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A note on the disceontinuity stresses at the Junction

of a pressurised. spherical shell and a cylinder
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and

An analysis has been made of the forces and moments occurring at the

junction of & pressurised spherical shell with an intersecting cylinder.

The additional effects of having a temperature gradient along the
length of the cylinder and the effect of a jointing ring have been
considered,
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1e Introdiuction

b

This note is o study o

(%

¥

f the discontinuity stresses which arise
when g pressurised spherical shell is constrained by a hollow cylinder
whose axis passes through the centre of the sphere, (Fig, 1). The
wall of the sphere is considered to be thin = less than 1/10th of the
radius,

When a hollow thin walled sphere is under pressure, its shell is
in a state of pure membrame stress which is uniform throughout, and is
in complete equilibrium with the applied preésure. There is a uniform
expension of the wall, |

The presence of the cylinder will prevent free expansion of the
sphere at and near the joint, inducing discontinuity stresses both in
the sphere and in the cylind@r.  Since there is no extra external force
applied, the force system in the sphere thus prodaced must be self

balancing, without any resultant force whatever. The same is also true

]

with the cylinder. Therefore, by St. Venant's Principle, the effect o
the constraint must be entirely local, and the discontinuity stresses
diminish at small distences away from the structural discontinuity.

In the following analysis, five cases have been considered. (See
Contents). In all the cases the joint between the cylinder ard the
sphere is assumed to be rigid, That is, the angle between the tangent
to the sphere and the wall of the cylinder remains unchahged after
deformation, '

It is further rssumed that the sphere and the cylinder, and later
on the jointing ring, are of the same material thus having the same
physical constants. It will only be a very simple matter to extend
the analysis to allcow for the use of different materials. The physical
- properties are also assumed to be unaltered through the range of
temperature concerned,

2 Case 1

Za L | s

Cylinder joining on the outside of a sphere

When a sphere of radius R end skin thickness t is subjected to

& pressure p,the radius is increased by the amount
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Now, if a cylinder of radius r is joined cn to the sphere,
the expansion at the Jjoint normal to the axis of the cylinder, had

the cylinder offered no resistance, would be equal to (see Fig,2).
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However, the presence of the cylinder will restrict the

movement, and the deformation at the joint will. finally take the

%

SNape as shown in i Q‘o P

jer

If the sphere is considered to be cut along the Joint and
free from the cylinder, (Pig.3), there will be a distributed moment
m, and a distributed load g normal to the axis o the cyiinder, around
the edge of the cubt on each of the three free bedies,
The force system on each free body is therefore self-e qullxm ating.
Mhere can be no load in the direction of the axis of the cylinder
(uue to the restraint of the joint) because there is no extra
externally applied load to balance it.  Hence the forces must die
away hyperbolically as the distance from the joint is increased, and

the effect of the disturbance is therefore pur@ly'lcoalm

The relation between the deformation and the forces
above are now examined.
(2)

For the cylinder \aunbcrlﬂt o).

The deflection §  and rotation 8 at the end of the
-eylinder due to moment m and force g (for sign convention see
Pig.3) are given in Ref. 4 (pp, )92&392) as
o = ’””"““"’3} (['”ﬁ + Q }; (23}
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and 8 =5 (2Pm_ 4 %)w (2v)
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ickness of the cvlinder.

(b) For the portion of spherical shell outside the
circumference of the'cylin&er {subscript ﬁ).

RBef.q (pp.l70-L74) gives the deflection and rotation
at the edge of the shell as

2 2 i i s
IARsin® (-2 2A"sin{(w-a)
o ="t e 4G - B My s (42)
I R o (1
B2
wh.ere A b = 5(1~M2> C€>2 s <§)

(¢) Similarly for the portion of sphericel shell inside

2 2
5 2MNRsin” o 2Xsina
O o ST Lt eld P
o =T Et Gt TEs oo , (62)
and o w2 2n%sa (6b)
- 2 = EE Mot Tm L '

Now, assuming that the joint is rigid, then the rotations

in all the three pertions must be identical, which gives,

Hence:

