. There are currently no approaches
that correctly handle LD and admixture in general. A problem is that the length
of LD blocks contains strong information about admixture dates, which would
ideally be used in an admixture description. Therefore current admixture models
need completely revising to utilise this information.

To construct admixture models from LD data, it becomes necessary to form
specific hypotheses about historical drift and admixture scenarios. These include,
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Figure 5: Two simple present-day admixture scenarios for populations split via
a tree. A) Discrete admixture, in which two populations are mixed with some
characteristic frequency. Population models can infer an additional population
(in this case, AB1) which can either be directly described as a mixture of other
populations, or via post-hoc methods such as PCA. B) Continuous admixture,
which causes problems for population assignment algorithms. C-D) PC decom-
positions of the scenarios from A-B. Admixture fractions will correlate with the
position on the red line, shown. Note however that in both cases, historically
admixed populations may have undergone genetic drift. In this case, there will
be additional PC directions in which they are not describable as a mixture.

how do populations separate and merge? How is DNA shared between indi-
viduals in different populations via migration? Such a model might resemble
the generative models described in Section 2, or might take inferred populations
from STRUCTURE/FineSTRUCTURE and explain their relationship post-hoc.
TreeMix Pickrell and Pritchard (2012) is one method for this; it describes the
relationship between populations as a tree, subject to small amounts of historical
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admixture. However, post-hoc approaches typically lose information, both by dis-
carding information present in the raw data, and by discarding uncertainty present
in the first stage of modelling. Conversely, two-stage approaches are usually faster,
and in some cases (as discussed for ChromoPainter/FineSTRUCTURE) it can be
shown that no information is lost.

5 Population-free approaches

We may view a ‘population’ as a somewhat arbitrary boundary between local
variation and larger scale differences of relevance to real world questions. If we
are willing to abandon neat segregation of individuals into populations, we can
provide a more accurate description of the underlying genetic structure, at the
price of interpretability. This trades off one purpose of population modelling –
aiding understanding of the underlying variation – with accurately representing
the underlying genetic structure in a low-dimensional representation.

STRUCTURE-like models are ‘semi-parametric’ because they use a paramet-
ric description of a population (e.g. a SNP frequency or a haplotype sharing
distribution based on results from a generative model of how variation arises)
but allow an arbitrary number of populations to describe the sample. However,
they penalise the use of too many populations in order to obtain interpretable
results, and the description of a population is fully parametric. Non-parametric
methods13 (e.g. Wasserman (2005)) can provide a more accurate representa-
tion of the underlying genetic structure than parametric methods when modelling
assumptions are invalid. For example, real populations are often continuously ad-
mixed over many timescales, and have complex substructure. This typically leads
to methods such as FineSTRUCTURE inferring a large number of populations
that are hard to interpret. We could consider a non-parametric description of the
populations themselves, and potentially obtain simpler results.

An interesting feature of admixture models is that they can correct for in-
adequacies in the conceptual model a population. By allowing a population to
be described as a mixture of (very) many unobserved components, any genetic
distribution can be represented. This is essentially a non-parametric statistical
view of a population. However, this view is not commonly used for two reasons.
Firstly, it confuses the theoretical population concept with the observed popula-
tions, so that it is no longer clear what a ‘population’ is. Secondly, a lot of data
is required to infer a large number of mixture components14 Kalai et al. (2012).

13‘Non-parametric’ methods describe data using an infinite-dimensional representation in an
appropriately chosen basis; of course only a finite number of components are used in practise,
which is typically equal to or less than the number of data points.

14The number of samples is exponential in the number of mixture components, when they
overlap. This makes inferring more than a few components theoretically ‘impossible’.
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Inference algorithms frequently get trapped at suboptimal population mixtures,
leading to repeated runs of the same algorithm finding different solutions. Figure
6 illustrates how admixture appears in inference. Admixture components are not
always associable with either a cluster nor a peak in the density in a PCA decom-
position Carreira-Perpinan and Williams (2003) (Figure 6D). The drift and
admixture fractions in this heavily admixed scenario are very hard to separate
and lead to unstable estimates. The end result is that admixture models robustly
identify only a small number of populations which may not give a good ‘non-
parametric’ description of the data and can still be hard to interpret. If multiple
pure populations are mixed, this becomes even more complex.

Species occupying continuous habitat ranges may require a spatially explicit
model. Guillot et al. (2009) reviews isolation-by-distance models, which allow
for individuals to be distributed at any point over a spatial region. ‘Random fields’
can be used to describe how populations change over space, either using discrete
populations Guillot et al. (2005); François et al. (2006); Corander et al.
(2008), or admixture Durand et al. (2009). This approach allows for very flexi-
ble specification of how spatial correlations arise (a popular choice is the Markov
random field Kindermann and Snell (1980)). These models resemble the ap-
proaches described above but use geographical distance to help explain differences
between populations. Admixture models are more interpretable when using spa-
tial information, and may be more robust François and Durand (2010), as ad-
ditional information is available to infer mixture components. However, general
application requires care in case spatial correlations are not the primary source of
variation. While inference in this framework is very challenging Guillot (2009)
there has been significant recent progress in the technical methods Grelaud et al.
(2009); Everitt (2012).

