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Abstract  

Tumor-expressed ICAM-1 interaction with LFA-1 on naïve tumor-specific CD8+ T 

cells not only stabilizes adhesion, but in the absence of classical B7-mediated 

costimulation, is able to provide potent alternative costimulatory signaling resulting in 

the production of antitumor cytotoxic T lymphocyte (CTL) responses. This study 

shows that overproduction of prostaglandin (PG) E2 by metastatic murine renal 

carcinoma (Renca) cells inhibited direct priming of tumor-specific CTL responses in 

vivo by preventing the IFNγ-dependent upregulation of ICAM-1 that is vital during the 

initial priming of naïve CD8+ T cells.  The addition of exogenous IFNγ during naïve 

CD8+ T-cell priming abrogated PGE2-mediated suppression, and overexpression of 

ICAM-1 by tumor cells restored IFNγ production and proliferation amongst PGE2-

treated tumor-specific CD8+ T cells; preventing tumor growth in vivo.  These findings 

suggest that novel anticancer immunotherapies, which increase expression of ICAM-

1 on tumor cells, could help alleviate PGE2-mediated immune-suppression of 

antitumor CTL responses.  
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Introduction  

Strengthening tumor-specific CD8+ cytotoxic T lymphocyte (CTL) responses is one of 

the most promising recent strategies in cancer therapy. However, antitumor CTL 

activity is widely suppressed within the tumor microenvironment. Understanding 

mechanisms of suppression and ways to overcome them, are key challenges in 

cancer immunotherapy (1-6).  

 

Overproduction of PGE2 by tumor cells as a result of overexpression of 

cyclooxygenase (COX)-2 (7-11), suppresses antitumor immune responses. Studies 

have shown that PGE2 suppresses both innate and adaptive immune responses. It 

alters NK cell effector function by decreasing TNF and IFNγ production (12), and 

reduces phagocytosis by macrophages (13). PGE2 can also disrupt antigen 

presentation by dendritic cells (DC), either by inhibiting maturation, which alters the 

profile of cytokine production and reduces secretion IL2 and IL12, or by inducing 

exhaustion, which prevents the induction of CTL, type 1 helper T (Th1) cells, and 

natural killer (NK) cells in favor of Th2 responses (14-16). 

 

In earlier studies from our laboratory, murine renal cell carcinoma (Renca) cells that 

expressed the hemagglutinin (HA) protein from influenza virus A/PR/8/H1N1 (PR8) 

as a tumor-specific neoantigen (RencaHA cells) were generated. We transfected 

them to overexpress COX-2 (RencaHA/T3 cells), which resulted in elevated PGE2 

production.  Overexpression of COX-2 by RencaHA/T3 cells induced metastasis to 

the tumor draining lymph nodes (TDLN). Yet despite tumor growth, when CD8+ T 

cells transgenic for the CLR TCR (a H-2Kd/HA–specific T cell receptor) were 

adoptively transferred into RencaHA/T3 tumor-bearing mice CLR T cells in the TDLN 



4 
 

remained naïve (15)., The lack of CL4 T cell proliferation and CTL effector function 

was dependent on COX-2 overexpression by RencaHA/T3. Treatment of 

RencaHA/T3 tumor-bearing mice with the selective COX-2 inhibitor NS-398 restored 

both proliferation and CTL effector function to CL4 T cells within the TDLN to the 

same level found within the TDLN of COX-2 negative RencaHA tumor-bearing mice.  

 

The immunosuppressive effects of PGE2 are known to be associated with increased 

intracellular cyclic adenosine monophosphate (cAMP) (17)(13), which modulates the 

effector function of T cells and inhibits the stabilization of the immunological synapse 

formed through LFA-1–ICAM-1 interactions (17-20), which influences subsequent 

IFNγ-dependent T-cell proliferation.  Several studies have shown that T-cell surface 

expression of ICAM-1 by tumor cells can be induced by IFNγ derived from CD8+ T 

cells during productive activation (21, 22). Therefore, we hypothesized that 

suppression of IFNγ production by CL4 CTL interacting with metastatic RencaHA/T3 

in the presence of high concentrations of PGE2, would inhibit upregulation of ICAM-1 

on tumor cells, which is required to drive proliferation and differentiation of tumor-

specific CTL responses. 

 

In this report we demonstrate that the concentration of PGE2 during CD8+ T-

cell/tumor cell interactions plays an essential role in determining the outcome of the 

response; shifting from productive activation of CTL at low concentrations, towards 

antigen-specific tolerance induction at high concentrations.  We show that 

exogenous PGE2 prevented the direct priming of CL4 CTL responses in vitro by  

suppressing IFNγ production by CL4 T cells when they initially interacted with 

RencaHA tumor cells, a critical event for proper priming.  We also show that 
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suppression by PGE2 was temporary and could be mitigated by increasing cell-

surface expression of ICAM-1 by tumor cells. ICAM-1 expression not only drove 

tumor-specific CD8+ T-cell proliferation, but also limited tumor growth in vivo. 
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Materials and Methods  

Mice. Thy1.1+/+ CL4 TCR–transgenic BALB/c mice (6 to 8-wk-old) (23), and Thy1.2+/+ 

BALB/c mice were maintained under specific pathogen–free conditions at the 

University of Bristol Animal Services Unit. Some BALB/c mice were injected 

subcutaneously (s.c.) with 1×106 Renca tumor cells and tumor growth was assessed 

as previously described (15, 21). 

