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SUMMARY

The campressible laminar boundery layer equabions for o perfect
gas in steady flow at arbltrary extarnal iach number and wall temperature
distribution arc solved approximetely by the combined use of the Stewartson-
Illingworth transformetion and application of Lighthill's method to yield
the skin friction and rate of heat transfer,

Appendices are added which give the necessary modifications to the
method for the separate cases of very low Prandtl number and for the flow
near & separation point, A further cppendix describes Spalding's method
for improving the accuracy of the wall value of shear stress and rate of
heat transfer distributions along o wall hoving a non-uniform temperature
distribution,

This paper was first written in January, 1959. A few minor alterations
have been done during proof reading January, 1960,
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1o Introduction

For bodies travelling at very high speeds through the atmosphere
there exists near the body nose extensive regions of _aminar boundary
loyer flowv. There is, therefore, considerable interest in finding rapid
accurate methods for estimeting the skin friction and heat transfer in a
laminar boundary layer of a perfect gag at high speeds under conditions
of ‘arbitrary velocity and wall temperature distributions, Although in
practical problems real gos effects are likely to be of importance in
the higher speed ranges, yet under certain conditions, solutions obtained
assuming the fluid in the boundery layer is a perfect gas , may be used in
preliminary calculations, provided they are interpreted correctly.

It is generally accepted that the rapid accurate estimtion of the
overall characteristics of a compressible laminar boundery layer, for
arbitrary distributions of extcrnal velocity and wall temperature (or
heat traonsfer) » 18 best performed by the use of the momentum and energy
integral equations, For the case when the Prandtl mmber (o) equols
unity and the viscosity - temperature index () equals unity Curle (1958b)
describes o modified Pohlhausen method, snalogous to Thweite's method in
incompressible flow, by which the skin friction can be evaluated for the
case of heat transfer with uniform wall tamperature, and in Curle (19582)
for non~uniform wall temperature, An earliecr paper by Curle (1957a)
describes a similar method for the case of zero hent transfer., For the
latter case other methods exist including those of Young (1949) and Tani
(1954). Young's method has heen extonded by Luxton and Young (1958) to
deal with the effect of heat transfer. For the specinl cases @ = 1 and
O =1, 0,7 Levy (1954), end vhen w = ¢ = 1 Cohen and Reshotko (19562,
1956b), give results for arbitrary pressure distribution end constant wall
temperature, The work of Levy stems from the I1lingworth (1949) vhilst
that of Cohen and Reshotko stems fiom the Stewartson (1949) transformntion
of the compressible boundary layer cquations whereby, for o= @ = 1 and
zero heat transfer, the compressible flow equations nre transformed
exactly into the incompressible flow equations, Thus knovm solutions of
the latter equations can be used to solve corresponding compressible flow
problems, A modified form of this trensfomntion for arbitrory o has been
deseribed by Rott (1953) and was used by Tand (1954),

An alternative approach has been used by Lighthill (1950) for finding
the skin friction end heat trensfer from a wall of non-uniform temperature,
The method, which makes use of Von ilises' form of the boundary layer
equations and uses a linenr approximation to the velocity distribution near
the wall, is applicable to low Mach number flows of variable external
velocity and to high Mach number flows of uniform external velocity.
Lighthill has applied this method to the vroblean of the wall temperature
distribution on a flat plate at high Mach numbers which is losing heat
by rediation only, Tifford (1951), and Tribus and Klein (1955), have
modified Lighthill's method to include a better approximation to the
velocity distribution near the wall and so provide a more accurate method



for retarded flows, in widch the lincer approximrtion to the velocity
distribution is inadequate, 4 modified and improved from of Tifford's
correction has been given by Spalding (1958), who shows tha’ with this

new correction the error in the Lighthill m@‘ch:ﬂ for lLeat transfer can

be reduced to less than 2,5% rer»"*‘uleas of pressure gradient, Liepmamnn
(1958) has rederived nghthlll s fomula for the rate of heat transfer
using an ener integral approach. Other methods, such as Chapmen and
Rubesin (1 949%5’ Schuh (1953) and Imai (1958), for solving the heat transfer
in compressible flow in which the wall ta@cmture distribution is expressed
as a polynomial in x (the distance along the surface) do not have the

ronge of application of Lighthill's method,

Illingworth (1954} has extended Ldghthill's method to deal with
variable freestream and wall *temperature distribution in a compressible
flow wvhen O = @ = 4. However in applications he considered only the
case of constant wall temperature and mainstream velocity distributions
expressed as polynomials in x,

The aim of the presen“t paper is to produce an approximate rapid

method for solving the compressible £low boundery layer eguations for
erbitrary external Mach nunber and well temperature distribution, The
Prandtl number (0) will be token as arbitrary, though not small compared
with unity, and although it is assumed 4 @ T across the boundary layer
a more accurate viscosity=-temperature dependence for the wall viscosity
will be teken os suggested by Chopman and Rubesin (1949), The proposed
method mokes use of the Stewartson~Illingworth transformation, but not
regtricting its use to zero heat transfer, whereby the transformed
equations are solved by the method of Li ;fjrﬁ,nlll (1950) A few exomples

of its application are given and the results are compared with other known
solutions, It is found that even in the severe test of the application of
the method to the case of a smell sdverse pressure gradient the accuracy
is probably adsquate for cnglnecrmo purposes. The accuracy of the mcthod
con be improved by the addition of Spa aldi ng's correction and a brief
account of this hns been included in an appendix to the present paper,

In other appendices the rate of heat transfer is evaluated using
different approximations to the velocity distribution close to the wall
for the two cases,

(2) very small Prandtl number
and (b) ot a separation peint,



2. - Basic equotions

The steady two~dimensional boundery layer cquations of continuity,
motion and energy for a perfect gas are respectively

- 8pu opv - _
5% * 5 = 0 (1)
du ou du1 &) du
Pt vy T G hE =Ty () (2
du N 2
2 o1 108 (B2 (93

where 1 is the enthalpy and o is the Prandtl number, Suffix (1)
denotes the local conditions outside the boundnry layer,

If the flow external to the boundary layer is isentropic (end only
his case will be considered in this paper)

. L2 A
i + v ,, = const. 4
1 1 /2 (&)
or if e, 1s the local speed of sound and Yy is the ratio of the
specific heats
2 -1 :
a, o+ X s uf = const, . (41

The stagnation enthalpy (or as it is sometimes called the specific total
energy) equation is found by multiplying (2) by u and adding it to-
equation (3). If the stagnotion enthalpy
. 2
h = i 4 u/2

the result is

oh v & _ 8 [u o o) X
AR A o7 | < 5 (= (1 =0) 3) (5)

The boundery conditions to be applicd are at

— — poend 4 oot \
¥y = O u=v=0 ; T = TW(X;

. /. __82 / ou \
Kk ay) W ) a‘w\x> ’ <u 24 ) w ) TTJ(X)



ou ar 0
% T oy T
vhere suffix (x) denotes the wall velue ( y = 0), 7. is the wall

sheaxr stress and E}_W is the rate of heat transfer per unit area from the
H

well to the fluid in the boundery layer,

The viscosity~temperature relation is assumedto be given by a
lewr of the form X

W .
g o~ T where (W) is a constant, chosen so that
in the ronge of temperatures considered the viscosi;;gy agrees with tha
. .

chtained from the more accurate Sutherland relation . The Prondtl
momber (0) is assumed to be constant,

3 Stewartson - I1lingworth transfommation

In the compressible flow o stream function (¥) can be introduced
which satisfies the ecwation of continuity (1). Thus

o ow . ov oy (6)
= e s - = ==
Py vy Py ox

where Py is the density at some constant reference condition.

Now Stewartson (1949) and Illingworth (1949) have shown that by .
-means of the transfomation from (x,y) coordinates in the compressible
flow to (X,Y) coordinates, vwhere

Yl
. V=] h
/,s: (1 (=3 dx
X = )
Iy Noo ) ()

i

' a (x n
and Y --lg—}-' j M dy J
o

i %Z ‘"‘"‘C:u is equated between the Sutherlond and the approximate viscosity
T
relation it is found thet 0 o= (3+ 7/ g"'}lﬁ‘h) so that @ varies

2(1 + T /a ) between the values
Suth, 1,5 to 0,5
depending on the range of tempcrature considered,
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(Note GA\. vy )
ao/ ao Po /

the equations of motion and energy become respectively

U%+V%:%U @, , 2, _.a,(__e&_
1

il

oh m PV @ { pu 3 UZaZ
ond U 3 Vo= (h - (120) =t
U= 3y T\ )

P, o pOHO 2&%
3
where U(;{,Y) - H‘% - u(xa.V)&o
2, (x
u, (x) a
and U,(x) = —T= 2, Ve further note that
c:‘%
A e
2 et NP Phal 2 ! _
a% 4 meoug = 2% 4 S U-x ” = const,,
o
o const ;
T w7 (TLETE 19D,
e \ * 2 a?

and if (ao) is chosen as the stagnation speed of sound in the external
flow (i.,e. suffix (o) rcfers to stognation conditions in the isentropic

external flow)

a? ]

et = ; : (10*)
a2 Y. -, 2

2y 1 % 5 a,'é U‘! :

Thus in the transformed flow the constant fluid properties outside
the boundary layer arc token at the stagnation volues of the given
compressible flow,

(8)

(9)
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When o =1 eand T = > (u~ 1 )
C 0 o]

equations (8) and (9) are exactly the equations for an incampressible
flow having velocity componcnts (U,V) in coordinates (X,Y), provided the
heat transfer to the well is zero, For in that case only h = const = h, .
It follows that known boundery layer solutions in incompressible flow
(X,Y) can be used to find the solution of corresponding compressible
flows (x,y). However this mcthod of attack only applies to the case

of zero heat transfer and when G = ® =1, It cannot be used when heat
trensfer is present and when o and w are not equal to unity.

In the general case equ, (8) and (9) can be written

au au ay 2 )
U g+ Vg = (1-58) Uy =L+ voﬁ(cﬁ) (11)
o s
.. &S _as Yo 8{ a( (1.0) U2a§>} |
‘*“L%?X*VBY*‘_“G””@Y C“a'"fsiog 2 (12)
ao 1
:ffc
where T = C (X, ¥), and
e}
S = """ﬂ‘/}l1 ®
. i
Since g o~ 7

w1
C = <%~> but in finding solutions to (11) =nd (12)

we will 2ssume C is independent of Y, although not necessarily of X,
In the finel answer we will choose a value of C which gives a best fit
with known exact sclutions,

Bquations (11) and (12) can now be modified, so that C(X) is
o * - s
eliminated, by changing ecuation (7) to read

X a
o f R L‘I P‘i .
X = C{ ) az.
ECR
o o Yo

However no advantages are gained as will be seen in the next section,
The equations in this form were obtained by Cchen ch Reshotko (1956b).
4. .
For the case 0 = 1, constont wall temperature, and U1 ~ X the equations

were solved numerically.

