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Thesis Summary 
 

Drug delivery to the central nervous system (CNS) is significantly hindered by the 

presence of the blood brain barrier (BBB) and blood cerebrospinal fluid barrier (BCSFB) 

and associated drug efflux transporter proteins. The aim of this work was to modulate 

the expression of breast cancer resistance protein (BCRP) at each barrier site using 

phytochemical modulators. In-vitro cellular models of both the BBB (porcine brain 

microvascular endothelial cells (PBMEC/C1-2)) and BCSFB (rat choroid plexus cells 

(Z310)) were utilised and 18 phytochemical modulators screened for their cellular 

toxicity with IC50 values for the majority of phytochemicals being in excess of 100 µM. 

Intracellular accumulation of Hoechst 33342 (H33342) was assessed in each barrier 

cell line to determine short-term modulation of BCRP efflux or long-term modulation of 

protein expression. Incubations with modulators demonstrated significant inhibition of 

BCRP efflux activity for a range of modulators in both cell lines with TMF (1-100 µM) 

demonstrating a > 6 fold increase in intracellular accumulation. Similarly, many 

modulators demonstrated proposed protein-level modulation of BCRP resulting in 

increases or decreases in H33342 accumulation following a 24 hour exposure.  

Western blotting subsequently confirmed that quercetin and naringin for PBMEC/C1-2 

and baiclain and flavone for Z310 induced BCRP expression (to 2-3 fold of control) 

whereas curcumin and 17-β-estradiol for PBMEC/C1-2 and silymarin, quercetin and 

17-β-estradiol for Z310 down-regulated BCRP expression (to 0.24-0.4 fold of control). 

This was further confirmed in substrate transport studies using 12- well permeable 

insert models, which demonstrated functional changes in the permeability of BCRP 

substrates across both barrier models. 

Subsequently the regulation of BCRP by AhR was confirmed through siRNA 

knockdown of AhR, which resulted in a significant decrease in BCRP gene expression 

in both cell lines. Furthermore the induction/down-regulation effects on BCRP were, in 

general, diminished following AhR knockdown, suggesting AhR plays an important role 

in mediating the genomic/proteomic alterations in BCRP expression when exposed to 

phytochemicals. 



3 
  

  Acknowledgements 

 

Firstly, I would like to express my sincere gratitude to my supervisor Dr. Raj K Singh 

Badhan for his great amount of patience, help, guidance and encouragement 

throughout this journey for the past few years. You are the best teacher I have ever 

had. 

I would like to thank all the others in the drug delivery group at Aston University for their 

support, the lab technicians: Jiteen Ahmed, Tom and Chris for the enormous help they 

have given with regard to all the equipment and materials I needed throughout this 

project. 

I would like to thanks my colleagues and friends Mandeep, Eman, Sheetal, Swapnil 

and Affiong to support and encouragement during tough times. We all had fun together 

and you all will be my friends forever.   

I would like to thanks Aston University for providing funding for this research. 

I would like to thank my family and friends who have all been so supportive throughout 

the years, thank you so much. Finally, I reserve my greatest expression of gratitude to 

my husband Charnjit Singh, who has always believed in me and has always been there 

for me. I am truly and earnestly grateful for your support, encouragement, love and 

praise. You are my pillar of strength and without you, this would never have been 

possible.  

 

 

 

 

 

  



4 
  

List of Publications 

Peer Reviewed Articles 

                                                                                                                                    

1. Kaur M and Badhan RK., (2015). Phytoestrogens modulate breast cancer 
resistance protein expression and function at the blood-cerebrospinal fluid barrier. 
Journal of pharmacy and pharmaceutical sciences. 18(2): 132-154. 
 
 
2. Badhan RK, Kaur M, Lungare S and Obuobi S., (2014). Improving brain drug 
targeting through exploitation of the nose-to-brain route: a physiological and 
pharmacokinetic perspective. Current Drug Delivery.11 (4):458-71. 
 
 
Article in Preparation 
 
  Kaur M and R.K.Singh Badhan., (2015). Phytoestrogens modulate breast 
cancer resistance protein expression and function at the blood-brain barrier. In 
preparation.   
 
 
Abstracts 
                                                                                                                                                                  

1. Manjit Kaur and Raj K Singh Badhan.,2014. Flavonoids down regulate breast 
cancer resistance protein function and expression at the blood cerebrospinal fluid 
barrier. Blood brain barrier symposium, University College London, London, UK. 
 
2. Manjit Kaur and Raj K Singh Badhan, 2014. Flavonoids are modulators of 
BCRP at the Blood brain barrier and Blood cerebrospinal fluid barrier. LHS PG 
Research day, Aston University, Birmingham, UK. 

 
3. Manjit Kaur and Raj K Singh Badhan., 2014. Determination of genomic and 
protein expression of Breast Cancer Resistance Protein and its modulation at the blood 
cerebrospinal fluid barrier (Z310 cells). M5 Biomedical imaging conference, University 
of Nottingham, Nottingham, UK. 

 
4. Manjit Kaur and Raj Singh Badhan., 2013., Silencing the central nervous 
system: A gene silencing approach to enhance the neuropharmacokinetics of the 
CNS drug delivery. UKICRS. The University of Reading, Reading. UK. 
 
5. Raj K Singh Badhan and Manjit Kaur, 2012., The art of miniaturisation: A 
microfluidic approach to the design and delivery of nanoparticle drug formulations. 
UKICRS. Aston University, Birmingham.UK 
 
6. Manjit Kaur, Raj K Singh Badhan and Yvonne Perrie. 2012. Overcoming drug 
delivery to the central nervous system: A novel CNS drug delivery platform. Aston 
University PG. Birmingham, UK. 
 

  



5 
  

List of Contents  

 

Acknowledgements ..................................................................................................... 3 

List of Publications ...................................................................................................... 4 

Peer Reviewed Articles ............................................................................................... 4 

List of Abbreviations .................................................................................................. 14 

List of Figures ........................................................................................................... 17 

Chapter 1 ................................................................................................................. 21 

Introduction ............................................................................................................. 21 

1.1. Background .......................................................................................................... 22 

1.2. The physiology of the brain and central nervous system ................................. 23 

1.2.1. The blood brain barrier .................................................................................... 23 

1.2.1.1. Discovery ................................................................................................. 23 

1.2.1.2. Physiology of the blood brain barrier ........................................................ 23 

1.2.2. The blood cerebrospinal fluid barrier ............................................................... 26 

1.2.2.1. Discovery ................................................................................................. 26 

1.2.2.2. Physiology of the blood cerebrospinal fluid barrier ................................... 26 

1.2.2.3. Functional role of the choroid plexuses .................................................... 27 

1.2.2.4. Barrier function of the BCSFB .................................................................. 28 

1.3. Drug transport across the BBB and BCSFB ...................................................... 29 

1.3.1. Transport pathways ......................................................................................... 29 

1.3.2. Transporter proteins ........................................................................................ 31 

1.3.3. Breast cancer resistance protein ..................................................................... 33 

1.3.4. Expression and localisation of BCRP .............................................................. 34 

1.4. The role of BCRP in health and disease ............................................................. 36 

1.5. Other CNS drug transporter proteins ................................................................. 37 

1.5.1. P-glycoprotein (P-gp) ...................................................................................... 37 

1.5.2. Multidrug resistance protein (MRP) ................................................................. 37 

1.6. Current approaches to assess drug delivery across the BBB/BCSFB............. 38 

1.6.1. In-vitro models ................................................................................................ 38 

1.6.1.1. Non-cerebral cell lines .............................................................................. 38 

1.6.1.2. Rodent origin cell lines ............................................................................. 39 

1.6.1.3. Bovine origin cell lines .............................................................................. 39 

1.6.1.4. Porcine origin cell lines ............................................................................ 40 

1.6.1.5. Human original cell lines .......................................................................... 40 



6 
  

1.6.2. In-silico models ............................................................................................... 41 

1.6.3. In-vivo models ................................................................................................. 41 

1.7. The regulation of BCRP at the BBB and BCSFB ................................................ 42 

1.8. Regulation of BCRP by the Aryl Hydrocarbon Receptor ................................... 44 

1.8.1. Structure and function of AhR ......................................................................... 45 

1.8.2. Structure of flavonoids .................................................................................... 47 

1.8.3. Systemic absorption and permeation of the BBB and BCSFB ......................... 48 

1.8.4. Flavonoids as modulators of BCRP efflux function .......................................... 49 

1.8.5. Flavonoids as modulators of AhR function ...................................................... 49 

1.9. Novel approaches to modulating BCRP function at the CNS barriers ............. 50 

1.10. Aims and Objectives ............................................................................................ 51 

Chapter 2 ................................................................................................................. 52 

Assessment of the interactions of phytochemicals on BCRP expression and 

function at the porcine blood brain barrier ........................................................... 52 

2.1. Introduction .......................................................................................................... 53 

2.2. Aims and objectives............................................................................................. 53 

2.3. Materials ............................................................................................................... 54 

2.4. Methods ................................................................................................................ 55 

2.4.1. Culture of C6 rat astrocytes ............................................................................. 55 

2.4.2. Culture of PBMEC/C1-2 cells .......................................................................... 55 

2.4.2.1. Preparation and coating of an gelatine extracellular matrix ...................... 55 

2.4.2.2. PBMEC/C1-2 cell growth on tissue culture surfaces ................................. 56 

2.4.2.3. Cryopreservation of the cells .................................................................... 56 

2.4.2.4. Development of a permeable insert based BBB model ............................ 56 

2.4.3. Cytotoxicity of modulators towards PBMEC/C1-2 cells: methylthiazolyldiphenyl-

tetrazolium bromide assay .............................................................................. 57 

2.4.4. Immunostaining detection of BCRP in PBMEC/C1-2 cells ............................... 58 

2.4.5. Measurement of BCRP cellular functional activity in PBMEC/C1-2 cells ......... 59 

2.4.5.1. Determination of PBMEC/C1-2 optimum seeding density and modulator 

incubation time .............................................................................................. 59 

2.4.5.2. Functional activity of BCRP in PBMEC/C1-2 using a 96-well plate assay . 59 

2.4.5.3. Assessment of the intracellular accumulation of H33342 in the presence of 

modulators. ................................................................................................... 59 

2.4.6. Determination of BCRP gene expression by reverse-transcriptase PCR (RT-

PCR) in PBMEC/C1-2 cells ............................................................................. 61 

2.4.6.1. Extraction of total RNA ............................................................................. 61 



7 
  

2.4.6.2. One-step reverse-transcriptase PCR ....................................................... 61 

2.4.6.3. Gel electrophoresis .................................................................................. 62 

2.4.7. Determination of BCRP protein expression by SDS-PAGE and Western blotting 

in PBMEC/C1-2 cells ....................................................................................... 62 

2.4.7.1. Preparation of cell lysate .......................................................................... 62 

2.4.7.2. Determination of protein concentration: bicinchoninic acid assay ............. 63 

2.4.7.3. Sodium dodecyl sulphate polyacrylamide gel electrophoresis .................. 63 

2.4.7.4. Electrophoretic transfer and blotting of proteins ....................................... 64 

2.4.7.5. Immunological detection of BCRP ............................................................ 64 

2.4.7.6. Chemiluminescent detection of BCRP...................................................... 65 

2.4.7.7. Membrane stripping ................................................................................. 65 

2.4.7.8. Immunological detection of β-actin ........................................................... 66 

2.4.8. Modulation of BCRP gene expression by phytochemicals compound in 

PBMEC/C1-2 cells .......................................................................................... 66 

2.4.8.1. Extraction of RNA .................................................................................... 66 

2.4.8.2. Reverse transcription ............................................................................... 66 

2.4.8.3. qPCR cycle parameters ........................................................................... 67 

2.4.8.4. qPCR quantification method ..................................................................... 68 

2.4.9. Assessing the functional activity of BCRP in an in-vitro permeable insert BBB 

monolayer model............................................................................................. 68 

2.4.9.1. Pheophorbide A (PhA) calibration curve ................................................... 68 

2.4.9.2. Optimisation of the in-vitro transport media .............................................. 69 

2.4.9.3. Lucifer yellow permeability assay ............................................................. 69 

2.4.9.4. Modulation of BCRP transport function .................................................... 69 

2.4.9.5. Measurement of the apparent membrane permeability coefficient ............ 70 

2.4.10. Development of an in-vitro primary porcine brain microvascular endothelial cell 

culture model .................................................................................................. 70 

2.4.10.1. Isolation of the primary porcine brain endothelial cells ............................. 71 

2.4.11. Characterisation of the in-vitro primary porcine BBB model ............................. 72 

2.4.11.1. Morphology of the cells ............................................................................ 72 

2.4.11.2. Assessment of barrier integrity ................................................................. 72 

2.4.11.3. Immunostaining detection of BCRP grown on permeable inserts ............. 73 

2.4.11.4. Determination of BCRP protein in primary porcine brain microvascular 

endothelial cells........................................................................................ 73 

2.4.11.5. Cytotoxicity of modulators towards primary porcine brain microvascular 

endothelial cells: methylthiazolyldiphenyl-tetrazolium bromide ................. 74 



8 
  

2.4.12. Phytochemical modulation of BCRP transport function in a primary porcine in-

vitro permeable insert BBB model ................................................................... 74 

2.4.13. Statistical analysis ........................................................................................... 75 

2.5. Results .................................................................................................................. 76 

2.5.1. PBMEC/C1-2 cell morphology ......................................................................... 76 

2.6. Development of a PBMEC/C1-2 in-vitro BBB model .......................................... 76 

2.6.1. Assessment of monolayer formation and barrier integrity ................................ 76 

2.6.2. Stability of ACM .............................................................................................. 77 

2.7. Cellular toxicity of modulators towards PBMEC/C1-2 cells .............................. 78 

2.8. Determination of BCRP expression in PBMEC/C1-2 cells ................................. 82 

2.8.1. Determination of BCRP genomic and protein expression ................................ 82 

2.8.2. Immunostaining detection of BCRP ................................................................. 83 

2.9. Measurement of BCRP cellular functional activity in PBMEC/C1-2 cells ......... 83 

2.9.1. Determination of optimum seeding density and incubation time ...................... 83 

2.9.2. Assessment of the intracellular H33342 accumulation in the absence and 

presence of Ko143 .......................................................................................... 84 

2.9.3. Measurement of the auto-fluorescence of phytochemicals .............................. 85 

2.9.4. Modulator mediated inhibition of BCRP function in a H33342 intracellular    

accumulation assay ......................................................................................... 86 

2.9.5. Modulator mediated changes in BCRP function following 24 hours incubation 88 

2.10. Modulation of BCRP protein expression by phytochemical modulators ......... 90 

2.11. Quantitative PCR assessment of the changes in BCRP genomic following 

exposure to modulators ......................................................................................... 92 

2.12. Modulation of BCRP transport function in an in-vitro permeable insert BBB 

model ....................................................................................................................... 94 

2.12.1. Generation of a PhA standard curve ............................................................... 94 

2.12.2. Impact of transport media on in-vitro BBB monolayer integrity ........................ 94 

2.12.3. Functional assessment of BCRP in an in-vitro permeable insert BBB  model

 ………………………………………………………………………………………..95 

2.12.4. Modulation of BCRP function in the absence and presence of up-regulators .. 96 

2.12.5. Functional assessment of BCRP in the presence of BCRP down-regulating 

modulators ...................................................................................................... 99 

2.13. Characterisation of an in-vitro primary porcine brain BBB model ................. 100 

2.13.1. Morphology of porcine brain primary endothelial cells ................................... 100 

2.13.2. Treatments to enhance barrier integrity ......................................................... 101 

2.13.3. Immunostaining detection of BCRP in primary porcine brain endothelial cells

 ………………………………………………………………………………………..102 



9 
  

2.13.4. Determination of BCRP protein expression ................................................... 103 

2.13.5. Determination of cytotoxicity of modulators in primary cells ........................... 103 

2.13.6. Modulation of BCRP transport function in a permeable insert based in-vitro 

BBB model .................................................................................................... 105 

2.13.6.1. Functional assessment of BCRP ............................................................ 105 

2.13.6.2. Modulation of BCRP function in the absence and presence of up-

regulator………………………………………………………………………….106 

2.13.6.3. Modulation of BCRP function in the absence and presence of down-

regulators………………………………………………………………………….108 

2.14. Discussion .......................................................................................................... 110 

2.14.1. The use of PBMEC/C1-2 cells to develop an in-vitro BBB model .................. 111 

2.14.2. Cytotoxicity of modulators towards PBMEC/C1-2 cells .................................. 112 

2.14.3. Assessment of BCRP expression  in PBMEC/C1-2 cells ............................... 113 

2.14.4. Functional assessment of BCRP in the absence or presence of modulators . 114 

2.14.5. Modulation BCRP protein expression in PBMEC/C1-2 cells .......................... 116 

2.14.6. Functional assessment of BCRP activity in an in-vitro permeable insert BBB 

model ............................................................................................................ 117 

2.14.7. Characterisation of a primary porcine brain endothelial cell BBB 

model…..…………………………………………………………………………….118 

2.15. Conclusion ......................................................................................................... 121 

Chapter 3 ............................................................................................................... 122 

Assessment of the interactions of phytochemicals on BCRP expression and 

function at the rat blood cerebrospinal fluid barrier .......................................... 122 

3. Introduction ........................................................................................................ 123 

3.1. Aims and objectives........................................................................................... 123 

3.2. Materials ............................................................................................................. 124 

3.3. Methods .............................................................................................................. 125 

3.3.1. Culture of Z310 cells ..................................................................................... 125 

3.3.2. Cryopreservation of cells ............................................................................... 125 

3.3.3. Development of an in-vitro permeable insert based model of the BCSFB

 ……………………………………………………………………………………….125 

3.3.3.1. Extracellular matrix coating with collagen ............................................... 125 

3.3.3.2. Visualisation of cell monolayers under light microscopy ......................... 126 

3.3.3.3. Measurement of transcellular electrical resistance ................................. 126 

3.3.4. Cellular toxicity of modulators towards Z310 cells: methylthiazolyldiphenyl-

tetrazolium bromide assay ............................................................................ 126 

3.3.5. Immunostaining detection of breast cancer resistance protein in Z310 cells..127 



10 
  

3.3.6. Measurement of BCRP functional activity in Z310 cells ................................. 128 

3.3.6.1. Functional activity of BCRP in Z310 cells using a 96-well plate assay .... 128 

3.3.6.2. Assessment of the intracellular accumulation of H33342 in the presence of 

modulators in Z310 cells. ............................................................................ 128 

3.3.7. Determination of BCRP gene expression by reverse-transcriptase PCR in Z310 

cells............................................................................................................... 128 

3.3.7.1. Extraction of total RNA ........................................................................... 128 

3.3.7.2. One-step reverse-transcriptase PCR ..................................................... 129 

3.3.7.3. Gel electrophoresis ................................................................................ 130 

3.3.8. Determination of BCRP protein expression in Z310 cells .............................. 130 

3.3.8.1. Preparation of cell lysate ........................................................................ 130 

3.3.8.2. Determination of protein concentration: bicinchoninic acid assay ........... 130 

3.3.8.3. Sodium dodecyl sulphate polyacrylamide gel electrophoresis ................ 130 

3.3.8.4. Electrophoretic transfer and blotting of proteins ..................................... 130 

3.3.8.5. Immunological detection of BCRP .......................................................... 130 

3.3.8.6. Chemiluminescent detection of BCRP.................................................... 131 

3.3.8.7. Membrane stripping ............................................................................... 131 

3.3.8.8. Immunological detection of  β-actin ........................................................ 131 

3.3.9. Determination of modulation of BCRP gene expression by phytochemical 

compounds using quantitative PCR in Z310 cells .......................................... 131 

