
Azoti,  Wiyao and Elmarakbi,  Ahmed (2017) Constitutive modelling of ductile 

damage  matrix  reinforced  by  platelets-like  particles  with  imperfect  interfaces: 

Application to graphene polymer nanocomposite materials. Composites Part B: 

Engineering. ISSN 1359-8368 

Downloaded from: http://sure.sunderland.ac.uk/6978/

Usage guidelines

Please  refer  to  the  usage guidelines  at  http://sure.sunderland.ac.uk/policies.html  or  alternatively 

contact sure@sunderland.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sunderland University Institutional Repository

https://core.ac.uk/display/78900362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Constitutive modelling of ductile damage matrix reinforced by

platelets-like particles with imperfect interfaces: Application to graphene

polymer nanocomposite materials

Wiyao Azoti∗, Ahmed Elmarakbi

Automotive Composites Group, Faculty of Engineering and Advanced Manufacturing, University of Sunderland, SR6

0DD, UK

Abstract

In this paper, the mechanical response of composites consisting of ductile matrix reinforced by

platelets-like particles is derived with imperfect interfaces. Due to its flexibility to study imperfect

interfaces with limited number of model parameters, the linear spring model LSM is considered.

Moreover, the interfacial contribution to the strain concentration tensor within each material phase

and inside the average strain filed is described by a modified Mori-Tanaka scheme. The mate-

rial nonlinearity is established by the J2 plasticity and Lemaitre-Chaboche damage model. A

generalised mid-point rule is used to solve rate equations yielding to anisotropic consistent (algo-

rithmic) tangent operators. To avoid spurious macroscopic stress-strain response, an isotropisation

procedure is adopted during the computation of a modified Eshelby’s tensor. Numerical results

are performed on graphene platelets GPL-reinforced polymer PA6 composite. They confirm the

possibility to achieve high stiffness with low values of GPL aspect ratio. The accumulated plastic

strain and the damage variable within the matrix are influenced by the GPL volume fraction which

is also involved in the softening of the overall response when imperfection is considered at the

interface.

Keywords: Interface, Graphene platelets, Ductile damage, Algorithmic tangent operators,

Micromechanics

1. Introduction

Platelets-like particles represent a type of ellipsoidal oblate inclusions that are characterised

by a very small thickness compared to both others semi-axis dimensions. Platelets-like particles

become attractive with the development of nanocomposites such as the graphene platelets GPL

based polymer composites. It is reported [1] substantial property enhancements at much lower
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volume fraction with respect to polymer composites containing conventional micron-scale fillers

(such as glass or carbon fibres). For deriving properties at the nanoscale, analysis accounting for

the size dependent effect have been performed [2]. In addition, multi scale analyses combining

molecular mechanics theories and continuum models have been developed for graphene polymer

composites. The graphene properties are often derived at atomistic scale and the nano particles are

treated as equivalent continuum particles [3, 4] that are embedded in the polymer matrix through

conventional homogenisation techniques.

Despite graphene has been used to increase stiffness, toughness and thermal conductivity of

polymer resins by a large margin [5–8], there are still much technological challenges to overcome

mainly in the material modelling. This is characterised by the lack of sufficient knowledge on

graphene composites for structural applications describing interfacial properties between graphene

and polymer matrix under severe loading conditions. It is well-known that the interface charac-

terises the load transfer between the particles/fibres and the matrix. It can significantly change

the overall properties. Several micromechanics models have been developed for accounting for

the properties of the interface. Among them, one can distinguish the interphase models [9–13] as

well as interface models [14–23]. The latter i.e the interface models introduce discontinuites in

the displacement and/or stress fields at the interface. Among them, is there the linear spring model

LSM (Hashin [24, 25], Qu [26, 27], Zhong and Meguid [28]). Springs like zero-thickness interface

model based on bilateral, independent elastic springs has been developed by Mancusi et al. [29] to

study the influence of the debonding in the torsional strengthening and the local interactions be-

tween a reinforced concrete beams and layers of fibre-reinforced composite reinforcement. Works

by Ascione et al. [30] to predict the actual stress state at the interface between concrete core and

reinforcing plate should be cited. Herein, LSM is very attractive for its simplicity and flexibility

to treat imperfect interface with limited number of model parameters [31].