Although this section has taken a negative view of the population concept,
in practise many species can be correctly modelled with it. Fragmented habitats
due to man-made or geographical barriers to migration are naturally represented
by discrete populations, and spatial structure can be handled either via standard
methods or networks of demes Fortuna et al. (2009). Historical populations
are only accessible via rare fossil DNA and are therefore rarely continuous in
practise. Population models will therefore coexist with approaches that define
genetic distributions implicitly and both may be suitable for different questions
even for the same species.

6 Discussion

There are many features on which we may wish to group individuals into ‘popula-
tions’ - language, culture, geography and history will all lead to different groupings
suitable for different purposes. Here we focus on population genetic approaches
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Figure 6: The effect of admixture on population inference in ‘genetic space’ (equiv-
alent to the first PC of a PC analysis of these two populations). Mixtures between
two randomly mating populations were generated (solid wiggly line) by sampling
individual’s proportions from a Dirichlet(p, p) distribution, for A) p = 0.01, B)
p = 0.1, C) p = 1, and D) p = 5. Low values of p mean that individuals pre-
dominantly are from a single population; high values mean they are close to equal
proportions of both. Also shown is the ‘best’ no-admixture population assign-
ment* (‘bell’ curves) and the resulting density this generates (black dashed line).
Note that population methods infer ‘spurious’ populations to explain the inter-
mediate types (B-C). In D), there is a ‘single’ population but it has complex
structure and is inferred as two populations. This is inferable because although
there is a single mode, the distribution is not Normal and the variance is inflated.
*Population assignment performed using MCLUST Fraley and Raftery (2009) as
described in Lawson and Falush (2012). 1000 individuals were sampled; ‘Populations’
here are Normal distributions representing a hypothetical first PC (e.g. McVean (2009)).
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that group all individuals which cannot be statistically distinguished into the same
population. This is an appealing approach since it is not necessary to define how
population differences arise - we only need a model for what it means to be in
a population. A natural model for a population is a randomly mating group of
individuals, which allows for powerful theoretical results to be applied.

There are two main reasons to search for population structure in the genetics of
individuals. The first is for understanding; we wish to classify the world around us
in the simplest way possible (but no simpler). This is the main motivation behind
the generative models from Section 2, and the statistical approaches from Sec-
tion 3 that tie into these. We describe present day individuals using populations
so that we can then reason about the historical forces of separation, migration,
admixture, etc. that have influenced the populations we observe. However, the
second major application is to remove population structure as a confounder of
genetic correlation, for the understanding of genomic function. Because genomic
variation occurs at far more loci than the number of individuals we can hope to
sample, naive inference is confounded by many factors including population struc-
ture. In this case, the nonparametric viewpoint (Section 5) is appropriate. Major
population structure approaches Tiwari et al. (2008) typically use either PC
analysis Price et al. (2006) or STRUCTURE-like models for this. Neither fully
captures complex population structure, particularly when provided with linked
data. Although linkage mapping approaches exist (e.g. Redden et al. (2006)),
these can only account for simple population structure and we expect to see new
methods for detecting genetic selection based on linked data.

We have reviewed the main population assignment approaches for weakly
linked genetic data (e.g. STRUCTURE Pritchard et al. (2000)) and seen that
populations in such models have a clear interpretation in terms of generative
models for how genetic variation arises within a population. Models of differences
between populations can be used where appropriate to gain further statistical
power, and then the model is fully generative.

When data are densely sampled from the genome, handling Linkage Disequi-
librium becomes a necessity. For population identification, our ChromoPainter
and FineSTRUCTURE Lawson et al. (2012) approach is the most powerful cur-
rently available. Here, individuals are first summarised in terms of the number
of contiguous haplotype blocks they share with each other, after which they can
be clustered. This approach theoretically matches previous SNP models but has
dramatically improved computational performance, as well as providing a more
in depth description of the data.

Unfortunately, modern methods for population inference have too much power
to infer randomly mating populations, and can potentially find as many popu-
lations as there are individuals. To address this, we have discussed some relax-
ations from random mating which can be applied when defining a population.
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Some unambiguous ‘within-population’ variation is familial structure, which is
well understood in principle, and may fit within standard statistical methodol-
ogy. A more difficult extension is admixture between sub-populations, which is
difficult because there is no line between a ‘sub-population’ and a ‘true popula-
tion’. Although such deviations may be hard to either practically or theoretically
distinguish from differences between populations, we remain positive about the
utility for theoretical population concepts in understanding genetic variation.
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[terms for Glossary: Haploid: Organisms can have multiple copies of each
chromosome that makes up their DNA. Haploid organisms, such as Bacteria and
Archaea, have only one copy.

Diploid: Organisms can have multiple copies of each chromosome that makes
up their DNA. Diploid organisms, such as higher animals, have two copies, one
inherited from each parent.

Recombination: When an organism reproduces, it must make copies of its
DNA. Sexually reproducing organisms take DNA from both parents ‘recombine’
them in a new combination in the offspring. Non-sexual species can also recombine
their DNA but this typically does not occur at every reproduction.