3.3.9.1. Isolation of RNA ..................................................................................... 131 

3.3.9.2. Reverse transcription ............................................................................. 132 

3.3.9.3. qPCR cycle parameters ......................................................................... 132 

3.3.9.4. qPCR quantification method ................................................................... 132 

3.3.10. Assessing the functional activity of BCRP in an in-vitro BCSFB monolayer 

model ............................................................................................................ 133 

3.3.10.1. HPLC detection of sulfasalazine............................................................. 133 

3.3.10.2. Optimisation of in-vitro transport media .................................................. 134 

3.3.10.3. Lucifer yellow permeability assay ........................................................... 134 

3.3.10.4. Modulation of BCRP transport function .................................................. 134 

3.3.10.5. Calculation of permeability coefficients ................................................... 135 

3.3.11. Statistical analysis ......................................................................................... 135 

3.4. Results ................................................................................................................ 136 

3.4.1. Z310 cell morphology .................................................................................... 136 

3.4.2. Development of a Z310 in-vitro BCSFB model .............................................. 136 

3.4.2.1. Assessment of monolayer formation and barrier integrity ....................... 136 



11 
  

3.4.2.2. Measurement of CSF formation ............................................................. 137 

3.4.3. Cellular toxicity of modulators towards Z310 cells ......................................... 138 

3.5. Determination of BCRP expression in Z310 cells ............................................ 142 

3.5.1. Determination of BCRP genomic and protein expression .............................. 142 

3.5.2. Immunostaining detection of BCRP in Z310 cells .......................................... 143 

3.6. Measurement of BCRP cellular functional activity in Z310 cells .................... 143 

3.6.1. Assessment of intracellular H33342 accumulation in the absence and presence 

of Ko143 ....................................................................................................... 143 

3.6.2. Modulator inhibition of BCRP function in an H33342 intracellualr accumulation 

assay . ……………………………………………………………………………….145 

3.6.3. Modulator mediated changes in BCRP function following 24 hours incubation

 ……………………………………………………………………………………….147 

3.7. Modulation of BCRP protein expression by phytochemical modulators ....... 149 

3.8. Quantitative PCR assessment of the changes in BCRP genomic expression 

following exposure to modulators ............................................................................... 152 

3.9. Modulation of BCRP transport function using an in -vitro BCSFB model ..... 153 

3.9.1. HPLC-UV Detection of sulfasalazine ............................................................. 153 

3.9.2. Linearity ........................................................................................................ 154 

3.9.3. The impact of transport media on in-vitro BCSFB monolayer integrity ........... 154 

3.9.4. Functional assessment of BCRP in an in-vitro permeable insert BCSFB model

 ……………………………………………………………………………………….155 

3.9.5. Functional assessment of BCRP in the presence of BCRP up-regulating 

modulators .................................................................................................... 156 

3.9.6. Functional assessment of BCRP in the presence of BCRP down-regulating 

modulators .................................................................................................... 157 

3.10. Discussion .......................................................................................................... 159 

3.10.1. The use of Z310 cells to develop an in-vitro BCSFB model ........................... 160 

3.10.2. Cytotoxicity assessment of modulators ......................................................... 161 

3.10.3. Assessment of BCRP expression in Z310 cells ............................................. 163 

3.10.4. Functional assessment of BCRP in the absence and presence of modulators

 ………………………………………………………………………………………..163 

3.10.5. Modulating BCRP protein expression in Z310 cells ....................................... 165 

3.10.6. Functional assessment of BCRP activity in an in-vitro permeable insert BCSFB 

model ………………………………………………………………………………..166 

3.11. Conclusion ......................................................................................................... 168 

Chapter 4 ............................................................................................................... 169 



12 
  

Transcriptional regulation of BCRP by the aryl hydrocarbon receptor at the 

BBB and BCSFB ................................................................................................... 169 

4.1. Introduction ........................................................................................................ 170 

4.2. Aims and objectives........................................................................................... 171 

4.3. Materials ............................................................................................................. 171 

4.4. Culture of H1L6.1c2 cells ................................................................................... 172 

4.4.1. Cryopreservation of the cells ......................................................................... 172 

4.4.2. Activation of AhR by omeprazole in H1L6.1c2 cells ....................................... 172 

4.4.3. Activation of AhR by modulators in H1L6.1c2 cells ........................................ 173 

4.5. Silencing AhR gene expression ........................................................................ 173 

4.5.1. Preparation of siRNA reaction ....................................................................... 173 

4.5.2. Culture of PBMEC/C1-2 and Z310 cells ........................................................ 175 

4.5.3. Measurement of transfection efficiency using a fluorescent plasmid ............. 175 

4.5.4. Chemically mediated antagonism of AhR ...................................................... 175 

4.5.5. Quantification of AhR and BCRP gene expression ........................................ 175 

4.5.5.1. Extraction of RNA .................................................................................. 175 

4.5.5.2. Reverse transcription and qPCR analysis of AhR and BCRP gene 

expression……............................................................................................ 176 

4.5.6. Phytoestrogen mediated modulation of AhR gene expression....................... 176 

4.6. Statistical Analysis ............................................................................................ 177 

4.7. Results ................................................................................................................ 178 

4.7.1. Activation of AhR by omeprazole in H1L6.1c2 cells ....................................... 178 

4.7.2. Activation of AhR by modulators in H1L6.1c2 cells ........................................ 179 

4.7.3. Assessing transfection efficiency using a fluorescent plasmid ....................... 181 

4.7.4. Modulation of BCRP and AhR gene expression in PBMEC/C1-2 cells .......... 182 

4.7.4.1. Assessment of AhR down-regulation by siRNA and CH223191 ............. 182 

4.7.4.2. Phytochemical mediated modulation of AhR gene expression ............... 186 

4.7.4.3. Phytoestrogen mediated modulation of BCRP gene expression in PBMEC/C1-

2 cells .......................................................................................................... 187 

4.7.5. Modulation of BCRP and AhR gene expression in Z310 cells ....................... 189 

4.7.5.1. Assessment of AHR downregulation with siRNA and CH223191 ........... 189 

4.7.5.2. Phytoestrogen mediated modulation of AhR gene expression ............... 192 

4.7.5.3. Phytoestrogen mediated modulation of BCRP gene expression in Z310 cells

 …………………………………………………………………………………..194 

4.8. Discussion .......................................................................................................... 197 

4.9. Conclusion ......................................................................................................... 203 



13 
  

Chapter 5 ............................................................................................................... 204 

Conclusion ............................................................................................................ 204 

5.1. Conclusion .................................................................................................. 205 

Appendix A ............................................................................................................ 228 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 
  

 List of Abbreviations 

 

 ABC    Adenosine 5’-triphosphate binding cassette   

AD    Alzheimer’s disease 

ANOVA   Analysis of variance 

ATP    Adenosine 5‟- triphosphate  

BBB     Blood-brain barrier  

BCRP    Breast cancer resistance protein  

BCSFB               Blood-cerebral spinal fluid barrier  

BSA    Bovine serum albumin  

BCA    Bicinchoninic acid assay 

C    Celsius   

CEC     Cerebral endothelial cell  

cm    Centimetre  

CNS     Central nervous system  

CO2     Carbon dioxide  

CP     Choroid plexus  

CSF     Cerebral spinal fluid  

D    Dilution factor 

Da     Daltons  

DMEM    Dulbecco’s modified eagle medium  

DMSO     Dimethylsulfoxide  

DNA               Deoxyribonucleic acid  

DPBS       Dulbecco’s phosphate buffered saline  

°     Degree  

EC               Endothelial cells  

EDTA     Potassium ethylene diamine tetra acetic acid  



15 
  

EGF     Epidermal growth factor  

FBS     Foetal bovine serum  

g     Gram  

h     Hour  

HBSS                Hank’s buffered salt solution  

HEPES     4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid   

H2O     Water  

 ICF     Intracellular fluid  

ISF     Interstitial fluid  

L     Litre  

MDCK     Madin-Darby Canine Kidney  

MEM     Minimal Essential Medium  

mg     Milligram  

min     Minute 

μL     Microlitre  

mL    Millilitre  

μM     Micromolar  

mM     Millimolar  

MRP     Multidrug resistance associated protein  

MTT   Methylthiazolyldiphenyl-tetrazolium bromide (3-(4, 5-      

dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide,  

MW     Molecular weight  

nM     Nanomolar 

NVU    Neurovascular Unit 

Ω     Ohm  

PBEC     Porcine brain endothelial cell  

PBS     Phosphate-buffered saline  
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PET    Positron emission tomography 

PXR     Pregnane X receptor  

qPCR    Quantitative polymerase chain reaction 

RNA    Ribonucleic acid  

RT    Room temperature 

RT-PCR   Reverse transcriptase polymerase chain reaction 

s     Second  

SFM    Serum free media 

t     Time  

TAE    Tris-Acetate EDTA buffer 

TBST    Tris-Buffered Saline with Tween 20 

T-25     25 cm2 tissue culture flask  

T-75     75 cm2 tissue culture flask 

TEER    Transendothelial or epithelial resistance  

TJ     Tight junctions  

U     Units 

UV    Ultraviolet 

V     Volts  

v     Volume  

w     Weigh  
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1.1.  Background 

 

The development of neurodegenerative diseases is one of the most devastating 

illnesses which can affect people across all age groups (Manji and DeSouza, 2008). 

The World Health Organization (WHO) reported that neurological disorders contributed 

to 92 million disability adjusted life years (DALYs) in 2005 and which is thought to 

increase to 103 million (approximately 12% rise) in 2030 (Eigenmann et al., 2013). In 

Europe the WHO described that CNS disorders contributes 37% of the total disease 

burden (Stins et al., 2001, Prudhomme et al., 1996), with an estimated cost of treatment 

thought to be  at $798 billion (Prudhomme et al., 1996). Age related neurodegenerative 

diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), are major 

health problems in developed countries. AD is the sixth leading cause of deaths in the 

USA and an estimated 5 million Americans are living with AD (Hurd  et al., 2013). The 

treatment costs for AD and other ‘dementias’ (in United States) was estimated to be 

$226 billion in 2015 and is expected to rise to $1.2 trillion by 2050 (Kameremail et al., 

2015). This figure is made even more striking when considering that in 2010 it was 

estimated that there were 35.6 million people with dementia with the figure nearly 

doubling every 20 years, increasing to 65.7 million in 2030, and 115.4 million in 2050 

(Wimo and Prince, 2010). 

Similarly, PD is the second most neurodegenerative illness after AD in United States. 

10 million people are living with PD worldwide. The economic burden of PD exceeds 

$14.4 billion in 2010 and expected to be double by 2040 (Kowal et al., 2013).The total 

annual cost of care in the UK has been estimated at approximately £599 million per 

year for 100,000 individuals with PD only (2015b). Costs to the National Health Service 

(NHS) were approximately 38% of the total care costs (Findley et al., 2003). 

A major cause of this increase in the incidence of untreated CNS disorders is not due 

to a lack of therapeutics, but rather a lack of understanding of CNS disease pathology 

and how this may impact upon the delivery of drugs to the CNS. In recent years, the 

pharmaceutical industry have struggled to provide novel drug therapies for CNS 

disorders, primarily as a result of higher cost to market, longer development times (an 

average 13 years) compared to non-CNS diseases (an average 8 -10 years) (Alavijeh 

et al., 2005), higher risk of clinical failure and changing regulatory hurdles (Manji and 

DeSouza, 2008). A report by the Tufts Centre for the Study of Drug Development (Tufts 

CSDD) suggests that only 8.2 % of CNS drug candidates ever become available for 
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clinical use, compared with 15% for non-CNS indicated drugs (Riordan and Cutler, 

2012).   

 

1.2. The physiology of the brain and central nervous system 

 

The brain is a highly vascularised organ with a combined microvascular surface area 

of 150-200 cm2/g , which results in a large area for molecular/fluid transfer (12-18 m2) 

in the adult human brain (Abbott et al., 2010, Tang et al., 2014, Zhao et al., 2009a). 

The delivery of drugs to the CNS is often hindered by its complex anatomy and 

physiology (Abbott, 2005). The CNS is a complicated and delicate organ and has its 

own self-protective mechanism to exchange nutrients, neurotoxins, pathogens and 

xenobiotics. This self-protective mechanism has become a significant hurdle to deliver 

drugs to the brain (Begley, 2003).  A key obstacle to the delivery of drugs to the CNS 

is the presence of physiological barriers located between the blood and brain (termed 

the blood brain barrier [BBB]) and the blood and cerebrospinal fluid (termed the blood 

cerebrospinal fluid barrier [BCSFB]). A prerequisite for therapeutic molecules to gain 

access to the CNS biophase is the permeation of these barriers (Begley, 2003). 

 

1.2.1.    The blood brain barrier 

 

1.2.1.1. Discovery  

 

In 1878, the German scientist Paul Ehrlich injected several mice with trypan blue dye 

and discovered that the dye stained all other tissue and organs except for the brain and 

the spinal cord. Thereafter Edwin Goldman (one of Ehrlich’s student), injected the same 

dye into the cerebrospinal fluid (CSF) and found that it stained the brain but no other 

body organs (Goldmann, 1909, Goldmann, 1913). Ehrlich’s experimental findings were 

later confirmed by a number of other researches (Goldmann, 1909, Goldmann, 1913) 

(Friedemann, 1942) and led to the idea of a compartmentalisation between the brain 

and cerebral capillaries, that is to say that BBB.  

1.2.1.2. Physiology of the blood brain barrier  

 

 

The BBB is essentially formed by microvascular endothelial cells, which surround blood 

capillaries within the brain (Figure 1.1). The BBB is further formed into a complex mesh 

of astrocytes, basement membranes, pericytes and neurons (Stamatovic et al., 2008), 

and which is often termed the ‘neurovascular unit’. Endothelial cells primarily form the 
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‘barrier’ function by hindering xenobiotic transport, with endothelial cells held tightly 

packed together with adjacent endothelial cells through a tight network of tight junctions 

(TJs). Furthermore endothelial cells have no fenestrations (Fenstermacher and Kaye, 

1988), an increased number of mitochondria (Oldendorf et al., 1977) and low 

pinocytotic activity (Sedlakova et al., 1999) which restricts the diffusion of hydrophilic 

solutes (Abbott, 2002).  

 

Endothelial cells and the neurovascular unit (NVU) function to regulate transport and 

metabolism of substances from blood to brain and brain to the peripheral blood. As part 

of the NVU, astrocytes form networks which surround the endothelial cells and 

basement membrane (Bernoud et al., 1998). The NVU also includes a basement 

membrane which is comprised of a range extracellular matrix proteins such as 

collagen, elastin, fibronectin, laminin and proteoglycans and  cell adhesion molecules 

(CAMs), as well as signalling proteins (Carvey et al., 2009, Wolburg et al., 2009). 

Disruption of basement membrane can lead to alteration of brain micro vessel 

cytoskeleton which can affect the barrier integrity (Cardoso et al., 2010).  

 

Pericytes communicate with the other elements of the NVU through signalling 

pathways and regulate the normal function of the BBB (Ryota et al., 2007). From a BBB 

perspective, neurons are known to induce enzymes, which regulate the function of 

blood vessels (Persidsky et al., 2006).  

 

 

 Figure 1.1: Schematic representation of the blood brain barrier.  

Blood capillaries are surrounded by  endothelial cells which also have astrocytes and pericytes overlying 
that together form the blood brain barrier (Chen and Liu, 2012). 
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Tight Junctions (TJs) are formed by contact zones between cells or between parts of 

the same cell, in which the intercellular cleft is occluded. TJs are regulated by a set of 

interacting proteins including occludin, claudins and junctional adhesion molecules 

(JAMs) that seals the space between adjacent endothelial cells (Figure 1.2) and further 

hinder the passage of xenobiotic across the BBB.   

Occludin (molecular weight ~65kDa) was the first reported TJ transmembrane protein. 

Occludin contains two equal extracellular loops, four transmembrane domains and 

three cytoplasmic domains. The C-terminal domain forms an α-helix coiled loop 

structure (Li et al., 2005) and mediates communication with other cytoplasmic proteins 

such as ZO-1, ZO-2 and ZO-3 and interactions with other regulatory proteins (Peng et 

al., 2003).  

 

      Figure 1.2: Structure of tight junctions.  

Adjacent endothelial cells are linked by tight junction, which expresses TJs proteins such as claudins, 
occludin that interact with each other and seals the space between the cells. AJs are the junctions formed 
between the cells or surrounding matrix. 

 

Claudin (molecular weight ~20-27 kDa) is a major constituent of TJs. Claudin binds to 

claudins present on the adjacent endothelial cells and to cytoplasmic proteins (ZO-1, 

ZO-2 and ZO-3) and contributes to the tightly linked endothelial cell structure (Furuse 

et al., 1999). Adheren junctions (AJs) are cellular junctions formed between two 

adjacent endothelial cells. The main functions of AJs are to mediate cell adhesion, cell 

polarity and also contribute to the BBB function (Hawkins and Davis, 2005). The main 

constituents of AJs are cadherin and catenins. Cadherin mediates cell adhesion, limits 

cell proliferation and decreases cellular permeability (Cook et al., 2008). Catenins act 

as linking proteins which link cadherin adhesion to the cortical actin cytoskeleton. 
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1.2.2. The blood cerebrospinal fluid barrier 

 

1.2.2.1.   Discovery 

 

The cerebrospinal fluid (CSF) was first described in a document by ancient Egyptians 

as ‘water surrounding the brain’ over 2700 years ago (Hajdu, 2003). This was followed 

by a description by Hippocrates (129-219 AD) who described the water in the skull as 

‘hydrocephalus’. Galen  (130-200 AD.) identified a ‘fluid’ found to be leaking from the 

nasal cavity of sick patients was a originating from the pituitary gland (Nutton, 1973). 

In 1664 Thomas Willis first correctly evaluated the choroid plexus as a source of CSF 

production in a body of work called the “Cerebri Anatome” (Stephen Porter et al., 1977). 

In the mid-1700s Albrecht von Haller (Frixione, 2006) describes the circulation of CSF 

and thereafter the ventricle structures and presence of CSF within brain and spinal cord 

was identified.  

 

1.2.2.2. Physiology of the blood cerebrospinal fluid barrier 

 

The choroid plexuses (CP) are highly vascular tissues found in all four cerebral 

ventricles (Figure 1.3). The CP is comprised of a rich capillary bed of pia matter and 

choroidal epithelial cells (Siegel GJ et al., 1999) and consists of three layers of cells: 

apical epithelial cells, connective tissues and inner layer of endothelial cells.  

 

The primary function of the CP is to secrete cerebrospinal fluid (CSF) (Pollay and Curl, 

1967).  CSF is formed by the filtration of plasma by choroidal capillaries (Xie and 

Hammarlund-Udenaes, 1998). The osmotically active ions such as Na+, Cl-, K+ ,HCO3
- 

and water from the plasma are filtered to the CSF. The total volume of CSF is estimated 

to be 150-200 mL in humans, 1.4-2.3 mL in rabbits (Siegel GJ et al., 1999, Brown et 

al., 2004) and 0.28-0.3 mL in rats (Han et al., 2009). The rate of CSF production in 

humans is 0.3-0.4 mL/min and 0.003 mL/min in rodents (Hammarlund-Udenaes, 2000).  