In this work, LSM is considered to analyse the effect of an imperfect interface on the duc-

tile damage response of GPL nanocomposite materials. GPL are considered as continuum phases

interacting with the polymer matrix through a slightly weakened interface. The solution of the

heterogeneous material problem is obtained by the kinematic integral equation of Dederichs and

Zeller [32]. The non linear framework, which is that recently used by Tchalla et al. [33], is based

on a Hill-type incremental formulation with the classical J2 flow rule. For the matrix phase, the

damage behaviour is introduced through the so-called effective stress σ̂. The damage variable D

undergoes Lemaitre and Chaboche’s ductile law. Following works of Doghri [34], the algorith-

mic (consistent) modulus is obtained for the ductile matrix. By accounting for the contribution of

2



the interface, on the one hand inside the strain concentration tensor of the inclusions through the

modified Eshelby’s tensor [26, 27], and on the other hand in the average strain field , a modified

version of the Mori-Tanaka is derived for the effective properties. The well-known damage local-

isation problem is not addressed herein. Works dealing with such issues are based on non-local

approaches. An implicit gradient-enhanced approach has been used by Wu et al. [35, 36] to study

the non-linear behaviour of ductile damage matrix composites with the strain/damage localisation

due to the loss of solution uniqueness. Besides, a gradient non-local approach has been formu-

lated for treating a softening behaviour of nanobeams by Barretta et al. [37] and Apuzzo et al.

[38] while analytical based finite element formulations accounting for the nonlocal interactions

between elastic heterogeneities at microscopic level have been also provided by Barretta et al.

[39]. In this work, critical loadings reaching the lost of uniqueness are avoided in applications by

checking the positive-definite properties of the algorithmic modulus. Next, the modified Eshelby’s

tensor involved in the global strain concentration is computed by an isotropisation of the matrix

algorithmic modulus. This isotropisation discussed in Doghri and Ouaar [40] and Chaboche et al.

[41] is essential to avoid spurious stiff macro stress-strain responses.

The paper is organised as follows: section 2 establishes the fundamentals of a micromechanics

homogenisation by deriving the global strain concentration tensor; in section 3, the algorithmic

tangent operator, derived from the Chaboche’s ductile damage, is recalled. Section 4 gives ex-

pressions of the imperfect interface in terms of traction and displacements as well as the modified

Eshelby’s tensor while section 5 derives the modified Mori-Tanaka scheme for overall responses.

The algorithm for deriving the overall properties is presented in section 6. Finally, the model

predictions are therefore compared with open literature data in section 7 where a systematic anal-

ysis of micro parameters (aspect ratio, volume fraction, interfacial compliance) is carried out for a

GPL-reinforced polymer PA6 under uniaxial tests.

2. Fundamentals of Micromechanics

2.1. Kinematic integral equation

Let us consider a composite material consisting of N + 1 phases. The matrix (phase 0) can be

a specific constituent containing all remaining phases. To study this composite, a Representative

Volume Element (RVE) is considered. On the RVE boundaries (Fig. 1), admissible macroscopic

static or kinematic loads are applied in the absence of body forces and inertia terms. The mi-

cromechanics scale transition consists, firstly, in the localization of the macroscopic strain tensor
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E through a fourth order global strain concentration tensor A(r) and, secondly, in the homoge-

nization, which uses averaging techniques to approximate the macroscopic behaviour. Note that

A(r) remains the unknown parameter that contains all the information about the microstructure.

The effective properties of the RVE are given by:

Ceff =
1

V

∫

V
c(r) : A(r)dV (1)

where c(r) denotes the local stiffness tensor and V the volume of the RVE. The operator ":" stands

Figure 1: Illustration of platelets-like inclusions reinforced 3D random RVE.

for the tensorial contraction over two indices. The global strain concentration tensor A(r) links

the local strain ǫ(r) to the macroscopic strain E as follows:

ǫ(r) = A(r) : E (2)

The decomposition of the local stiffness tensor into a homogeneous reference part cR and a fluc-

tuation part δc such as:

c(r) = cR(r) + δc(r) (3)

Equation (3) enables the derivation of the kinematic integral equation of Dederichs and Zeller [32].