 

Cell lines.  COX-2-overexpressing RencaHA/T3 cells (9, 21, 24), were transfected 

with 1.5 µg of ICAM-1 expressing pIREShyg plasmid (a kind gift from Prof. Adrian 

Whitehouse at Leeds University), to generate RencaHA/T3/ICAM-1.  Renca cells 

were grown in a complete medium (RPMI (1640); Sigma-Aldrich, Poole, UK) 

supplemented with 10% vol./vol. fetal calf serum (FCS, Invitrogen, Paisley, U.K.); 2 

mM L-glutamine (Invitrogen); penicillin/streptomycin (50 U/ml, Invitrogen), 5 × 10-5 M 

2-mercapto-ethanol (Invitrogen). Medium was further supplemented with; geneticin 

(100 µg/ ml, Invitrogen) for RencaHA cells, plus puromycin (1 µg/ml; Biomatik, 

Wilmington, USA) for RencaHA/T3, plus  hygromycin B (250 µg/ml, Invitrogen) for 

RencaHA/T3/ICAM-1. Expression of HA, COX-2, ICAM-1 and concentrations of 

PGE2 were routinely monitored during the study. 

 

Enrichment of Kd/HA-specific CL4 CD8+ T cells.  Single cell suspensions from 

peripheral lymph nodes and spleen of Thy1.1+ CL4 TCR–transgenic mice were 

enriched for CD8+ T cells using anti-CD8 MACS midiMACS (Miltenyi Biotec, Bisley, 

UK) (25).  
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CFSE labeling.  MACS-purified naïve CL4 CD8+ T cells were pelleted, resuspended 

in 50 × 106 cells/ml in PBS and mixed with 5 µM CFSE (BioLegend, San Diego, 

USA), for 15 minutes at 37oC in the dark, and then washed with 45ml complete 

medium. 

  

Priming of naïve CL4 CD8+ T cells by tumor cells.  Naïve CFSE-labeled CL4 

CD8+ T cells were cultured with irradiated tumor cells at a ratio of 1:1 in the presence 

of different concentrations of PGE2 (Sigma-Aldrich).  In some experiments, RencaHA 

cells were treated overnight with different concentrations of PGE2, before being 

washed and used for priming naïve CL4 cells. In other experiments, CL4 cultures 

were treated with recombinant (r)IFNγ (Peprotec), or cultured in plates coated with 

rICAM-1 (Sion Biological Inc.), overnight before adding RencaHA and CL4 cells.  

 

Priming of naïve CL4 CD8+ T cells with plate-bound monoclonal antibodies 

(mAb). Tissue culture plates were coated with 10 mg/ml anti-CD3 (eBioscience, 

Hatfield, U.K.) at 4°C. Control wells contained PBS only. MACS-purified, CFSE-

labeled naïve CL4 cells (5 × 104 – 25 × 104) were cultured, with or without CD28 

mAbs (5 µg/ml, eBioScience), for 48 at 37°C with 5% vol./vol. CO2. CL4 cells were 

then collected and stained with various other mAbs. In other experiments, plates 

were coated with CD3 mAbs and/or rICAM-1 before the addition of naïve CL4 cells. 

For the secondary activation of CL4 CD8+ T cells pre-activated by tumor, CFSE-

labeled CL4 cells (1 x 106) recovered from primary cultures were restimulated with 1 

x 105 freshly irradiated tumor cells in 24 well plates in the presence or absence of 

10–6 M PGE2 for 37°C in 5% vol./vol. CO2.  
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cAMP ELISA. CL4 cells were treated with 1 mM of 3-Isobutyl-1-methylxanthine 

(IBMX), an inhibitor of cAMP phosphodiesterases, for 1 h at 37°C followed by 10–6 M 

PGE2 for 10mins, then lysed at 4°C. ELISA was performed using the BIOMOLFormat 

A Cyclic AMP plus EIA kit (Exeter, UK), according to the manufacturer’s instructions. 

Plates were read at 405 nm with a 590 nm reference using a 3550 microplate reader 

(BioRad, CA, USA). Data were analyzed using Microplate Manager® 4.0 (BioRad) 

and the graphs plotted using Prism 4.03 software (GraphPad).  

 

Flow cytometry.  MACS-purified CL4 cells were restimulated in vitro for 4 h in the 

presence of 1µg/ml of both KdHA peptide and Golgiplug (BD Bioscience San Diego, 

USA), stained with Zombie AquaTM to exclude dead cells (Biolegend), and various 

fluorescently-conjugated mAbs against surface markers; CD69, CD62L and CD44 

(BioLegend). CL4 cells were then permeabilized using BD Perm/fix kit (BD 

Bioscience) according to manufacturer’s instructions and stained with anti-IFNγ 

mAbs (Biolegend). Cells were analyzed using an LSRII or FACSCalibur flow-

cytometer with DiVa or CellQuest software respectively (BD Cytometry Systems 

Oxford, UK).  