 

Villi and microvilli present on the choroidal epithelial cells enhances the macroscopic 

folding of the choroid plexus and increases the surface area of choroidal epithelial 

(Nolte, 1993). The surface area of the CP is reported to range from 0.02-5 m2 (Cornford 

et al., 1997, Dohrmann, 1970b, Pardridge, 2011), and if assumed to be in the range of 

> 1 m2, places the surface area within an order of magnitude of brain microvascular 

endothelial cell surface area. 
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 Figure 1.3: Location of the choroid plexus within the human brain.  

Lateral, central, third and fourth ventricles are the primary location of the choroid epithelial tissue and the 
sites of cerebrospinal fluid secretion into ventricles (1991b). 
 
 

The epithelial cells of the choroid plexus form a barrier which restricts the free 

movement of molecules from blood into the CSF and brain biophase-to-CSF-to-blood 

(Siegel GJ et al., 1999) and is termed the blood-cerebrospinal fluid barrier (BCSFB) 

(Figure 1.4).  

  

1.2.2.3. Functional role of the choroid plexuses 

In addition to the secretion of CSF, the CP epithelium also synthesises large numbers 

of bioactive peptides (Redzic et al., 2005) such as adrenomodulin, endothelin-1 and 

vasopressin (Chodobski et al., 1997). The level of these peptides and proteins change 

during CNS disorders, supporting the evidence that the CP plays important role in the 

brain injury and repair process 

(http://alzheimers.org.uk/site/scripts/download_info.php?downloadID=1491, 2014, 

Happich et al., 2016).  
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Figure 1.4: The CP epithelial structure.  

Microvilli structure on the CSF-facing region of the CP act to increase the surface area of the apical 
membrane of the choroid plexus epithelial cells.  These cells also express a variety of drug efflux 
transporters (Siegel GJ et al., 1999).  

 

 

The adult human brain weights approximately 1400 g whereas the CP tissue weighs 

only 2-3 g, however perfusion to the CP capillaries is 5 to 10 times greater than the 

mean blood flow (mL/min/g) to brain (Nolte, 1988, Thomsen et al., 2015, Wimo and 

Prince, 2010, 2015b). When considering that the total surface area of the CP may also 

be within the same order of magnitude as the BBB (Johanson et al., 2008a, Christy and 

Fishman, 1961, Pardridge, 1991, Blasberg et al., 1975, Tang et al., 2014), the 

importance of the CP infiltration of plasma across the choroidal capillaries (Johanson 

et al., 2008a) clearly is vitally important in helping to maintain and stabilise the fluid 

environment within the brain and CNS. 

 

1.2.2.4. Barrier function of the BCSFB  

The BCSFB is situated between the systemic circulation and the CSF and hence, acts 

to restrict the entry of xenobiotics into the CSF in addition to aiding in the removal of 

compounds from the CSF back into the systemic circulation (Redzic et al., 2005). This 

barrier function is imparted as a result of the network of tight junctions between the 

epithelial cells which regulate exchange of compounds between the blood and CSF 

(Ebada et al., 2011).  
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Furthermore, the surface area of the choroidal epithelial is significantly enhanced 

because of villi and microvilli structures projecting from the apical surface of the cells 

into the ventricle (Figure 1.4).  This increases the surface area available for drug 

transfer and fluid secretion (Redzic and Segal, 2004). 

1.3. Drug transport across the BBB and BCSFB 

 

1.3.1.    Transport pathways 

 

Although a number of cellular factors govern the permeability of drugs across the BBB 

and BCSFB and include the expression of membrane transporters, transcytotic vesicles 

and the inherent barrier function formed by the endothelial/epithelial (Persidsky et al., 

2006), the physicochemical properties of any compounds attempting to permeate 

across the BBB and BCSFB is also a driving factor in its ability to distribute into the 

CNS. The primary physicochemical factors governing molecular transport include 

lipophilicity and ionisation states, molecular size and the extent of plasma protein 

binding. In order for a drug molecule to diffuse across the BBB and BCSFB, passive 

transport is a common pathway and highly dependent upon the lipophilicity and 

molecular weight of the drug (Figure 1.5). Other drug molecules can often exploit 

energy-dependant carrier mediated transport pathways to enable drug transfer across 

concentrations gradients (Figure 1.5).  On the other hand larger peptides/proteins can 

often exploit cell-surface receptors to enable transport across cell membranes in a 

process termed receptor-mediated transcytosis (Figure 1.5) (Norinder and Haeberlein, 

2002). 

 

The 'Rule of 5' of Lipinski states that poor drug absorption is more common if the 

molecular weight is > 500 Da, log P > 5 and more than 5 hydrogen bond donors and 

10 hydrogen bond acceptors are present in a drug molecule (Lipinski, 2000). However 

in the case of drug delivery across the BBB and BCSFB, CNS –indicated drugs possess 

the above properties but Lipinski’s role often do not apply as the majority of these drugs 

display limited measurable CNS uptake (Evans and Skalak, 1980).  
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 Figure 1.5: A schematic representation of drug transport pathways across the BBB.  

The primary pathways for drug transport across cellular barriers include passive transport, carrier-
mediated transport, absorptive-mediated and receptor-mediated transcytosis(Norinder and Haeberlein, 
2002).  

 

 

The rate and extent of drug transport across the barriers are the two key factors, which 

govern their eventual delivery into the CNS. The permeability rate of a molecule at the 

BBB or BCSFB is reflected in the rate of drug entry to the CNS and processes which 

hinder the permeation of drugs across the barriers.  Furthermore permeability rate may 

also inherently be hindered by poor physicochemical properties of the drug molecules. 

The extent of drug transport into the CNS is primarily a factor of the ability of the drug 

to partition into the CNS and is often related to fraction of drug which is not bound onto 

either plasma protein (free fraction in plasma) or within CNS tissues (e.g. free fraction 

in brain) (Figure 1.6) (Summerfield et al., 2007). 
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Figure 1.6: Schematic illustration of the equilibrium processes at the BBB and BCSFB. 
(Billiau et al., 1981) 
 
Compartmentalisation of CNS barriers and factors governing the equilibrium of drug distribution 
within the CNS.  Arrows indicate direction of transport. 
 

 

1.3.2. Transporter proteins 

 Adenosine 5’- triphosphate binding cassette (ABC) transporter proteins form a major 

family of drug transporter proteins which play a significant role in hindering the tissue 

distribution of many drugs, particularly at CNS barrier (2015a, Kameremail et al., 2015, 

Nicolazzo and Katneni, 2009).  The term ‘ABC transporters’ was introduced in 1992 

(Higgins, 1992) and it is now known that 49 human ABC transporters exist (The 

Nutrition, Metabolism and Genomics Group, Wageningen University, Netherlands: 

http://nutrigene.4t.com/humanabc.htm) and are divided into several subclasses on the 

similarities between their nucleotide binding domains (NBD) (Table 1.1). 

 

Table 1.1: List of important human ABC genes 

Family Alternative name Transporters hindering drug transport 

ABCA  ABC1  ABCA2     

ABCB  MDR  ABCB1 (P-gp)    

    ABCB4 (MDR2)    

ABCC  MRP  ABCC1 (MRP1)    

    ABCC2-6    

    ABCC10     

    ABCC11     

ABCD  ALD       

ABCE  OABP       

ABCF  GCH20       

ABCG    ABCG2 (BCRP)   

http://nutrigene.4t.com/
http://nutrigene.4t.com/humanabc.htm
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The ABC transporter family are one of the largest known transporter protein families and 

are widely distributed in all major tissues and in many different species (Schinkel and 

Jonker, 2012). ABC transporter proteins generally consist of a membrane-spanning 

region termed the trans-membrane domain (TMD) and a cytoplasmically located 

nucleotide-binding domain (NBD) (Figure 1.7). To function they require energy released 

from the hydrolysis of adenosine 5’-triphosphate (ATP), process which takes place within 

the NBD (Gupta et al., 2004) and which leads to the ‘transport’ process of molecules 

across cell membranes (Abbott, 2005, Nies et al., 2004).Typically, drug transporters are 

located apically or basolaterally at cell membranes and exhibit an influx (into the cell) or 

efflux (out of the cell) property. 

   

 

 

 Figure 1.7: A typical structure of ABC transporter  

The structure of an ABC transport typically includes TMDs, which often contain 6 trans-membrane (TM) 
segments followed by a NBD, and the functional transporter is formed from a second repeating unit of 
TMD-NBD. ‘Half transporters’ are formed of one TMD and one NBD that, upon translation, combine to 
form a functional unit (Reginald A Kavishe et al., 2009). 

 

Functionally active transporters are often formed from two linked monomer units (NBD-

TMD-NBD-TMD) but can formed from multiple-monomer units combined in an intricate 

three and four-dimensional structure. Well-known example of ABC-transporters, which 

hinder the distribution drugs into tissues, includes breast cancer resistance protein 

(BCRP), P-glycoprotein (P-gp) and multidrug resistance protein (MRP). 
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1.3.3.      Breast cancer resistance protein 

 

BCRP is a member of the G-family of ATP-binding cassette. BCRP was first identified 

from human MCF-7 breast cancer cells and termed it as a breast cancer resistant 

protein (Doyle et al., 1998). At the same time another group described the role of this 

transporter in mitoxantrone resistance and termed it mitoxantrone resistance factor 

(MXR) (Miyake et al., 1999), with a third group (Allikmets et al., 1998) reporting its 

discovery in placental tissue and terming it called ABCP (Staud and Pavek, 2005). 

BCRP is composed of one single N-terminal intracellular NBD followed by six trans-

membrane domain (Mao, 2005) and four N-glycosylation (Figure 1.8). 

 

 

 

 Figure 1.8:  Breast cancer resistance protein structure  

BCRP is known as a half transporters consisting of one nucleotide binding domain (NBD) and one trans-
membrane binding domain (TMD), comprised of 6 trans-membrane spanning regions. 

 

 

BCRP is often termed a half transporter and is thought to homodimerise through the 

formation of disulfide bridges in order to function (You and Morris, 2007). A study  (Kage 

et al., 2002) confirmed that BCRP migrated as a 70 kDa band on a SDS-PAGE gel in 

the presence of reducing agent, but 140 kDa band in the absence of reducing agent 

suggesting BCRP could exist in the monomeric (70 kDa) and dimer (140 kDa) structure. 

However recent studies have suggested that BCRP may exist as higher order 

oligomers (Saito et al., 2006, Xu et al., 2004).The role of oligomerisation in BCRP is 

not clear yet but it has been suggested that the function of BCRP could be regulated 

by the dynamic association and dissociation of BCRP monomers by protein-protein 

interactions (Mo and Zhang, 2009).Therefore, prevention of oligomerisation or 

prevention of formation of higher active oligomers may be a future strategy to inhibit 

BCRP. 
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Chemotherapeutic agents were the first identified substrates for BCRP and it is now 

known that BCRP possess a diverse substrate specificity (Table 1.2) (Mao, 2005). 

BCRP confers resistant to a wide range of drugs and particularly anti-neoplastic agents 

such as topotecan, doxorubicin, mitoxanthrone, irinotecan, etoposide, methotrexate 

(MTX) and imatinib (Breedveld et al., 2004). 

 

    Table1.2: Substrates and inhibitors of BCRP 

 
Substrates  Inhibitors 

Drugs  Drugs 

Mitoxantrone,Topotecan 
Doxorubicin,Epirubicin, 
Metoxantrate,Imatinib, 
Getfitinib,Ciprofloxacin, 

Erythromycin 
Folic Acid 

 
Fumitremorgin C (FTC) 

KO143, GF120918, 
Digoxin,Dexamethasone, 

Cyclosporin A, Flavopiridol 
Novobiocin, Gefitnib 

 

 

 

 

    
 

Dyes     

Pheophorbide a,     

Rhodamine 123, 
BODIPY Prazosin, 

Hoechst 33342, 
Lysotracker Green 

    
    

    

    
 

Natural compounds Natural compounds 

Genistein, Quercetin 
17β-Estradiol Sulphate 

 

  
Estrone, Chrysin, 

Biochanin A,Naringin 
Acastein,Genistein, 

Quercetin, 
17β-Estradiol Sulphate 

 

 

 

    

        

 

1.3.4. Expression and localisation of BCRP 

BCRP has been reported to be expressed at the BBB in many species including mice, 

bovine and porcine origins) (Warren et al., 2009), where its function is thought to be a 

protective one in preventing the entry of drugs and xenobiotics into the brain biophase 

through its’ inherent efflux transporter properties. Elsewhere, it has been reported to 

be expressed in the gut, blood-testis barrier (Bart et al., 2004), placenta (Doyle and 

Ross, 2003b) intestine and mammary glands (Jonker et al., 2005) of humans.  
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At the BBB, BCRP is located abluminally (Bendayan et al., 2006) and functions to 

transport xenobiotics in a brain-to-blood direction. However, at the BCSFB, BCRP is 

located luminally and results in transfer of drugs into the CSF from the brain biophase 

or blood (Figure 1.9). The high expression of BCRP in key sanctuary sites such as the 

small intestine, breast, liver, kidney, blood brain barrier and placenta confirms its 

important role in controlling the distribution of drugs into the most tissues. 

              

     Figure 1.9: Localisation of drug transporters at the BBB and BCSFB. 

At the BBB, the ABC transporters such as BCRP located abluminally (blood side), whereas at the BCSFB 
BCRP is expressed at the luminal side (brain side). The dashed lines represent bulk fluid flow (brain to 
BCSFB is the bulk flow of ISF and CSF to blood is CSF drainage) (solid arrows represent direction of 
transport). 
 
 

The absolute protein expression of transporter proteins has recently been reported 

using quantitative proteomics approaches at the BBB and BCSFB (Lee et al., 2003) 

from human brain capillaries using liquid chromatography-tandem mass spectrometric 

quantification method (Esser, 2009). BCRP protein expression was reported to be 8.14 

fmol/µg protein, and is higher than another well characterised drug efflux transporter 

protein, P-gp (6.06 fmol/µg protein), reinforcing the importance of BCRP. Furthermore, 

in monkeys the protein expression of BCRP has been reported to be 12.5-16.2 (fmol/µg 

protein) compared to P-gp: (6.49-2.65 fmol/µg protein) (Caldwell and Yan, 2013). In 

mice, BCRP was found to be expressed 1.85-fold greater than P-gp in mice (Lee et al., 

2003) and in a further human study from freshly isolated human brain capillary 
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endothelial cells, BCRP expression was 1.6-fold higher than that of P-gp (Dauchy et 

al., 2008b).  

Similarly, the absolute protein quantification of transporters at the choroid plexus was 

investigated in the isolated rat and human choroid plexus plasma membrane fractions. 

It was reported that the levels of BCRP in humans were 6.56- and 2.12-fold greater 

than those of mdr1a (P-gp) and Bcrp in rat, respectively (Uchida et al., 2015).  

1.4. The role of BCRP in health and disease 

 

BCRP is widely expressed in tissues and cells and plays important role in tissue and 

cellular protection. BCRP protects normal tissues such as the placenta, hepatocytes, 

intestinal mucosal and brain by eliminating xenobiotics and toxic compounds (Doyle 

and Ross, 2003a). Its role at the BBB has recently been elucidated using positron 

emission tomography (PET) and single photon emission computed tomography 

(SPECT), powerful nuclear imagining techniques. A PET method has been developed 

to investigate the BCRP function at the BBB in a BCRP wild-type and knockout mouse 

model (Takashima et al., 2013). In their study [11C] tariquidar, a BCRP (Pohl et al., 

2006) substrate, was used to assess the BCRP function by PET and it was 

demonstrated that knockdown of BCRP resulted in significantly increased signal 

intensity in the brain compared to wild-type mice.    

BCRP also imparts a protective role from relatively toxic molecules. Heterocyclic 

amines and polycyclic aromatic hydrocarbons (a group of chemical components formed 

while cooking or barbecue food (meat) at high temperatures) (Ebert et al., 2005) in 

addition to  protoporphyrin IX (a metabolic product of δ-aminolevulinic acid) and 

hematoporphyrin (a sonosensitizers) (Krishnamurthy et al., 2004) are common 

substrates for BCRP. Furthermore, BCRP also play important role in the control of and 

transport of folic acid (water soluble vitamins which plays important role in growth, 

differentiation and homeostasis) and it’s conjugates (Volk and Schneider, 2003).  

Other endogenous substrates include steroids such as estrone and estradiol (Imai et 

al., 2003). Estrone is hormone associated with the female reproductive functions and 

estradiol is a female sex hormone produced by the ovaries.  Moreover, BCRP function 

in the elimination of uric acid was discovered in proximal tubular cells (Woodward et 

al., 2009). BCRP has also been implicated in limiting the progression of Alzheimer’s 

disease (AD) because of the neurotoxic β-amyloid peptides being substrates for BCRP 

(Zhang et al., 2004b) (Zhao et al., 2010). Furthermore, BCRP genomic and protein 
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expression was found to be increased in AD brain (Zhao et al., 2010) (Xiong et al., 

2009) highlighting the important role BCRP plays in brain protection for age associated 

CNS disorders.   

BCRP has also been implicated in disease states, particularly in relation to tumour cells 

and the associated multi-drug resistance phenomena, whereby BCRP is 

overexpressed because of exposure to antineoplastic agents. In cell culture systems, 

the multi drug resistance cell lines MCF-7 (myeloma 8226 and colon carcinoma cell 

line) shows resistance to BCRP substrates such as mitoxantrone, topotecan, 

flavopiridol and doxorubicin with an associated overexpression of BCRP mRNA (Zhao 

et al., 2013, Novotna et al., 2014). 

1.5. Other CNS drug transporter proteins 

 

1.5.1.  P-glycoprotein (P-gp) 

 

P-glycoprotein (P-gp) was one of the first efflux transporter proteins discovered in 1976 

(Juliano and Ling, 1976).  P-gp was found to be highly expressed in Chinese hamster 

ovarian cells when discovered, and was resistance to a wide variety of amphiphilic 

drugs (Juliano and Ling, 1976). P-gp has an apparent molecular weight of 170 kDa 

(Löscher and Potschka, 2005) and a member of the P-gp family are found in humans 

(ABCB1) with and three members identified in mice (mdr1a, mdr1b and mdr2) 

(Gottesman and Pastan, 1993). P-gp exhibits a high nucleotide sequence homology to 

other members of the B-subfamily (Cornford et al., 1997). The primary role of P-gp is 

similar to that of BCRP, to protect tissue from toxic compounds through efflux transport 

processes. It is highly expressed at the luminal membrane of endothelial cells forming 

the blood–brain and blood–testis barriers (Schinkel, 1999, Cordon-Cardo et al., 1989, 

Dohrmann, 1970a, Melaine et al., 2002), blood-mammary barrier (Edwards et al., 2005) 

and the maternal–fetal barrier of the placenta (Gil et al., 2005). 

 

1.5.2.     Multidrug resistance protein (MRP)  

 

Multidrug resistance protein (MRP) was first discovered in 1992 in human small cell   

lung carcinoma cell line H69AR (Cole et al., 1992). The MRP family of transporter 

proteins (ABCC1-6, 10-11), together with the ATP-gated chloride channel, CFTR 

(ABCC7), and the ATP-dependent sulfonylurea receptors, SURs (ABCC8, 9), comprise 

the ‘C’ branch of the ABC superfamily (Table 1.1). There is also an overlap with the 

substrate specificity of MRP1 and P-gp. MRP1 transports a large number of drugs 
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including antineoplastic or therapeutic agents, including folate-based antimetabolites, 

anthracyclines, vinca-alkaloids, antiandrogens, and numerous glutathione (GSH)- and 

glucuronide conjugates of these compounds as well as organic anions and heavy 

metals (Deeley and Cole, 2006). Transport of several compounds by MRP1 depends 

on the presence of reduced glutathione (GSH). This has been confirmed by using 

MRP1 overexpressing cell lines, where in the presence of transport inhibitor 

(probenecid), decreased GSH release and increased drug accumulation (Versantvoort 

et al., 1995).  MRP transports organic molecules and confer resistance to a wide variety 

of drugs. 