Similar equations have been obtained by Hayes (1956) for the case of
imperfect gases, where the transformation formulae betweon (X oY) and (x,y)
include a general term a(x) in place of a, Jo e0d 2 method for finding a(x)

o
iz given. For a perfect gas a(x) beconmsj&h, /n J , which is equal to & /a
°

when the specific heats of the gas are constant,



L Von Miseg® tronsfornation

Bquetions (11) and (12) in turms of tle independent vorisbles
*, R . . " . -
(%,Y) can be transformed into equntions in (X, ¥ ) by meons of Von Mises!
trensformation., This gives, respectively,

oz ar® 2z
Z _ & L, 13)
® o= St s Vo g (13
s Vo 3 3 1=0 U% &2
Pakalel e e Py —t— ——— SRS il L
SN 7= P C 67(;'! { U a!l’ < S+ 2 2‘ (1;4)
ao h,

since C is a function of X only, and vhere 7 = U2 (x) - UR(x, v).

Equations (13) and (14) are the trensformed boundrry layer equations
for a pseudo-incompressible flow having o density and kinematic viscosity
of {JO and vo respectively, Hlong and across the boundary layer a

property S, annlogous to temperature is conveeted and diffused,
Tllingvorth (1954) gives similar equations o (13) and (14) above,

except that in his casc he uses (x,¢ ) as independent veriables and
puts o= C = 4, Illingworth uses g in place of S and hif’ in place of Z,

Naowr 2 o) r& 72
- - J bt
s (X,v) dUi(XZ - ?5("/ S(z, v) f&iﬁ. az
ax o dz

g0 that equation (13) can be writhen

. X . " X L
= (% -«/O S(z, ¥) 4 U2 (z) ) = Yo UO s (z »-fo 5(z,0)a U; (Z)>

where for compactness the integrals are written in Stieltje's form,

But ot ¥ = ©

i

/ s(z, @) a v® (z) [ 8(z,0) avZ (z)
(o}

do
end ot ¥ = o | since §(X,» ) = O
rX ,
& ’ 2 E N 1 )
/ 8(z,v ) a U, () = 0. It can 2lso be shown thot
00

(15)
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aa /’"2‘ 2.
-5;-2- /s S(z,\’f)&U% (z) = 0,

It follows that near V¥ = O we can write equation (15) approximotely as

S et s , | .
CREE) v ue 2o ex,v) (16)

aX = [s] altl,z

where X, ¥) = 2 = ;/ 8(z,0) de (z)
Jo

whilst for lor-e velues of ¢ it hes a similer form with

r X
G(X,9) = Z - ] 5(z,v) av? (z).
o]

=
v

The boundary conditions for G(X,¥), for which (16) is to be solved,
are therefore

X
v = 0 a(x,¥) = Uf x) - f S(z,0) 4 Uf (z)
o
v o= oo G‘(X,‘f/) = 0
X 4+ 0 G(X,¥} - O,
whilst near ¥ = O
| P&
¢y = T ®) - Uy - [ (1 -n(a)/n) av] ()
o
) X h (=) .
= U (+0) =~ U® (&,%) 4 j — de (z).
4 . .
Equation (16), with the sbove boundsry conditions, is only epproximately

cqunl to (13) for 2ll valucs of ¥ , although it is exact at v = 0 and .
¥ =, Since the solution of the ecuation of motion neor y = 0 (¢ = 0) is
only required (sce parcgroph 5 below) it will be assumed that, for this
purpose, equation (16) will be found adecunte, (See first footnote on page 15,

A simplificd form fqor sawrtion (14) will now be obtained, Since

2
i N ont 2 a
a 2 = }'Lg = (’i o U ) 1
a bl 3 2 a2 -y
/ 1+ 572 Uf o Y =)
it can be written o Y= Uf
2 a2
s Vo 6 3 (1-c) 0 3 .. 0% :
7= = == C== Uz ) = -——% V C —= | (U=s>)  (17)
ok o ayr oy O"Uf 0 14 :Z;ag.i oy 14
o
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When o = 1 the right hand side of equation (17) venishes, For other values
of o , since U,Z are knovm functions of (X,v), having been found from (16),
equation (17) can be solved by the 'method of variation of parameters!., In
the case of an incompressible flow, U is independent of iw and the right
hand side of (17) then gives the heat transfer correction term to allow for
the recovery enthalpy. It will be assumed throughout this paper that the
recovery enthalpy is independent of the wall temperature distribution and
that the rate of heat transfer at the wall can be obbtaincd Ffrom the solution
to (17) with the right hend side put equal to zern, or®

v

98 _ .8 509 (28
3z = 5 © ov (U aw) (18)

The above discussion however only applies to the case when heat transfer
to or from the wall is present, Vhen the wall heat transfer is zero the term
on the right hand side of equation (17) contributes significantly to the value
of 8 near the wall, From the works of Pchlhausen (1921) for incompressible
Tlow, and Brainerd and Emmons (1941) for campressible flow both for the flat
plate in zero pressure gradient, and from the work of Tifford and Chu (1952)
in compressible flow with a pressure gradient » we find that the value of SW

is epproximately given by

Yl 2

1 T M‘i

5, = (1 - OE Y;,I >
o 1 + b= I
2 {

at least for values of the Prandtl number near wity, Thus when o # 1
the wall temperature varies according to the external velocity even when
the heat transfer is zero, : ’

Eootnote 1. If in equ.(11) 8(X,v) and C(X,v) are replaced by constant mean
velues S (X) and G (X), evaluated at some ‘intermediate! enthalpy, an equation
similar to (16) can be derived. However such =n equation cannot have the
same boundary conditions listed above, In the later sections h*-v(‘x> will be

¥

replaced by an intermediate enthalpy consistent with, but not equal to, the
intermediate enthalpy at which OF is evaluated, but the boundery condition
G{x so0)=0 will always be used, In this way the value of &(X 90) can be
employed for all values of hW(X) including hw( X)=0,

% : S .
Zootnote 2, In seotion 11 below it is ergued thet § in equ.(18) should be
replaced by the difference between the actual S and that for zero heat
transfer, This will be an adequate approximation in many vproblems. However
it rust not be overlooked that {(17) can be solved exactly if U(X ,f.ﬁ) is
obteined from (16), " :
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e Approximate solution of the tronsformed equation of motion

The approximate form of the equetion of motion in terms of Von Misest
veriables was found above (equaticn 16) to be : -

8G/%, ) v 8 "
5 = o UC e (X, ¥) ’ (16)
where G{(X,») = O and near ¥ = O ,
' 2 2 [X hw(z) 2 }
G(X,¥) = U (0) =~U“(X,¥) 4 —— AU (z) .
1 ./o b, 1

This equation is similar to Von Mises! equaction for the velocity
field in an incampressible leminar boundary layer. It is identicel with
it if G is replaced by Z = U2 =~ U2 and C = 1,

If only the wall shear stress (7 ) is required as a function of U2(X)
and hW(X), and not the velocity profileé over the entire boundary layer,
an approximnte solution of (416) can be obtained by replacing U Ty its
approximate form near the wall, This method of approach was used by Fage
and Falkner (19%1) in obtaining approximate solutions of the incompressible
encrgy equation in the casc of variable wall temperature, and by Lighthill
(1 950) for epproximate sclutions of both the equations of motion and energy
in incompressible flow,” If we then follow Lighthill's method of solution
we £ind on using the approximate form far U(X,¥) near the surface, nomely,

12?}\,(3«{7' 1
N

U =, el g2 (19)
M :
¥ ata Y
(since U = 3 (x) ¥ and ¥ = [ U ay )
T Js
- 2 u ' 1 2
\ > 5 0°G
that = = f —2 Ty (x) o (x)? v == (20)
ox N e Z | ay?
with the boundory conditions G - O as v » o ,andas X 4 0, and
x b (2) 27 (%) 3
¢ o= U (0) 4+ [ ARl AU (a) - =% 4 +0U7h) ()
) JQ “ o
as [ O.,

% A similar method was used by Illingworth (1954), who used this approximation
in the compressible flow equations in Von Mises form,



. FX -zu w:‘;
Te t = / =2 T (2)c(2) az (22)
NP2 w
0 o : :
and p dis the Heaviside opcr:;\'tf:*rﬁﬁ sorresponding to %/ t° then equation
- (20) becomes
4. aZC'
o 2 ——

This equation is similer to equation (66) in the paoer by Lighthill
(1950) end satisfies similar boundery conditions. The solution of (23)
sati

X o X S I\B
sfying {21) is therefore (sce Tighthill)

3

/ Tk

. 2
& ”/“f‘;P%\ s vf%(- Sl

2

2/ i A 1 ¥
eV Fer g [ ] @
+ P 3
(SR L

Since G + 0 as z

¥ » e the ceefficients of I 5 and Ip must be equal and
~a z

opnosite and therefore

4y
rX h (z) 7 oa 2
(0% s | B aut (n) - 2L P T (%) (25)
o “’ G
%3 rﬁ;‘ fx j&KXQ at, ax
= -2 1l ! : dx 1
™3 o Jo (t g )-.a i
3 ¥ VN N5
-.‘?}é 2 . s - T (v /2 / T 2 | s
= Y IIRE jo ¢ (x,) 7_(x,) \/. W2 o(2) az Jax (26)
< Is} O/ 1{1
# Ip and I o are Bessel functions,
3 -Z

¥ The oparntioml form of o function £(t) will be dencted by £(p), vhere

f?CQ +
f(p) = »p | T r(t) at,
‘o



. This integral e ction for the well shear stress is identical with
Lighthill's equation 8 69) if C = 1 and hw = h1 o (In Lighthill's equation
2

the § pover of 0 4 wos omitted),

m . .
fwepat U ~ X and h‘w = const, in equation (26) we cen compare
" ;

the results with those of Cohen and Reshotko (1956). It can be shown that
errors of less than 106 in the value of :d“_v are obtained for cases of '

: ,
accclerated flow and woll enthalpies ( iw) of the same order, or greater
than the mainstream stagnation enthalpy, In coses of rebarded flow or very
cool surfaces the errors increase and therefore a correction term must be
added to improve the accuracy as outlined in section 9 and in appendices
Loand 5,

In the present section the analysis will be continued without any
attempt being made to improve the accuracy,

The conpressible flow solution is now obtained by application of the

Stevertson-I11lingworth tronsformation (7) to equation (26). If we put,
for convenience, VY = 1.4

then the nceessary transformetion relations are

aX 4 (
1 A
o (1 + 12 (x)/5)*
v, X = a L (x) (28)

[ Ve
TW(X) \1 + 15 )

NE

i

an Tw(z{

(29)*

where, consistent with the other approximations s CW is identical to C,

DY o
# In this er;guaﬁion% = %m--} and in the equetions below
A = 2 .:',....2. . .Z = . 1 = ¥4
L 2{y=-1)° L 2(y=1) * 5 2



o [X h»-»<r“'
-3 £ AN* LA 2
cao ( M“! \ d} 3 Jgo h‘g a U \u)>
3 / w2y W 1
N2l M Ax N /k R -3
“345 ) fx :"W(xi) 6 + 15 1 (3%\;’{3@ rW(z”) dz >
= 2 2 3 3 1 - a}c
- , 2 1 2 1
(=20 (e ) do ox)? ] L, e
’ . \ :