 

Results  

To determine if PGE2 affected the direct priming of naive tumor-specific CD8+ T cells 

by tumor cells, CFSE-labeled naïve Kd/HA-specific CL4 CD8+ T cells were cocultured 

with RencaHA cells for 72 h in the presence of increasing concentrations of PGE2 

([RencaHA+CL4]+PGE2; Fig, 1A, top). Nontransfected (HA-negative), RencaNT cells 

were used as a negative control. After coculture, CL4 cells were isolated and 

analyzed for proliferation using standard 3H-thymidine incorporation (Fig. 1, left), as 
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well as for intracellular IFNγ expression using flow cytometric analyses (Fig. 1,  

right).  In the absence of PGE2, CL4 cells proliferated and produced IFNγ production 

compared with CL4 cells cocultured with RencaNT cells.  However, in the presence 

of 10-6-10-10 M  PGE2, proliferation and IFNγ production by CL4 cells was 

significantly reduced when compared with untreated cultures and at 10-11M PGE2 

CL4 proliferation increased in response to RencaHA cells; although this was not 

significant. Importantly, when RencaNT cells were cultured with CL4 cells in the 

presence of PGE2, no significant change was observed amongst CL4 cells and they 

maintained their naïve phenotype (data not shown). Correlating with reduced 

proliferation, amongst CL4 cells cultured with RencaHA cells in the presence of the 

highest concentrations of PGE2, (10-6 and 10-7 M), IFNγexpression was significantly 

reduced compared with PGE2-untreated cultures. However, when CL4 cells were 

cultured with RencaHA at lower concentrations of PGE2, (10-10 M), both proliferation 

and IFNγ expression increased compared with untreated cultures.   

 

The regulation of naïve CD8+ T-cell responses by PGE2 could be direct, or indirect,, 

by conditioning the tumor cells. To determine if the effect is indirect, RencaHA cells 

were pretreated with various concentrations of PGE2 (Fig. 1A, bottom).  However, 

prior to coculture, RencaHA cells were washed to remove any excess PGE2 

([RenaHA+PGE2]+CL4).  After 72 h CL4 cells were isolated and analyzed for 

proliferation (left panel) and intracellular IFNγ expression by flow cytometry (right 

panel). The data show that, compared with PGE2-untreated cultures, pretreatment of 

RencaHA cells with PGE2 did not result in a significant reduction in CL4 proliferation 

even at the highest concentration of PGE2. Furthermore, IFNγ expression was also 

unaffected by pretreatment of RencaHA cells with PGE2, with a slight increase in 



10 
 

expression being significant only at 10-8 M. Together these data suggest that high 

concentrations of PGE2
 suppresses proliferation and CTL effector function in vitro by 

acting directly upon CL4 cells.   

 

The direct effect of high concentrations of PGE2 on CL4 cell priming was further 

examined by culturing CFSE-labeled CL4 cells in the presence of immobilized anti-

CD3 and anti-CD28 mAb with or without 10-6 M PGE2 (Fig. 1B). Although untreated 

CL4 T cells proliferated and elaborated IFNγ, the presence of high concentrations of 

PGE2 resulted in a reduction in proliferation, with many more undivided CFSE-high 

cells, and a significant decrease in IFNγ expression. Thus, the inhibitory effects of 

PGE2 are most likely mediated through direct action on naïve CL4 cells.  

 

PGE2 inhibits reactivation of CD8+ T cells 

To determine whether or not inhibition of CL4 T-cell proliferation and IFNγ production 

by high concentrations of PGE2 is permanent, naïve CFSE-labeled CL4 cells were 

first primed in vitro with RencaHA cells in the presence or absence of PGE2. After 48 

h, CL4 cells were isolated and washed to remove excess PGE2, before undergoing a 

secondary culture for a further 72 h with fresh RencaHA cells in the presence or 

absence of more PGE2.  CL4 cells cultured in the presence of nontransfected, HA 

negative RencaNT cells were used as a control.   

 

The data show that CL4 cells from primary cocultures without PGE2 proliferated and 

produced IFNγ (Fig. 2A; top row), and following secondary coculture with fresh 

RencaHA cells alone in the absence of PGE2, resulted in further proliferation with 

over than 40% of cells being IFNγ+. However, when PGE2 was added to these 
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secondary cocultures, proliferation was less, with fewer than 10% of cells being  

IFNγ+.  Critically, when PGE2-treated CL4 cells from primary cocultures underwent a 

secondary coculture with fresh RencaHA cells in the absence of PGE2, nearly half of 

the CL4 cells had proliferated, and one-tenth of divided cells were IFNγ+, as 

compared with CL4 cells to which PGE2 was also added in the secondary coculture 

(Fig. 2A; bottom row).  Therefore, suppression by PGE2 was reversible, and 

withdrawing PGE2 from the environment could restore CL4 proliferation and CTL 

effector function.    

 

The inhibition of effector function among PGE2-treated CD8+ T cells is associated 

with increased cAMP, which inhibits IFNγ production and the acquisition of CTL 

effector function (17-20, 26).  To establish whether or not PGE2 suppresses naïve 

CL4 cells in a cAMP-dependent manner, naïve PGE2-treated CL4 cells were lysed, 

and intracellular cAMP concentrations were measured using an ELISA. Following 

PGE2 treatment, cAMP expression amongst CL4 cells rose by around threefold 

compared to untreated CL4 cells (Fig. 2B).  