 

1.6. Current approaches to assess drug delivery across the BBB/BCSFB 

 

Currently there are no ex-vivo models, which can mimic the function of the BBB or 

BCSFB to study the transport of drugs.  However, a number of surrogate in-vitro, in -

vivo and in-silico models exists to support the development of approaches to 

mechanistically understand and predict how drug molecules are able to cross the BBB 

and BCSFB.  Core to the development of such models is the requirement that they 

should include aspects of the expression of tight junctional proteins (Roberts et al., 

2008) along with the distribution and functional expression of efflux transporters such 

as P-gp, BCRP and MRPs (Miller, 2010, Kusuhara and Sugiyama, 2005, Naik and 

Cucullo, 2012), which are vitally important in controlling the rate and extent drug 

distribution into the CNS. 

 

1.6.1. In-vitro models 

  

1.6.1.1. Non-cerebral cell lines 

 

A large number of studies reporting the use of different types of epithelial cells or 

endothelial cells of non-cerebral origin for the study of different aspects of BBB and 

BCSFB function have been reported and include Madin-Darby canine kidney (MDCK) 

cells (Wang et al., 2005) (Nazer et al., 2008) and human umbilical endothelial cells 

(HUVECs) (Langford et al., 2005). The use of these cell lines as a BBB models is limited 

because of their non-cerebral origin, although they are useful for screening for drug 

transporter substrates.  
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1.6.1.2. Rodent origin cell lines 

 

Rat brain endothelial (RBE) cell lines have been established and characterised by Roux 

et al (Roux et al., 1994) to develop an in-vitro BBB model. RBE cells express most of 

the enzymes and transporters that are considered as specific for the blood-brain 

endothelium. Other rat origin cell lines include GP8, GPNT. The bEND.3-5 cells are 

murine origin and have been widely used for the signalling (Stins et al., 2001), 

permeability and drug uptake studies (Prudhomme et al., 1996, Eigenmann et al., 

2013). Other mouse origin brain cell lines include cEND and bEND3, and have been 

widely used to study brain drug transport (Franke et al., 2000, 1991b, 1991a).  

 

Z310 (Zheng and Zhao, 2002) and TR-CSFB (Kitazawa et al., 2001) cell lines are 

immortalised in nature and obtained from rat CP tissues. They have been established 

and characterised for drug transporter expression, TJs proteins and drug transport 

(Juliane Kläs et al., 2010, Szmydynger-Chodobska et al., 2007), in an attempt to mimic 

the BCSFB. The choroid plexus cell lines such as TR-CSFB shows low TEER values, 

requires growth at lower temperatures, and have been less widely characterised 

(Juliane Kläs et al., 2010, Kitazawa et al., 2001). The CP epithelial cells form leaky 

barriers (TEER value of 150-200Ω.cm2) compared to BBB cell systems (Hakvoort et 

al., 1998, Baehr et al., 2006) and monolayer formation and resistances are greater for 

Z310 cells (~140 Ω.cm2) (Kitazawa et al., 2001) compared with TR-CSF cells (90 

Ω.cm2) (Hosoya et al., 2004).  Furhermore, the Z310 cell lline has previoulsy been 

demonstrated to expression BCRP (Halwachs et al., 2011, Kaur and Badhan, 2015). 

1.6.1.3. Bovine origin cell lines  

 

Bovine brain endothelial cells have been widely used to develop an in-vitro BBB model, 

and cell monolayers typically give resistance values in the range of 160-200 Ω.cm2 

(Zhang et al., 2004b, Zhao et al., 2010). Bovine immortalised cell lines include t-BBEC-

117(Allen et al., 2002a), SV-BEC (Stephen Porter et al., 1977) and BBEC-SV (Frixione, 

2006).  Additionally, primary bovine blood brain barrier cell models have been used to 

study BBB properties and drug transport (Spector et al., 2015, Lindsey and 

Papoutsakis, 2012, Tan et al., 2010), but as a novel BBB model, are often restricted in 

use due to the historical risk of Creutzfeldt-Jakob disease infections in brain tissues. 
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1.6.1.4. Porcine origin cell lines 

 

The most widely used immortalised porcine BBB model is the PBMEC/C1-2 cell line 

(Teifel and Friedl, 1996). The presence of tight junctions gives a relatively high 

monolayer resistance of 250–300 Ωcm2, and it has been well characterised for drug 

permeation and drug transporter protein studies (Lauer et al., 2004, Neuhaus et al., 

2010, Neuhaus et al., 2012). Primary cultured porcine brain microvascular endothelial 

cells (PBMECs) have recently increased in use, having been first developed (Ulrike 

Tontsch and Bauer, 1989) and subsequently modified by Patabendige et al 

(Patabendige et al., 2013). Such cellular models give robust monolayer with high TEER 

values in excess of 800 Ω.cm2.  Furthermore, the expression of endothelial brain cell 

markers and drug transporter proteins has been extensively studied using these cells 

(Skinner et al., 2009, Cohen-Kashi-Malina et al., 2012, Patabendige et al., 2013). 

 

1.6.1.5. Human original cell lines 

 Due to the restricted availability of human brain tissues for the isolation of primary 

human brain endothelial cells, the development of a reliable immortalised human brain 

cerebral endothelial cell line was fulfilled in the hCMEC/D3 (Weksler et al., 2005) which 

has been shown to retain important BBB characteristics and which has been 

extensively studied for the expression of junctional proteins (Cohen-Kashi-Malina et al., 

2012), drug transporters such as BCRP (Dauchy et al., 2009, Skinner et al., 2009), 

neurosignalling (Hammarlund-Udenaes, 2000, Xie and Hammarlund-Udenaes, 1998, 

Thomsen et al., 2015) and drug transport studies (Wimo and Prince, 2010). Other 

conditionally immortalised human brain microvascular endothelial cell lines include  

TY08 (2015b), hBMEC (Stins et al., 2001) and BB-19 (Prudhomme et al., 1996) and 

have been characterised for the markers of brain endothelial cells and expression of 

drug transporters. A comparative study between the four cell lines confirmed that 

hBMEC is the most suitable human cell line to develop an in-vitro BBB model 

(Eigenmann et al., 2013). 

 Only one human chorodial epithelial immortalised cell culture model has been 

developed, and is derived from choroid plexus papilloma cells (HIBCPP) (Ishiwata et 

al., 2005). The use of HIBCPP is limited due the lack of morphological characteristics 

of epithelial cells (cells differ in size and do not display cobblestone like appearance) 

and difference in protein expression and metabolism (due to isolation from anaplastic 

choroid plexus rather than a normal human) (Schwerk et al., 2012). Furthermore, 

HIBCPP cells have not been recommended to be used after more than 30 passages 
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and hence may limit studies. HIBCPP cells have tendency to grow in multiple layers, a 

careful consideration of seeding density and trypsinisation is required to obtain a 

monolayer (Ishiwata et al., 2005).  

1.6.2. In-silico models  

 

As a result of the variability in available in-vitro cellular models and the limited use of 

in-vivo models to assess CNS drug delivery, in-silico approaches such as 

pharmacokinetic modelling and simulations, have often been used to collate a range of 

different in-vitro data (e.g. physicochemical, metabolic and permeability) generated to 

describe the pharmacokinetics of a drug to be able to predict both brain and CSF 

temporal drug concentrations (Ball et al., 2012, Badhan et al., 2014). 

1.6.3. In-vivo models  

 

To been able to predict and assess distribution of drugs in-vivo, the brain slice method 

is precise and robust technique to measure the uptake of drugs into the brain tissues 

by determining unbound drug concentration in ex-vivo brain sections. Further the 

temporal concentration of drugs can also be measured directly by micro dialysis  

techniques (Hammarlund-Udenaes, 2000). This involves the insertion of a probe into 

the tissue or fluid and multiple regional brain sampling from the same animal can be 

achieved. This technique has been used in the pre-clinical studies (Xie and 

Hammarlund-Udenaes, 1998, Zhang et al., 2015, Wei et al., 2015, Kitamura et al., 

2015, Chiang et al., 2015). However, poor recovery of lipophilic compounds, low 

throughput and local tissue damage at the site of probe insertion limit its use in drug 

discovery (Hammarlund-Udenaes, 2000).  

 

Another widely used technique is that of in-situ brain perfusion, which allows the 

quantitative measurement of brain uptake of solutes by perfusion of saline or blood to 

the right external carotid artery and been commonly applied to a wide variety of drugs 

(Zhao et al., 2009b, Youdim et al., 2004, Tournier et al., 2015, Suzuki et al., 2015, 

Cisternino et al., 2001, Alata et al., 2014).  

 

In-vivo molecular imaging approaches such PET has also been widely used to 

investigate BCRP function at the BBB in a BCRP wild-type and knockout mouse model 

(Takashima et al., 2013) for a range of radiolabelled compounds including [11C] 

tariquidar, [125I]-or [3H]-Aβ peptides (Zhang et al., 2013), [11C] sorafenib (Asakawa et 
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al., 2011) , [11C] XR9576(Kawamura et al., 2010) and [11C] elacridar (Bankstahl et al., 

2013).  

 

1.7. The regulation of BCRP at the BBB and BCSFB 

 

The transcriptional regulation of BCRP at both the BBB and BCSFB, as with many ABC 

transporters, is thought to be governed by a range of nuclear hormone receptors (Wang 

and Negishi, 2003, Xu et al., 2005) and the interference of these signalling pathways 

under physiological and pathophysiological conditions provides a new approach to 

modulate BCRP function at the CNS barrier (Mahringer and Fricker, 2010, Hartz and 

Bauer, 2011, Bauer et al., 2006). Many members of the nuclear receptor superfamily 

are known to regulate drug transporters includes the pregnane-X-receptor (PXR), the 

constitutive androstane receptor (CAR) and the aryl hydrocarbon receptor (AhR) 

(Jacob et al., 2011, Xu et al., 2005, Dauchy et al., 2008a, Granberg et al., 2003) (Table 

1.3). The regulation of many of the transporter proteins is controlled by endogenous 

and exogenous compounds which act to activate the receptors and subsequently leads 

to changes in transporter gene expression.  

 

 Table 1.3: Regulation of drug transporters by nuclear hormone receptors  

Nuclear receptor Drug transporters 

PXR P-gp (Bauer et al., 2004, Narang et al., 2008a, Ott et 

al., 2009, Chan et al., 2011), BCRP and Mrp2 (Narang 

et al., 2008a)  

GR P-gp and BCRP(Narang et al., 2008a) 

CAR P-gp,  Mrp2 (Narang et al., 2008a, Wang et al., 

2010),BCRP(Lemmen et al., 2013)  

PPARα BCRP (Hoque et al., 2012) 

ER BCRP(Hartz et al., 2010, Mahringer and Fricker, 2010, 

Imai et al., 2005b, Wang et al., 2006, Wang et al., 

2008b) 

AhR P-gp, BCRP and Mrp2 (Wang et al., 2011, Fernandez-

Salguero et al., 1996, Guo et al., 2000, Tompkins et al., 

2010).  
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PXR is a xenobiotic-activated nuclear transcription factor which translocates from the 

cytoplasm to the nucleus following ligand binding, leading to transcriptional activation 

of a range of drug metabolising enzymes and transporter proteins (Geick et al., 2001a, 

Kast et al., 2002, Xu et al., 2005). A large number of endogenous and exogenous 

compounds can activate PXR and include St.John’s wort, bile acids, steroids and 

antibiotics (di Masi et al., 2009, Mahringer et al., 2011, Chang, 2009). PXR has been 

found to be expressed in rat brain capillaries (Bauer et al., 2004) and regulates phase-

I metabolising enzymes such as CYP3A4, CYP2B6, CYP2Cs, and CYP7A and phase-

II metabolising enzymes such as sulfotransferases (SULTs), glutathione S-

transferases (GSTs) and UDP-glucuronosyltransferases (UGTs) (Wang and LeCluyse, 

2003, Geick et al., 2001b). PXR also regulates the expression of ABC drug transporters 

such as P-gp (Bauer et al., 2004, Geick et al., 2001b), Mrp2 (Bauer et al., 2008a, 

Johnson et al., 2002) and Mrp3 (Teng et al., 2003). Pregnenolone 16α-carbonitrile 

(PCN) and dexamethasone, both ligands for rodent PXR increased the expression of 

P-gp, Mrp1 and BCRP in the rodent brain capillaries (Bauer et al., 2006, Narang et al., 

2008b, Bauer et al., 2004). 

 

CAR functions in the similar way as PXR and demonstrating an overlapping ligand 

profile as PXR (Moore et al., 2003). Typical ligands for CAR includes bile acids, 

environmental pollutants and therapeutic drugs (Stanley et al., 2006). Wang et al 

(Wang et al., 2010) identified the expression of CAR in rat and mouse brain capillaries 

and demonstrating that it plays a role in regulation of ABC transporters.  

 

Cyclooxygenase-2 (COX-2) is an enzyme involved in the production of prostanoids and 

a key enzyme involved in the development of inflammatory responses. The role of 

COX-2 in the regulation of drug transporters proteins have been demonstrated in a 

number of studies.  Bauer et al (Bauer et al., 2008b) reported that the expression of       

P-gp was increased in isolated rat brain capillaries when exposed to glutamate and that 

P-gp expression was attenuated by using an NMDA receptor antagonist and COX-2 

inhibitors. The study suggested that the inhibition of COX-2 can enhance the uptake of 

antiepileptic drugs (Bauer et al., 2008b). This study was further supported by 

Schlichtiger et al (Schlichtiger et al., 2010), where exposure to celecoxib, a COX-2 

inhibitor, significantly reduced the occurrence of seizures in a phenobarbital-resistant 

epilepsy rat model. In a further study by Yousif et al (Yousif et al., 2012), the expression 

of BCRP and P-gp was increased after exposure to morphine in rat brain vessels. This 

up-regulation was reversed in the presence of MK-801 (NMDA antagonist) and 
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meloxicam (COX-2 inhibitor), suggesting the role of NMDA and COX-2 in regulation of 

BCRP and P-gp in the rat brain. 

 

The regulation of drug transporter proteins at CNS barriers (primarily the BBB) has 

been limited, and regulation has largely been demonstrated for a limited range of 

transporters by nuclear receptors such as PXR, CAR, Estrogen receptor (ER) and AhR 

(Bauer et al., 2004, Bauer et al., 2006, Hartz et al., 2010).   

 

The regulation of BCRP has largely been under-researched and is currently not well 

characterised.  In the 5’-flanking section of the gene promoter region of BCRP a novel 

estrogen responsive element (ERE) is present and it is thought that transcriptional 

regulation of BCRP may involve the activation and binding of 17-β-estradiol (E2) within 

an estrogen receptor (ER) complex (Ee et al., 2004a). Hormonal regulation of BCRP 

by progesterone and testosterone was further identified and studied in human placental 

BeWo cells. These studies confirmed that progesterone and testosterone increased, 

whereas E2 decreased, the mRNA and protein expression of BCRP in human placental 

BeWo cells (Wang et al., 2008b, Wang et al., 2006). Other studies have also 

demonstrated that E2 plays a significant role in down regulating BCRP expression in 

brain capillaries (Hartz et al., 2010) (Mahringer and Fricker, 2010).   

 

Cytokines such as tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) have 

also been shown to down-regulate BCRP mRNA expression in primary porcine brain 

endothelial cells (von Wedel-Parlow et al., 2009) human hCMEC/D3 cells (Poller et al., 

2010). 

 

1.8. Regulation of BCRP by the Aryl Hydrocarbon Receptor 

 

The aryl hydrocarbon receptor (AhR) has been reported to be highly expressed in the 

kidney, liver, whole brain, brain microvessels and the choroid plexus (Dauchy et al., 

2008a, Jacob et al., 2011) (Dauchy et al., 2008a, Dauchy et al., 2009, Kainu et al., 

1995). The prototypical ligand for the induction of AhR activity are dioxins such as the 

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and induction of AhR activity by TCDD was 

first studied in hepatic cells (Poland et al., 1976). The majority of the genes known to 

be regulated by AhR are involved in xenobiotic metabolism and include CYP1A1, 

CYP1A2 and CYP1B1 (Nebert et al., 1993) (Nebert et al., 2000).   
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1.8.1. Structure and function of AhR 

 

AhR is a member of the bHLH-PAS family of DNA-binding proteins. The bHLH domain 

is a specific DNA binding domain and the HLH region interacts with cellular proteins 

such as the AhR nuclear translocator (ARNT) and chaperone proteins such as the heat 

shock protein 90 (HSP90) (Figure 1.10).  

 

The PER-ARNT-SIM (PAS) signalling domain plays an important role in controlling a 

conformational change in the structure of the AhR complex upon ligand binding 

(Fukunaga et al., 1995, Hoffman et al., 1991). 

 

  

 

 Figure 1.10: Schematic representation of the AhR domain.  

The bHLH motif is present at the N-terminal and facilitates the binding of transcription factor to DNA. PAS 
acts as a ligand binding domain and the C-terminal region consists of transcriptional activation domain.  
 
 
 

AhR is located in the cytoplasm and agonist binding at the PAS domain leads to a 

conformational change in the receptor (Wilhelmsson et al., 1990). This conformational 

change alters its binding with chaperones and as a result of this, the receptor complex 

migrates into the nucleus (Ikuta et al., 1998, Ikuta et al., 2000).  Within the nucleus of 

the cell, AhR then undergoes heterodimerisation with another bHLH-PAS protein ARNT 

(T et al., 1998, Reyes et al., 1992). The AHR/ARNT heterodimer complex then interacts 

with the responsive elements of the target genes and leads to activation of target genes 

expression.  When in the nucleus of the cell, AhR dissociate from its chaperones and 

the resulting AhR translocate to the cytoplasm where it can be degraded by 

proteasomes, a process that can be inhibited when using proteasome inhibitors such 

MG-132 (Davarinos and Pollenz, 1999). 
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At the BBB, AhR regulates the expression of drug metabolising enzymes such as 

CYP1A1 and CYP1B1 and ABC transporters (Granberg et al., 2003, Dauchy et al., 

2008a). Guo et al (Guo et al., 2000) treated MCF10A-Neo cells (transfected human 

breast cancer epithelium cell) with the AhR ligand TCDD and found the transcriptional 

activation of CYP1A1. Jacob et al (Jacob et al., 2011) examined rat brain microvessels 

after exposure to a range of AhR ligands such  as TCDD, Δ9-tetrahydrocannabinol (Δ9-

THC) and diesel exhaust particles. It was reported that AhR activation mediated the 

up-regulation of CYP1A1 gene and protein after exposure, which was capable of being 

reversed using the AhR antagonist CH-223191.  

 

Whilst most studies have focused on the role of AhR in regulating the expression of 

xenobiotic metabolism pathways (e.g. CYP isozymes), a few studies have 

demonstrated the role AhR plays in regulating BCRP expression. 3-

methylcholanthrene (3MC) is a known AhR agonists and has shown to activate 

estrogen receptor-α (Abdelrahim et al., 2006). Tompkins et al (Tompkins et al., 2010) 

demonstrated AhR mediated an 80-fold induction of BCRP in LS174T cells when 

exposed to 3MC, which was reduced by 65% in AhR  knockdown cells (Tompkins et 

al., 2010). Wang et al (Wang et al., 2011) demonstrated that TCDD up-regulated the 

expression and transporter activity of BCRP in rat brain capillaries. In a further study 

by Campos et al (Campos et al., 2012), exposure of TCDD to rat spinal cord capillaries 

increased protein expression of BCRP. 

