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, This note derives the mathematical equations for

the analysis of the shear buckling of a plate, in the case where
the initial stresses exceed the elastic limit of the material,

It is hoped at a later stage to apply this theory to test ;
results, which are being obtained using rectangular torsion boxes,
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PLASTIC BUCKLING OF A PL.ATE TN SHEAR.

. Statement of the Problem

Consider flat plate referred to Rectangular Cartesian

Coordinates 0O(x
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in such a way that it occupies the region
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<b , -~h<xg <h). O(X&) are axes in the
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e plate, The dimension

of the plate are 'a' and 'b' in plan and the thickness is

"on'. Let the plate be loaded in pure shear by stress resultants

3 applied to its'edges in such a way that initially the stress
s féa are given by,
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It is further assumed that the shear stress S/2h is in excess of
the elastic limit for the plate material in shear, The problem
to be solved is the calculation of the critical value of S

for buckling of the plate by lateral deflection away from its
initial plane form,
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Indicial notation is used in this Report. Latin indices
take the values 1,2 and 3; Greek indices the values 1 and 2,
Twice repeated indices are taken to imply summation over
the appropriate range, |
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Kinematics

To test the stability of our initial state we impose &
small displacement Vp at the middle surface, This gives rise,
according to the Theory of Plates, to strain components emB
given by
C = - ’ era 2
o YaB XBKaB (2)

where Y@B are the middle surface strains and KQB are given by,
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Stress=-Strain Relations

Equation (1) shows that in the initial state the
'stress deviator! fﬁq given by,

! = f - =f 3§ 580 ‘-\
qu pa  3'rr pg , (&)
where O is Kronecker's Delta, is equal to qu and so is
given by (1),

Following the stress-strain law of Reuss (Ref,1) we then see that
the only plastic strain increment for a small change in stress
must be confined to the sitrain component of type €15 o

The relations between direct stress and strain increments

must be purely 'elastic' and so for a state of 'loading' (612> 0)
we may calculate the stresses f@B from the strains of (2)

by the equations

B B
o Sm————— (e} —
11 = 55 (e) + Tegp) £, = (1-02) (ep + Te19)

where E is Young's Modulus, O = Poisson's Ratio and Hrp is
the 'tangent shear modulus' corresponding to the shear stress 8,/ 2n,
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Stress Resultants and Couples

Substituting from (2) in (5) and integrating through the
plate thickness we find the following formulae for the membrane
"t S g v p> lt ] )
stress resultants SCLB

__2Eh , . _2En o
8yp = = (Yqy + OY,,) 0 Sy, = =g (Y, + OFpy)
, \L=v ) (L= (6)

S ‘{,,mu A

Sqp5 = 821 =5 + MhuTle

- Similarly, multiplying (5) by x5 and integrating through
the thickness, we find for the stress couples M@B’ ‘

= e ) / = e G
Myq = D(Kll + Kzz) , M,y D(fc22 + Kll) -
' : -G Y 7
— R T 7
Myp = Mpy = = 5 D7ugkq,
: 3
where, D = £ **EEE*
3 (1-0%)
Restriction on the Stress Resultants
Equations (6) and (7) are derived from (5) and so are only
valid for p points where e,,% 0. We follow Shanley in assuming

that our test dlsplacement is such that this restrlction is
valid everywhere, By equatlon (2) this means that

Y. . ®h x cos (8)
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and by the last of (6), condition (8) is ensured if, at buckling,
we chose V@ in such a way that § 1increases to 8 + A S where,
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a8 = ‘&h Hp § K10 max 0ae (9)
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Conditions of HEguilibrium

Equilibrium in the buckled state is maintained if,
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Substituting from (6), (7) and (3) and retaining only those
terms which are of first order in the test deformation defined
by V_, we find,
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DI Z + i + Zé-— L = + G%‘***gwimg g: 28 §§m55~ (11)
g 9% 9%, L ) ax, “ox, 19%2

This is the governing equation for plastic shear buckling.

- Varistional Principle

Mathematical difficulties assoclated with the
solution of (11), suggest that it would be of value to set up a
variational equation, so that methods of approximation can be
- used to obtain numerical answers, Confining ourselves to the
boundary conditions, ' |

Vs = 0 on all edges g
aV3
52; =0 or Mj;=0 onx; = 0,a e ees (12)
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ax2 =0 or M22 =0 on x5, = 0, D f
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we multiply (11) vy a virtusl displacement OV and integrate
over the whole plate, Integrating by parts and using (12)
to eliminate the integrated terms we find,

(5 S = O 2o (13>
when ,
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Equations (13), (1L) correspond to the usual equations for the
"Energy Method' of buckling analysis in the slastic case,
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