 

IFNγ reverses inhibition of CTL function  

We previously demonstrated that IFNγ treatment of RencaHA cells increased 

antitumor CTL responses by enhancing MHC class I (H-2Kd) expression by tumor 

cell (21). To determine whether or not the presence of exogenous IFNγ could directly 

influence CL4 T-cell responses in the presence of PGE2, CFSE-labeled naïve CL4 

cells were cocultured with RencaHA cells in the presence or absence of PGE2 and 

rIFNγ and proliferation, (determined by reductions in CFSE), and IFNγ production, 

were assessed by flow cytometry. The proliferation and IFNγ production of CL4 T 
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cells were inhibited by PGE2.(Fig. 3A). However, addition of rIFNγ to these PGE2-

treated RencaHA+CL4 cocultures counteracted the suppression of proliferation and 

IFNγ production. Addition of rIFNγ also resulted in increased expression of the early 

activation marker CD69 on proliferating CL4 cells, indicating that the presence of 

rIFNγ, during the initial priming of naïve CL4 cells, is essential to reverse the 

suppressive effects of PGE2 (Fig. 3B). Treatment of RencaNT+CL4 cocultures with 

rIFNγ did not result any nonspecific increase in proliferation amongst CL4 cells (Fig. 

3A and B: top rows).  

 

As IFNγ receptors are expressed on a variety of cell types including naïve CD8+ T 

cells and tumor cells (27, 28), it is possible that in the RencaHA+CL4 cocultures, 

IFNγ may be acting on either or both cell types.  To address this issue, naïve CFSE-

labeled CL4 cells were primed with mAb to CD3 and CD28 in the presence or 

absence of PGE2 with or without rIFNγ. As anticipated control mAb-primed CL4 cells 

elaborated IFNγ after 72 h, which was further enhanced by the addition of rIFNγ (Fig. 

3C). However, although after PGE2 treatment, IFNγ production by CL4 cells primed 

with mAbs to CD3 and CD8 was inhibited, addition of rIFNγ did not restore IFNγ 

production by CL4 cells. Therefore, these data clearly show that reversal of the 

PGE2-mediated suppression of CTL effector function by IFNγ can only occur in the 

presence of Renca-HA cells.   

 

To test whether or not rIFNγ counteracts PGE2-mediated suppression by acting 

directly on RencaHA cells, cocultures were set up in which RencaHA cells were 

treated with rIFNγ at different time points in the presence of PGE2 (Fig. 4). Addition 

of 10 ng/ml of rIFNγ to RencaHA+CL4 cocultures at 0 and 20 h resulted in an 
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increase in proliferation, as both CFSE and IFNγ were reduced (Fig. 4; middle two 

rows). However, addition of rIFNγ to the cocultures after 40 h of exposure to PGE2 

did not enhance IFNγ production by CL4 cells (Fig. 4; bottom row). This suggests 

that the reversal of PGE2-mediated suppression by rIFNγ can occur in the very early 

stages of CL4 T-cell priming.  

 

ICAM-1–LFA-1 interactions abrogate inhibition in vitro 

Not only is ICAM-1 interaction with T cell–expressed LFA-1 crucial for the homotypic 

T-cell aggregation that is required for T-cell communication and exchanging 

information (29),  but the LFA-1–ICAM-1 interaction can transduce downstream 

costimulatory signals and drive T-cell proliferation (6, 27). We have shown that the 

cell-surface expression of ICAM-1 by RencaHA cells is crucial for direct priming of 

naïve CL4 T cells. Moreover, we showed that upregulation of ICAM-1 expression is 

induced by IFNγ derived from CL4 cells during their early activation by RencaHA 

cells. This reinforces further proliferation and the induction of CTL effector function 

(21, 22). Based upon these findings, we wished to compare classical anti-CD28 

costimulation, with alternative ICAM-1-mediated costimulation through LFA-1 Fig. 

5A). In the presence of rICAM-1, proliferation of naive CL4 T cells was significantly 

greater compared with the proliferation in the presence of anti-CD28 mAbs. Whereas 

some CL4 cells proliferated in response to CD3 mAb alone, rICAM-1 alone did not 

induce any proliferation (Fig. 5A).  These results indicated that ICAM-1 acts as a 

highly potent alternative costimulatory molecule to drive naïve CL4 T-cell 

proliferation.  
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It is known that following priming, T cells decrease surface expression of CD62L, 

and increase CD44 expression, enabling extravasation through blood vessels into 

inflamed tissues and the formation of effector memory T (Tem) cells (28). To test 

whether or not classical (CD3  mAb + CD28 mAb) or alternative (CD3 mAb + rICAM-

1) priming of naïve CL4 cells in vitro gave rise to Tem cells, CFSE-labeled naïve CL4 

cells were primed accordingly and the expression of CD62L, CD44, and IFNγ was 

assessed by flow cytometry.  Treatment of CFSE-labeled CL4 cells with anti-CD3 + 

rICAM-1 consistently produced more IFNγ-expesssing cells that divided two or more 

times, than when CL4 cells were primed with anti-CD3 + anti-CD28, (Fig. 5B),. 