In terms of strain fields, the kinematic integral equation reads:

ǫ(r) = ER(r)−

∫

V
Γ(r − r′) : δc(r′) : ǫ(r′)dV ′ (4)

where ER(r) is the strain field inside the reference infinite medium and Γ(r − r′) is the modified

Green tensor.
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2.2. Global strain concentration tensor

The kinematic integral equation (4) represents the formal solution the global strain concentra-

tion tensor is derived from. Based on an iterative procedure proposed by Vieville et al. [42], the

global strain concentration tensor AI(r) for a Ith phase of the RVE is given as:







AI(r) = aI(r) : (āI(r))−1

Ā
I
(r) = I

(5)

I represents the fourth order symmetric identity tensor and •̄ is the mean-field volume average of

•. The quantity aI(r) is the local strain concentration tensor with respect to the reference medium

such that:

ǫ
I(r) = aI(r) : ER (6)

The Ith concentration tensor aI is given by:



















aI0(r) = I

aIi+1(r) = [I + TII : (cI(r)− cR(r))]−1 : [I −
∑N

J=0,J 6=I TIJ : (cJ(r)− cR(r)) : aJi (r)]

I = 0, 1, 2, ..., N

(7)

with N the number of phases considered in the composite. In equation (7), aIi (r) represents an

approximation of the Ith concentration tensor at iteration i. TII and TIJ are the interaction tensors

in one-site (OS) and multi-site (MS) versions, respectively. Their general expression is:

TIJ =
1

VI

∫

VI

∫

VJ

Γ(r − r′)dV dV ′ (8)

The computational framework of TII and TIJ is proposed by Fassi-Fehri [43].

Let us suppose that the geometry of any phase within the RVE is ellipsoidal. The Eshelby’s inclu-

sion concept [44] assumes that the strain field inside an ellipsoidal inclusion is uniform. Therefore,

a characteristic function θ(r) can be defined such as [42]:

θ(r) =











1 if r ∈ VI

0 if r /∈ VI

(9)

Based on equation (9) and the average strain field within an inclusion I such as:

ǫ
I =

1

VI

∫

VI

ǫ (r) dV (10)
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the above kinematic integral equation (4) can be rewritten as:

ǫ
I = ER −

N
∑

J=0

TIJ : (cJ − cR) : ǫJ with I = 0, 1, 2, ..., N (11)

and the local concentration tensor Eq.(7) becomes:


















aI0 = I

aIi+1 = [I + TII(cR) : (cI − cR)]−1 : [I −
∑N

J=1,J 6=I TIJ : (cJ − cR) : aJi ]

I = 0, 1, 2, ..., N

(12)

In the case of OS version (most frequent developments in the literature) and for isotropic medium,

the interaction tensor TII can be deduced from the Eshelby’s tensor S such as TII = S : (cR)−1.

In such condition and neglecting the interactions among inclusion I and its neighbours J, i.e. all

the tensors TIJ = 0, the local concentration tensor aI reads more simple expression:

aI = [I + S : (cR)−1 : (cI − cR)]−1 with I = 0, 1, 2, ..., N (13)

Finally, the global strain concentration tensor AI is calculated by substituting equation (13) in (5).

Therefore, for any homogenization model defined by AI , the effective or macro-stiffness tensor

Ceff is given through a discrete form of the equation (1) by:

Ceff =

N
∑

I=0

fIcI : AI . (14)

with the volume fraction fI defined as:

fI =
VI

V
(15)

3. Ductile damage-based non linear tangent operators

In this section, the “consistent” (algorithmic) Calg tangent operator will be derived from a

discretisation in the time interval [tn, tn+1] of Hill-type rate constitutive equation. The damage

is represented by a state internal variable D such as (0 ≤ D < 1) and based on the concept of

effective stress σ̂. This latter characterises the undamaged representation of the RVE. It is seen as

the tensor which resists to the load and yields:

σ̂ =
σ

1−D
(16)

In equation (16), σ represents the stress state accounting for the damage evolution. The differ-

entiation of σ with respect to the total strain ǫ leads to the “consistent” (algorithmic) Calg tangent

operator:

δσn+1 = Calg : δǫn+1 (17)
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3.1. Algorithmic (consistent) tangent operator C
alg

Variables with subscript “(•)n+1” are computed at the current time increment and those with

subscript “(•)n” are computed at the previous time increment. The J2 flow rule accounting for