5

cecese  (30)

If suffix (a) denotes an arbitrery constent reference condition and

£ ~ \ .
() = %@)J

3
Po Ha g
then equation (28) can be written

rx hﬂ(z) ' & \2
wef | e o - (2,
o]

11 |
2 . 3 /2 ( I‘!’i‘:‘(x ) /4 f'/ Toﬁiw N\ “‘%

; w i s 3 H S B ) |@ *

R - ’cw(:xj) T =i/ i (T_!l tw(aD/ dz
) = T : { WO Podx,

oo/ (=) Yo (‘ow >2 x * R L () T

i 3 2] . :

\EVHHQ K . \\\" z \'3 + “‘%"‘“"“") _."

ces TR0 (30’)

where a_\2 /8 U
a v oaa

‘ 2

23 /P H o /370 v \2/3 / 10/
2a) (aa - U5 ) = (22 (1+82,) 7°
5 ) \T i N o/

O
m J
Q L au a/ 5 o

If further we now replace

m . 1.“60
e

m
oW Yy '
Ty Ho R <'§‘m> etc, and noting that

W
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To h1 hi TO 2
—— B —— et OTICL - T N
h -~ i N ! - a/5
w W W f& 7

ar 2 . 27 8
M, (o) / x i (2) . . (z2)
M_ o h 2
a

& O 3 M
11
% 4 il 2 /b
R o j (=) <:LW(X1)> 5 <’§ + M (%) 5>
(=50 o x1z o 14+ M;/5
a‘%
1 A=w ) o7 \ '
[t (2)? /i 2 e 5 7k
P T (ﬁz}) ; poaz oA (31)
Jx, g7 - s -\if(z) /51 |

which is a convenient non=dimensiomal form of the integral equa*f*lon for
tv'( ) in terms of M, (x) and h (y)

: 33’ .2 1,422, 2
S - B s = S 15078 \
< (-3) 2o /

Then Y =1 equation (31) reduces to a form similar to tha ot in a heated
or cooled incampressible flow, In this case since a =& =2 and

i, = comst.,

(31)



Thus finally, in this section, when ¥y =1, w =1 we find that

(u(«i-o)) . in(z) d(f_éﬁ)a

(31m)

vhich gives the a\')p:coylma‘ce extension to Lighthill's equrtion (7)) to
allow for veriable wall temperature, eqm’tlon (31") shows, as noted by
mony workers, that in an incompressible wniform f£low (9, = const) the

skin friction parameter, tw" is independent of the wall temperature,

G Flat plate at zero pressure gradient and constant wall temperature

If M, =M (+o) is the constomt external Mach number to the boundary
layer on a f 3 t plate vhose constant wall cnthdpy is :LW, then from

equation (31) we find that
4wt

l m—-

0,312 <~r§ > 2 (32)

L

i

L

il

W

This relation is similer to thot given by Young (1948) except that
0.312 is replaced by 0,332 (Blesius! value)

. 1 A
end Tw is replaced by (0.45 4 0,55 T + 0,036 1 0 %),
i a
a

to give the best fit with Croccols exact resulis,

This comperison suggests that a more accurate form of the integral
equation (31) can bc obtained if

i i
2 ( 2) is replaced by unity, and —iE on the right hand side
-z a

L \X a1
is replaced by (0,45 &+ 0,55 iw + 0,036 1 o 2),
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For the unhested incanmpressible flow case <Ma »Oandh_»h }

Lighthill (1950) showed that when u (x) = cx" errors of less than about
1% in the wvalue of 1:& vhen m > O would be obtained if the constent in

equation (31) was suitably modifieds

7. Improved. relation between wall shear stress and Mach number
for variable wall tammerature

In view of the compariscn between results obtained from equation (31)

and the exnct results fcr the flat plate the following improved form for
(31) is proposed ( ¥ = 1.4) _

,5<0)> */;Xh,g(z) a(ﬁi:;z)f i

a 4

ﬁa
5

xt (x) i (x) 11
/ s <Oei+5+0.55 i"” ! +0,036M;c‘ ) <‘!+M (x,)/5 /4

[s] X “ a, ®
1 1+ MP
/ 1 1=t 7, \ %
[orE e (a)® i (2) , SCRIVEIN MZ/s /Y
j i <Ou45 + 0.55 = + 0,036 M © 2) - dz j ax,
A a 1+ M, (2)/5 /

(33)

Results for vluco cf’ y crth&r than 1,4 can similerly be cbtained., For

instant when V = ¢ terws in (1 4 M%/5) vanish as well as the temm
involving the Prmatl n:mbw.

TR

# Lighthiil guoted the modified velue of the constant as 1,157 but a
better valug would be 0,98,



- 23 -

If we put ,
/3, (o) *p_(z) 1 (2
P(x) = ! ¥ [ o d( s
\ i Jo T h 3%‘)
4 gl
| i (%) 1750 21+ M) 7
o(x) = (0,45 4 0,55 ——— 4 0,036 Mz o =) 2 (—-——-—-3--1-5—)
’ 131 1+ M;/B
i (x) 1 ~(1=9) 2 /A
H(x) = (0.45 4 0.55 44— 4 0,056 1% o3 2 (" Mg
&

1T+ Mf (X)/5/

then (33) becomes

%t (x)/? x4 (z)Z -
P(x) = fo 3:: f?; c(x,) </x :; H(z) az> ax,  (3k)

where, in general, F(x), G(x) and B(x) will be known functions of x and
equation (34) is to be inverted to find t,(x).

# Mot to be confused with G(X, v) defined in equation 16.
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8. Approximate dnversion of the wall shear stress int egral equation

1ghthill (1950) has shown how the incompressible form of (33) or
(34) can be inverted if as an approximotion

4
=3 % "2"‘
[* 5

——  H(z) dz is recplaced by

x A

3

i
tW(X‘a)z H(x, )
(x - x,) - . The resulting solution
< #
1

for ‘bW(K) in the cnse u,(x) = ox" differed from the exact solubion by L 10%

when m * O, If then errors of thot order of magnitude are acceptable
we can replace equation (33) or (34) (but retaining the constont term
i

7S
7% vy
\™=HI l‘/}
- rx ot (2) 77 3(x)
Fx) = 20 e 2 / W& 1 (‘; ax, C(35)
(-8 Yo %% (x-x)°

4y(x) 1 50-0) 1 s }fa(x)
(00&'5 + 0955 __,j:%‘___ + 0.036 I\fi‘:' O‘E) 2 <—_—_‘-:?—ﬁ-

(S 1‘312/5

10/5

3]
=y
(6]
3
@
Oy
Fan
&)
N
i

N’

a

which is invertible as

| 3 & , - o £ 2
CIREC /3 4 1‘-%<°>> 2 pxn (s) aui(a)
A - = N [ -
%= (2.35 («5)1) L~ @ 12 Jo By (x-2)3
. - < . %
0G0 | st () [ 220 (52
o (255 (-H)* | M 0 (xmz)3 i

ceese  (36)

(&n alternative method of inverting equation (33) is given in Appendix 3),
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Now —— ) = 0,360 so that eguation (36) becomes

5
2 /2
0. 360 (" * M5 )
= 2
1 4 '.M, (X)/5

ot
—
™
—
i

— 2
O0s45 4+ 0,55 & + 0, 036 :Ma o

i” i (x)

o=+
[ S
|

(36%)

v

M
a

/__15__3_) %/xhv;(Z)(h (50 §

On comparison of equation (36') with exact solutions for the flat
plate at zero pressure gradient we sece that the constant 0,360 should be
replaced by 0,332,

However Lighthill (1950) hes shown thet in incompressible flow with

uy (%) = cx" the error introduccd by equation (36') varies from 4+ 8,4% vhen
m=0to~-10,6%whenm = o ., Also the accuracy is poor when m  is
negative, From these results it would appear that little acouracy

will be gained by a charge in the value of the constant O, 360,

For the special case when M, = 1\51 (+0) and
<L
14 (%) ‘ _
—tB L (37)

, Where m > O,

2
then b - .
& 3 (X) . 1a 5e (1 N e )Xm (58)
,w_a , 1‘1,.& '
2 -
M (x) \
and ! ( ig ): c (1 + 5/}:’12 ) m Pl (39)
ax M2 8
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hw("'o} - n,r(x)
by : -

-

If in addition

(x0)

s Where n > O,

then equation (36') becomes

. 2 '5
£, (%) 1 - (1 * M5 >/ 2
ERO L ENET 20y )
Tt ) (0.55 4 0,55 o= 4 0,036 1" 0B 5 N1+ M ()

a

“ 15 (%) N\ ( h (+0) 2
’ +( _1) L W m (%)t

Mg h, (m - &)1
a
- ' - N
E‘j‘w(”'c) hw(x)\ m, {(n4 m 1)1 (=) J
“ b, (n 4 m = )

(21)

The voelues of the constants for various volues of m and n arc given
in table 1. (Similer results for other forms of extermal vclocity
distribution end wall entlolpy distribution can easily be obbained),

Lis an example we have token m = 1 in both an accelerated and a
retorded flow and, n = 1 and 10, These results are plotted in figures
6 ond 7 respectively, Since eqwtion (41) does not combain the correction
terms, discussed in the next perogroph, it is unlikely that the numerical
accuracy of these results will be good, However the resulis do show some
interesting trends, In accelerated flow, vhen the well temperature is
roughly constant except near x = 1, (n = 10), the skin friction is grester
at a certain distence [rom the origin than for the case where the well
temperature falls linesrliy fram the origin, n = 1, On the other hand
in retarded flow we find that separction is earlier when the wall temperature
is roughly constont, These calculaj%i ans do not in faect predict seporation
for the cnzz n = 1 although beyond */1 = 0,4 the value of t . is very small,
However the saperation polnt is not well predicted in the aBove analysis,
as will be shown in the next pnragreph, and a small correction term rush
be introduced in order to improve the accurscy. But the prediction
that the well must be cooled significantly, immediately dovmstream of the
origin, in order to delay seperation is an important conelusion,
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Avpprozimate rela

tion between

the wall shear stress and Mach number

when the wall temperature is

constant

Yhen the wall ‘cwmeramra is

®
constant and

'l

NI (x) T -
ax Z b (x2)
o L
equation (36') becomes (if M (s0) = U )
1 5
-1 /2
0,360 Pl \
ﬁw(x) = . iW 2 Lo 1-w 1 4 I\»‘"E /
(0,15 + 0,55 7= + 0,036 17 0 2) —5= /5
a
i
h‘!" - .2 - - - *
1+ 5 (35, x 4 2.25 2, X +1,9286 8 X 2 1.7357 & = 41,6022 2 ¥)
s ; 3 P

(43)

gvoew

where 0,360 must be replaced by 0,332 if agreement with the exact solution
is desired when M M = const,