  

AhR is therefore an important regulatory element in controlling the homeostatic balance 

of xenobiotic transporter/clearance pathways, but is also a potentially important target 

for modulating the expression of drug transporter proteins such as BCRP at the BBB 

and BCSFB, with a view to enhancing the delivery of therapeutic agents into the CNS. 

This is particularly important when considering the poor progress made in the clinical 

translation of BCRP inhibitors, which have demonstrated in-vitro inhibition of BCRP.  

First generation inhibitors of BCRP such as cyclosporine A and verapamil showed 

limited clinical efficacy in trials due to significant toxicity and interaction with drug 

metabolising enzymes cytochrome P450 3A (CYP3A) (Suzuki and Sugiyama, 2000). 

Second generation inhibitors such as topotecan, irinotecan and SN-38 are analogous 

of first generation inhibitors and also possess both cellular toxicity and an ability to 

mediate drug–drug interactions at the level of phase-I metabolic enzymes. Third 

generation inhibitors represent molecules that have been recently developed and 
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include fungal toxins such as fumitremorgin-C and Ko143, but their use is limited due 

to severe neurotoxicity (Nutton, 1973, Allen et al., 2002a) (Allen et al., 2002b).  

 

Whilst the activity of many inhibitors of BCRP is positive, their toxicity often precludes 

clinical progression. Therefore there is a need to identity and develop newer inhibitors 

or modulators of both drug transporters and their regulatory elements to enable a broad 

approach to the modulation of the transport function at CNS barriers. One potential 

novel group of candidate compound which are often perceived as being ‘safe’ are 

natural product derived phytochemicals, typically flavonoids, which have demonstrated 

an ability to modulate the expression and function of xenobiotic clearance pathways 

(Frixione, 2006, Spector et al., 2015, Lindsey and Papoutsakis, 2012, Tan et al., 2010). 

Flavonoids are a class of polyphenolic compounds that are found in fruits, vegetables 

and wine.  Previous reports demonstrated that flavonoids belonging to the subclasses 

of flavones, flavonols, flavanones and catechins are able to act directly as AhR 

antagonists (Ashida et al., 2000, Ciolino et al., 1998a, Nishiumi et al., 2007b) and hence 

may present as a viable group of candidate molecules with which to exploit the 

modulation of target gene activity, i.e. BCRP in the CNS, as a novel mechanisms to 

reverse the barrier function BCRP provides to drug entry into the brain and wider CNS. 

1.8.2. Structure of flavonoids 

 

Over 6500 compounds has been identified as belonging to the general category of 

‘flavonoids’ (Morris and Zhang, 2006). Flavonoids consists a backbone of two aromatic 

rings (A and C ring) and a heterocyclic benzene ring (B ring) (Figure 1.11). Flavonoids 

are divided into several sub-groups based on the position of the substitution group (Rx) 

attached and level of oxidation (Middleton Jr, 1998). The main subclasses includes: 

flavones (e.g. flavone), flavonols (e.g. quercetin, fistein), flavonones (e.g. flavanone, 

hesperetin and naringin), flavanonol (e.g. taxifolin), isoflavones (e.g. genistein, 

daidzein), flavan-3-ols (e.g. catechin , epicatechin) (Narayana et al., 2001).   
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 Figure 1.11: The structure of flavonoid.   

Flavonids consist of two aromatic rings (A and B) linked through three carbons that usually form a 
heterocyclic ring (C). Based on the pattern of hydroxylation and substitution (Rx), there are 7 subclasses 
of flavonoids. 

 

1.8.3. Systemic absorption and permeation of the BBB and BCSFB 

 

The dietary ingestion of flavonoids results in the exposure of the gastrointestinal system 

to the glycoside conjugate form of the flavonoids, which often possess limited 

absorption into the systemic circulation (Donovan et al., 2006). Within the stomach and 

small-intestine, these glyosidic forms come into contact with lactase phloridzin 

hydrolase (LPH), which results in an aglycone form of the flavonoids which is then 

absorbed by passive diffusion (Day et al., 2000).  When passing through the small-

intestine and liver, the aglycone form of most flavonoids are then exposed to metabolic 

pathways resulting in the final form found in the circulation being the sulfate, 

glucuronide and/or methylated metabolites as a result of the action of sulfotransferases 

(SULT), uridine-5′-diphosphate glucuronosyltransferases (UGTs) and catechol-O-

methyltransferases (COMT) (Donovan et al., 2006). It is therefore unlikely that the 

conjugated form of the flavonoids would naturally be capable of crossing the BCSFB 

or BBB. 

 

The ability of flavonoids to cross both the BBB and BCSFB and reach the brain/CNS 

biophase has been investigated. In cell culture systems the permeability of naringenin 

and hesperetin (30 μM) have been demonstrated in two brain endothelial cell lines 

(mouse b.END5 and rat RBE4) and an in-vitro model of the BBB (ECV304 cells co-

cultured with C6 glioma cells) (Youdim et al., 2003).  Furthermore the aglycone form of 

flavonoids demonstrated a significantly greater penetration across the BBB compared 

to the conjugated form [aglycone: naringenin (Papp=350 nm/s) and hesperetin (Papp = 
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290 nm/s); conjugated (Papp = 113-182 nm/s)] (Youdim et al., 2003).  In an in-situ rat 

brain perfusion model the aglycone form of [3H]-naringenin was detected in most brains 

regions (Youdim et al., 2004). In-vivo studies in rats have demonstrated that 

kaempferol and isorhamnetin were detected in brain tissues (293 ng/g brain) and high 

concentrations of quercetin detected in the hippocampus, stratum and cerebellum, with 

levels exceed 1000 ng/g protein, following the administration of a standard extract of 

Ginkgo biloba (extract EGb761) given to rats at a single dose of 600mg/kg (Rangel-

Ordonez et al., 2010).  Furthermore Peng et al (Peng et al., 1998) demonstrated that 

the aglycone form of naringenin was detected in the cerebral cortex of rats following an 

IV bolus dose. 

 

1.8.4.      Flavonoids as modulators of BCRP efflux function 

 

As a result of their ability to penetrate the BBB and BCSFB, flavonoids have also been 

shown to act directly upon BCRP. Quercetin, genistein and 17-β-estradiol were able to 

prevent the efflux of the BCRP substrate mitoxantrone in MCF-7 cells with limited 

accumulation in BCRP knockdown cells (Zhang and Morris, 2003).  In another study, 

the effects of flavonoids on mitoxantrone accumulation in both MCF-7 MX100 and NCI-

H460 MX20 cells were investigated for apigenin, biochanin A, chrysin, genistein and 

kaempferol and which all demonstrated high BCRP inhibition activity and significantly 

increased mitoxantrone accumulation (Zhang and Morris, 2003). In a robust screening 

study 20 out of 33 flavonoids screened in K562/BCRP possessed BCRP inhibition 

properties, with 3',4',7-trimethoxyflavone showing the strongest inhibition (Katayama et 

al., 2007).  In a recently study a number of grape-fruit juice constituents (bergamottin, 

6′,7′-dihydroxybergamottin (DHB), quercetin, and kaempferol), orange juice 

constituents (tangeretin and nobiletin) and apple juice constituents (hesperetin) greatly 

inhibited BCRP-mediated dasatinib efflux at the concentration of 50 μM (p < 0.001) 

(Fleisher et al., 2015).  In another study, the role of phytochemicals such as quercetin, 

epicatechin, chrysin, genistein, curcumin, resveratrol and flavone on their ability to 

modulate BCRP gene expression was investigated (Ebert et al., 2007).  

 

1.8.5. Flavonoids as modulators of AhR function 

Only a few studies have previously been reported demonstrating the 

agonist/antagonism of AhR regulatory functions by flavonoids (Mukai et al., 2010, 

Ashida et al., 2000, Nishiumi et al., 2007a, Ciolino et al., 1998b) with the ability to 
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modulate AhR function being concentration dependent (Nishiumi et al., 2007a, Ciolino 

et al., 1998b). At concentrations of 10 μM apigenin and kaempferol have been shown 

to suppress the transformation of AhR by hindering the dissociation of HSP90 and and 

hepatitis-B virus X-associated protein 2 (XAP2), which are important complexes formed 

during the functional role of AhR. Apigenin and kaempferol suppress the dissociation 

of these proteins in Hepa-1c1c7  and hence antagonise the function of AhR (Mukai et 

al., 2010).  In HepG2 cells, quercetin (25 μg/mL) and kaempferol (20 μg/mL) 

demonstrated activation of AhR (Li et al., 2009). Resveratrol (0.5-20 μM) has shown to 

inhibit CYP1A1 expression by preventing the binding of AhR to the promoter sequences 

which induces CYP1A1 transcription (Ciolino et al., 1998b).  

 

1.9.  Novel approaches to modulating BCRP function at the CNS barriers 

BCRP expression and function at the BBB and BCSFB has been studied in a number 

of cellular and in-vivo systems, with a large body of research supporting the view that 

BCRP is a vital transporter and gatekeeper directly affecting the pharmacokinetics of 

drug delivery to the CNS. Existing approaches to modulate its activity, to overcome its 

efflux properties and thereby enhancing delivery of therapeutic agents into the CNS 

shows promise in-vitro, but there is paucity in the clinical translation of such inhibitors.  

 

It is also clear that the regulation of BCRP is highly controlled by nuclear hormone 

receptors, and a clear relationship between the expression of BCRP and AhR has 

recently been identified and reported by Tan et al (Tan et al., 2010). In an attempt to 

identify new and novel candidates that can modulate the activity and function of BCRP, 

phytochemicals are of increasing interest due to their relatively large dietary intake and 

apparent lack of associated cytotoxicity. Furthermore, clear evidence is now available 

demonstrating the ability of phytoestrogens such as flavonoids to both directly inhibits 

the function of BCRP and to modulate the activity of AhR.   

 

When considering the fact that many of these flavonoids are capable of crossing the 

BBB (and potential therefor the BCSFB), phytoestrogens/flavonoids are potentially 

viable novel leads for modulating BCRP expression and function at the BBB and 

BCSFB to enhance CNS drug delivery. 
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1.10. Aims and Objectives  

The overall aim of the thesis was examining the approaches that can modulate the 

expression of BCRP at the BBB and BCSFB with the phytochemicals using in-vitro 

porcine and rat cell culture models respectively. Furthermore, the work also investigated 

the AhR mediated transcriptional regulation of BCRP at the BBB and BCSFB. 

To achieve the aims the overall objectives were: 

¶ To demonstrate the expression of BCRP in PBMEC/C1-2 and Z310 cells 

¶ Evaluate the cytotoxicity profile of phytochemicals for BBB and BCSFB in-vitro 

cell culture models 

¶ Investigate the modulation of genomic, protein and transport expression of BCRP 

in the cell culture models 

¶ Evaluate the modulation of BCRP and AhR following phytochemical exposure 

¶ Silencing AhR gene to investigate the AhR mediated modulation of BCRP gene 
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2.1.    Introduction 

 

Microvascular brain endothelial cells act as a primary physical and cellular barrier to 

the delivery of drugs and therapeutic agents into the brain and wider CNS. These cells 

are formed into an intricate network of cerebral capillaries and, at a cellular level, are 

held tightly together by tight junctional proteins to form the blood-brain barrier. A range 

of in-vitro models are commonly used to assess the extent to which new therapeutic 

entities are able to permeate the BBB, and a primary goal of many of these models is 

to assess the potential impact of membrane localised drug transporter proteins, such 

as BCRP, on controlling the permeation of drugs across the BBB. Inhibition of BCRP 

at the BBB has been demonstrated to lead to significantly enhanced penetration of 

BCRP substrates into the brain (Shi et al., 2007). However, many known inhibitors of 

BCRP demonstrate neurotoxicity and have shown limited success clinically (Allen et 

al., 2002b). Approaches are therefore required to identify alternative compounds that 

can diminish the function of BCRP at the BBB to enhance CNS drug delivery.   

Natural compound phytochemicals, such as flavonoids, represent a group of natural 

substances found in fruit, vegetables, grains, tea and wine. Furthermore many 

flavonoids have been shown to directly impact upon the function of BCRP at the BBB 

(Zhang et al., 2000) (Hartz et al., 2010) (Zhang and Morris, 2003) and hence have 

gained increasing interest as modulators of BCRP function. 

2.2.    Aims and objectives 

The aim of the chapter is to characterise the expression of BCRP at the BBB and to 

examine approaches that enable modulation of BCRP at the BBB with phytochemical 

(primarily flavonoids) compounds using a porcine brain microvascular endothelial cell 

culture model (PBMEC/C1-2) and primary porcine brain microvascular endothelial cell 

culture model.  

To achieve the aims the overall objectives were: 

¶ To demonstrate gene and protein expression of BCRP in PBMEC/C1-2 cells  

¶ To investigate the cytotoxicity of phytochemical modulators towards 

PBMEC/C1-2 cells 

¶ Evaluate the modulation of genomic and protein expression and transport 

function of BCRP when exposed to phytochemical modulators in PBMEC/C1-2 

cells 
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¶ Isolation and growth of primary porcine endothelial cells in specific cell culture 

conditions and determine the expression of BCRP and evaluate the modulation 

of BCRP transport function in PBMEC/C1-2 cells 

¶ Evaluate the modulation of transport function of BCRP when exposed to 

phytochemical modulators in a primary BBB cell culture model 

 

2.3.    Materials 

 

Hams F12, IMDM and Dulbecco’s modified essential media with glucose (DMEM), new 

born calf serum (NCS), fetal bovine serum (FBS), penicillin/streptomycin and L-

glutamine were obtained from Biosera (Sussex, UK); GenElute Total RNA extraction 

kits were purchased from Sigma (Dorset, UK); Rat tail I collagen solution from First Link 

(Birmingham, UK) and unless otherwise indicated all other chemicals were obtained 

from Sigma (Dorset, UK). My TaqTM One-step RT-PCR kit and Easy Ladder I obtained 

from Bioline (London, UK).  All reverse transcriptase PCR primers were synthesised by 

IDTDna (Leuven, Belgium); Resveratrol and Ko143 from Santa Cruz Biotechnology 

(Texas, USA); Curcumin from Cayman Chemical (Cambridge, UK); Real time PCR 

housekeeping gene primers were obtained from Invitrogen and BCRP primers were 

obtained from PrimerDesign (Sheffield ,UK); total RNA extraction kits were purchased 

from Qiagen (Manchester, UK) and qPCR master-mixes were obtained from 

PrimerDesign (Sheffield ,UK). Optiblot SDS-page gel and western blot reagents 

obtained from Abcam (Cambridge, UK); ABCG2 antibody, beta-actin (C4), broad range 

markers, goat anti-rabbit IgG-FITC and protease inhibitor cocktail were obtained from 

Santa Cruz Biotechnology (Texas, USA). Stock solutions of all test compounds were 

prepared in dimethylsulfoxide (DMSO) and stored at -20°C until use. 

 

A total of 18 phytochemical derived modulators were selected for studies and their 

structures are detailed in Appendix A. 

 

 

 

 

 

 

 

 



55 
  

2.4.    Methods 

 

2.4.1.  Culture of C6 rat astrocytes 

 

C6 cells were obtained from Cell Line Services (Germany). The cells were 

resuspended in a T25 flask containing C6 media (Hams F12 50%, IMDM 50%, 7.5% 

NCS, 7mM L-glutamine, 5µg/mL transferrin, 0.5U/mL heparin and 100 U/mL penicillin 

G sodium, 100 μg/mL streptomycin sulphate). Cells were grown at 37°C in a humidified 

atmosphere of 5% CO2 for 24 h and media changed after 24 h. Thereafter the cells 

were passaged 3-4 days post seeding (at 70-80% confluency) by washing with pre-

warmed PBS followed by the addition of 1 mL of trypsin-EDTA to the flask. The flask 

was then placed in an incubator for 5 min and cell suspension was resuspended in 5 

mL of growth media. Cell suspensions were then transferred to a 15 mL centrifuge tube 

and centrifuged at 1500 rpm for 5 min and the pellet was resuspended in 2 mL of the 

media and transferred to a T75. The media was aspirated every other day, sterile 

filtered (0.22 µm) and stored at 4°C for further use.  

This media was labelled as astrocyte conditioning media (ACM). 

 

2.4.2.  Culture of PBMEC/C1-2 cells 

 

2.4.2.1. Preparation and coating of an gelatine extracellular matrix 

 

PBMEC/C-12 cells do not demonstrate optimum growth on the plastic surfaces. In 

order to allow growth on cell culture surfaces, an extracellular matrix support was 

required to enhance attachment and proliferation. To support the growth of PBMEC/C1-

2 cells on plasticware, a 2 % w/v gelatine stock solution was prepared in the water by 

the addition of 4 g of gelatine powder to a sterilised bottle containing 200 mL of water. 

The suspension was autoclaved and stored at 4°C for further use.  

 

Each flask was coated with 1:5 dilution of the gelatine stock with cell culture water to 

obtain a final surface coating of 0.4 % w/v gelatine. The flasks were left to dry in a 

laminar airflow hood for 2 h to ensure thorough surface coating, and any excess 

gelatine was aspirated before the flasks were washed with cell culture water. 

 

  

 



56 
  

2.4.2.2. PBMEC/C1-2 cell growth on tissue culture surfaces 

 

PBMEC/C1-2 cells were a kind gift from Dr M.Teifel (Institut für Biochemie, Technische 

Hochschule Darmstadt, Germany). Cells were resuspended in a 50:50 mixture of C6 

media and ACM, referred to as PBMEC media, and seeded onto gelatine coated T25 

flasks. PBMEC media was replaced every other day until the cells reached confluency. 

Subsequently, PBMEC media was aspirated and cells were washed twice with the pre-

warmed PBS and incubated with 1 mL of a 0.25 % w/v trypsin-EDTA solution, sufficient 

to cover the entire cell layer. Flask were then incubated at 37°C in a humidified 

atmosphere of 5% CO2 in air with the slight agitation for 5 minutes. Once cells had 

detached, fresh PBMEC media was added to inactivate  trypsin and the cell suspension 

was transferred to a 15 mL centrifuge tube and centrifuged at 1500 rpm for 10 min. The 

supernatant was removed and cell pellet resuspended in 2 mL of PBMEC media and 

reseeded into appropriately coated plasticware for further use. The coating process 

was performed on all surfaces used to grow PBMEC/C1-2 cells including flasks, 6-well 

and 96-well plates. Approximately 3-4 days post seeding, the cell monolayers were 

examined under an inverted DMI400B microscope (Leica microscope systems (UK) 

Ltd, Milton Keynes, UK). 

 

2.4.2.3. Cryopreservation of the cells 

 

Cells were cryopreserved for further use by centrifugation a cell suspension at 1500 

rpm for 10 min to obtain a cell pellet, followed by resuspension of the pellet in 

cryopreservation media (10% DMSO and 90% PBMEC media). A 1 mL volume of the 

cell suspension was aliquoted to the cryovials and stored overnight at -80˚C in cell 

cooling box (Mr. Frosty, Nalgene®, Thermo Fisher Scientific, UK). After 24 h, cryovials 

were transferred to liquid nitrogen for long-term storage.  