Therefore, the induction of CTL effector function is at least comparable. Given the 

high expression of CD44 and low expression of CD62L under both conditions, the 

cells are Tem CTL (Fig. 5B).   

 

Our previous studies showed that, although low expression of ICAM-1 by RencaHA 

cells is sufficient to prime naïve CL4 cells (21), PGE2 has the ability to prevent 

priming of CL4 cells in vitro and in vivo (15). Therefore, we wished to compare the 

effect of PGE2 on classical (CD3 mAb + CD28 mAb), with alternative (CD3 mAb + 

rICAM-1) priming of CL4 cells in vitro. Furthermore, we also wished to determine 

whether or not increasing ICAM-1–mediated costimulation, by the addition of rICAM-

1, could counteract PGE2-mediated inhibition of naïve CL4 T-cell priming.   

 

Addition of exogenous PGE2 has a greater inhibitory effect upon classical CD28-

mediated costimulation compared with alternative ICAM-1-LFA-1 costimulation (Fig. 

6A). When CL4 cells were cocultured with RencaHA cells, addition of PGE2 resulted 

reduced CL4 proliferation by about two-thirds.  However, in the presence of rICAM-1 
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CL4 proliferation, in response to coculture with RencaHA cells, was unaffected by 

PGE2 (Fig. 6B). Thus, although PGE2 has a greater inhibitory effect upon ‘classical’ 

costimulation compared with ‘alternative’ costimulation pathway, suppression is 

significantly abrogated by the addition of rICAM-1.   

 

Countering PGE2 inhibition, with overexpressed ICAM-1.   

It is evident that IFNγ exerts its antitumor effects by directly (27, 30) enhancing 

immunogenicity through elevated ICAM-1 expression (10, 31). To determine whether 

or not upregulation of ICAM-1 is instrumental in abrogating PGE2-mediated 

suppression, COX-2-overexpressing RencaHA/T3 cells (15) were further transfected 

with a cDNA plasmid expressing full-length murine ICAM-1. The resulting 

RencaHA/T3/ICAM-1 cell line expressed much more ICAM-1 compared with 

conventional RencaHA/T3 cells, which increased further after treatment with rIFNγ 

(Fig, 7A). Despite having equivalent amounts of HA protein and PGE2 production 

(data not shown), overexpression of ICAM-1 by RencaHA/T3/ICAM-1 cells increased 

proliferation of naïve CL4 cells in vitro compared with RencaHA/T3 cells (Fig. 7B). 

Whereas s.c. injection of RencaHA/T3 cells into BALB/c mice resulted in the 

formation of solid tumors after 2 weeks, s.c. injection of RencaHA/T3/ICAM-1 cells 

did not result in tumor growth (Fig. 7C&D). Together, these data clearly show that 

overexpression of ICAM-1 can counteract PGE2-mediated immunosuppression; 

restoring CTL effector function and profoundly preventing tumor growth in vivo. 
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Discussion  

Overexpression of COX-2 by RencaHA/T3 cells not only results in abortive activation 

of CL4 CD8+ T cells in the TDLN of RencaHA/T3 tumor-bearing mice, but also 

facilitates metastasis of RencaHA/T3 cells to the TDLN (15).  However, whilst 

metastases of RencaHA/T3 cells to the TDLN would allow direct priming of naïve 

CL4 cells, overproduction of PGE2 prevented the induction of antitumor CTL 

responses in these mice (32). The experiments described in this report set out to 

determine the mechanisms of PGE2-mediated immunosuppression.  

 

PGE2 exhibits various and sometimes opposing effects on the immune responses. 

For example, not only does PGE2 stimulate activation of mast cells (33, 34), it also 

inhibits cytokine release by macrophages (35). We have shown that the 

concentration of PGE2 is a major factor in determining its overall affect upon CD8+ T-

cells responses. At physiological concentrations of ≤ 20 ng/ml, produced by 

constitutive expression of COX-1 (36), PGE2 is able to enhance productive activation 

of CL4 cells. However, at high concentrations found in COX-2 overexpressing tumor 

micro-environments in vivo (37), PGE2 prevents proliferation and IFNγ production 

CL4 cells in response to RencaHA cells.  We show that PGE2 mediates its effects 

through direct action on CL4 cells. In the absence of RencaHA cells, proliferation 

and IFNγ production by PGE2-treated CL4 cells primed by anti-CD3+anti-CD28 mAb 

was also reduced, and pretreatment of RencaHA cells with PGE2 did not reduce 

proliferation or IFNγ production by CL4 cells.   

 

The fact that the PGE2-mediated suppression of CL4 cell responsiveness could not 

be reversed by the addition of IL2 (Ahmadi and Morgan unpublished data) suggests 

ICAM-1 
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that PGE2 does not induce a state of functional unresponsiveness due to anergy.  

Our findings correlate with other data showing that PGE2 directly inhibits CTL  

function such as IFNγ production (20). However importantly, PGE2-mediated 

suppression of CL4 cells is reversible, as secondary re-stimulation of PGE2-

conditioned CL4 cells, with RencaHA cells in the absence of PGE2, restored 

proliferation and IFNγ production. Furthermore, irrespective of the primary culture 

conditions, the presence of PGE2 in the secondary cultures renders CL4 cells 

refractory to proliferation and IFNγ production.   