Lemaitre-Chaboche damage is obtained by considering the following equations:



































































σ = (1−D)Cel : (ǫ− ǫ
p)

f(σ̂, R,D) = J2(σ̂)−R(r)− σY

ṙ = (1−D)ṗ with ṙ ≥ 0 and ṙf = 0 and ṙḟ = 0

J2(σ̂) = [32(ŝ) : (ŝ)]
1/2 with ŝ = σ̂ −

(

1
3

)

(trσ̂) 1

ǫ̇
p = ṗN̂ with ṗ =

(

2
3 ǫ̇

p : ǫ̇p
)1/2

N̂ = ∂f
∂σ̂ =

(

3
2

)

ŝ
J2(σ̂)

Ḋ = ( Y
S0
)sṗ if p ≥ pc and D ≤ Dc

(18)

where, Cel denotes the material elastic stiffness tensor while ǫ and ǫ
p are the total and plastic

strains, respectively. The yield function f(σ̂, R,D) establishes the yield surface in which σY is

the initial yield stress and R(r) the hardening stress with ṙ the plastic multiplier variable and p the

accumulated plastic strain. N̂ represents the normal to the yield surface in stress space whereas ŝ

is the deviatoric stress and 1 the second order symmetric identity tensor. Y represents the rate of

damage strain energy release. S0 and s are material parameters. In order to obtain the algorithmic

tangent operator Calg, a first step consists to solve the effective algorithmic tangent operator Ĉ
alg

given by:

δσ̂n+1 = Ĉ
alg

: δǫn+1 (19)

The general framework for the derivation of Ĉ
alg

is set up by Doghri in [34]. In this paper, we

use the classical equations leading to the effective tangent operator Ĉ
alg

given by:



















Ĉ
alg

= Ĉ
ep

− (2G)2 ∆p
[1+(3/2)g]

∂2f
∂σ̂∂σ̂

Ĉ
ep

= Cel − (2G)2 N̂⊗N̂
h

h = 3G+ ∂R
∂r

(20)

where G denotes the material shear modulus and the operator "⊗" designates the tensor prod-

uct. The parameter g and tensor ∂2f
∂σ̂∂σ̂ are given by:







g = 1
J2(σ̂) (2G∆p) > 0

∂2f
∂σ̂∂σ̂ = 1

J2(σ̂)

(

3
2Idev − N̂ ⊗ N̂

) (21)
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with Idev the deviatoric part of the fourth order symmetric identity tensor. A new shortened nota-

tion y is introduced. The damage strain energy release Y is given by:























y =
(

Y
S0

)s

Y = 1
2E

[

J2(σ̂)
1−D

]2
Rv

Rv = 2
3(1 + ν) + 3(1− 2ν)

[

σ̂H

J2(σ̂)

]2
with σ̂H = σ̂kk

3

(22)

The algorithmic tangent operator Calg is therefore obtained from the effective algorithmic tangent

operator computed from equations (20)-(22). Its expression yields :

Calg = (1−D)Ĉ
alg

(23)

Equation (23) corresponds to the local stiffness tensor of the material’s constituent. It will

be used in section 5 for homogenisation purposes. It depends of some internal variables such as

(r, p,D).

3.2. Internal variables computation: Return mapping algorithm

The statement of the problem in a time interval [tn, tn+1] is the following: when the solution

in terms of (σ, ǫ, r, p,D) is known at tn, a given applied strain increment (load) at tn+1 must lead

to the solution at tn+1. Note that the known variable of the problem is the applied strain increment

∆ǫ. An increment is defined such as:

∆(•) = (•)n+1 − (•)n (24)

The first equation of system (18) can be rewritten at time tn+1 as follow [34]:

σn+1 = (1−Dn+1)C
el : [(ǫn +∆ǫ)− (ǫpn +∆ǫ

p)] (25)

At the beginning of the time interval tn, the response of the loaded material is considered purely

elastic, therefore ∆p = 0,∆ǫ
p = 0,∆D = 0. This state called “the elastic predictor” yields in

terms of stress at time tn+1:

σ̂
trial
n+1 = Cel : (ǫn+1 − ǫ

p
n) and σ

trial
n+1 = (1−Dn)σ̂

trial
n+1 (26)