1 ’
T mﬁz - C,Ll - 2,6’2]] (%m@*’ QQ) = 0, <7)
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2 , 3
and 2 sino £ o
- Etnwm (q,,i + q;?) + u‘F‘E,‘ (In »13'1) = O“ ) {d>
For conbimuity the deflection of the two portions of

the sphere rust also be the same, that is 5,} = 9,,

From Fi g‘,i‘ig the deflection of the sphere and that of the
cylinder must add up to the deflection 5p of Bg,1. Alternatively

locking at it another way, the total inward deflection of the sphere,

ual to & ~ & . must be the seme as that of the cylinder
1 p? 3

(]
Hence & ~ & = &,
1 D
4 . 2 N
and 2hsin’a 2%ina g L g)
Tt 1T TEE Y 3 o * %

= ﬁl:g. 2 ‘
ind finally, for ejuilibrium at the joint,

R v 4
Qo+ 4+ 9y = 0 (11)

N
and m, * mﬁ # M. = O, ('32,1

The 6 wknown guantities g,

Qs Gos Mo m, and. Ty
can now be found "%:-;y lving the 6 equations 7 ’t,o 12 simultaneocusly,

The solution of the eguations are:

M i M 3
m o=_9, ma;‘:'a.:ia mg::..g i
° W i N 5
[ 4
Q Q | (13)
P o= YC = o, A= |
Ao =05 9 =_1, 9 =_2 J

N N
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3. ~Case 2,
Cylinder extending into the sohers,

-

(132)

(12)

o

10 i i s it e

(1

If the cylinder is extended into the sphere (Fig.h), and

providing that the length inside is sufficiently long, then it can

be treated in the same manner az discussed above,

also be considered as cub along the joint into two portions,

The cylinder can

For

the portion of cylinder inside the sphere (subscript 3)3 the relation
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between the deflection and rotation at the edge of the cut in terms cf

the distributed force and moment, with the sign convention the same as

showvn in Fig.3. can be written as

3 6 fris ( OL y - & F.b
and 3=l (2my a) | (15D0)
28°D ‘
For continuity of the cylinder,
OQ fred 63 ?:md 60 = 63 .

Hence from egquations 2 and 15,
¢ e -
ﬁ\mo + “’5) * (QC QB) 0, <‘i6)

0. (17)

it

i

and 25(m, = m) + (q, + a)
Tith the addition of m, and a3 at the joint. the equations

3

of equilibrium 11 and 12 beccome:

qm + qﬁ o+ qg + QB =0, (18)
and. m, + m1 4 m2 +* m3 =0, (19)

The arguments from which equations 7,8,9 and 10 are
derived still apply to this case, Hence using these four equations,
together with equations 16, 17, 18 and 19, the eight unknown forces

and moments at the joint can be obtained.

The solution to the sel of equations is:

ce
- - _ - ~
q’O -~ % b q‘? - QLE - ».? 2 {
ae

m1 = ~m2 = v X

o~ 37 2%’

A

where W = be - a2 + %g = &2 + %ﬁ .

The coefficients a, b, ¢, d, e, and f are the same as

given in equation 14.
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L, Case 3,

Cylinder joining on the outside of a sphere with a

temperature change in the sphere and a temperature

gradient in the cylinder,

Consider the geometry to be the same as that of Case 1,
and let the initial temperature of the whole system be Toa The
gphere is then heated {or cooled) to a temperature TQQ By conduction,
the temperature at the end of the cylinder jeining cn the sphere is

also T,, whilst at the far end the temperature remains at To’

i’
La, It is now convenient to detach the cylinder from the sphere
at the joint (FngS) end consider the effect of the temperature on
each item, .
(a) For the sphere,
Let the change of tempersture Ty =Ty = AT,
The increase in radius of the sphere due to this temperature
change is
(:m}t =y R, AT ,
where Y = coefficient nf expansion,
The component of expansion at the joint normal to the axis of
the cylinder is
8, = (4R), sing =yr. LT, : (21)

(v) For the cylinder
For convenience, the temperature gradient along the length of
the cylinder is here assumed to be linear. In fact it may be taken
to be any other function without affecting the following reasoning,
The change of temperature at any point x from the far end of
the cylinder is then given by

m \X x
- TO)L = AT

an(x) - (T A
Using the same argument as given in Ref.1 (pp.423-425), we can
now assess the deformation nf the isclated cylinder due tec this change

~f temperature,
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Censider a small ring clement dx separated from the rest of
the cylinder, The expansion due to*th@’cb&nge of t r\“ra+u*m AT (x)
is equal to Yr.AT(x), It produces no stress in the riﬁga

Imagine now an external pressure p' which is applied on
- the ring element to restore it to its original dismeter, The:

contraction due to p! must be equal to the expansion due to ﬁT(X}.