A more accurate solution con be obtained following the method
outlined in appendix L, In the special case of zero hecdc transfer vhen

M (40) = m and 0 = W = 41 we £ind that
5 2 -
: , 2 2 (1 \ ,f’ (ux
1410 27 2 a0y < fa Wy fn
2t (x) = a5 x — 2) I, A =y
w 1w / 272 ax
*4 U.'!/’r- .im.La
~ - ; 1
\ | x }'12/@\112 3 1z
1 %
+ 16(-:;*2"—“—-—) <1 .2 [ & 2 ~> eee (431)
2", (=En* Jo (x+ = 7%) 3

E This form of Mach number distribution is chosen to fecilitate the
evaluation of the integral in equ, (36'), However any other lach
nurber distribution can be equnlly well be used,
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is substituted from eqwtion (42)

and when M“ Al

a
5, —
wzz 2 ' 1 . m1
1+ M .V 8 x
2t = (' 2‘5—) < EJ Z . 1
'?-5-1‘151/5 ms= 0 mz="° o+

meo B+ 1 128, (=1)1°

M. Z 5 (%)x (<2) xnmj} 2

=0 ( _L__)\ (43")

where 16& ( ) > 0,151
128, (=)t

(2l ()

and values of ( ) are gi in the lowing tatl
values of (2 o ¥ are given in the following table,
3 -
m 0 1 2 3
3 . (2l (), 3,533 2.687 2,514
(2l
3 ¢

~Our results cbove can now be compared with those of Tiuxton and Young
(4 958} and others for voricus dlstributions of Mach number, Thus when
== 1 and

bl : o s i} )
?3.. = 14 ,x/l s where 1 is a reference length, and

(49

the wall temperature is constent we obtain from equation (L3)

4\’64

3/2 h
2 t’?‘."(x) = 04;720 < “‘-“-"i'/ ( 1+ "’h":z (63; + 15‘-5 iz)

1 5 M / (M)

- x
where X = /1,



Similarly for zero heat transfeor (hvr = h‘), we obtain from equation (43")

2t (x) = (:.IA/“ \ [ (s )7 il[ﬁe(q LN

hY 1 + 'M /I /\]
~r
% ,
0. 1511 (1 + 7,066 x4 5,37 x° )? jj (11)
which can be written approximtel, 5
t () R 0,624 (1 5 £(X)) (1 + 7.066 X 5 5,37 %°) (121)

vhere :E‘(fé?) = {"i + 'gé“;:)(? + E‘g‘}a) ]

2(%\“ 1 :‘-‘Ca(" 4 ;{)6 3
/= 0‘4‘5‘11 d (’i s 7,066 i& 5,57"4" X&) /2

Tom qt(mgzlons (i;lu) and (L44") we sce thab an improved form of (LA)
f2%t{c) = 0. g.,

hj

g 3
%

2 ‘bW(X) ~ 0, 66L. (‘l + -56- (6 x4+ 4.5 ;;2) } (SARE)

for zero heat transfer, while for the case of heat transfer it is suggested
that 6 /5 is replaced by

a oL - .

Lo 6 o 5 o iw
=) = 2 e e 2 YO ' see appendix
3 5 & 7 2 (sce apr 5).

4

These modified relations are plotted in figure 1 bogether with
Luxton and Young's results, The agreement is very good., The conclusion
from both sets of results is that marked re:ductions in skin friction are
obtained by cooling of the wall,

In a retarded flow, s M= M (’1 - /1), results can be obtained in a

similar w Thus from equation (Z /3) with the above correction term added,
we obtﬁ:m tnc results plotted in figure 2. Semaration is delayed by
cooling the wall and it is also noted that the wall shear stress multiplied
by the square root of the Reynolds nurber, mltlally mcre ses sllohcly

in the cooled wall case so that for a certain distance cp 1/ f X a

the case of the flat plate in zero pressure gradient,
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Tachon and Young (1958) and_others have considered. the following

retarded flow case, u, = ('1 - %/1), which is not so amenable to
treatment, by the present me’ﬁ}&odg as is the case of M =1L (1 ~ */1).

The reason for this difference in application lies in the Iac’s that for
the linsar veloc:z:by gradient equation (42)_becomes an infinite series,
vhich is onily slowly convergent even when /1 << 1,

Thern O = & =1 (the case treated by Iuxton and Young) the modified
form of equation 36') becomes

/1 % I,I;ZQ \5/2
2t (x) = 0,66k ( . ) A - 2:::( >
1 +- M'I/S

=\ (45)
2)

For this Torm of external veloeity distribution it is not convenient
to use equ. (43)_since a very large number of terms are required for even
s0ll values of X, Then X << 1 and 1 “\Ia = L4 the integral in equ. (45)

reduces to

6, — 7“2“!‘ % _g 7 - 6¢z{-mX\ 1 { l 9';“

vhere o = =-=———=== | The exact value of the integral is given in

opendix 6.

The results for the cases of zcro heat transfer and the cooled wall
with j’w = j‘a are plotted in figures3a and 3b respectbively and are compared
with the results of Iuxton and Young, Curle (1953b) and, Cohen and
?f:a,.,ho tle (1¢ y;a The agreement with Iuxbton and Young's results is good for zero
hoeat "sr"*zq, (ol ou‘u not s0 rra@u Tor the cooled wall cases, The results are
lower, far small values of x than those of the texsctt? solubion obtained
by N.E .71 for the cooled we ll c; e, but agreement could be chiained if
a slightly different velue of \ /h )‘ were used,

Vhen the pressure distribution, in place of the velocity distribution,
is defined as a function of /l the above method needs only small momfz.catlon,



Results are given in Appendix 5 for the case of a linear adverse pressure
gradient whers it is shomn thot a relatively simple result is obtained,

in closed foim, when Y= 1.5 end the wall temperature is constant.

Figores 4 and 5 show the results obtained both from tie unmodified and

the modified forgiloe ¥ for the cases of zero neset trensfaor and the cooled
wall respectivdj, together with the results obtained by other warkers

for = 1.4, In both cases it is found that only relatively minor

giff ermv'es exist between these results and those obtained using the
modified fomula. (in making this comparison it is aczoumed that chenging y
from 1,k to 1.5 does not sarlo*mly mochf;y the results).

In the light of these comparisons with other known accurate results
for the case of conslont well temperature it is proposed that in the
general case a mort accurate form of equation (36') is when y = 1.4,

2 t_(x) —_- eEATS S <1 + Mﬁf_ﬁ ) /2

3 4 =W
. pe W 2 Ty 1
(0ah5 5 0255 ¥ 4 0,036 1F o %3 ERVE
a
3
2 3 E M 2 14
e 1 PR L (Z)
T o
m> T | < k) (46)
a ‘o ( Y . z!"}"} “a _

i (=z i (z) i (z)
vhere J(z}‘ - .g ‘_‘L’Z‘S__m - % < WO A'M W ) (l;.?)

cquation (46) can be applied to the cases of

ed flows as well as to cases of constart and variable
wall temperature, effect of variations of ¢ and w fram unity are
also approximotely f..viuded, It might aliso be noted that the result above
can be used for a disccciated gos in equilibrium, provided the Lewis
number for the gas is equal to unity,

Now from equation {46) it is seen that separation occurs when the
terms inside the square Lwacket equal zero, and therefore for constant wall
temmera"l‘u the distance to separation vrx.ll in general, be a f‘uactlon
both of v;/h end 11, az shom by Gadd fw’*"‘b)v When M = M (1 - */1),

noweve;, we see from Fig, 8 that the distance to sephrdclon is independent
of m for a constont value of W/h s« The trends are similar to those

shovn by Gedd for woo=u (1 = */1) epart from the latter result.

= The correction toiu is modificd slightly to allow for the difference in y
between these resulis and the velue of Y = 1.4 used previously,
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A direct comparison of Gadd?s results with those obtained from
equ, (45) has not been made, although clesrly in this case the distance
to separetion will be a function of both Ma i 1@«?/}1 + The increase in

e

the distance to separation as the wall temperature is lowered is in
gualitative agreement with the results of Illingworth (1954) and Gadd
“z957b}, In incompressible flow the distance to separation, as a function

of wall tempersture, for the external velocity distribution u = ua(1 - x/l)
1

is plotted in Fig, 9 together with the results of Illingworth(4954) and
the tentetive results of Gadd (1957b). It is seen that the present method
rredicts separation distances greatly in excess of the latter results for
the cooled wall whereas for the heated wall the agreeament is better,

10. Apporoximote solution of the transformed stagnation enthalpy ecuation

The epproaximate form for the transformed stagnation enthalpy
otion in terms of Von lMises! variables was found above (equation 18)
$le]

e -

to b
03 v 2
= - =2 ¢ ';am U 2
X o oy oy

vhere S(X,0 ) = 0, and 8 » G asX = 0, and

~r 2, [ .
S = 1= P P % 2y - (18)
g - _B:m ‘-h.‘ l\! Ho T.W‘(yt) LE R XN ]

as v 4 0, The rate of heat transfer from the wall to the fluid is
. or
] (X) = =k <‘a“‘ )
W o Y Y0

end the Prandtl muwber (o) is given by
un_C
o}
o = P
o

In the case of zero heat transfer we must use the full equation (17)
and we write the solution of this eguation as SO(X, ¥).

If in a first approximetion, the changes in the velocity distribution
U(X, ¥) end C(X) are neglected between the cases of heat transfer and
zero heat transfer,™ we see that a solution of the complete equation (17)
is §, = S = S, vhere§, (X, v) satisfies the following equation, (which

is an improved form of (18),

# This is tantamount to saying thot the wall shear stress is approximately
independent of heat trensfer, This is true in an incompressible flow, since
the velocity distribution is then independent of the temperature distribution.
It is however not true in the case of the pseudo-ncampressible flow, whose
equetion of motion is (13), on accowtt of the term in 8, The error will be
greatest when the wall is cooled, Bub because we are going to assume that

8 good approximation to the rate of heat transfer can be obtained from a
crude approximation to the velocity distribution, we will conclule, without
proof, that the errors due to the one approximation are no greater than the
errors due to the other,
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o 1
KU Ers > (1-1—9)
with the boundary conditions S1 = Oas ¢ 5 o ,andasX + O, and

_ o x) - hw(x) N oW () ’ 2y -
= - I 7 -~
i h«; b, HoTyps

g;[ﬁi
]

ajes
«Q

¢l

e (50)

as ¥ - O, hwo is the wall enthalpy at zero heat transfer,

If, following Lighthill, we assume that an approximate solution of
(49) is found by using an approximate form for U(X, ¥), such as equation (19),
and put

t = / o \/2 M TW(Z) az (51)
0
equation L9 becomes

[ & 88
pS = ~é-§; ng 1 (52)
v

where p is the Heaviside operator corresponding to This equation

9
ot °
for 8, and its boundary conditions are similer to Lighthill's equation
(21) f“‘or the temperature distribution in an incompressible flow, The
solution of (52) satizfying (50) lcads to : '