• if σ̂trial
n+1 satisfies the flow rule such as f trial

n+1 = J2(σ̂
trial
n+1 )−R(rn)− σY ≤ 0, therefore the

solution is given by:







σ̂n+1 = σ̂
trial
n+1 and σn+1 = (1−Dn)σ̂n+1

(

rn+1, pn+1, Dn+1, ǫ
p
n+1

)

= (rn, pn, Dn, ǫ
p
n)

(27)
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• else if σ̂trial
n+1 does not satisfy the flow rule i.e f trial

n+1 = J2(σ̂
trial
n+1 ) − R(rn) − σY > 0, then

the plasticity occurs and the solution must be corrected (plastic corrector) so that fn+1 = 0

is satisfied. This implies to find σ̂n+1 such as:

σ̂n+1 = σ̂
trial
n+1 − Cel : ∆ǫ

p (28)

which can be rewritten, by taken into account the deviatoric nature of ∆ǫ
p, as:

σ̂n+1 = σ̂
trial
n+1 − 2G∆ǫ

p (29)

The unknown plastic strain increment ∆ǫ
p in equation (29) is evaluated by solving the following

non linear system of equations:



















k
σ̂
= σ̂ − σ̂

trial + 2G∆ǫ
p = 0

kf = J2(σ̂)−R(r)− σY = 0

kD = ∆D − y(σ̂) ∆r
1−D = 0

(30)

Newton-Raphson technique is used to solve the above non-linear equations (30). More technical

details about this resolution can be found in [34].

Once the iterative procedure converges, the internal variables rn+1, pn+1, Dn+1 and the effec-

tive stress σ̂n+1are known. Therefore, the algorithmic tangent operator equation (23) can be fully

determined and the micromechanics approach can now be addressed for the composite material.

A detailed procedure about internal variables computation can be found in [45].

4. Imperfect interface and the modified Eshelby’s tensor

Let us consider the interface γ between two phases of a composite material. The linear spring

model LSM supposes the continuity of the traction vector across the interface while the jump of

displacment field is consedered to be proportional to the traction on that interface. These assump-

tion are written like:






∆σijnj = [σij (γ
+)− σij (γ

−)]nj = 0

∆ui = [ui (γ
+)− ui (γ

−)] = ηijσjknk

(31)

with nj the components of a unit vector normal to the interface. ui (γ
+) and ui (γ

−) stand for the

values of ui (x) as x reaches the interface from outside and inside of the inclusion respectively.

σij (γ
+) and σij (γ

−) are the dual in terms of stress. The second order tensor components ηij

denote the compliance of the interface. It appears that ηij = 0 leads to a perfectly bonded interface
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Figure 2: Illustration of the interface around 2-phases of a composite.

whereas ηij −→ ∞ represents a completely debonded interface. The expression of ηij is given by

[26, 27]:

ηij = αδij + (β − α)ninj (32)

where the constants α and β stand for the extent of interfacial sliding and the interfacial separation,

respectively. δij is the Kronecker symbol. In the case of ellipsoidal inclusions, Qu [26, 27] has

determined the Eshelby’s tensor for these inclusions embedded in an elastic matrix and showing a

slightly weakened interface i.e when ηij is very small. Therefore, the modified Eshelby’s tensor

for this problem yields :

SM = S + (I − S) : H : c : (I − S) (33)

where S denotes the original Eshelby’s tensor [44] and H stands for a four order tensor depending

on the interface properties and the geometry of the inclusion. Expressions of H for ellipsoidal

inclusions are given in Appendix A. In others terms, Eq. (33) can be written such as:

SM
ijkl = Sijkl + (Iijpq − Sijpq)Hpqrscrsmn (Imnkl − Smnkl) (34)

5. Modified Mori-Tanaka scheme for overall responses

General considerations on Mori-Tanaka scheme can be found in works by Azoti et al. [46].