Hence .ELEE = Yr, 0T(x)
Et

. Byt
from which p' = f AT(x).
The pressure p' produces a hoop stress in the ring,

In fact, there is no asctual applied pressure on the cylinder.
Therefore a pressure -p' must be applied to the now un-distorted ’
cylinder, This latter pressure produces longitudinal benﬁiﬁg stress
along the cylinder axis as well as hoar SVrbﬁ%, ~ The hoop stresses of
the two pressure systems of course cancel each other, leaving ﬁhe
longitudinal bending stress produced Ly pressure -p' on the straight
cylinder as the sole equivalent of the iemyeraﬁure,gradient effect,

This stress should be included in the final stress system in the
cylinder. ' o
The stresses produced by =p' can be obtained if the deflection

A

curve along the cylinder is known, and the skin deflection w (positive
irwards towards the axis) is given by the differential equation (Ref.d,

P. 392, eq,ZBO. See also p.h2k, eq.h,)

g;z + hﬁAW'~ - “* .

a s N
(Bend D are the same as given in eg.3).
We are here interested not so much in the bending stress as
‘the deflection and rotation at the joining end (that is when x =4 ) of
the detached cylinder due to ths temperature gradient. These can be
cbtained sasily by solving %

he
conditions and substituting into the solution the end value,
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After substituting for -p', the equation above beccmes

dw gty X ar(a).
&x}*' , - Dr

The general solution of this equaticn, assuming T(x) to

be linear is:
w=c ﬁéos}'g’:?xcod?x + czcmshgxsirﬁx + oBSinbﬁxoaa@x
+ c&swxsizﬁx -c'x, , (22)

B, T e
where ¢' = [~ ¢ 7= = 7=,
4 AﬁL‘Dr
The unknown c:omﬂ:.ea:n’css;c,i see Op will depend on the
condition at the far end of the cylinder {x=0) where the temperature

is kept constent at T o*

(1) If the cylinder is free at both ends

21 : 3

then mdgzeané‘.md§ =0
dx dx

when =0 orx= "%,

These conditions give

01’262233:‘:6)-*:0,
and eqg., 22 becomes simply
W= =yr. AT, F ’ , ; (222)

This infers a linear deflection with a rate proporﬁional
to AT, ,
The deflection and rotation at the jeint (x w€) are

given by:

W‘Q = -1, ﬂT, ; (233')

' aw r » :

and 6 = m} - &To = e \ (231},}
REZ2 dx}, , &

Note that Por this case. =W, = 5‘5 (see eq.21), i.eu
both the cylinder and sphere are displaced by the same emount in the
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direction normal to the axis of the cylinder. It can also be seen that
there is no longitudinal bending stress anywhere on the cylinder due to

this temperature gradient,

(ii) If the far end is fixed, then the boundary conditions are

at x = O: w =0 and »%g = 0,
2 ' .
& feed & M ol . 5
and  at x ~w§w: 0 and d&’w = O,
dx ax®

follows:
31 = 0 N
o - o cashgﬁ5
= - -,
€ cos?pL +\co$h23@ ‘
: coszﬁ’6 ,
05 = C i) PP
cos P 4 cosh“fFé
o S - il ; &) Q
and o = o SEBEERG9PC 51?“2*‘%’” het,
* cos“Be + cosh“fBL
o c! v
where e =% :~g% « AT . o o (2x)

Putting these constants into €g.22, the deflection and

rotation at the joint x =% are given by:

.4,’ - el ot Y7 .o },!W()“ :3” )
W, = —a(pt = coshPlsintd . 51n;£wggww/)’7 (an)

2/.2?/ ‘ .1 2/.3?
ces B4 4+ cosh B4

BE v coslPh)°
8, = C§§> . (cosh : cosh )2 . (25b)
Xt cos L + cosh fBe
B. . The above calculation for the deflections and rotations of

the sphere and cylinder due to temperature variation assumes that the
joint is detached and that no moment or force exist at the joint. The
fact that the cylinder and sphere are actually attached will induce forces

and moments on the edges of the cyvlinder and the two portions of sphere
¥ Ay
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at the joint, The magnitudes of these forces are such that the
deformations of all the parts at the joint are consistent, The

treatment of the problem is then exactly the same as that of Case 1,

The relations given in egs, 2, 4 and 6 still hold, and if
the joint is assumed rigid, the deflection and rotation of the two
portions of sphere cut at the joint must be the same. Hence eqs. 8

and 9, which give €, = 92 and 51 = 52 must st111l apply.