2 N 2 %) -
b () [ 4 _ ..(—’-—)O (~B)s 1 ‘/ hwo(“> hw('X) >
h, A Ho TW:X) B © B TN h

1

-~

< -
(0 )% V7 1%) - B(+0) =k (+0)

G @)

o g (X =

;"X \J‘rg
<f O(z)\’rw(z) dz J
XX -5

+ /O <j c(z) f’rw(z) dz> ﬁ(hW(X1) - h.‘fm(X,) ) (53)

o ,¢

where the latter intezral is a Stieljes integral.
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If we now transform equetion (53) back into the compressible flow
coordinates (x,y) then for y = 1.4 we find that
& (x.) et 4 Ao e . '\f‘t.(:,’) . 4 i) 2 B 7/1}‘
A R LN e
(n_(+0)=h_ (+0) NP K, T (L) 3% - (i (x) ) < 2 >
L o 3 L) w 1 4 Mf(x:)/5

(h

- AR
W(*i‘ 0) hwo (+ ), )

and can be evaluated when tvr, M , i are gilven as functions of x,
¥

17 Tw

Then T’s\fi“ = const, = Ma we found from equation (36') that

e 0,360
w oo i) s A~ =0
Lo,,@ + 0.55 — 4 0,036 1" <v2] v
“a

e 2 s
where the term in the denominator reploced hw<i) (1+ Ma/_‘i) l'n(x) .
h R

e
i a

If we then assume thot t_ and h , , 2
W ?/HW(L’. _-:’.,a 3)

can ¢ tnlen as constamts during integeotion we £ind from (54) that

b -—‘L P —:{?
q,w(x) TR : (0,360)% ()3 4 el
\ TR = 2 2 i - 2 1757
(hv:(+o}mhv;o(+o)} f\/ aFa Yo o 3 3% (1)1(0.45 + 0.55 j}’j’_(iﬂ 1 0,036 }z{a o%) 2
i .

(55)

. >1 + / . - a th.r(x‘i) " hwo(x1 )‘ ‘ ‘“1
Jo (ﬁ ) o) = h o)) |

{060, 3N 4 |
where \W/’ @f}«' = 0.348 .
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The constant 0,248 differs from the value 0,339 given by Lighthill
(1950) for he used the more accurate value 0,332 in the expression for ‘tw

in place of 0,360 used here.

As previously stated the value of h‘w for zero heat transfer <hwo)
is given approximately by the Pohlhausen relation

h : i
ol 4, XL o o3 (56)
Il.1 ‘ _ 2 4
or, :
- Y 42
he®) G- B ) s
g 1+ L ou (%)

for o new unity.

If further the wall temperature is constant then the Stanton heat
trensfer coefficient (kh) is given by

' o O°
: 9, (%) 0,348 & -5 o P ’
kh(x) = - T (h —r1 ) = . .;11 o i (57)
a avw wo R; a a
L. o @
where b H N2 i 3 : .
("ﬁ?‘t‘ﬁ’g > = (-f‘ ) is the unmodified value and
Maa w
 p. ou X
I .
X p;a

In the case of a flow commencing fram a stagnation point the use of
the reference Mach number (Ma) is not convenient unless it is, say, the
freestream Mach number,

An alternative fomm of (54) which is suitable in this case is

q’W(X) “"*’“;;t*"-- ) 1 <i‘ > 2 x(x) Mi (X} ]
(B (v0) =By (+0) ) N £4H%, B (30)F  \y

(1 Ma(x)2/5)‘3"39

r 4wl ,
)T ‘/:c(z) 1&1(3)3’/2 Ve

gz |
B%M) Tz

. i
//1 PxL L
N
! &

x o

\ (1 + Mf(z)/5)
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3 ol
:;su >~2 . . ,3 ‘\ f'”i‘
7 4 /‘X <:r.W f\/x(z\ M, (2} /2 P ) o.{’i (x ) - h (x ))
i ) ; At
& = 3(.»&»01 =z )
jo X4 '4{1 (1 I"T°(Z> ,,.) m.....l =/ (hwc*‘o) - hwo("“o) )

coesne (58)

where  X.(x) = 7 (x) /..Mx

But in paragraph 8 we have found that when the wall temperature is
constant and M (-w) = 0,

' . 2T % 2(2) 13 2
i 2 2 dM (= i N
oo [ )
, o o (x~z)% Mf(:{) 1/
provided that :L does not approach zero, eeeeae (59)
Thus when M{(}:) = ox' (m > 0)
, 3 \4"’@ s
/i N\* i 2 2y, "~
v il g}
e o @ (3F (@] o w
. ¥
and w h&?’ﬂ m = 3 1wt \
\ 1N\ /1y 2
X(}u) = 19112 <_~_Yf) (..»1«) evveoa (61)
n i
¥

If in ecuation {58) we omit the torms in 4 + W 1 /5 and replace them

by wnity, then for constont wall temperature (noting that X is approxinately
independent of x) and assuming thot h  is o constant,

.‘%..,Silw X . 1 (o36oms 1)\
I w.\ N 1A TN, 5 \ 12
w N1 g S G o e .
Tut the left hand side equals }‘(x) ﬁ{ here
1
so that vhen m = 1 ! 1 =td g
5 (x) 0,677 ( o = > °
e S T —
R.2 o3 h1 Klv,,
ple

O
®
N
N
Ng~J

;”
B o)
Q
(<

i
}

1 1
o) U,, \2 1 &
wOw W
( p u ,} < hﬁ ) I E NN N1 (63)
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Now for the case v, ~ x Cohen and Reshotko (1956) find for

oc=uw= 1 (tro-dimensional body)

0,5 v N, a
kh( x) = i e whils Fay ane Ridd-11 (1958)
deduce that 0.1
om0
k(x) = - Fiach { Z.F for air under equilibrium
h CeO e \ P
o Vi 1

dissociation conditions with the Lewis number equal to unity.

The difference between the values of the constants 0,637 and 0,54
is pertly the result of using the value of 1,112 as the constant in the
shear stress parameter term, Of greater importance is the difference in
b, U,
the powers of <~bﬁ—-f« )« The relations are only similar when « has a

14
value near O.4, However if the viscosity is evaluated from the Sutherland

formida it is found, on comparison with the reation ¢ ~T that w
veries from 1,5 at very low temperatures to 0,5 at very high temperatures,

AN

QW” w
Thus the relation —Bw-iwi-
b N O
from Tv-:(-—) at hizh temperatures,
14

may not in fact differ markedly

In appen?ix 4 Spalding's method is described whereby the accuracy
of the above culculations cun be improved,
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12, Crrclusions

The compressible flow laminar boundary layer equations have been solved
approximately for arbitrary pressure gradient and wall temperature distribution
by

(a) reducing the compressible flow equations to equtions similar
to the incampressible flow equations using the Swetartson-Illingworth
tfansformation, and

(t) solving the resulting equations by Lighthill's method to obtain
the skin frictim and rate of heat transfer,



.

The method is probably suftelently accurate for engineering
purposes in regions of negative pressure gradient and for small adverse
pressure gradients, provided semaration is not apprroached, The method
is however improved in accuracy in this region by usirg the modification
to Lighthill®s method introduced by Spalding (1958), ‘
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Heat tronsfer for fluids of very low Prandtl number

Vhen ¢ << 1 the temperature boundary layer thickness is small
compared with the velocity boundary layer thiclkness and therefore over a large
part of the temperature boundary layer the velocity will be constant
as suggested by Liepmann (1958), Hence in equation (17) putting U = U

and noting tint the term on the righthand side venishes since U 5
- H
as CUs 3%
o v i : A
ax o 7o y? (4 )
But if SO is a solution of the complete equation when the wall
rote of heat transfer is zero we must have approximately
cu n
...a....,. _ UO 4 a= Sa
ox S5 = o FE (4.2)
vhere S = S -85 ,and8 40 as ¢ ., w,andasX . O,
1 °© ' X v ¢ U
If we put £t = j 0 1 g
° o

N

. . . a
and 1 is the Heaviside erator - then
op T

. ags
P = = 4 A
4 84,2 (‘—'\‘WE)

having the operational solution

B ‘
S, = exp (wp2 v ) S v (X) (A 4)
(vhere the functions of p foperate on' the function of X),
But near y = 0,8 must satisfy the relation (since U ~ U1)
M0 -5 E o4y

S ':::' "“' - [N E RN EY N (1&‘5)
H h1 Iio Utz}:.,s
A
On expanding exp(~p2¥) in (A,}) in ascending powers of ¥ and

comparing coefficiats with ‘(A,5) we £ind that

&) 3

. o gt |
U T TR S0 (4.6)
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which on interpreting gives

by Uy 5 (+0) tas
8(X) = - Lo X)) T L[ T

= : (4.7)
o Vi t JO (JG - .t1)§

rof-+

-( DO‘LIO)% U1(X) S»anv('*'o)

- / }i j}/:é(z)v,<z)dz )u.%as L)

0:22 Var | ( J[}CC(Z)Uf(Z)dz >~2 )

1

: (052 ) o, ZW?KZ(;>§(22;>h +/’X (f (v, (s )"%’

) ! -

- {
d( h’W(X1) hwo‘x1) )

If we now transform equation 4,8 back into the compressible flow
coordinates then for vy = 1.4 we find that

: (£.8)

() AN UL
(hw(é-@ “‘hwo(-ko) ) ”\/ pau a U’a H Ma :W

(1 » 1\@2/5)4 Vo

VN
M-
T—
$4
==
m”l-f
N
B P
~—_
&
N..L
w_
F
)
p——_

W AL . 1 f _ o
N ij‘ /x< px ‘Ii(‘h’ n*8/5> <i’§ > az ) d ] hw(x1> h’WO(X'} )’

\ a2 (4 -
i, (1+ M /5) (h_(+0) = h_so )

s
1

e
]..L

W) j” ER 1 /i, >’*"*2“ | 4 < Py By \° ( )
= po = : A,10
(b =n ) N Pabta By Vo w Vo “a Mo >
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1 1
and shows a o 2 relation compared with o ° at higher values of the
Prandtl nurber, :

oM
Apart from the term in iwuw s and assuming the “low is incompressible »
a’a

equation (4,10) is identical with the first term of the relation given by
Morgan, Pipkin and Warner (1958), It might be noted in passing that fram
the work of the latter authors it would appear that for the case of zero
heat transfer, the Pohlhausen result is approximately correct even at low
velues of the Prandtl mumber, Morgsn, et al find that

T | 1
1 L 0.162 6% 4 0,097c 4 O(c)

L
campared vith a right hand side of 0,5 02 in Pohlhausents relatiom,

, m
In low Mach mumber flows at constant wall temperature and u = ¢ x
' 1

' ,s,( ) /‘""";,_:”""”"’ e v
= ! A : 4,19
<hw - ) N Py "11(5{) B N o , ( )
v 7 '

and is the zeroth order appro&%rra‘tion given by Morgan et al, The case
when Tv” - T o varies as X" can similarly be found,