 

Consistent with the inhibition of CL4 CTL responses was an observed increase in 

intracellular cAMP following treatment with PGE2. Increased cAMP inhibits IFNγ 

production by T cells as well as inhibit stabilization of the interaction between LFA-1 

and ICAM-1 (17, 18) thus preventing T-cell activation due to the inability of the T 

cells and APCs to form a stable a synapse (18, 19). Yet, we showed that CL4 cells 

increased cell-surface expression of the early activation marker CD69, possibly as a 

result of cognate TCR signaling (38). We suggest that, although some initial cognate 

interactions may occur that result in the upregulation of CD69, these interactions are 

not sustained sufficiently enough to trigger IFNγ production to promote further 

interactions.  Our finding that rIFNγ reversed  PGE2-mediated suppression of naïve 

CL4 priming by directly increasing the immunogenicity of tumor cells correlates with 

other studies that suggest that IFNγ enhances antigen presentation by tumor cells 

through increased MHC class I expression (21, 22). 

 

Previously we showed that in the absence of classical CD28-mediated costimulation, 

the interaction of LFA-1 with ICAM-1 provides sufficient costimulatory signals to 
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prime naïve CD8+ T cells and induce CTL function (8, 10). We now show that 

costimulation provided through LFA-1 is more potent than costimulation through 

CD28, which may arise from that fact that the type and quantity of the signals 

induced within the T cell by these two costimulatory receptors are distinct from each 

other (29).  

 

In the presence of rICAM-1 cultures, CL4 cells produced more IFNγ and were 

CD44high and CD62Llow, facilitating T-cell migration from LN to the site of 

inflammation, a typically Tem CTL phenotype (30). Such differences were also 

observed when priming naïve CL4 cells with RencaHA tumor cells, in which 

costimulation occurs solely through ICAM-1-LFA-1 interaction. Blocking LFA-1 or 

ICAM-1 causes a reduction in CTL production of IFNγ and lysis (1, 2); therefore 

enhancing tumor invasion and metastasis. In addition, studies have shown in breast 

cancer that silencing of the ICAM-1 gene by siRNA decreased tumorigenicity in vitro 

(39).   

 

We showed that exposure to PGE2 during priming with both classical and alternative 

costimulation pathways gave rise to a reduction in CL4 proliferation and IFNγ 

production. However, PGE2-mediated suppression of priming with classical 

costimulation was greater than with alternative rICAM-1-mediated costimulation. In 

the presence of PGE2, addition of rICAM-1 together with RencaHA-expressed ICAM-

1 restored CL4 proliferation. Thus, in the presence of PGE2, LFA-1–ICAM-1 

signaling is essential to fully initiate CL4 T-cell priming, presumably due to the 

stabilizing effect of rICAM-1 on T-cell / tumor cell interactions,,increasing TCR 

signaling.  
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Increased expression of ICAM-1 among melanoma cells gives rise to an increase in 

the lysis-susceptibility of melanoma cells by lymphokine-activated killer cells (LAKs) 

(40). Other studies also showed that transfecting gastric cancer cells with ICAM-1 

causes significant increases in both adhesion to PBMC and subsequent lysis (41). 

Induction of ICAM-1 by artificial transcription factors results in decreased growth of 

ovarian cancer cells (42). Studies in mice show that siRNA-mediated silencing of 

hepatic ICAM-1 in vivo prior to injecting C26 murine colon carcinoma cells alters the 

liver microenvironment. In ICAM-1-/- mice, reduced numbers of C26 cancer cells 

were obtained from the liver as well as myeloid suppressor cells, and the numbers of 

TILs were increased compared with controls (43). In our study we found that 

overexpression of ICAM-1 in RencaHA/T3 cells restored their ability to induce CL4 

cell proliferation in vitro, despite the presence of PGE2. However, although these 

RencaHA/ T3/ICAM-1 cells express abundant ICAM-1 post transfection, treatment 

with exogenous IFNγ was could further increase ICAM-1 expression. Unlike 

conventional RencaHA/T3 cells, RencaHA/T3/ICAM-1 cells did not form tumors in 

BALB/c mice, suggesting that potent antitumor CTL had been primed which 

eradicated the tumors. 

 

Based upon our findings, we propose the following model to explain the role of 

alternative LFA-1–ICAM-1 costimulatory interactions in restoring CTL function in the 

presence of PGE2 (Supplementary Fig. S1).  In the steady state, naïve CL4 T cells 

express LFA-1 with low affinity for ICAM-1, and although coculture of naïve CL4 cells 

with RencaHA cells enables CL4 TCR interactions with H-2Kd/HA peptide 

complexes, this interaction is transient and may be terminated if a synapse does not 
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form between the interacting cells. However, this initial contact is sufficient to 

stimulate Ca2+ influx inside CL4 cell, which provides the necessary stimuli to 

increase the affinity of LFA-1 for ICAM-1 (Supplementary Fig. S1A). When 

expression of ICAM-1 on RencaHA cells is too low to maintain a stabilized 

interaction between CL4 cells and RencaHA cells (Supplementary Fig. S1B), 

increased cAMP levels within CL4 cells will interfere with Ca2+ influx, resulting in a 

reduction in the affinity of LFA-1 for ICAM-1. Eventually, interactions between the 