 

 

2.4.2.4. Development of a permeable insert based BBB model 

 

To develop an in-vitro BBB model, 12-well permeable inserts (ThinCert® with 0.4µm 

pore size) were used as a support for cell growth, with the addition of a matrix coating 

of 5 µg/cm2 of rat-tail collagen. Inserts were left to dry for 3-4 h in a laminar airflow hood 

before excess collagen was aspirated and inserts washed twice with PBS. Cell 

suspensions were introduced into the apical chamber of coated inserts at a density of 
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1 x105 cells/cm2 with the basolateral chamber receiving PBMEC media only. Cells were 

grown for 3-4 days in PBMEC media supplemented with 1 µg/mL fibronectin to enhance 

attachment. Monolayer formation was monitored by measuring the transendothelial 

electrical resistance (TEER) using a voltohmmeter (EVOM) (World Precision 

Instrument) directly before and after all transport studies. TEER values were calculated 

as follows: 

 

4%%2 6ÁÌÕÅÓ ЏȢÃÍ 2  2  Ø!          (1) 

where A = Surface area of the permeable insert (cm2), RCell monolayer = Resistance across 

permeable insert with cell monolayer and RBlank filter = Resistance across permeable 

insert without cells. 

Control measurements were made using filters without cells (blank filter). The cut-off 

TEER values for an acceptable in-vitro model was set at 300 Ω.cm2 (Lauer et al., 2004).   

 

2.4.3. Cytotoxicity of modulators towards PBMEC/C1-2 cells: 

methylthiazolyldiphenyl-tetrazolium bromide assay 

 

Stock solutions of methylthiazolyldiphenyl-tetrazolium bromide (MTT) were prepared in 

DMSO. Sterile dilutions of each modulator across a 7-fold log concentration range of 

0.001 µM- 1000 µM were freshly prepared on the day. Culture media was used as the 

diluent and the final solvent concentrations did not exceed 1 % (v/v). 

 

PBMEC/C1-2 cells were seeded with a density of 15,000 cells per well onto clear flat 

bottom 96-well plates and incubated for 24 h to attach. The media was subsequently 

removed and fresh media containing the test compounds was added and incubated for 

24 h for subsequent experiments. The medium was then removed and cells were 

washed with the pre-warmed PBS and incubated with fresh media for 30 min. MTT 

powder was dissolved in PBS (5 mg/mL) and filtered through a 0.2 μm pore size. 20 

µL of the pre-warmed MTT solution was added to each well. The plates were protected 

from light and incubated at 37°C in a humidified atmosphere of 5% CO2 for 4 h. 

Thereafter the media was removed and 100µL of DMSO added to the each well to 

solubilise the purple formazan crystals. The plates were incubated for a further 10-15 

min at room temperature (RT). The UV-absorbance of the formazan product was 

measured on a multi-plate reader (Bio-Rad laboratories, Hercules, CA) using 570 nm 

as a test wavelength and 600 nm as a reference wavelength.  
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The mean of the blank UV-absorbance was subtracted from the UV-absorbance of 

each controls and samples and percentage viability was calculated. The percentage of 

cellular viability was calculated (Equation 2).  

 

Ϸ ÃÅÌÌ ÖÉÁÂÉÌÉÔÙ
  

   
ρzππ           (2)   

  

The IC50 was subsequently calculated using a sigmoidal dose response function within 

the Graphpad Prism version 5.0 (GraphPad Software, Inc. USA). 

 

  

2.4.4. Immunostaining detection of BCRP in PBMEC/C1-2 cells 

 

PBMEC/C1-2 cells were grown on coverslips coated with 0.4 % w/v gelatine for 48 

hours. Media was then aspirated and coverslips were washed three times with pre-

warmed PBS. Cells were fixed with methanol at -20°C for 20 min and washed three 

times with pre-warmed PBS before being rehydrated in PBS for 20 min at room 

temperature. Blocking solution (1 % goat serum in PBS) was added to the coverslips 

and incubated for 30 min at room temperature. The coverslips were then incubated 

with primary anti-ABCG2 antibody (Sigma-Aldrich company ltd, Dorset, UK) (1:200) for 

2 h at 37 °C. Subsequently, the coverslips were washed twice with PBS and incubated 

with the secondary antibody fluorescein iso-thiocyanate (FITC)-labelled mouse anti-

rabbit IgG (1:500) in blocking solution, for 45 min at room temperature in the dark. The 

secondary antibody was then aspirated and cells were washed three times with pre-

warmed PBS.  The coverslips were then rinsed with sterile water and mounted onto the 

glass slide with mounting media containing 4',6-diamidino-2-phenylindole (DAPI). The 

staining of cells with anti-ABCG2 was analysed using an upright confocal microscope 

(Leica SP5 TCS II MP) and visualised with a 40x oil immersion objective. All images 

were acquired using an argon laser at 494 nm to visualise FITC and a helium laser to 

visualise DAPI at 461 nm.  

 

 

 

 



59 
  

2.4.5. Measurement of BCRP cellular functional activity in PBMEC/C1-2 cells 

 

2.4.5.1. Determination of PBMEC/C1-2 optimum seeding density and modulator 

incubation time  

To develop a high-throughput in-vitro screening system to detect modulators of BCRP 

the optimum seeding density of PBMEC/C1-2 cells was assessed to enable the 

intracellular detection of the BCRP substrate H33342. Cells were seeded at densities 

of 1000, 20,000, 50,000 and 100,000 cells per well of a 96-well plate and left to adhere 

for 24 h. Wells were subsequently washed twice with pre-warmed PBS at 37 °C. 100 

µL of PBMEC media containing 10 µM Hoechst 33342 was added to each well and 

incubated for 30 min, 60 min and 90 min at 37°C. Cells were washed twice with warm 

PBS and lysed by storing plates at -80°C for 20 minutes before resuspending in pre-

warmed PBS. The fluorescence of H33342 was determined on a fluorescent plate 

reader with an excitation wavelength of 355 nm and emission wavelength of 460 nm. 

 

2.4.5.2. Functional activity of BCRP in PBMEC/C1-2 using a 96-well plate assay 

The functional activity of BCRP in PBMEC/C1-2 cells was assessed using Ko143, a 

known potent inhibitor of BCRP. 20,000 cells per well were seeded into a 96-well plate 

and allowed to attach for 24 h. Thereafter cells were washed with pre-warmed PBS at 

37°C and fresh media added containing 3.9 nM-5 µM Ko143 and left to pre-incubate 

for 1 h. 100 µL of media containing 10 µM of H33342 and 3.9 nM-5 µM Ko143 was then 

added to the appropriate wells and incubated for a further 30 min at 37°C. Wells were 

then washed twice with ice cold PBS and cells lysed by storage of plates at -80°C for 

20 min before being read on a fluorescent plate reader at an excitation wavelength of 

355 nm and emission wavelength of 460 nm. 

2.4.5.3. Assessment of the intracellular accumulation of H33342 in the presence 

of modulators. 

 

Prior to assessment the impact of modulators on intracellular H33342 accumulation, 

the auto-fluorescence of all modulators was determined. Non-toxic concentrations of 

modulators were prepared in cell culture media and 100 µL added to wells of a 96-well 

plate with H33342 (10 µM) acting as a positive control and a fluorescent substrate for 

BCRP and prepared in the cell culture media with 100 µL added to wells of a 96-well 

plate. The fluorescence of flavonoids was measured using a fluorescent plate reader 
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at an excitation wavelength of 355 nm and emission wavelength of 460nm and 

compared to the fluorescence obtained from H33342.   

 

The potential for modulators to alter the functional activity of BCRP was then assessed 

by measuring changes in the intracellular accumulation of H33342 in the absence and 

presence of modulators. PBMEC/C1-2 cells were seeded onto clear-bottomed 96-well 

plates for 24 h, where optimal seeding densities and incubation times were determined 

from previous experiments (section 2.4.5.1). To assess the potential for direct inhibition 

of BCRP function, cells were washed with pre-warmed PBS at 37 °C and pre-treated 

with 25 µM of modulators (unless or otherwise stated) and incubated at 37 °C for 1 h. 

Cells were also incubated with 1 µM Ko143 for 1 h (used as a positive control 

comparator). Following pre-incubation with modulators, media was removed and cells 

were washed twice with pre-warmed PBS at 37 °C before the addition of 10 µM H33342 

containing 25 µM of modulators (unless otherwise indicated) and incubated for a further 

30 min. Thereafter cells were washed twice with ice cold PBS and lysed at -80°C for 

20 min before being resuspended in 100 µL of water and fluorescence measured with 

dual-scanning microplate spectroflurometer (Spectra Max Gemini XS, molecular 

devices, Sunnyvale, California) at an excitation wavelength of 355 nm and emission 

wavelength of 460 nm. 

To assess the potential for modulation of BCRP protein expression, cells were washed 

with pre-warmed PBS at 37°C cells and incubated with 25 µM of modulators (unless 

otherwise stated) for 24 h in PBMEC media at 37°C. Following pre-incubation with 

modulators, media was removed and cells were incubated fresh PBMEC media 

(without modulators) for 1 hour (wash-out period).  Thereafter the media was removed 

and cells washed twice with pre-warmed PBS at 37°C before the addition of 10 µM 

H33342 for 30 min.  At the end of the incubation period cells were washed twice with 

ice cold PBS and lysed at -80°C for 20 min before being resuspended in 100 µL of 

water and fluorescence measured with dual-scanning microplate spectroflurometer 

(Spectra Max Gemini XS, molecular devices, Sunnyvale, California) at an excitation of 

wavelength of 355 nm  and emission wavelength of  460 nm. 
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2.4.6.  Determination of BCRP gene expression by reverse-transcriptase PCR 

(RT-PCR) in PBMEC/C1-2 cells 

 

2.4.6.1. Extraction of total RNA 

RNA was extracted according to the manufacturer’s instructions (RNeasy® Mini kit, 

Qiagen). In brief, 50,000 cells per well were seeded in a 6-well plate. Cells were washed 

twice with PBS and 350 µL of the RLT buffer was added to each well. 350 µL of the 70 

% ethanol was added and mixed by pipetting up and down. The lysate was transferred 

to the RNeasy mini spin column placed in 2 mL collection tube and centrifuged for 15 

s at 8000 g. The flow through liquid was discarded and 700 µL of the RW1 buffer was 

added to the column and centrifuge for 15 s at 8000 g and flow through liquid was then 

discarded. 500 µL of the RPE buffer was added to the column and spun for a further 2 

min at 8000 g and the flow through liquid was discarded and column was placed into a 

2 mL collection tube. 30-40 µL of RNA free water was added to the column and spun 

for 1 min at 8000 g. The final resultant RNA was collected in the collection tube and 

aliquoted before being stored at -80°C for further use. 

2.4.6.2. One-step reverse-transcriptase PCR 

A one-step PCR reaction was setup using 80 ng of the template RNA, 

spectrophotometrically determined using a NanoDrop 1000 spectrophotometer 

(ThermoScientific, UK). The ratio of UV-absorbance at 260 nm and 280 nm was used 

to determine the purity of the sample. PCR tube reactions were setup as detailed in 

Table 2.1. 

Table 2.1: Preparation of PCR samples 

Reagents     Volume 

My Taq One-Step Mix  25 µL 

Primer Forward   1.5 µL 

Primer Reverse   1.5 µL 

Reverse Transcriptase Enzyme 0.5 µL 

Ribosafe Inhibitor   1 µL 

DEPC Water   15.5 µL 

Template (80 ng)     5 µL 

Total Volume     50 µL 
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Forward and reverse primers (HKG: β-actin; GOI: BCRP) were designed using the 

PrimerQuest tool (http://www.idtdna.com/primerquest/home/index) and custom 

synthesised (IDTDna, Germany) (Table 2.2).  The thermal cycling was conducted using 

a Hybaid OmniGene Thermal Cycler using a three-step protocol (Table 2.3) 

Table 2.2: Primers used for RT-PCR 

Gene Size Forward Primers   Reverse Primers     

β-actin 806 AAGCCAACCGTGAGAAGATG CAACTAACAGTCCGCCTAGAAG 

BCRP 652 TCCGACCACCATGACAAATC GTACACCGAGCTCTTCTTCTTC   

 

Table 2.3: Thermal cycle reactions for PCR 

 

 

 

 

2.4.6.3. Gel electrophoresis 

Confirmation of a successful PCR product was assessed by gel electrophoresis.  A 2 

% w/v agarose gel was prepared in TAE buffer with 5 µL of ethidium bromide to allow 

visualisation under UV light. 6 µL of the PCR-product was mixed with 8 µL loading 

buffer and loaded into wells. Gel electrophoresis was carried out at 50 Volts for 1.5 h 

and visualised under a UV-transilluminator (Geneflash, Syngene Bioimaging, 

Cambridge, UK) with a 1kbp DNA ladder (Easyladder I) used as a marker ladder for 

size analysis. 

 

2.4.7. Determination of BCRP protein expression by SDS-PAGE and Western 

blotting in PBMEC/C1-2 cells 

 

2.4.7.1. Preparation of cell lysate 

PBMEC/C1-2 cells were grown on gelatine coated 6-well plates with a seeding density 

of 50,000 cells per well for 24 h and allowed to attach. Cells were trypsinised and 

centrifuged at 1500 g for 10 min and pellet was dissolved in 40 µL of RIPA buffer 

containing TBS, 1% nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS, 0.004% 

    
Cycles   Temperature Time Procedure 

1  45°C  20 min Reverse Transcription 

1  95°C  1 min Polymerase Activation 

40  95°C  10 s Denaturation 

  55°C  10 s Annealing  

  72°C  30 s Extension   

http://www.idtdna.com/primerquest/home/index
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sodium azide, PMSF, protease inhibitor and sodium orthovanadate (Santa Cruz 

Biotechnology, Canada) and transferred to an ice cold Eppendorf’s tube before being 

sonicated for 10 s and centrifuged at 4°C at 16000 rcf for 30min. The supernatant was 

then aliquoted and frozen at -80°C until further use.  

To assess the impact of modulators on BCRP protein expression, PBMEC/C1-2 cells 

were grown on 6-well plates and incubated with modulators at 25 µM (unless otherwise 

stated) for a further 24 h. The media was aspirated and whole cell lysate was extracted 

as described above.  

2.4.7.2. Determination of protein concentration: bicinchoninic acid assay 

 

Total protein was quantified using a bicinchoninic acid (BCA) assay (Novagen, BCA 

assay protein kit). In brief, the assay is based upon the reduction of Cu2+ to Cu1+ by 

protein in an alkaline solution. Bicinchoninic acid is a chromogenic reagent that 

chelates with the reduced copper, producing a purple reaction complex with strong UV-

absorbance at 562nm. A standard curve with bovine serum albumin (BSA) was 

prepared in RIPA buffer. BCA working stock was prepared by adding 1 mL of BCA 

solution and 20 µL of the 4 % cupric sulphate just before use. 25 µL of the sample or 

BSA standards were added to the clear 96-well plate and 200 µL of BCA working stock 

was added and plate was incubated for 30 min at 37 °C and the UV-absorbance was 

measured using a multi-plate reader at 570 nm as a test wavelength and 600 nm as a 

reference wavelength (Bio-Rad laboratories, Hercules, CA). 

 

2.4.7.3. Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

Optiblot SDS-PAGE precast gels (8%) (Abcam, UK) were used to conduct SDS-PAGE 

electrophoresis. Optiblot SDS reducing running buffer (Abcam, UK) was prepared by 

the addition of 40 mL of Optiblot 20 X run buffer (Abcam, UK) and 760 mL of ultrapure 

water and stored at 4°C for further use. Samples for SDS-PAGE were prepared as 

outlined in Table 2.4. 
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         Table 2.4: Reagents composition for SDS-PAGE 

Reagents       Volume 

Sample    X µL 

Water    13-X µL 

LDS Loading Buffer 4X  5 µL 

DTT Reducer 10X     2 µL 

Total Volume     20 µL 

 

A total reaction volume of 20 µL (containing 50 µg of protein) was used for SDS-PAGE. 

Samples were heated at 37°C for 30 min. The gel cassette was placed in the tank and 

wells were washed twice with ultrapure water. 20 µL of the SDS-PAGE protein sample 

mix was loaded onto the gel in addition to 7 µL of a broad range marker (6-200 kDa). 

Approximately 400 mL of the running buffer was added to the outer chamber and tank 

was assembled. The gel was run at 180 V for at least 30 min or until the blue dye front 

neared the bottom of the cassette.  

2.4.7.4. Electrophoretic transfer and blotting of proteins 

A Bio-Rad mini trans-blot system was used to transfer the proteins from the gel to a 

polyvinylidene fluoride (PVDF) membrane. The blotting buffer was prepared while the 

SDS-PAGE was running, the trans-blot system and sponges were washed with distilled 

water and sponges were soaked in the blot buffer (Optiblot blot buffer supplemented 

with 20% methanol). The PVDF membrane was activated by subsequently transfer into  

methanol for 15 s, 2 min in ultrapure water and finally 5 min in blotting buffer. The gel 

was placed on the PVDF membrane and sandwiched between blotting paper and 

sponge pads. The electrophoresis tank was placed on ice and two ice packs were 

placed in the tank to avoid overheating. Electrophoretic transfer of protein was 

conducted with ice-cold buffer at 50 V for at least 2 h and 30 min. Following transfer 

membrane was washed in ultrapure water for 2 min, deactivated in methanol for 10 s 

and finally exposed to Ponceau stain (0.1 % w/v Ponceau S in 5% v/v acetic acid) for 

1 min to allow visual observation of the protein transfer.  

2.4.7.5. Immunological detection of BCRP 

Protein-transferred membranes were washed with TBST buffer for 30 min and blocked 

with blocking buffer (5 % w/v milk and TBST) for 1 h at room temperature. The 

membrane was then incubated with the polyclonal anti-ABCG2 antibody (Sigma-

Aldrich,UK) (1:4000) in blocking buffer and incubated for 24 h at 4 °C. Thereafter, the 
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membrane was placed onto an orbital shaker for 2 h before the antibody solution was 

removed and membrane washed with TBST for 30 min and blocked with blocking buffer 

for 30 min at room temperature. The membrane was then incubated for 2 h at room 

temperature with goat anti-rabbit IgG-horse radish peroxidise-conjugated (Santa Cruz 

biotechnology, Sc-2004) (1:7500) in blocking buffer.  

2.4.7.6. Chemiluminescent detection of BCRP 

Detection of BCRP was conducted using laboratory prepared enhanced 

chemiluminescent detection solution (Table 2.5), with 3 µL of solution B combined with 

per 1 mL of solution A prior to detection.  

Table 2.5: Chemiluminescent reagents 

 

 

 

 

 

The chemiluminescent solution was poured onto the PVDF membrane and incubated 

on an orbital shaker for 2 min, before the membrane was then placed on a transparent 

plastic film and transferred to a developing cassette. Subsequent steps were performed 

in a dark room. An X-ray film (CL-X Posure™ film, Thermo Scientific, Belgium) was 

placed on top of the membrane and the developing cassette was closed for 1 min. The 

membrane was carefully transferred to a fixer solution (Kodak GBX fixer, Sigma-

Aldrich, UK) for 10-20 s and then placed into the developer solution (Kodak GBX 

developer, Sigma-Aldrich, UK) for 30 s before being thoroughly washed with water and 

dried in the air for 2-4h.  

2.4.7.7. Membrane stripping 

Following BCRP detection, antibody was removed by membrane stripped using a mild 

stripping method adapted from Legocki and Verma (Bendayan et al., 2006) (Table 2.6). 