.
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Heat transfer near a separation pyint

We have shown above that in regions of retarded flow outside the
boundary layer our approximate formula for the rate of heat transfer

is not in good agreement with known exact solutions.

the approximate
to the velocity
Just separating
distribution is

U

where U” (c¢)

(from equ, 11)

or U
and since 14
U
Thus equ.
23
et
adx -

Ir t:[

then

ot

where D-x + 0 as

The fault in

solution lies clearly in the poor approximation made
dxtribution close to the wall, If however the flow is
from the well a better approximation to the velocity

(following Liepmann(1958))

i

U’ (o) Ty

?fp_ L hw(}’;) @i ‘
ay2 =T c®n ax
7=0 °

1l

i
—
<

(o]

ol

(=

g

&
o

o

LJ'

ot

g
P

B

%-

®

o

&

~

oy
\4byv o

<
G

becomes

o & r % -:?—
vo C 9hw /5}&) 5] (&5'0 93

¥+ _and ast + 0, and

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)
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-

h (%) -n (X o 4 (%) 12h v ¢ N\
S - WO ' Vi . __mjlm / - wwm \[,\ (B 7)
1 h " ¢ h \ ] °
4 [hd 4 b "ZU 1/&.{}{:
as ¥ » O,
Vo vaﬂly independent power series solutions of (B,6) are "
eaully obtained, namely, '
4k b pzy 2
! : m?_.. a /3 L?.R.&"_ﬁl
Syo= Ve3P Y OB, 7.8 Foeeee
5 = B 1 3 & £
= (Gp% )% (= Iy (5 p° ) (8.8)
# Z“ L}' Z
1/ 9]9‘1’/3 (9}3 ,y,/))
<la kﬂ = I : 6680
a8y = WA e TR PR
L4 2 3 1 2 .
= v (22 )% @ I G ) (.9)
4 -
In order to satisfy (B.7) the Tollowing combination of solutions
(8,8) and (B.9) is vequired
1 2 1 ' 1 .2 h (-_)"’h(.z_
CR 3 % & P !
5, = (Fp% ¥I)F (2 I (3 v) | oy > 1
K}
LR R N » 1 2 ot () - 2 hq v o(x)
P @S AT @ T G ) iy ((— ) o)
: o B, @y .
b (X) =%

Since Sﬁ - 0 as ¥ » o the coefficients of T 4+ and I, must be
, - T P

equal and opposite,

& {X) 12 vcx\;’ N, = h X) -h (X
Hence 9 Yo ® Voo - ’5")% (=)t 0" ( ) ( )
g & . 2 = \3 (&)
: hv(?«_) i / a4l

i . P ee s (BO1‘1)



ml{_m

Now the operational form of

4 .
Il SW(X) may be interpreted as

¢ 1
y [S@V‘"’O) N [t d SM ‘at, at, | 1 as (...,......,,X ) (Bo12)
(""’2&‘)! [ ‘tz ("3 -t ):I- - (m)' ('t 't )4 .
- O 1
for short,

Hence equation (B.11) becomes

§<hw(x) iﬂjf
() i fXamm-h(x))

.a

(x) = -z g T
K S Ol @

s =
dz

ssee e (BOJ{B)

If we now transfarm back into compressible flow coordinates then
for = 1.4 we obtain

8z
( X) j...ﬁ;,.,,x.; : ;‘ <1 + M:/ 5 >/ >
(b (s0) =h_(40) ) Vraka®a — (4o)* (2)1 1+ Mf/5
()
( h a 3 ( )”(M”) 1 f a&h (+o) hW (+0))
. e " o e « X h 2 E{ 4 e
Bty R O[ / X(_ hwﬁz %)3/\”2 > =
X, ia W

8 1

Vs ! 3 M /3

| ——22 a/5) a } (B.14)
1 4 1111/5

for flow at a separation point,
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Ifh «h = const and the Mach
W 't?o .

mmber is small and we put

W
“f"l‘i = ox , vhere m < O, then
a
. 4 N
%(X) ;»-m,_w;wm. ) /‘m(’i ) m)\4 /ﬁ ]
h'g,;r - hwo ’\l ﬁaﬁa ua = A 0:4?(%)‘ —3 } KMa)

5 [ e —
- &) l X

5 1.
! (ﬁvf - n'WO)\

— ;i

Pt u1(x) - 2 o* ()1

< "mgtﬁ)f (B.15)

These results agree fairly well with those of Liepmann (1958),
In equation (B,13) Liepmann finds in place of

f the constant %.,.43.. (_ﬁ' - 2 \]%
¥ (AN L% N 3)/
or 0,39 against 0,386 respectively, The value of
/41
b o dhawe e
[ «/ N O CHES T AN e ¢ D N

obtained by integrating (B.15) with o

(the exset value found by Hartree (1937)

= 0.7 and m = =0, 090
)

corpares with 0,435 which is the exact value found in incompressible

flow at a separation point, Liepmann (1958) obtained the value O, 148,

Bouaticn (B,4L) shows the effect of

Mach nuber and wall temperature

variation on the rate of heat transfer near s separdion point, s It

shows tlat the Stanton heat transfer coe

fficient varies as ¢ ™94 in

this regios copared with o =3 for an sccelerated flow,
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APPENDIX 3

Lpproximate inversion of the wall shear

stress integral equwntion

An alternative method of performing the inversion deseribed in
paragraph & is a8 f‘ollows. Since, in gereral, t and H will be slowly
varying func’clons of‘ X a good arwprox:.matlon ﬁo
x t (2)2 H(z) " 1 3 3
e Az is 3 tw(x‘)e H(x,) (x* - x,%)
"3{1 24 ) )

More generally if we pub

8 (2)% B(z)

e ~ zﬁ then
z‘{-
A -4
F v (DFEG) L, t(x)? Hx,) (=P o FH
g B .
¢, 32: ..i[:...'f;l ;B + 1
}?_‘1 « N :
i
Bquation (34) th

4
en approximates to (rcﬁa:ﬁlng the constant term

3%, 2
4

F(x) = 3°, 2

d%‘j"'w" (ﬁ ¥ 1)3 o Dufd (0.1)
x, 3 (Xﬁﬂ /91-1)3
A, fntm/J 5(n) an
or T(m) = e z
-5 (6’+1)‘° n‘? (n -ni)‘“‘
vhere 7= xﬁ"ﬁ. This equation is invertible as ‘
¢ s N\ b : > > r 2
<%T})JW%\’/j (ga)s % I, (+o)
) = i u* +
7 7%, 2 . (=) -

[T\

M
a



2 2( 84
) (B 0E [/ (s0)N? (B1) rx
or t(x) = = - =3 K"'m — i+ X
) 155, 2, (<) |7 i, / o
L S
hﬂ,‘ \"'//h M (Z) 2 %
: 2 ( =+ ) (c.2)
(xarq - &1)3 \\ I\’*a // )

If [ = O this equation is equal to equation (36%). 1In incompressible
flow with hvr = Sh'g and u ~x we find
PN
5’4- y ("'??)

- = i N (Ca:’))
Oou-g (3-3"2> < 2 !(e%_

i
Nu{’“‘fézau

46} + 1 = :)' mz::'"i') and so
B .:L‘ a :Z. Eﬁl ' 1‘ o bl %
’ 4 H—muumasmen--J S | 3 )
L (K) f = = 3 (med)® { Jm o4 3 ( 37 (C L{_)
w LY 5 I/ .
By 2 /! (=2 () |
L m s 37 ] |

which is exacily equaticn 70 of Tighthill's paper., In his double
approximation method Lighthill puks £ = 0 in equation (C.3). We note
taat B changes from a wvalue of about -0,5 near separation to 0,25
for zoro pressurc gradient, to 0,5 near a stagnation point, Thus £ =
is a sultable everace vulu.p for an accelerated flow, In the table
below the right hand side of (C,3) is given for varicus valuss of S
and a comperison made with the evact valuves of Fartree,




m
o, N 1 _a _ A N I -0,
, N -Z 5 5 0,090 0, 0654
2 KU, \
Exact (Hartrece) - - - 0 0.157
© 3(mg ‘
(B 1) = '*‘f“l - - 0 0,101 0,175
(Lighthill) |
B = 0 (Lighthill) 0 - - 0, 214 0,260
= =0,25 - 0 - 0.130 C 0,
= ~0.25 (x 1.09) 0 - 0,142 0.208
i L
.
Exact (Hartree) 0,332 0.512 0,757 . 1.233 2,405 ~ 1,193 m?
fit = 2 Z“‘” 0,312 O.473  0.698 1,136 2,218 ~1,100 m?
1
#P/=0 0.360 0.495 0,698  1.112 2,158 ~ 1,066 n*
' 1
B = =0.25 0.312 0.462  0.676 1,10 2,15  ~ 1,066 m*=
L
B=+=0.25 (x 1,05){ 0.3,0 = 0,503 0.736 1.199 2.34k2 1,162 m*=

We see that with B = -0, 25 and the formula multiplied by 1.09
the error for m = 0 is less than 2.5%,

In applying equation (C,2) to a flow having an arbitrary pressure.
gradient the value of 8 must be suitably chosen, However if we put
£ = ~0.25 and include the factor 1. 09 our equation should be suitable
for engineering purposes in accelersted flow,

B ,
The asymptotic values for T J ..._..’i......_s for large m are independent
1Y

of B if f is assumed independent of m, In this case

. 3
pi
7 x z [ (=B %
w , = m - 6 as m . o ,
o U u S5/
o o

1
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Troroved relations for skin Priection and heat transfer

Spalding (1958) has intrcduced a correetion into Lighthill's
method for estimating the rats of heat transfer, which takes the form
of an improved velocity distribution near the wall, This correction
is an lmprovearent on that introduced by Tifford {(1951) and Tribus and

7 o

iein (1955), since it takes account of differences between the thidiness
of the velocity and temperature boundary layers,

If in place of (19) we write
T T

u <
o]

U =

and noting that U'(o) is found from equation (11) we f£ind that

dau .
Ty / P U h 1/ax
U - .Z \1 L o w -
=g 4 v
o 2C Twha

Now in order to solve the skin friction problem approximately by
‘Lighthill's method we require first a reasonable approximation to the
velocity distribution in the velocity layer, (and not in the tempersture
layer as is required in solving the heat transfer problem),