CL4 and RencaHA cells are terminated and they disassociate without any CL4 

proliferation and/or IFNγ production.  However, production of IFNγ in the vicinity of 

CL4 cells and RencaHA cells coming into contact with one and another, increases 

ICAM-1 expression, thus promoting further interactions between LFA-1 and ICAM-1, 

the formation of the synapse, and stabilized binding between these cell types. In 

contrast to signals mediated by through CD28 ligation, the signals associated with 

LFA-1-ICAM-1 interactions appear to be essential for antitumor specific CD8+ T cells 

to overcome the inhibitory effects of PGE2, and generate mature CTL. When 

expression ICAM-1 on RencaHA cells is high (Supplementary Fig. S1C), the 

increased affinity of LFA-1 for ICAM-1 serves to maintain the contact between CL4 

and RencaHA cell, enabling the formation of a stable synapse to be formed between 

the two cell types. Following synapse formation, the signals provided by both TCR–

KdHA  and LFA-1–ICAM-1 interactions further increase Ca2+ influx, inducing a high 

affinity state of LFA-1 for interaction with ICAM-1. In this situation, the inhibitory 

signals on Ca2+ influx in CL4 cells, induced by PGE2-dependent increases in cAMP 

levels, cannot override the stimulatory signals maintained by stable TCR–Kd/HA and 

LFA-1–ICAM-1 interactions, such that the net result is the expansion of antitumor 

CTL.  
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In conclusion, the data presented in this report support the thesis that overproduction 

of PGE2 by tumor cells that have metastasized to the TDLN favors tumor 

progression in the presence of an otherwise competent immune system by 

preventing productive activation of tumor-specific CTL responses within the TDLN.  

Thus, the use of PGE2-specific inhibitors to reduce or inhibit PGE2 production at the 

tumor site could promote antitumor-specific CTL responses from both naïve and pre-

activated CD8+ T cells. Our data also show that IFNγ-dependent upregulation of 

ICAM-1 expression by tumor cells protects tumor-specific CTLs from the inhibitory 

effect of PGE2, by sustaining CD8+ T-cell activation, proliferation, and induction of 

CTL effector function. Therefore, drugs that can increase the expression of cell-

surface expression of ICAM-1 by tumor cells could provide us with a powerful 

immune-therapeutic tool to counteract the CTL-inhibitory action of tumor-derived 

PGE2,, and ultimately control tumor growth. 
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Figure 1: PGE2 can inhibit or enhance the effector function of naïve CL4 cells, 

primed by RencaHA tumor cells. Naïve, Thy1.1+ CFSE-labeled CL4 cells (1 x 106) 

were cultured (A) with  irradiated RencaHA tumor cells (1 x 105) in the presence or 

absence of different concentrations of PGE2 (RencaHA+CL4)+PGE2 (top panels), or 

with irradiated RencaHA tumor cells (1 x 105); pretreated with different 

concentrations of PGE2 overnight (RencaHA+PGE2)+CL4 (bottom panels),  (B) 

precoated with anti-CD3 (10 µg/ml) alone, or with anti-CD3 plus or minus anti-CD28 

(5µg/ml) in the presence of 10-6 M PGE2. Bars (A), show CL4 T-cell proliferation as 

counts per minutes (cpm) of 3H-thymidine incorporation (left) and the percentage 

change in IFNγ+ CL4 cells (right). (B; left) show CL4 T-cell proliferation as loss of 

CFSE versus IFNγ (top row) as well the number of divided cells (bottom). Numbers 

in the left quadrants show the percentage of CL4 cells that produce IFNγ.  Bars (B; 

right) show IFNγ expression amongst Thy1.1+ CL4 cells with and without PGE2.  

Data are representative four separate experiments. Statistical analyses were carried 

out using one way ANOVA followed by Bonferroni’s test, *P <0.05, ** P <0.01, *** P 

< 0.0001.   
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Figure 2: The presence of PGE2 in the culture is required to inhibit priming of 

both naïve and effector CL4 cells. A, Naïve Thy1.1+ CFSE-labeled CL4 cells (1 x 

106) were cultured with irradiated RencaHA cells (1 x 105) in the absence or 

presence of 10-6 M PGE2 (Primary cultures) for  48 h. Primed CL4 cells (1 x 106) 

were collected from the primary cultures and co-cultured again with 1x105 fresh 

irradiated RencaHA tumor cells in the presence or absence of 10-6M PGE2 for a 

further 72 h (Secondary cultures).  Dot plots show CL4 T-cell proliferation as loss of 