Therefore, the MT effective properties are given by:

CMT =

N
∑

I=0

fIcI : AI = (f0c0 +

N
∑

J=1

fIcI : aI) : A0 (35)
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with A0 the global strain concentration of the matrix. By accounting for the interface contributions,

modifications come out with the definition of the average strain field:

E =
1

V

∫

V
ǫ (x) dV =

N
∑

I=0

fIǫ
I +

1

V

∫

γ

1

2
(∆u ⊗ n + n ⊗∆u)dS (36)

where γ represents the union of all interfaces. The combination of Eq.(31)-b and Eq.(36) leads to

the following expression of the average strain:

E =
N
∑

I=0

fIǫ
I +

1

V

N
∑

I=1

∫

γI

1

2
[(η.σ.n)⊗ n + n ⊗ (η.σ.n)]dS (37)

with γI the surface of the volume VI .

The evaluation of the integral terms in Eq.(37) remains tricky for an arbitrary interface geometry.

However by taking advantage of developments by Qu [26] for slightly weakened interface, the

stress distribution on the surface γI can be replaced by its average over the volume VI leading to a

simplified form of Eq.(37) such as:

E =
N
∑

I=0

fIǫ
I +

N
∑

I=1

fIHI : σI (38)

Using Eq.(5) and derivations in [46], one can demonstrate the following relationship between the

average strain within an inclusion and the matrix such as:

ǫ
I = aI : ǫ0 (39)

where aI in the OS-version yields:

aI = [I + SM : (cR)−1 : (cI − cR)]−1 with I = 1, 2, ..., N (40)

Combining Eq.(39) and Eq.(38) leads to

E =

[

N
∑

I=0

fIaI +
N
∑

I=1

fIHI : cI : aI

]

: ǫ0 (41)

The inversion of Eq.(38)

ǫ
0 =

[

N
∑

I=0

fIaI +
N
∑

I=1

fIHI : cI : aI

]−1

: E (42)

in conjunction with Eq.(2) leads to the modified global concentration tensor of the matrix A0 such

as:

A0 =

[

N
∑

I=0

fIaI +

N
∑

I=1

fIHI : cI : aI

]−1

(43)
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Substituting Eq.(43) into Eq.(35) gives the modified Mori-Tanaka effective properties such as:

CMT
modified =

(

f0c0 +
N
∑

I=1

fIcI : aI

)

:

[

N
∑

I=0

fI : aI +
N
∑

I=1

fIHI : cI : aI

]−1

(44)

In the case a 2-phase composite, Eq.(44) yields

CMT
modified =

(

f0c0 + fIcI : aI
)

:
[

f0I + fI
(

I + HI : cI
)

: aI
]−1

(45)

6. Algorithm for solving the homogenised ductile damage responses

For a time [tn, tn+1] increment, the input variables of the problem are: the macro strain En

at tn and the macro strain increment ∆E such as En+1 = En + ∆E. The output variable is the

macrostress such as Σn+1 = Σn+∆Σ. The following steps summarise the constitutive algorithm

presented in Figure 3.

1. Initialization of the strain increment in the inclusions phase: ∆ǫ
I = AI : ∆E such as

AI = I

• Update the stress in inclusions phase from equations (27) or (30);

• Compute the inclusions algorithmic moduli C
alg
I using equation (23).

2. Compute the strain increment in the matrix phase: ∆ǫ
0 = ∆E−fI∆ǫ

I

1−fI

• Update the stress in the matrix phase from equations (27) or (30);

• Compute the matrix algorithmic moduli C
alg
0 using equation (23).

3. Apply the mid-point rule at time tn+α to the algorithmic moduli of the inclusions and the

matrix (see [40]):

• [Calg
0 ]n+α = (1− α)[Calg

0 ]n + α[Calg
0 ]n+1;

• [Calg
I ]n+α = (1− α)[Calg

I ]n + α[Calg
I ]n+1;

• α ∈ [0, 1]. (Here α = 1
2 is used)

4. Compute the global strain concentration tensor AI = aI : A0 from equation (40) and (43)

using the modified Mori-Tanaka scheme

5. Calculate the residual

• R = AI : ∆E −∆ǫ
I ;

6. If |R| ≤ TOL = 10−8, then exit the loop and go to the step 8
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7. else Go to step 1 using the computed value of the global strain concentration tensor AI

8. Compute the homogenised tangent properties CMT
modified from equation (44) and based on

anisotropic moduli in step 3

9. Finally, compute the macroscopic stress increment

• ∆Σ = CMT
modified : ∆E;

The above steps describing the algorithm is represented in the Figure 3.