Ancestral Mapping: The identification of the genetic relationship (parents,
grandparents, cousin, etc) between individuals. This is typically via a tree, al-
though it is possible (via inbreeding) that individuals will appear multiple times
in an ancestral map, e.g. if two cousins had children their grandparents would
appear via both lineages.

Generative modelling: A fully specified mathematical or computer model de-
signed to emulate a physical process, from which data can be simulated.

Statistical modelling: A statistical description of the relationship between
data. This may be associated with an underlying generative model, but does not
have to be.

Coalescent, (Multilocus coalescent models): The coalescent is a tree model
for the evolution of a fixed population in the absence of selective forces. Each
individual in the sample is represented as a lineage, which are each merged back
in time at constant rate with each other lineage. This process is repeated until
only a single lineage remains. In multilocus coalescent models, a number of genetic
locations are each described by a coalescent.

Statistical phylogeography: A statistical approach to phylogenetic modelling
(that is, representing relationships between individuals via trees) which accounts
for geographical features such as sampling locations and physical barriers to pop-
ulation movement.

Genetic drift: The change in SNP frequency that occurs in separated popula-
tions is referred to as genetic drift. This occurs because the actual SNPs present
from one generation to the next is determined stochastically. This effect decreases
with the effective population size.

Approximate Bayesian Computation: A statistical inference procedure for in-
ferring model parameters based only on simulating from a model, without the need
to compute the likelihood (i.e. the probability of the data given the parameters).

Principal Component Analysis: A linear transformation of multi-dimensional
data in which the data are rotated into perpendicular axes of variation, which
are sorted by the magnitude of the variation. This can be achieved using simple
linear algebra techniques and is therefore a fast method.
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Demic diffusion: A genetic model in which individuals may be located in a
number of geographically located populations or ‘demes’. Within each deme,
individuals mate at random, and migration occurs along connections between
demes at a particular rate (i.e. individuals ‘diffuse’).

Exchangeability: A statistical concept in which a number of random variables
are sampled from some probability distribution, but this probability distribution
does not depend on the order in which the variables are sampled. For example,
if the numbers 1 through 5 are sampled without replacement, then the result is
exchangeable but not independent.

Ancestral Recombination Graph: The ancestral recombination graph is a
model for how individuals in a sample would relate to each other if they a) were
reproducing in a closed population without selection, and b) may have more than
a single parent (i.e. they are undergoing recombination). The model is statistical
in that it describes only the relationship between individuals actually sampled in
the population and not other individuals present in that population but who were
not sampled.

Linkage disequilibrium: A genetic sample in linkage equilibrium when each
SNP is independent and therefore found (on diploid organisms) on the two copies
of the chromosome in the proportions expected from the population level fre-
quency. Linkage disequilibrium is a deviation from these proportions due to cor-
relations on the genome caused by recombination having occurred sufficiently
frequently for SNPs to be correlated.

Haplotype: A haplotype is a single copy of the set of chromosomes for an
individual. Diploid individuals consist of two haplotypes. Specifying a haplotype
rather than a genotype involves knowing which mutations appear together on the
same genomic copy.

Hidden Markov Model: A Hidden Markov Model is a statistical model decom-
posing the probability of the data xi at locations i into two parts using a set of
hidden variables yi. The probability of xi depends only on yi and global parame-
ters, i.e. it is conditionally independent of xj and yj for j 6= i. The probability of
yi depends on only on the previous yi−1 but is conditionally independent of both
xj (for all j) and yj (for j 6= i− 1).

MCMC: Markov Chain Monte Carlo, a statistical inference technique to find
the probability of the parameters given some data when this cannot be directly
computed, but we can access the probability of the data given the parameters.
Parameter values are sampled, and previous ‘good’ parameters can be used to
obtain a new ‘good’ sample.

Greedy optimisation: An optimisation method looking to find the maximum
value of a function is greedy if it tries to obtain the best possible increase of the
function at every iteration. It therefore cannot go down from a locally maximal
value to find the globally maximal value.
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HGDP: Human Genome Diversity Panel, a genetic dataset consisting of 660918
SNPs in 1043 individuals from 51 populations around the world. See http:

//hagsc.org/hgdp/index.html for a description of the data and access infor-
mation.

Heuristic model: A model which is not based on any theory.
Admixture: A population genetics term for the mixing of distinct populations

that have been separated by genetic drift.
Parametric: A distribution that can be specified by a finite set of parameters

is parametric. For example, the mean and standard deviation are parameters of
the Normal distribution.

Non-parametric: A distribution that requires a potentially infinite amount of
parameters to fully specify it is non-parametric. This is never infinite in practise
– instead, the number of parameters can grow with the number of data points ob-
served. Because these models are very flexible, they are often claimed to make no
assumptions about the data which is not quite true - the choice of how parameters
describe the data can have a large effect on the inferred distribution.

Isolation-by-distance: populations undergo genetic drift separately only if
there is some barrier to gene flow preventing changes in one population from
appearing in the other. Isolation-by-distance models use some measure of the
geographical separation between populations to describe the size of the genetic
barrier, usually in terms of a migration rate that decreases with distance. ]
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