 

 

 

 

Solution  A Volume Solution B   Volume 

Coumaric acid (90 mM) 110 µL 30 % Hydrogen peroxide 100 µL 
Luminol (250 mM) 250 µL Ultra-pure water  900 µL 
Tris (1 M)   5 mL         
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Table 2.6: Composition of buffer used for stripping 

Reagents     Quantity 

Glycine   15 g  
SDS   1 g  
Tween 20 
Water 

    10 mL 
To 1000 mL   

 

The membrane was washed with TBST and sufficient stripping buffer added to cover 

the membrane, before being gently shaken on an orbital shaker for 10 min. The 

membrane was subsequently washed for 10 min, twice in PBS followed by twice with 

TBST in 2 min intervals before being blocked with TBST and milk for 1 h.  

2.4.7.8. Immunological detection of β-actin 

To reprobe the membrane for the loading control (β-actin) the membrane was 

incubated with blocking buffer, followed by mouse β-actin horseradish peroxidase 

conjugated monoclonal antibody (1:7500) in blocking buffer for 24 h at 4°C. The 

membrane was then washed with TBST for 45 min before β-actin was detected by a 

chemiluminescent detection approach (section 2.4.7.6). 

2.4.8. Modulation of BCRP gene expression by phytochemicals compound in 

PBMEC/C1-2 cells 

 

2.4.8.1. Extraction of RNA 

PBMEC/C1-2 cells were grown on gelatine coated 6-well plates for 24 h and modulators 

demonstrating BCRP protein induction or down-regulation were incubated with cells for 

24 h at, unless otherwise stated, 25 µM.  RNA was extracted as stated in section 

2.4.6.1. 

2.4.8.2. Reverse transcription 

 

A two-step reverse transcription protocol was utilised involving both annealing and 

extension steps. RNA samples were prepared as recommended by the manufacturer 

(Precision Nanoscript RT kit, PrimerDesign, UK). 

 

For the annealing step, the samples were prepared by the addition of 1 µL of gene 

specific RT primers, 600 ng of RNA template and a final volume of 10 µL was achieved 
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by the addition of RNase-free water. Samples were then transferred to a heat block for 

5 min at 65 °C.  For the extension step, the reagent were prepared as described in 

Table 2.7.  

 

     Table 2.7: Preparation of extension reagents 

Reagents       Volume 

Nano Script 10x Buffer  2 µL 

dNTP Mix 10mM   1 µL 

DTT 100mM   2 µL 

RNase-free Water   4 µL 

Nano Script Enzyme   1 µL 

Annealing mix end-product     10µL 

 

10 µL of the extension reagent mix was added to the 10 µL of each pre-heated sample 

and tubes were vortexed. Samples were then incubated at 55 °C for 20 min on a heat 

block before the temperature was raised to 75°C for 15 min. The subsequent cDNA 

was quantified spectrophotometrically and samples were stored at -20°C for future use.  

2.4.8.3. qPCR cycle parameters 

The qPCR reaction mixture was prepared as outlined in Table 2.8. 

Table 2.8: Preparation of qPCR samples 

Reagents       Volume 

10x Master Mix   10 µL 

Primer Forward (6 pmol)  1 µL 

Primer Reverse (6 pmol)  1 µL 

RNase-free Water   3 µL 

Template (25 ng)   5 µL 

Total Volume     20 µL 

 

qPCR primers were custom synthesised as follows: HPRT1 (NCBI Accession: 

NM_001032376.2) forward primer GGTCAAGCAGCATAATCCAAAG, reverse primer 

CAAGGGCATAGCCTACCACAA and a custom synthesised porcine BCRP (NCBI 

Accession: NM_214010) gene primers (PrimerDesign, UK).  qPCR was conducted 

using a Stratagene MX3000p thermal cycler (Agilent technologies, United States) with 

a SYBR-green detection probe and a two-step cycling protocol (Table 2.9). 
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  Table 2.9: qPCR cycles 

Cycles   Step   Time Temperature 

  Enzyme activation 2 min 95°C  

40 Cycles Denaturation 15 s 95°C  

40 Cycles Data Collection 60 s 60°C   

 

2.4.8.4. qPCR quantification method 

Relative quantification determines the mRNA changes in gene of interest (BCRP) 

relative to the levels of a housekeeping gene (HPRT1) RNA. Threshold cycle (Ct) 

values were determined and changes in the expression of target gene normalised with 

HPRT1 calculated for each reaction condition (ddCT method) (Livak and Schmittgen, 

2001) (see equation 3) 

&ÏÌÄ ÃÈÁÎÇÅ ςЎЎ  (3)    

 where ΔCt = CT,BCRP-CT,HPRT1 

The efficiency of all genes were pre-validated for specificity by the manufacturer. 

2.4.9. Assessing the functional activity of BCRP in an in-vitro permeable insert 

BBB monolayer model 

 

2.4.9.1. Pheophorbide A (PhA) calibration curve 

To assess the function of BCRP in-vitro, the specific BCRP fluorescent substrate 

pheophorbide A (PhA) was used. Stock solutions of PhA were prepared in DMSO and 

a standard curve generated over a concentration range of 0.001 µM to 50 µM, prepared 

in serum free PBMEC media.  PhA fluorescence was quantified by transferring 100 µL 

of each standard solution into wells of a black 96-well plate before quantifying on a 

fluorescent plate reader at an excitation wavelength of 395 nm and emission 

wavelength of 670 nm using a dual-scanning microplate spectroflurometer (Spectra 

Max Gemini XS, Molecular Devices, Sunnyvale, California).  
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2.4.9.2. Optimisation of the in-vitro transport media 

 

Permeable PBMEC/C1-2 inserts were prepared according to section 2.4.2.4. TEER 

values were used as a measure of monolayer formation and suitability of transport 

media.  Preliminary experiments were performed to assess the integrity of monolayers 

when incubated with either HBSS supplemented with glucose (10 mM) and HEPES (10 

mM) or PBMEC serum free media (SFM). TEER values were determined after 30 min, 

60 min, 90 min, 120 min, 150 min and 180 min exposure to media. 

 

2.4.9.3. Lucifer yellow permeability assay 

To further assess the formation of a suitable monolayer, Lucifer yellow (LY) was used 

as a passive diffusion marker. Solutions of LY were prepared in SFM and added to the 

apical chamber of the inserts to achieve a final concentration of 100 µM, and LY-free 

SFM added to the basolateral chamber (1.5 mL).  The inserts were then placed on an 

orbital shaker at 100 rpm at 37 °C for 1 h.  Thereafter, a sample of the basolateral 

media was then collected and quantified for LY permeation on a fluorescent plate 

reader at an excitation wavelength of 428 nm and emission wavelength of 536 nm using 

dual-scanning microplate spectroflurometer (Spectra Max Gemini XS, Molecular 

Devices, Sunnyvale, California). The percentage transport of LY across the permeable 

inserts were calculated (Equation 4). 

Ϸ ,ÕÃÉÆÅÒ ÙÅÌÌÏ× ÔÒÁÎÓÐÏÒÔÅÄρππϽρ      (4) 

 

where RFUbasolateral is the relative fluorescence units in the sample taken from 

basolateral compartment and RFUapical is the relative fluorescence unit in the sample 

taken from the apical compartment. Inserts were rejected for permeability assays if the 

percentage LY transport was greater than 1 %. 

 

2.4.9.4. Modulation of BCRP transport function 

To assess the potential for phytochemical modulators to modulate the in-vitro 

transporter function of BCRP in the permeable insert BBB model, modulators identified 

as resulting in induction or down-regulation of BCRP protein from western blotting 

studies (section 2.4.7) were selected to then assess their potential to modulate the 

efflux of PhA.  PBMEC/C1-2 seeded permeable inserts were washed with pre-warmed 



70 
  

PBS and freshly prepared working stocks of modulators (optimal non-toxic 

concentrations were used and determined from cytotoxicity and western blotting 

studies) and Ko143 in SFM were added to the permeable inserts and incubated for 

either 1 h (Ko143: to pre-load cells with inhibitor) or 24h (modulators: to modulate the 

protein expression of BCRP) at 37°C.  

Cells were subsequently washed with pre-warmed PBS followed by the addition of SFM 

containing Ko143 (1 µM) or modulators and 10 µM PhA into the apical compartment.  

The basolateral compartment received media with modulators only. 50 µL aliquots were 

taken at 0, 30, 60, 90, 120, 150, 180 and 210 min, replaced by fresh SFM, and the 

fluorescence of PhA determined at an excitation wavelength of 395 nm and emission 

wavelength of 670 nm using a dual-scanning microplate spectrofluorometer (Spectra 

Max Gemini XS, molecular devices, Sunnyvale, California). For modulators 

demonstrating induction of BCRP, all compounds were added into the basolateral 

compartment and sampling of the apical compartment was conducted. 

2.4.9.5. Measurement of the apparent membrane permeability coefficient  

The apparent membrane permeability (Papp: x10-6 cm/s) of PhA was calculated 

according to equation 5. 

0ÁÐÐ 
Ὠὗ
ὨὸϽ       (5) 

where dQ/dt is the rate of appearance of PhA on the receiver side (calculated from the 

slope of the cumulative transport graph), C0 is the initial concentration of PhA in the 

donor compartment and A (cm 2) is the surface area of the insert.  

2.4.10. Development of an in-vitro primary porcine brain microvascular 

endothelial cell culture model 

BBB cellular models derived from immortalised cells are widely used to study the 

phenotype and genotype of the BBB.  However, immortalised systems are often fraught 

with loss of key BBB markers, reduced expression of regulators and transporter 

proteins and often demonstrate lower TEER values compared to the microvascularate 

in-vivo.  

Cells isolated directly from freshly obtained brain tissues can be used to develop a 

more representative in-vitro BBB model, and a recently described primary porcine BBB 

model system has been demonstrated to yield a high number of cells from brain 
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hemispheres, retention of BBB phonotypic characteristics, close reflection of human 

and porcine genome, anatomy and disease progression (Krishnamurthy et al., 2004, 

Doyle and Ross, 2003a, Patabendige et al., 2013).  

2.4.10.1. Isolation of the primary porcine brain endothelial cells 

Porcine brain endothelial cells were isolated according to the methods described by 

Patabendige et al (Patabendige et al., 2013). Porcine brains were acquired from a local 

abattoir (Long Compton Abbatoir, Oxford, UK) within 1-hour of sacrifice. The brains 

were transferred to the laboratory in sterile box containing L-15 media supplemented 

with 1 % penicillin/streptomycin on ice. Each brain was separated into respective 

hemispheres and thoroughly washed with ice-cold PBS media supplemented with 1 % 

v/v penicillin/streptomycin. The meninges and blood vessels were removed along with 

the choroid plexus and capillaries located within brain sulci. The hemispheres were 

then placed in a clean beaker containing PBS supplemented with HEPES (10 mM) and 

penicillin/streptomycin sulphate. White matter was then carefully removed and grey 

matter dissected and transferred to a beaker containing MEM supplemented with 

HEPES (10 mM) and 1% v/v penicillin/streptomycin. The grey matter tissue was then 

chopped into small 1 cm3 sections using a sterile scalpel before being transferred into 

a 50 mL syringe and passed into a T75 containing 50 mL of MEM supplemented with 

HEPES (10 mM) and 1 % v/v penicillin /streptomycin.  

15 mL of this brain extract was transferred into a homogeniser (Dounce Homogeniser, 

Jencons, UK) and 25 mL of MEM supplemented with HEPES (10 mM) and 

penicillin/streptomycin sulphate was added to the homogeniser. The brain extract was 

then homogenised gently for 15 strokes with a loose pestle (Type B) followed by 15 

strokes with tight pestle (Type A).  The resulting homogenate was then transferred to 

a sterile T175 and process repeated for the remaining tissue. 

200 mL of homogenate was then filtered through a 150 µm pore nylon mesh and the 

filtrate collected and subsequently filtered again through a 60 µm pore nylon mesh 

(Plastok Associates Ltd, Wirral, UK). The filters were removed and placed into separate 

15 cm Petri dishes containing 80 mL of digest mix (M199 containing collagenase (223 

U/mg), trypsin (211 U/mg), DNase I (2108 U/mg), 10 % v/v FCS and 1 % v/v 

penicillin/streptomycin).  Filters were then incubated at 37°C for 1 h in an orbital shaker 

and labelled as 150 and 60s.  
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There after the filters were thoroughly washed and the digest mix transferred to 50 mL 

centrifuge tubes labelled ‘150s’ and ‘60s’ and centrifuged at 4°C for 5 min at 240 g. The 

pellet was resuspended in 10 mL of MEM supplemented with HEPES (10 mM) and 1% 

v/v penicillin /streptomycin sulphate and centrifuged again at 4 °C for 5 min at 240 g. 

This was repeated 3 times. The final pellets were resuspended in cryopreservation 

media (90 % FBS and 10% DMSO) and cryovials maintained at -80°c for 24 h before 

being transferred to liquid nitrogen (-196°C) for long term storage until use.   

2.4.11.      Characterisation of the in-vitro primary porcine BBB model 

 

2.4.11.1. Morphology of the cells     

T75 cell culture flasks were coated with rat-tail type-1 collagen (300 µg/mL in cell 

culture water) for 2-3 h in a laminar air hood. The collagen was aspirated and flasks 

were washed twice with the pre-warmed HBSS. The larger microvessels (150s) were 

resuspended in 16 mL of basic growth media (DMEM supplemented with 10% v/v FCS, 

1% v/v penicillin/streptomycin, 1% v/v L-glutamine, 125 µg/mL heparin) and 8 mL of 

this cell suspension was transferred into two T75s and cells allowed to attached at 37 

°C in a humidified atmosphere of 5 % CO2 in air for 24 h.  

In order to remove contaminating cells, such as pericytes, 3 µg/mL of puromycin was 

added to the flasks 24 h post seeding, and the media maintained for 3 days of 

exposure.  Thereafter the media was removed and fresh basic growth media (without 

puromycin) was added to the flasks maintained at 37 °C in a humidified atmosphere of 

5 % CO2 in air until confluent. At 70-80 % confluency, the cell culture medium was 

removed and cells were washed with pre-warmed PBS and 2 mL of trypsin-EDTA 

solution was added. The flasks were returned to the incubator at 37°C for 10 min. An 

equal volume of the media was then added and the resulting cell suspension was 

centrifuged at 1500 rpm for 10 min and pellet was resuspended with the basic growth 

media and cells were seeded for subsequent experiments.  

 

2.4.11.2. Assessment of barrier integrity 

To develop the in-vitro BBB model, the smaller microvessel fractions (60s) were 

seeded into permeable inserts (ThinCert™, pore size 1 µm) that had been pre-coated 

with 300 µg/mL collagen for 3-4 h in a laminar air hood. 1 x105 cells/cm2 were seeded 

into the permeable inserts and the inserts maintained in basic growth media and 
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allowed to attach for 24 h. To enhance the formation of the monolayer, the cell culture 

media was switched on day 4 to serum free media supplemented with 250 µM CPT-

cAMP, 17.5 µM RO20-1724 and 500 nM of hydrocortisone (Woodward et al., 2009, 

Ishiwata et al., 2005, Schwerk et al., 2012) and TEER values used to assess the 

development of a tight monolayer with an acceptable cut-off of 400-500 Ω.cm2 in a 6-

well transwell system (Patabendige et al., 2013).  

2.4.11.3. Immunostaining detection of BCRP grown on permeable inserts 

Primary porcine brain endothelial cells (60s) were grown on pre-coated permeable 

inserts for the detection of BCRP as described in section 2.4.2.4. Cell culture media 

was aspirated and inserts washed three times with pre-warmed PBS before being fixed 

with methanol at -20°C for 20 min and thereafter washed three times with pre-warmed 

PBS. Cells were subsequently rehydrated in PBS for 20 min at room temperature 

followed by incubation with blocking solution (1% goat serum in PBS) for 30 min at 

room temperature. The cell monolayers were then incubated with primary anti-ABCG2 

antibody (Sigma-Aldrich, Dorset, UK) (1:200 dilution) for 2 h at 37 °C. Cell monolayers 

were washed twice with PBS and incubated with secondary antibody fluorescein iso-

thiocyanate (FITC)-labelled mouse anti-rabbit IgG (1:500 dilution) prepared in blocking 

solution, for 45 min at room temperature in the dark. Secondary antibody was then 

aspirated and cells were washed three times with pre-warmed PBS. The insert 

membranes were then carefully cut and rinsed with MilliQ water and mounted onto 

glass slides with mounting media containing 4',6-diamidino-2-phenylindole(DAPI). The 

localisation of BCRP was determined using an upright confocal microscope (Leica SP5 

TCS II MP) and visualised with a 40x oil immersion objective. All images were acquired 

using an argon laser at 494 nm to visualise FITC and a helium laser to visualise DAPI 

at 461 nm. 

2.4.11.4. Determination of BCRP protein in primary porcine brain microvascular 

endothelial cells. 

Primary porcine brain endothelial cells (150s) were grown on collagen coated 6-well 

plates for 10 days. Whole cell lysate was extracted as described in section 2.4.7.1. 

Protein was quantified using the BCA assay as described in section 2.4.7.2. SDS-

PAGE was performed by loading 50 µg of protein onto gels as described in section 

2.4.7.3 and proteins immunological detection of BCRP was performed as detailed in 

section 2.4.7.4 and 2.4.7.6. 
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2.4.11.5. Cytotoxicity of modulators towards primary porcine brain 

microvascular endothelial cells: methylthiazolyldiphenyl-tetrazolium 

bromide 

Primary porcine brain microvascular endothelial cells (150s) were seeded with a 

seeding density of 25,000 cells per well onto a clear flat bottom 96-well plates. 8-10 

days post seeding the media was carefully removed and fresh media containing the 

modulator compounds at concentrations optimised from PBMEC/C1-2 studies (MTT 

section 2.4.3, Hoechst 33342 section 2.4.5.3 and WB section 2.4.7) were added and 

incubated for 24 h. The medium was then removed and cells were washed with the 

pre-warmed PBS and incubated with fresh media for 30 min. MTT powder was 

dissolved in PBS (5 mg/mL) and filtered through a 0.2 μm pore. 20 µL of the pre-

warmed MTT solution was added to each well. The plates were protected from light 

and incubated at 37°C in a humidified atmosphere of 5% CO2 for 4 h.  Thereafter the 

media was removed and 100 µL DMSO added to each well of a 96-well plate to 

solubilise the purple formazan crystals. The plates were incubated for a further 10-15 

min at room temperature (RT).The UV-absorbance of the formazan product was 

measured on a multi-plate reader (Bio-Rad laboratories, Hercules, CA) using 570 nm 

as a test wavelength and 600 nm as a reference wavelength. The mean of the blank 

UV-absorbance was subtracted from the UV-absorbance of each control and samples 

and percentage viability (see equation 2). The IC50 was subsequently using a sigmoidal 

dose response function within the Graphpad Prism. 

2.4.12.  Phytochemical modulation of BCRP transport function in a primary 

porcine in-vitro permeable insert BBB model 

 

To assess the ability of modulators to impact upon the efflux function of BCRP, 

modulators were incubated with primary porcine brain microvascular endothelial cells 

grown on permeable inserts as described in section 2.4.11.2. 
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2.4.13.    Statistical analysis 

 

All statistical analyses were performed in Graphpad Prism (La Jolla, California, USA). 

One-way ANOVA and t-tests were carried out to determine the differences between 

the mean values. For all multi-well based assay replicates of at least 6 were used in 

three independent experiments. For western blot and transport studies replicates of at 

least three were used and repeated in three independent experiments. IC50 and EC50 

metrics were calculated using sigmoidal fit functions within Graphpad Prism. A 

significance p-value of < 0.05 (*P≤0.05, **P≤0.01, *** P ≤ 0.001 and **** P ≤ 0.0001) 

was considered as statistically significant.   
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2.5. Results 

 

2.5.1. PBMEC/C1-2 cell morphology 

 

PBMEC/C1-2 cells were grown on gelatine-coated flasks and visually observed using 

light microscopy. Cells demonstrated typical endothelial cellular morphology with 

elongated to cobblestone shaped cells (Figure 2.1).  