7. Numerical results and discussions

7.1. Model validations

The capability of the present model to reproduce results from the open literature is carried out

herein. Ellipsoidal inclusions are defined by semi-axis (a1, a2, a3) with aspect ratio AR such as

AR = a3
a1

and a1 = a2 = a. A pure sliding case is considered i.e α 6= 0 and β = 0. The sliding

interfacial separation constant α is given such as α = aα0/GM with α0 the sliding coefficient,

GM the shear modulus of the matrix and a the ellipsoid semi-axis. The model predictions are

compared with the works by Yanase and Ju [31] on spherical particle-reinforced composites. The

material properties used for this study is presented in Table 1.

Matrix Inclusions

E0 [GPa] ν0 EI [GPa] νI AR β

3.0 0.4 76 0.23 1.0 0.0

Table 1: Material properties from works by Yanase and Ju [31]

The model predictions are concerned with the originate Mori-Tanaka scheme for perfect bonded

inclusions denoted "MT" and the modified MT using the modified Eshelby’s tensor denoted "Modif.

MT, α0 = 0.3". Figure 4 presents the influence of the sliding coefficient α0 on the normalised

effective Young modulus Eeff/E0. Under the perfect interface condition, i.e α0 = 0 and be-

yond a volume fraction fI = 0.2 the MT scheme underestimates results by Yanase and Ju [31].

One can explain this observation by the well-known accuracy issues with the MT when a high

volume fraction is achieved. Subsequently, when the interface imperfection is considered with

α0 = 2.10−4, a significant decrease of the Eeff/E0 is noticed with respect to the case of perfect

interface. However, the effective response show an increase with the volume fraction and good

agreement is obtained with results by Yanase and Ju [31]. For high interface damage i.e α0 = ∞,
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Figure 3: Algorithm for solving the homogenised problem.

14



0.0 0.1 0.2 0.3 0.4 0.5 0.6

fI

0

1

2

3

4

5

E
ef
f/
E
0

MT

Yanase and Ju, 2014, α0=0

Modif. MT, α0=2.10−4

Yanase and Ju, 2014, α0=2.10−4

Modif. MT, α0=∞
Yanase and Ju, 2014, α0=∞

Figure 4: Effective Young modulus of spherical particles reinforced composite.

Eeff/E0 shows a decrease with the volume fraction evolution. Again, the predictions remains in

good agreement is obtained with results by Yanase and Ju [31].

7.2. GPL-reinforced polymer PA6 composite materials

Let us consider a composite consisting of GPL reinforced PA-6 ductile polymer matrix. The

GPL are assumed elastic while the PA-6 matrix is considered elasto-plastic with an isotropic hard-

ening power law defined as R(r) = hrm. The material properties is presented in Table 2. The

macro stress-strain response is studied under uniaxial loading. The loading is given in terms of a

macro stain increment ∆E = ∆E Ψ with Ψ = e1 ⊗ e1 −
1
2 (e2 ⊗ e2 + e3 ⊗ e3).

Figures 5 and 6 present the behaviours of the matrix under the selected loading. Indeed,

figure 5 depicts the accumulated plastic strain p and the variable damage D versus the equivalent

deformation. These internal variables are nil during the elastic stage. They increase while the

plastic stage is reached. p and D are analysed with respect to the GPL volume fraction fI . One

can remark that during the plastic stage, p and D are sensitive to fI . The higher, fI , the higher

p and D. However, due to the selected damage evolution law, the value of D remains lower than

that of the accumulated plastic strain p. Figure 6 shows the evolution of the strain energy release

Y versus p. constant value of Y is obtained for the elastic stage i.e p = 0. Thereafter, a trend

corresponding to a monotonic increase is showed with increasing p leading to a plastic stage. For

the whole material behaviour, Y remains insensitive to the volume fraction fI .

The effective response of the composite is assessed through different design parameters for

15



instance the platelets aspect ratio AR, the volume fraction fI and the interface sliding coefficient

α0.

Matrix Inclusions

E0 [GPa] ν0 σY [MPa] h [MPa] m S0 [MPa] s EI [GPa] νI

2.0 0.39 60.5 63 0.4 2.0 0.5 1000 0.22

Table 2: Material properties for GPL/PA-6 composite materials
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Figure 5: Accumulated plastic strain and damage evolution.