CFSE, together with IFNγ expression amongst Thy1.1+ CL4 cells. Numbers in the 

left quadrants show the percentage of CL4 cells that have proliferated and/or 

produce IFNγ from the total CL4 population acquired. Data are representative of 

three separate experiments. B, 2x106 naïve CL4 cells were also cultured in the 

presence or absence of 10-6M PGE2. CL4 cells were lysed and the levels of 

intracellular cAMP determined by ELISA. Bars show mean expression of cAMP 

amongst CL4 cells expressed as pg/ml. Error bars represent SD.  Statistical 

analyses were carried out using one way ANOVA.  ***P < 0.0001.  Data are 

representative of two separate experiments. 
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Figure 3: IFNγ reverses the inhibition of CTL function caused by PGE2.  1x106 

naïve, Thy1.1+ CFSE-labeled CL4 cells were cultured in 24 well plates with: (A&B) 

irradiated RencaHA or Renca-NT tumor cells (1 x 105), or (C) coated with mAbs to 

CD3 mAb (10 µg/ml) and CD28 (5 µg/ml). Cultures were left untreated (alone) or 

treated with rIFNγ (10 ng/ml) and/or 10-6 M PGE2 for 72 h. CL4 cells were isolated 

from the cultures and analyzed by flow cytometry.  Dot plots show proliferation as 

loss of CFSE amongst CL4 cells gated on Thy1.1 expression versus either (A&C) 

IFNγ or (B) CD69. Numbers show the percentage of CL4 cells that are in the 

quadrant.  Data are representative of two separate experiments. 
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Figure 4.  IFNy is vital during the initial phases of RencaHA-mediated priming 

of naïve CL4 CD8+ T cells. Irradiated RencaHA and Renca-NT tumor cells (1 x 105) 

were cocultured with naïve Thy1.1+ CFSE-labeled CL4 cells (1 x 106) in the 

presence or absence of 10-6 M PGE2.  Cultures were left untreated (no rIFNγ), or 

treated with 10 ng/ml of rIFNγ at the beginning (0 h), and after 2 h or 40 h of the 

culture.  At 72 h, CL4 cells were isolated from cultures and stained for intracellular 

IFNγ.  Dot plots are gated on Thy1.1+ CL4 cells, and numbers above indicate the 

percentage of IFNγ+ CL4 cells. Data are representative four independent 

experiments. 
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Figure 5: CL4 CD8+ T-cell activation with anti-CD3 along with either rICAM-1 or 

anti-CD28. Naïve, Thy1.1+ CFSE-labeled CL4 cells (2 × 104) were cultured with 

either PBS or combinations of anti-CD3 (10 µg/ml), anti-CD28 (5 µg/ml) and rICAM-1 

(3 µg/ml) as shown. A: Bars show CL4 proliferation as counts per minute (cmp) from 

3H-thymidine incorporation at 48 and 72 h for each condition and error bars 

represent standard deviation (SD). Data are collected from three independent 

experiments. Statistical analyses were carried out using one way ANOVA followed 

by Bonferroni’s test ***P < 0.0001. B: Histograms (bottom) show proliferation as loss 

of CFSE labeling, and dot plots (upper) show expression of CD44 and CD62L and 

IFNγ. Numbers in each dot plot show percentage of proliferated cells expressing 

each marker.  Data is representative of two separate experiments. 
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Figure 6: The effect of rICAM-1 on CL4 CD8+ T-cell proliferation in the presence 

of PGE2. Naïve, Thy1.1+ CL4 cells (2 × 104) were cultured in 96 well plates: (A) with 

either PBS or combinations of anti-CD3 (10 µg/ml), anti-CD28 (5 µg/ml) and rICAM-1 

(3 µg/ml), in the presence or absence of 10-6 M PGE2 as shown, or (B) with different 

concentrations of rICAM-1 plus 1 ×1 04 irradiated RencaHA cells or Renca-NT cells 

and 1 × 104 purified naïve CL4 CD8+ T in the presence or absence of 10-6 M PGE2.  

Bars show mean proliferation of CL4 cells at 48h for each condition as counts per 

minute (cpm) of 3H-thymidine incorporation, and error bars represent standard 

deviation (SD).  Statistical analyses were carried out using one way ANOVA followed 

by Bonferroni’s test, *P < 0.05, ***P < 0.0001.  Data is representative of four 

separate experiments. 
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Figure 7: Overexpression of ICAM-1 by PGE2-expressing tumor cells restores 

CL4 proliferation in vitro and inhibits tumor growth in vivo.  

A: Renca-HA/T3 and Renca-HA/T3/ICAM-1 cells were cultured in the presence or 

absence of 10ng/ml of IFNγ for 48 h, then stained for ICAM-1. Histograms show anti-

ICAM-1 mAb staining of non-treated cultures (solid) and the IFNγ-treated cells 

(dashed). Filled line represents isotype control mAb staining of non-IFNγ-treated 

cells. B: Irradiated Renca-HA/T3 and Renca-HA/T3/ICAM-1 cells were also cultured 

with 1 x 104 naïve CL4 cells at a ratio of 1:1.  Bars show mean proliferation of CL4 

cells at 48 h as counts per minute (cpm) of 3H-thymidine incorporation. Error bars 

represent standard deviation (SD).  Statistical analyses were carried out using one 

way ANOVA followed by Bonferroni’s test, ***P < 0.0001.  Data is representative of 

four separate experiments.  (C) Groups of 6 to 8 week old BALB/c mice, were 

injected s.c. with either 1 × 106 RencaHA/T3 (•) or with RencaHA/T3/ICAM-1 (×) cells 

and tumor size plotted for each mouse (where n=5 for each group), and (D) mean 

size and SD for each group.  Statistical analyses were carried out using one way 

ANOVA followed by Bonferroni’s test, ***P < 0.0001  

 