If therefore we replace Y 1a the brackets by U,H then

o ——

_ . Ty
- Ziaiaed - e " =3 e voai 2-4', L
’?2 L pu U mi/&? \
' m‘\é ) 1 - co. . w. ! '?:: )
Tl \ ; z ¥e (D.1)
o] 2Ch, T
Yy
and in place of equation (20) we have
op 7 G o uon U am, .
G ___\f Ho T ! g - 00 W VLS '32- 93¢ (0.2)
wEN AT 20h T° /o ey

which has the solution (if we retain the exact boundary condition
equation (21) )
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° X h,( z) s ' 5% o X 5/ 2
wz.:"“m“-‘ T” = D st
Ui(of -%]o i, d Tz(z) (2 (ﬁoﬁo)% / c (Xq)rw(xi) .
(1 _ P M hw(X») Ug{xﬁ)gaﬁﬁ/&g{)% (“{XJTW(Z) () G po“ohw(z)uxz)zma,’/dz )
2 h,00%,) TW(X1)2 . 2h ¢(z) Tw(z)z
o (3.2) ’ ﬁX’ . (D03>
If ¥ n_(z)
F(x) = m,(0)® 4 /o 1;%;—2- a 17 (z) | 1
5x) (s Mi(x)z/,j) /3 ( Pty B2 h_(x)C(x) M‘;(:c:)a’-?ix-\-ﬁ-t )3
X = = 4 = 2
3 2h 7 ()" (1 4 3, (x) /5}5
and T_W(x) V¥ = Mx)

then the corresponding compressible flow solution is (using the
approximation of Appendix 3 with £ = =0,25)

L
% n M0 72 (n) an
£ ~ 2 1 4 1 E
F(n) ® 1 - /" - ; (D.4)
~2)1 %3 3F 3 (0 oop )3
(=8t 35 (o p_ a) ne (n-n )3
where 7 = X:}:, and is invertible as
. 3 1 " 2
TINTE <2 /¥ (40) 1 xh (Z) M (z
% (x) - M . ._.1,.....-~..-> + X /h' / )
w g 7 M 3 s z 2 \ M,
(-1 = 2/ ® (& - )
-3 2 . °(+F -z i)

- 1+Iu O3 i T3 B /14 4 M, 54\
where J(x) = < Z——) (-JE) (a} ,.ug.l};' (........E@)(..é)
1 + ME-/B 1
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In incompressible flow with h = h oand u ~x we find that
: ' g -4 ) 1% 't 2 , %
’ ( o = 5 ( z)t (=5 “]
% (x) - T = 77 i (©.6)
2% () 24L< B2 (b |
2 gy f s
Wi X{,.\.) = TW(X) ,\/ oI ug .
oo 1
If P(m) is put equal to the right hand side then
4 A,
' e Fx e @ 2 0 (0.7)
having the solution
R ————
{ R Y 2 '
X(X} - fm = m2 + 16 F ) (D.B)
B -k ~0, 0904, <0, 0654 0
Ixact (Hartree) = 0 0,157 0,332
Baga. DO 0 0,075 0,154 0,312
~ A 1
x0T : ‘ - ”
Ixact (Fartres) i , 1
Go5120 0,757 1.233 2,405 1.193 m®
Bau, D.8  G,L93 0, 740 1,218 2.395 1,185 m®

Tt is seen from the table above thab except for m = O the error is
reduced by usi ng equation D. 8. However the separation point is still
v by m o= -y carpared with the exact value of m = ~0,090L. FHence
except near separation and at zero pressure gradient, the quadratic
correction term in the velocity distribution axzzﬂgroveﬂ the accuracy of
Tighthill's fomula for the skin friction. It can easily be shown that

he overall error is not reduced if we choose a value for g (~0,458)
such that separation is predicted exactly by equation D, 8.
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If we use a similar method to improve the accuracy of Lighthill's
formula for the rate of heat transfer then, following Spelding, we must
choose a reasonable approximation to the velocity distribution in the
temperature layer, We therefore put '

T - - “0 ’
w ¥ [1 - (lw 11) po ‘uo hw U, &1/&

U o
o EGLh,TWz]W

U =

where Y in the squave bracket has been replaced by
k, (iw - ii)
Gp QW

o7 (i ~3i)p 4 h U & 4
U N’\/“E (.3,_ W 1 O O W 14 1/5X> WE (D.9)
20C h1 T éw

and equation (49) becomes

1
o8 ' s , z 1
1 _ G 5 r i (1W 1_1> Po¥o hw U,mi/ax 0 (11;2 aSi)
& T po o Ty - oy oy
o 20cCh 7 @W
1w
ses 0 (:D.'}G)

If we retain the exact boundary condition equ,(50) the solution
of D,10 is

&) - (aouo)“?s“ ,\[%‘;'65--) " b (+0) = h_(+0)
" (50)° (3 L (foxﬁ (2) dz)é
* /f( fXXK(Z) az ) -3 a <h'y.;(X") - h_WO(XQ) )J (D.11)
1

where

K(X) - Jca T <‘1 ‘_(lmv'l,) pouo hWU1 mi/dX)
v 20Ch T &
i W
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After transformation into the compressible flow coordinates
(x,5) we obtain for ¥y =1.4

ﬁ“"&)( vy 1

/) 2 7/34- -3
. (-»«M ) [(-—-_%_- / K(z) dz)
(Go)® (G) 141 = g
x 1 - |
7 = d (b = '
+ /Z—-%_ [ K(z) dzw ( W W“E) (D.12)
EPRANES in / (hw(-@.o) - hWO(-;.O) !
where e
s (x) = &y - —
W (hw{.;,o ,“I’).WO(-(.O)) P H, u,
t (x) = 7 N
G = [
_ a'a a
e i \i-w
= ~ tW(E"eﬁ)g 1412 iz ,
and - K{x) = w ( a/5 > (\1 -
1 e
x* 1+ “’E-z/5 ‘
o . 1 =t
h iy, g : 1
4 N Wﬂq < a/j_ ) 2 /2 z
("‘W - 19 1 W <‘1 + Ma/ﬁ x% <M )2 )
° 2 M
ko (hw(-w} =h (+0) ) t_ s VY s

In incompressible flow we £ind that

s () ;. r M%‘ [rae) . fﬁ;ﬁ j - ) s >J

sozos ng‘}B)

where i -4

and - Vi 6L x4 <U1 /UQ 5
RK(z) = % <1 - w ax j




Following Liepmarm (1958) we can write equation D,13 in the equivalent
form

' Ae S - 7 4
,\/'{;x ol X 3 _ ez
5 (%) = =t h_@ ] 8. /2 f(5) az | (D.14)
(3% ()1 L:ﬁ 0 .

and its corresponding differential form is

1 z 1 3/

x< . a x° % n° /2 & (in3

s = W w )= 9 (I .
tw L 8

47 .2
(1 _ W dx /ua )

ot s
l"ww

#veva (Do“}ﬁ)

3
where 9, (1) = 6,41, This relation is similar to the expression given
by Spalding (1958) for isothermal surfaces, but differs from the latter,
by the inclusion of the AiW terms, for surfaces having non~uniform

temperature, For the case of non~uniform wall temperature Spalding
suggests a super osition method whick is equivalent to f£inding a solution
to equation (D,15), Presumably Spalding's method of solution could be

A 3 Cre .
used to solve equation (D,15) for s_ if s i end m,/dx are lnown,
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Skin friction in a linear adverse pressure gradient

When O = @ = 1 equation 36! can be written for arbitrary VY

1/ .

p, (N V] /M (+0)\2 &
tW(X> = O¢36O ( L ) ""1"‘"‘“‘"‘}‘/{ ) L 2 = ®
pa a YMz

empow (Eoi)

jrx lw(z)/i a pi(z)/ ki
— /%
L 3 D)
° (x-2) (p,(z) >_-X:"-2y
P,
P X iW
TP M (40) =M =2, = = 14 /1L and we put == = const
4 a P i
’ a a
with y = 1,5, then '
0,360 i 3
ty_‘r(x) = -Q.-‘é—-—-—-—-a:‘—/ 1 - 2"; '-.'E - 1>J ‘ (En 2) .
x . A2 \ 1y .
(1 + /1) |

or if 0,360 is replaced by 0.332

b
|

0,66k ' i ; .

2%, = Y 1 - <5_Y - ") (8,21)
(147/1)12 a

In the case of zero heat transfer with Ma =2and Yy=1.5

i, ~ const = 2.0 1

and equation (E,2!) becomes (writing t_ for 'bW) -

2t (x) = %2 [1 ~'x/£J4 (E.3)

WO (1+X



This is plotted in fig, (L) and compared with the results of Iuxton and
Young (1958) and Gadd (1957a). The asreement between the three sets of
results is poor especially approaching separation, If however we modify
the term in i‘v f/‘L dnoequation (E.1) and replace it by (noting we have

a

teken vy = 1.5),

i i D
5 _wo - 2 . WO N W
L i : \ TS '

=
(vhere im is the wall enthalpy for zero heat transfer) we obiain in
place of (E,3)
. o s ,
0,64, : . % ,
2t (x) = = [, 032 E.3
wo ; (‘}%X }') 1/13 1 2.j. ) (-E'nz) )
L

vhich gives separation ab =0, 667 compared with Gadd’s value of /1 = 0,65,

Similarly, for the case of heat transfer with iiv = ia we obtain

3

k! ’\ﬁ66' § r ‘?4 .
(1 4+ /1Y% L a

which is plotted in fig.(5) end compared with the texact! N,P,T. results™
and those of Luxton and Yourg (1958), and Gohen and Reshotko (1 956a) .

The modified term has in fact been chosen to give geod agreement with the
ILP.Lo results, It is not surprising in view of the approximations made
that sane form of correchion terp is necessary in order to improve the
acouracy of the present results,”™ That is surprising is that a relatively
minor modification is all thzt is necessary, to give good accuracy, in
such extreme cases of an adverse pressure gradient and a very cool surface,
and the corresponding case with zers heat transiér, '

g Unpublished results referred to in the paper by ILuxton and Young,

e P cps o n D4 o s
@ The form of the modified ”sfj./’mq term dmplies that in an approximate

solution of equ,(13) the value of § should be chosen not at its wall
vawue but at some average value away from the wall,
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A further problem of interest is that of the megnitude of an
ebrupt pressure gradient which will proveke separation without any pressure
increase, This problem has been considered by Morduchow and Grape (1955)
and Cadd (1957b). In our analysis, using the modified form for 11 ., We
, ta
see that separation cccurs in a constent adverse pressure gradient, which
follows a region of constant pressure, when

. . p ,
1 < 2. (} N i Ma) x_J(z) dz/x . X.i /Pa
Tyt N T2 [ (1-® )/;:. x 7, ) T dx
“a +cF /x Y

se0 6w 395)
~ ,
B . 2 /s .
where J(z) = LT" io -~ -;-(:L‘v_mulw)}/h1 (for vy = 1.5)

and P1/Pa = 1 4 Cs X/l .

' : P
, P~ P 2 (F1/p, =1)
I G, = .,1,5..,..,@.-2 = i and J is a constant,

then the relation (B.5) can be written, when ¥ = 1.5,

a ¢ 1
5 —— as x -0 (B, 6)

( X
3\1 + 5 i.x;a) J

and when ¢ = 1

0 L. -
* % > 5 (®.6%)
- - .. 1
{4 -;-y‘-j',‘,w L;) (7 + “wh,)
This compares gualitatively with the relation given by Morduchow and Grape
(1955)
(T‘Zg
- T 6.1
dx i

(15 L) (1 5}’- + L)

and the experimental results of Gadd (1956a and b).