If a pressure p is also applied in the sphere the sum of -
the deflection of the sphere in the direction normal to the axis of
the cylinder is éb + 5£ as given in eqs, 1 and 21. Adding to this
the deflection of the cylinder (see Fig.5), the total 'gep' developed
over the detached joint is (&p + 6t + W)

Therefore, the right hand side of €q, 10 iustead of being
Sp, now becomes {5p + 8+ wp) and the equation reads

61 - 60 = §p - §t Wy e |
This means that the total inwerd deflection of the sphere

6¢ - §p - 6t must be the same as that of the cylinder 50 + Wg,
2

. o . ,
- 2nBsin a 23 sina 4
Hence =UFp— Y TR ™ 26D (Fin + q,)
= prR '
‘%ﬁ (1”71) -{*&’I‘, AT 4 W& P (26)

Similarly, since we assume that the joint is rigid, the

rotation of the sphere 91 must be equal to the total rotation of
the oylinder 6, + 6, (see also Fig,6).
=0 -0 - @
Hence 1 o= 2
3 2 . ;
or LM 2N gin(w-a 1
¥RE Ty T E§< Yy = (Fm +9) =8, ,

26°D
w, and 9, in egs, 26 and 27 are given from either
e & X

eq. 23 or eq.25, according to the condition at the far end of the

cylinder,
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The conditions of equilibrium at the joint as given by eg.11

and 12 are still true. Therefore, we have now a set of six equations:

Colmy - m) + ale, + qy) =0, | (8)
a(mg + my) + (e, = q) =0, (9)
Gy + 9+ 9y =0, , _ (11)

) M + My + Wy = 0, | - (9
bq, - am, - d@ﬁmé +q)=¢e+e ' (26)
\ em, - aq, -Fa(%m_+ q ) = f. (27)

where a, b, ¢, d, and f are the same as given in eq.1l,

and

| | | (28)
; . .
T = e’?/m Eto ‘ ._; ’

e!

it

+ (yr b T 4 w,)EE

It can be seen that the first four equations are identical
with those used in Case 1, Eq. 26 comes from eq.10, but with e. replaced -
by e 4 & ; and eq.27 dif’fex's from eq.7 only in the right hand side
where it is now equal to f instead of zero. When there is no thermal
'effect, e'' = Qand £ = O, tﬁis set of equations lb then reduced identically
to that of Case 1, |

The solution of the eguations is:

4ot MM ! I.aM !
n o= Mo*'}‘g__ m, = h-%ﬁ\’f,! m, = Mot } (29)
© N N oo 7
q. = ’Qo'ﬁ"QoT q = Q“Q‘f’ q, = QZ‘"QQ’ 'J
° T e % 2 Twoo e

where N, uzo, Mﬂ, Mz, Q‘o’ Q1, Qz, are given in eq.13a with the
important difference that e is replaced by e + e'! in the expressions.

The other guantities 1\.’;‘0' ree QE’ are:




¥ s ~2o(a® 4 2cd)f, R
~ ' WMo
Mt = bla® 4+ 203 -~ 24P - M,ﬁg“ —‘E_ 9
) 2 La %
O
M, = b(a® 4 208 4+ 268)F = - Mn' P "
2 "Ia Yo', > (292)
Q'O' = 8{5;’5.26,3?’
-~ ' ! o
Q,‘ . L,_,_ Ly{,?azd 4 a;(az . 285.)} £z _%‘i___ - :M Mt
‘ 2 2 To
Q' =1 - 45a2d - a(a2 #2d)| f & - %o’ + 2w
2 2 ™ 9 A

5 Case kL,

Cylinder extending into the sphere, with s temperature
change in both the sphere and the portion ~f cylinder
inside it, and a temverature gradient in tae portion
of ecylinder outside,

The geometry of this case is the same as that of Case 2,
and the same thermal chenges as that of Case 3; The change of
temperature from TG to Tﬁ,'applied also to the portion »f cylinder
inside the sphere, The arguments that lead to equations 8, 9, 18
and 19 for Case 2 are still valid. By a similar consideration as
that employed in Case 3 from which yields eqéﬁ 26 and 27 (which still
~ hold true), we obtain the relations between the deflection and

rotation of the two portions of cyiinders at the joint,

By =8 =8, 4w, . ~ (30)
65*60 = 6(30 (54)
The set of equations for this case is therefore
f” O(Ing - m:g) 4 a (q"i 4 qg) = O . (8)
' o ;

a(m1 +my) 4 h(qg - qj) = 0 (9)
Qo+ G + Gy + 93 = O (18)
mc»g,ml?a;.mg.g.ﬁlﬁ::") (19}