Figure 7 examines the influence of the particle’s morphology through AR. The variation of

AR on the overall response clearly reproduce the trend of a ductile material starting from the elas-

tic stage to the plastic and damage threshold. The overall response is highly sensitive to the AR.

Lower values of AR have led to stiffer stress-strain response. This confirms that the reinforcement

character is obtained with platelet-like inclusions AR < 10−1 than spherical particles i.e AR = 1.

Furthermore, the volume fraction fI is studied in Figure 8. An increase of the Young modulus,

yield strength and hardenning is observed when increasing fI . In that condition, the composite

shifts towards stiff stress-strain response. Figure 9 shows the influence of the interfacial sliding

compliance α0 on the overall response between α0 = 0 corresponding to a perfect interface to

α0 = 0.7 representing a delamination. While the Young modulus and yield strength are conserved
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Figure 6: Strain energy release evolution.

0.0 0.2 0.4 0.6 0.8 1.0

εeq

0

500

1000

1500

2000

2500

3000

3500

σ
eq

 [
M

P
a
]

AR=1

AR=10−1

AR=10−2

AR=5.10−3

Figure 7: Aspect ratio variation of GPL/PA-6 composite for fI = 0.1 and α0 = 0.3.
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Figure 8: Volume fraction variation of GPL/PA-6 composite for AR = 10
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Figure 9: Interface sliding compliance variation of GPL/PA-6 composite for AR = 10
−2.
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Figure 10: Influence of imperfect versus perfect interface of GPL/PA-6 composite for AR = 10
−2.
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for the composite, the hardening stress decreases when increasing the sliding compliance α0. The

higher, the sliding compliance α0, the softer the overall response. Comparisons between the com-

posite response in the perfect as well as imperfect interface cases are addressed by figure 10. Two

values of volume fraction fI are considered. While a decrease of the overall response with respect

to the imperfect interface case is noticed, the volume fraction fI shows a significant influence on

the increase of the gap between both interfacial cases. In figure 11, the ductile damage behaviour

is presented versus the classical plasticity for fI = 0.05. Perfect and imperfect interfaces are

analysed and it can be seen a softening in the overall response when damage is accounting for.

8. Conclusion

Graphene platelets reinforced PA-6 polymer composite has been addressed regarding an in-

terfacial behaviour using a micromechanics formulation. For such a purpose, the linear spring

model LSM is considered within the framework of Lemaitre-Chaboche model. Therefore, a modi-

fied expression is obtained for both the Eshelby’s tensor and the Mori-Tanaka scheme for deriving

the effective properties that are compared to open literature data. Furthermore, analyses are per-

formed on the ductile matrix internal variables such as the accumulated plastic strain p and damage

variable D as well as the strain energy release Y.

Numerical results show that p and D are sensitive to the variation of the GPL volume fraction

while Y remains constant. For the composite, the results highlight the importance of the aspect

ratio that leads to most effective reinforcement with low values such as AR < 10−1. By consid-

ering the interfacial imperfection, the sliding compliance coefficient α0 also shows a significant

influence on the composite overall response and thus, with respect to the GPL the volume fraction.

The higher the GPL volume fraction, the higher the softening in the overall stress-stress response.
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Appendix A. Expressions of tensor H

The components of the interfacial tensor H are given by:

Hijkl = αPijkl + (β − α)Qijkl (A.1)
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where Pijkl and Qijkl are given for ellipsoidal inclusions by:


































Pijkl =
3

16π

∫ π
0

[

∫ 2π
0 (δiknjnl + δjkninl + δilnknj + δjlnkni) n−1dθ

]

sinφdφ

Qijkl =
3
4π

∫ π
0

[

∫ 2π
0 (ninjnknl) n−3dθ

]

sinφdφ

n = (nini)
1/2

n =
(

sinφcosθ
a1

; sinφsinθa2
; cosθa3

)T

(A.2)
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Research Highlights

• The graphene platelets GPL are defined through the aspect ratio of inclusions;

• The non linear behaviour is based on the Lemaitre-Chaboche damage model;

• The linear spring model is used for studying the interfacial imperfection;

• The overall properties are derived by a modified Mori-Tanaka scheme;

• Numerical results are carried out for GPL reinforced polymer under uniaxial loading.
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