APPENDIX 6

Zoe

Evaluation of a certain intepyal

Then the wall temperature is constant the value of the shear
stress paramet ter, ’t is determined from a modified form of equation (36'),

Thus for the case O‘:: W = 1

. 5/
’I-i-M \2

2t = 0664< / .
'1+1\

w
s ﬁ’ - }.’{ 2 - .-3_
i 2 r¥a (AL 4

14{= ) x3 B

jo (x -~ z)3

enee D (Inull)

Vhenu = u {1 = */1) it is found that

2
iR - 2
/_Ii_{\ _ (4 =x) \
KMa) = i (.2)
14+ 22 (2% - %)
5
where x* = /1
and
/i e % ”Xﬂ.(M/"I) i 5__ 4
&ij;_u')x“ ] e ,,.g(..ﬂ x [ (1 = xz)dz
) i % i 2 e
e o (%= 12)3 a / dg (1»23’6 i"‘) + _a (2xz ~(xz)")
L5
3 N\ F 9
:mé(-.-ﬂ>f /[:(’!wx}.;.xvj dv
\\ a4 o - 2 - e
a o - 2 . . Y 2
{{14»...:5(2 —-x)j—ﬁ(x“x}vjm}ﬁxzvéj
e 5 5

on putting 2z = 1 = v .
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Hence from (F,1) and (F.3) we find that

P !
2t = 0.66Lh 114 w~ (2x-x) .
W - 5 /] 5
le - . - Ve 4
L1+6 T) X ('1-«::):[1 + X Iz_j} (F.4)
a
where
T [ av
= C 2 N -? T2 e -2, 3 2 w2 6 )2
1 oir’}-aa&(Ex«x)J - Zl_fg.(x-x)‘v -}fgx v}
L7 5 5
and . —-fﬂ w3 av
2 2 2
0 w2 . e Mo 2 2
{t+~w(?x~x) = ﬂ[ﬁ(x..x)vzm._é % ve}
5 5
W 1
oL s S (7.5)
LS j -2 6 - 3 2 e
M, Jd, (x V4 Ax VO ~B)
and ! 3
1 . & v .4y (7. 6)
2 4 -2 & - .3 2 y
zz’ia o (x°v +Ax ¥ ~B)
vhere -
A = 24 = %)
B:%+x(2~x}=(1+5ﬂ£;)-ﬁ(’i x)
Ma
ub ] ' y {
(v L a5V =) BB + A7)
ad r(%a-éa)‘v 4+ AX ] [(B.e.ﬁ_z)-}.A;s:.vzy b
x% v®L Axv® =~B._ X v +A4xv =B J
so that ‘
T o5 2B s AP L A X 2(5B+i§)[ dv
! (4B + A7 N {x + AT =3B J, (B v° 4 a%=B)

1 3
= v dv
+ ZAxf —z 6 S }
o (x v 4+ Axv =B)

L2 A 4 (F.—fi?)
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Let _ /'l av
3 - -..2 6 £ '%
o X Vv 4 Axv" =B
4 1 dv | ! dv
5 Dy [ f = 3 - /"-— 3 \] (F.7)
L J, XV - C 0o X V +D¢

where X° v® £ AX vV =B = (Ev° =0) (Ev° 4+ D)

and. ¢ = 14 _/5 - (-3
Mo
ERS ,
D o= =l (1=
M /s

Xv =0

1
' ‘ J, X/
Since f av A ey 1. T 1 - { &Gli-ﬂ
0 - = 5 - “ /./ :;C 2 X}
X *

s S&Y,

3
Jg Xv D

coess (F.9)
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we have

I 1 | E: 1, |
s - 6 N 2 & = s |
5% Ma L o

which can be evaluated for known values of Ma and x.

Similarly if we pub

T Pt v Gy

R e
] X v s Axv-B
o]

1 ""/»1 v3
R I B¢

and noting that

it ay 1
j —— = = 4
I} X v ”"'C X
4
= ": B3
X
:‘1 -.-7'3 Po e
v O
oA ! Wﬂ\mi}rm — e -
and / - o = -
. X v 4D X
)
we find that
I = e (czx
& 4

33(C + D)

dv - 1 y? av

v - 0)

4
C " av

- - 3 -
X o XV =C
S .2

3%

o (;E VchD)

®.7)

(710)

(F.11)

(F.12)

(F.10%)

If the relations{F.7!) and (F,10') are substituted into (F,5!')

s 25 OB 4 [Py

\';'r

AX 1

- o\ w2 -
B A“}M’; { %" 3 &x - B

+ 3

+ Ma

{
-l ;-ugw—u—-—-«-' X4 2 - '-s s s )
+ 3 A —  A{C 14...3315) 5 j

hi
! z
\[;—-2 (5B + a7 )I, ~1,)
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we find

i

i

ot
s‘_n

o 65 =

n-vj-o’

2 T3 W o) (1 +..,§ C oD > {: (1 VR M§/5'(1"§))

(5 + 12) -
L (55— -0 -0 @, -1, ) 2(1-%) /5
3 12 1\/’2 M v, -
‘a * ¥q (1 ‘a="a (1-x)5
5

5
e |
(1 - %) '\/%a , f5+ (I + L) ~ (1=x) (1, --Is)] }

i /
5 % ha Ma

witno

3 e ( MM o
T y 15 2 1+-“+w1~x>
'12('1 4 lejé;/fs) (l 3 Ma/B - E{; (1 _ }?) 2> L 5 5
5

53 O
"'-5.%"\] & (I w T ) EA f1 -.X} 2 4 —Is) x('l“xz 3/5
3‘,‘4&& 5*1\’ (14._}33:-&1(-};))
5 5
2 e
"5' (J] "'X) (14 o3 IS) sees e (Fnjtj)
(z2v® 3+ A X v® =~B)2 3%(1B + A%)
I = 4 ” - 3
d 1 Avas 2x ¥ . A-~bLxv }
WO W LaFY B Py s ARV -8
= 7 «2-5 2\, 4 fi:‘?.x“ - AIs'&'Z"% :[aY
Bx(AB.;-.A)Ma X 4+ Ax =3B )



5 o M2 W |
= 5+ (1=%) o] =2 (T, - 1,)
12 % zvr'(1 + M /5)

5 % Ma
2 ‘
2/5 2
* Ve 5 (0 + 1)
14 a ‘a, -2
..5*- ™ --5:\1 - }F) .

It

5( e
— 1, 2o Ja (1 -1)
€x (1 4 M:/S) 2 M2 5% M; 45

x
+

( g >~ j{;; (E4 *Is)} enoee  (F.1L)

145 ==F (19) a

>

Finally from equations (F.4), (F.13) and (F,14) the shear
parameter

"G5

= MZ2 MR _ 5412
(1 Mfof) T ] {2(14.5 +-5-§(1-x)) ~~§\/ 2‘1 (r -1)
2<'1 -;-"gé““"*%(’l*;) ) Ma

stress

ol a
5 =50 "‘X>

4 5
5 :
- 2
o - %) 2 M, (x 1) s %(1 = %) Iv‘a/5
> 541 ¢ s M 2
+ 5 ‘1-1'—“@_-_:%(’*“‘55)
5 5
, [22
Ry - B -
- 2 ) (I -@I)} +{1 5(1,;@'\}8’ 2(14-».‘;.5)
2 M- 54 M
&
3
= b Z
X
» s -2 @) )
< M, M 2\ 3 coeee (F.15)

Numerical results for the cases of zero heat transfer and T
hhenTE

= 4

a
= L are given in table 4 and are plotted in figures (3a) amd (3b),
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IAPLE 1

AT X R S

" 2
Values of m [ :g.ﬁlm“;mm‘i'l); (CHH ]

N+ me 5t

T & % 1 4
0 1,2728 1,7667 3 6.9432
4 0.5182 0.8835 | 2.2499 6,089
2 0.2548 0,7066 1,9286 6.0083
3 0.2114 0.6183 1,7358 5,6921
L 0,1910 0.5621 1,6022 5ali33h
5 0,1766 0.5220 1,5021 5.2161

10 0,1392 0.4, 1.,2168 L4817
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E:*:i
tf\n

Skin friction naramcter in accelerated Llony

Moo= (1+% o=w=1 U =k vy=1lk
[=

% 2 %, 2t
zero heat transfer iW = ia.

0 0,66l 0,66l
. 0.70. 0.600
.2 0.674 0.52%
) 0,609 0.453
A 0,547 0,389
C WD 0.475 N33k
6 0.115 0,267
ol 0,361 0,247
8 N,315 0.213
9 0.275 0,18

1.0 0,240 0,160
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TADLE

MO T, R

Skin friction paremcter in retarded flow

M‘i :Ma (1 t—-l-:) O =0 =1 Ma:&_ yY= 1.4

2t x 2t
zero heat transfer iW = ia
0,661 0 0,66l
0.639 .02 0,674
0,606 Ol 0.683
0,562 L06 0.691
0.505 .08 0,695
0.423 .10 0.697
0,33+ 12 0.695
0,202 Al 0,690
16 0,680
.18 0,663
.20 0,640
.22 0,607
2k 0,565
.26 0,508
.28 - 0460
.30 0.339
W32 0.209

0339 0



et

X 2t X 2 ﬁw
zero heat transfer iW = ia
This Curle Exact This Curle Exact
paper (1958) (¥,P.L paper (1958) (w.p.L)
0 0,66L 0,670 0,66l 0 0,66l 0,670 0,684
0,01 0.609 0.636 0.622 .02 0,70k
.02 0.533 0,602 0,560 L0l 0,731
03 0,428 0.554 0,466 .06 0,743
0L 0,288 0.488 0.320 .08 0.742
0.012 0,26l 0 0.730 1,476 0,946
0,041 0,168 J2 0.709
0.045 0,050 b 0.672
.05 0,078 0.4:00 .16 0.629
.06 0.260 .18 0.578
067 fi .20 0.521 1,226 0,360
.22 0.459
o2k 0.392
.26 0,322
.28 0.251
+ 50 0.179 0,360
<3711
.32 0,108
o3 0,033

2349 0 (Bxtrepolated)



DABLE 5

Skin friction perzmeter in retarded flow

P{:—"pa(’i*{-){) O=w =1 Mazz Y= 1.

X 2 %, X 2%
zero heat transfer :LW = ia

This paper This papexr tExact! Curle
(y=1.5) (v =1.5) N.P.L,  (1958)
0 0,66l 0 0,661, 0,664 0,670
0.1 0.583 0.1 0,617 0,630 0.632
0,2 0,500 0.2 0.570 0,581 0,60
0.3 0.415 0.3 0,524 0,538 0.576
0.4 0.325 0.4 0.476 0.494 0,542
0.5 0,227 0.5 0.428 0.452 0.510
0.6 0. 114 0.6 0,380 0,400 04Tk
0,667 0 0.7 0,329 0.348 0,436
0.8 0.277 0,296 0,396
0.9 0,223 0,232 0.350
1.0 0,163 0,170 0.300
1.1 0.097 0,24
1.2 0 0.158
1.3 0.036

1.32 0