‘? bqﬂ - am, - &Q?mb + qO) = ¢ 4 e ~ (26)
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in eqg,14.,

with that

hand sid

]l

om, - aq, - ﬁ?ﬁ(a@m@ & qo) = F (27)
ﬁ(mO + mB) ”l’(qo - 2’3) = "'e //d- ‘ (308')
B - mg) + (a, + a5) = = /Pa (519

where e'! and f are given in eq,28 and the other coefficients

The left hand side of the equations is of course identical
of Case 2, but e' and £ are newly introduced into the right

as a result of the temperature change.

The solutions of the equations are:

o - Sl +j_qy_*_ £ -5
o T LEE 2 ?
v P e
m_,?.:‘.&..??ii
YT 2ov og . *
au _ by

m__.m%,,qmﬁ,f \
AT e X ’12 ?
57 T E T 2, 1 (32)
_cu _FPov e
9 = 3T T 5% Za
_ cu _av
Y = ¥ "%
Loeu av
9 = ¥ * T3
cu fov  e'
93 =" * gt ¢ ~
. . -
where u = 2¢ 4 e' - * /27
v = fel - f >
2 do
v .e? 8 (322)
‘ 2 2 .2 '




6. Case 5,

Effect ef & heavy ring at the joint

The presence of a ring can be dealt with in exactly the
same mammer as the preceding cases.

Isoclating the ring from the rest of the structure and
letting the force and moment on it be qa‘and m s inducing radial

deflection 64 andAxoﬁaﬁion.théae Pig. 7).

The relation between ﬁﬁyand a is easily seen to be
) !
8 =1

where A = area of ring cross section, which is assumed

constant,

Assuming that qu‘ig applied on the centroid of the ring and

therefore inducing nc rctaticn, the relation between O, and m, is

» L 4
e = ks ‘ m,
L L ?
BI -1_9 , (34
X XY
T
¥

where Ix = moment of inertia of the ring cross-section
about an axis in the plane of the ring centroid,

I_ = moment of inertia of the ring cross-section

J
about an axis perpendicular to the plane of
the ring centroid,
Ixy = product of inertia referring tc these tweo axes,

It is now simply a matter of equating these displacements
to the rest of the structure at the joint, two extfa equations,

most convenlently

5 =8
Lm0y
(when there is no thermal effect).
i
end 6, -6 ~
are derived, Also, extra terms qt'amﬁ.m, must be added to the
; I

equations of equilibrium of force and moment, Thus, two new
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variables qj+ and ml‘b are added to the original equations, but the two

extra equations will enable the new set of equations to be solved.

If the temperature of the ring is also changed from TO
to T P then the radius of the ring, when isolated, is changed by
an amount yr.8 T. i.e,, there is no relative movement between the
ring and the wall of the sphere due to the temperature effect. The
deflection and rotation can more conveniently be equated with those
of the sphere to give '

8, =8 - 8,
and 62{:61’

which together with the original equations will enable all the unknowns
to be found,
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FIG.2 DEFORMATION AT JOINT WHEN THE
FIG.1 CYLINDER JOINING ON TO A SPHERE SPHERE IS UNDER PRESSURE.

POATION OF SPHERE OUTSIDE
THE CYLINDER  (SUBSCRIPT 1)
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PORTION OF SPHERE
INGIDE THE CYLINDER

(SUBSCRIPT 2)

CYLINDER, (SUBSCRIPTO)

FIG.3 SIGN CONVENTION OF FORCES AND DISPLACEMENTS fgiG.4 CYLINDER EXTENDING INTO THE SPHERE.
AT THE JOINT, L ,



SPHERE AND CYLINDER AT
INITIAL TEMPERATURE Tpo
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FIG.5 EFFECT OF TEMPERATURE ON DETACHED SPHERE
AND CYLINDER.

FINAL POSITION OF
SPHERE AND CYLINDER

QRIGINAL POSITION OF
SPHERE AND CYLINDER

@+ (“P0)= &g /<»-— POSITION OF CYLINDER
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CONSIDERED DETACHED.
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FIG.6 RELAT!ON BETWEEN ROTAT!ONS OF THE WALLS
' OF SPHERE AND CYL!NDER
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FIG.7 FORCE AND MOMENT ON A RING
. AT THE JOINT. '