 

 

Figure 2.1: Morphology of PBMEC/C1-2 cells. 

The PBMEC/C1-2 cells were seeded on a gelatine-coated flasks for 3 days at 37°C in a humidified 
atmosphere of 5% CO2 in air. The cells morphology were examined under light microscope at 10x (A) and 
40x (B) lenses. 

 

2.6. Development of a PBMEC/C1-2 in-vitro BBB model 

 

2.6.1. Assessment of monolayer formation and barrier integrity 

 

The formation of a stable monolayer was determined by measuring TEER values for 4 

days post seeding. TEER values significantly increased on day 2 (42 ± 10 Ω.cm2) and 

3 (78 ± 6 Ω.cm2) post-seeding (p ≤ 0.0001) compared to day 1 (22 ± 3 Ω.cm2), before 

declining thereafter (Figure 2.2).  
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Figure 2.2: Measurement of TEER values. 

PBMEC/C1-2 cells were seeded onto collagen coated permeable inserts and grown for 4 days at 37°C in 
a humidified atmosphere of 5% CO2 in air. Serum free media supplemented with 250µM CPT-cAMP, 
17.5µM RO20-1724 and 500nM hydrocortisone was added for 24 h post seeding and TEER values were 
measured. Statistical analysis compares TEER values to day 1. *** P ≤ 0.001 and **** P ≤ 0.0001. 
 

 

2.6.2. Stability of ACM 

ACM was initially frozen once collected but it was discovered that using fresh ACM 

significantly (P ≤ 0.01) increased TEER values on day 2 (45 ± 3 Ω.cm2) and day 3 (78 

± 6 Ω.cm2) when compared with media supplemented with frozen ACM on day 2 (41 ± 

6 Ω.cm2) and day 3 (60 ± 3 Ω.cm2) (Figure 2.3).  

 

Figure 2.3: Stability of ACM  

80,000 cells were seeded onto collagen coated permeable inserts and cells maintained in PBMEC media 
prepared with using either freshly collected or frozen ACM media to assess the impact of ACM stability on 
monolayer formation. The media was changed every day for 4 days and TEER values were measured 
using EVOM Voltmeter. Significant differences between freshly collected ACM and frozen ACM are 
indicated above the appropriate error bars * P ≤ 0.05 and ** P ≤ 0.01. 
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2.7. Cellular toxicity of modulators towards PBMEC/C1-2 cells 

To investigate the cellular toxicity of modulators towards the PBMEC/C1-2 cells, a MTT 

cellular toxicity assay was conducted whereby cells were exposed to a 7-fold log 

concentration range of modulators, 0.001 µM-1000 µM, for 24 h. Modulators 

demonstrated a range of toxicities towards PBMEC/C1-2 cells. The lowest IC50 (1.5 

± 2.7 µM) was observed for α-napthoflavone (Figure 2.4L). Similarly, baiclain 

(Figure 2.4B), 17-β-estradiol (Figure 2.4F), hesperidin (Figure 2.4J) and hesperetin 

(Figure 2.4I) demonstrated low micromolar IC50 values of 27.9 ± 6 µM, 48.9 ± 1.1 

µM, 36.9 ± 1.5 µM and 57.5 ± 3.54 µM respectively. Additionally a number of 

modulators demonstrated minimal toxicities up to 1000 µM and included chrysin 

(Figure 2.4D), fistein (Figure 2.4G) and naringin (Figure 2.4M) 

All other modulators possessed IC50 of > 100 µM (Figure 2.4).  
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Figure 2.4: Cytotoxic assessment of modulators (A-F). 

PBMEC/C1-2 cells were seeded onto gelatine coated 96-well plates at 37°C in a humidified atmosphere 
of 5% CO2 in air for 24 h. Media was aspirated and cells were subsequently incubated with a 7-fold log 
concentration range (0.001 µM-1000 µM) of apigenin (A), baiclain (B), biochanin A (C), chrysin (D), 
curcumin (E) and 17-β-estradiol (F) for 24 h, prior to an MTT assay being performed. Data reported as 
IC50 ± SD. 
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Figure 2.4: Cytotoxic assessment of modulators (G-L) 

PBMEC/C1-2 cells were seeded onto gelatine coated 96-well plates at 37°C in a humidified atmosphere 
of 5% CO2 in air for 24 h. Media was aspirated and cells were subsequently incubated with a 7-fold log 
concentration range (0.001 µM-1000 µM) of fistein (G), flavone (H), hesperetin (I), hesperidin (J), indole -
3-carbinol (I3C) (K) and α-napthoflavone (L) for 24 h prior to an MTT assay being performed. Data reported 
as IC50 ± SD.  
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Figure 2.4: Cytotoxic assessment of modulators (M-R) 

PBMEC/C1-2 cells were seeded onto gelatine coated 96-well plates at 37°C in a humidified atmosphere 
of 5% CO2 in air for 24 h. Media was aspirated and cells were subsequently incubated with a 7-fold log 
concentration range (0.001 µM-1000 µM) of naringin (M), quercetin (N), resveratrol (O), rutin (P), silymarin 
(Q) and TMF(R) for 24 h, for 24 h prior to an MTT assay being performed. Data reported as IC50 ± SD. 
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2.8.   Determination of BCRP expression in PBMEC/C1-2 cells 

 

2.8.1. Determination of BCRP genomic and protein expression 

 

PBMEC/C1-2 cells were characterised to determine the protein and genomic 

expression of BCRP. Reverse–transcriptase PCR confirmed the genomic expression 

of BCRP in PBMEC/C1-2 cells with an expected product size of 652 base pairs 

alongside the presence of β- actin (BA) loading control product size of 806 base pairs 

(Figure 2.5A). Western blot analysis further confirmed BCRP protein in PBMEC/C1-2 

cells with an expected product size of 72 kDa (Figure 2.5B). 

 

 

 

Figure 2.5:  Genomic expression of BCRP in PBMEC/C1-2 cells.  

(A) Genomic expression of BCRP. Cells were seeded onto a 6-well plate for 24 h. Total RNA was extracted 
and 400 ng of RNA was loaded reverse transcribed prior to PCR being performed. cDNA was resolved 
using a 2% agarose gel. A 1 kbp DNA ladder was used a size marker. (B) Protein expression of BCRP. 
Cells were seeded onto a 6-well plate for 24 h. Whole cell protein was extracted using RIPA buffer. 
Approximately 50 µg of the protein was loaded to the gel and transferred onto the PVDF membrane. The 
membrane was blocked and incubated with primary ABCG2 antibody for 24 h at 4°C and then incubated 
with goat anti-rabbit IgG-horse radish peroxidise-conjugated (Santa Cruz biotechnology, Sc-2004). 
Chemiluminesence detection was performed with lab made ECL. 
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2.8.2. Immunostaining detection of BCRP  

The localisation of BCRP in PBMEC/C1-2 cells was investigated using immunostaining 

techniques. Following immunostaining of cells grown on cover slips, confocal laser 

microscopy was used to detect the membrane localisation of BCRP in PBMEC/C1-2 

cells (Figure 2.6).  

 

 

Figure 2.6: Localisation of BCRP in PBMEC/C1-2 cells. 

Cells were grown on coverslips for 2-3 days and fixed with 4% paraformaldehyde and stained for BCRP 
using the anti-ABCG2 primary antibody and goat anti-rabbit IgG-FITC secondary antibody (green). Cell 
nuclei were visualised using DAPI (blue). A negative control excludes antibodies. 
 

 

2.9. Measurement of BCRP cellular functional activity in PBMEC/C1-2 cells 

 

2.9.1.  Determination of optimum seeding density and incubation time 

To identify an optimal seeding density and incubation time to assess the intracellular 

accumulation of H33342 through fluorescence measurements, H33342 accumulation 

was assessed under three cell densities of 1000, 10,000 and 50,000 cells per well, with 

incubation times of 30, 60 and 90 mins. Significantly higher (p ≤ 0.01) intracellular 

H33342 accumulation was observed with 50,000 cells per well after 30 minutes of 
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incubation when compared with 1000 and 10,000 cells per well and 60 and 90 minutes 

incubation time (Figure 2.7). 

 

 

Figure 2.7: Optimisng the seeding density and incubation time of PBMEC/C1-2 cells to 

assess the intracellular accumulation of H33342 

PBMEC/C1-2 cells were seeded with a seeding density of 1000,  10000 and 50000 cells per well of 96-
well plate for 24 h. After 24 h cells were washed with HBSS and incubated with HBSS for 30 min. The cells 
were washed with warm HBSS prior to the addition of H33342 (10 µM) prepared in HBSS and incubated 
for 30 min, 60 min and 90 min. After each time point, cells were washed with ice cold HBSS twice and 
plates lysed at at -80°C for 2 min before the intracellular accumualtion of H33342 assessed using a 
fluoresecent plate reader with an excitation wavelength of 355 nm and an emission wavelength of 460 nm. 
Significant differences between cell number (1000,10,000 and 50,000) and incubation times (30,60 and 
90 min) with control (1000,10,000 and 50,000 cells but without H33342) are indicated above the 
appropriate error bars (** P ≤ 0.01). 
 

 

2.9.2. Assessment of the intracellular H33342 accumulation in the absence and 

presence of Ko143  

 

The intracellular accumulation of H33342 in the absence and presence of Ko143, a 

known potent inhibitor of BCRP, was assessed to investigate the functional expression 

of BCRP in PBMEC/C1-2 cells. Our results demonstrated that the intracellular 

accumulation of H33342 was significantly increased (p < 0.0001) following a 1 h 

incubation with Ko143 over a wide concentration range of Ko143 (0.0039 µM - 5 µM) 
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leading to an approximately 3.5-fold increase in H33342 accumulation (Figure 2.8) over 

all concentration studied. 

 

 

 

Figure 2.8: Ko143 mediated inhibition of BCRP efflux function in PBMEC/C1-2 

20,000 cells/well were seeded into a clear 96-well plate and left to attach at 37°C and 5% CO2 for 24 h. 
Subsequently cells were washed with PBS to remove media and 200 µL of growth media a range of Ko143 
concentration (0.0039 µM-5 µM) was added and the plate pre-incubated for 1 h before the media was 
removed.  Thereafter the cells were again incubated with media containing Ko143 (0.0039 µM-5 µM) in 
addition to 10 µM H33342 for 30 min before the intracellular accumualtion of H33342 assessed using a 
fluoresecent plate reader with an excitation wavelength of 355 nm and an emission wavelength of 460 nm.  
Significant differences between control and Ko143 concentrations are indicated above the appropriate 
error bars (**** p ≤ 0.0001). 

 

 

2.9.3. Measurement of the auto-fluorescence of phytochemicals 

The inherent fluorescent properties of modulators were important to assess when using 

a fluorescent probe substrate for BCRP in an intracellular accumulation studies. 

Modulators were screening for their fluorescent properties using H33342 as a 

reference.  The majority of modulators demonstrated no fluorescence signals when 

compared to H33342 (data not shown, p < 0.05).  However, fistein, α-napthoflavone 

and baiclain demonstrated no statistically significant differences in fluorescence when 
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compared to H33342, and hence were classified as compounds that possessed auto-

fluorescence which overlaps with H33342 (Figure 2.9).  

 

Figure 2.9: Auto-fluorescence of modulators. 

25µM working stocks of baiclain, fistein and napthoflavone were prepared and transferred to a black 96-
well plate. The autofluorescence of modulators was measured on a fluorescence plate reader at an 
excitation wavelength of 360 nm and emission wavelength of 460 nm. Statistical comparison were made 
between background (HBSS+) and H33342/modulators. **** p ≤ 0.0001. 
 

 

2.9.4. Modulator mediated inhibition of BCRP function in a H33342 intracellular    

accumulation assay 

 

To assess the potential for modulators to directly inhibit BCRP function, the intracellular 

accumulation of H33342 was assessed following the incubation PBMEC/C1-2 cells with 

modulators. Our results demonstrated significant increase of H33342 accumulation (p 

≤ 0.0001) with most of the modulators studied across a concentration range of 1-100 

µM (Figure 2.10). Furthermore the fold change in H33342 was significantly greater than 

that observed for Ko143 for apigenin (1 µM), hesperidin (1 µM), I3C (1-100 µM) and 

2,6,4-trimethoxyflavone (TMF) (1-100 µM) and increasing H33342 accumulation by 2.5 

± 0.2 fold, 2.6 ± 0.5 fold, 3.5 - 4.5 mean fold range and 4.5 - 6.5 mean fold range 

respectively when compared with the known inhibitor of BCRP, Ko143 (represented by 

the grey shaded area in figure 2.10). Interestingly, quercetin, resveratrol and rutin did 

not show any significant accumulation when compared to Ko143.  
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Figure 2.10: Modulation of intracellular accumulation of H33342 following a 1-hour incubation with modulators. 

Cells were grown in a 96 well plate for 48 h and washed with warm HBSS supplemented and incubated for 1 h with media containing 1-100µM of test compound. 
Subsequently cells were incubated with media containing H33342 for 30 min and lysed. The change in H33342 intracellular accumulation in the presence of Ko143 is 
highlighted by the shaded region. Significant differences between Ko143 and modulators are indicated above the appropriate error bars. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 
0.001 and **** P ≤ 0.0001. The hash symbol (#) indicates modulators excluded due to auto-fluorescence.  
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2.9.5. Modulator mediated changes in BCRP function following 24 hours 

incubation  

Time dependent functional activity of BCRP was also evaluated following incubation 

of H33342 in the presence of modulators for a 24 h period. PBMEC/C1-2 cells were 

exposed to modulators at 1 µM, 10 µM and 100 µM.  Our results demonstrated that 

apigenin (1 µM and 10 µM), chrysin (1-100 µM),17-β-estradiol (1 µM  and 10 µM), I3C 

(10 µM and 100 µM), silymarin (1-100 µM) and (TMF) (1-100µM) has shown significant 

increase in intracellular H33342 accumulation by 1.15-1.25, 1.26-1.35, 1.3, 1.25 -1.26, 

1.25-1.6 and 1.20-1.45 mean fold change when compared to control (Figure 2.11). 

Furthermore, hesperetin (0.7-0.8 mean fold change), naringin (0.3-0.71 mean fold 

change) and quercetin (0.75-1 mean fold change) demonstrated significant 

downregulation of intercellular H33342 accumulation by when compared to control 

across all concentration (1-100 µM) studied. 
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Figure 2.11: Modulation of intracellular accumulation of H33342 following a 24-hour incubation with modulators. 

Cells were grown in a gelatine coated 96 well plate for 24 h and washed with pre- warm HBSS supplemented and incubated for 24h with media containing 1-100µM of 
test compound . After 24 h cells were incubated with media containing H33342 for 30 min and lysed. Significant differences between control and modulators are indicated 
above the appropriate error bars. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 and **** P ≤ 0.0001.  The hash symbol (#) indicates modulators excluded due to autofluorescence. 
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2.10. Modulation of BCRP protein expression by phytochemical modulators  

To assess the impact of modulators on the protein expression of BCRP, PBMEC/C1-

2 cells were exposed to modulators for 24 hours and changes in protein expression 

were assessed through western blotting.   A significant induction of BCRP protein was 

observed for biochanin A (2.65 ± 0.12 fold), hespiridin (2.42 ± 0.19 fold), I3C (1.4 ± 

0.09 fold), naringin (2.2 ± 0.17 mean fold change) and quercetin (2.3 ± 0.12 fold). 

Furthermore, a significant (p ≤ 0.01) down-regulation of BCRP was observed with 

curcumin (0.4 ± 0.2 fold) and 17-β-estradiol (0.41 ± 0.1 fold) (Figure 2.12 and 2.13).  
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Figure 2.12: Changes in BCRP protein expression under 24-hours exposure to modulators  

Cells were seeded in a 6-well plate for 24 h to attach and subsequently incubated with 25 µM modulator except for 17-β-estradiol (100nM) for 24 h. Whole cell protein 
was extracted using RIPA buffer and approximately 50 µg of isolated protein was loaded onto a SDS-PAGE gel to separate proteins bands.  The resulting gel was then 
transferred onto a PVDF membrane and incubated with anti-ABCG2 antibody for 24 h at 4°C followed by incubation with goat anti-rabbit IgG-horse radish peroxidise-
conjugated antibody. Chemiluminesence detection was performed with lab made ECL and a representative image is displayed.  Primary PBMEC and PBMEC/C1-2 
bands are non-modulator (control) samples for each cell line. 
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Figure 2.13: Fold change in BCRP protein expression following 24-hours exposure to 

modulators 

Cells were seeded in a 6-well plate for 24 h to attach and subsequently incubated with 25 µM modulator 
except for 17-β-estradiol (100nM) for 24 h. Significant differences in protein expression when compared 
to control are indicated above the appropriate error bars. * p ≤ 0.05, ** p ≤ 0.01 and **** p ≤ 0.0001. 

 

2.11. Quantitative PCR assessment of the changes in BCRP genomic 

following exposure to modulators 

The modulation of BCRP genomic expression was evaluated by qPCR with two up-

regulators (quercetin and naringin) and two down-regulators (curcumin and 17-β-

estradiol) selected from the western blot results. A significant increase (p ≤ 0.0001) 

in the genomic expression of BCRP was observed for quercetin (1.63 ± 0.28 fold) and 

naringin (1.36 ± 0.71 fold), relative to control samples, whereas curcumin and 17-β-

estradiol demonstrated significant down-regulation of 1.78 ± 0.05 fold (p ≤ 0.0001) 

and 1.54 ± 0.05 fold (p ≤ 0.01) respectively (Figure 2.14). 
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Figure 2.14: Modulation of BCRP gene expression after 24 h incubation with modulator 

compounds. 

PBMEC/C1-2 cells were seeded onto a 6-well plate and allowed to attach for 24 h. The media was 
removed and modulators prepared in media were added to the wells and incubated for 24 h. After 24 h 
the media was removed and cells washed with pre-warmed PBS prior to RNA extraction. Total RNA was 
reverse transcribed and gene expression assessed by qPCR using a SYBR green master mix.  Dashed 
line indicated 0.5-fold change.  Significant differences between control and modulators are indicated 
above the appropriate error bars. *** P ≤ 0.001 and **** P ≤ 0.0001. 

 

 

 

 

 

 

 

 

 

 

 



94 
  

2.12. Modulation of BCRP transport function in an in-vitro permeable insert 

BBB model 

 

2.12.1.   Generation of a PhA standard curve 

A standard curve for the fluorescent detection of PhA was developed over a 

concentration range of 0.01-50 µM. A linear correlation was displayed over this 

concentration range with an r2 =0.9967 (Y=1.5897 x-3.4248) (Figure 2.15). The 

lowest limits of quantification was found to be 0.01 µM.   

 

 

Figure 2.15: PhA standard curve  

Concentrations of PhA (0.1µM-100µM) were prepared in serum free transport media and 100 µL 
transferred into wells of a 96-well for fluorescence measurement.  

 

2.12.2.    Impact of transport media on in-vitro BBB monolayer integrity 

To assess the impact of transport media on the stability of the monolayer formation, 

preliminary transport studies were conducted assessing the impact of HBSS transport 

media (HBSS supplemented 10mM glucose and 10 mM HEPES) and SFM on the 

resistance of the monolayer. It was demonstrated that the TEER of the inserts 

maintained in HBSS media started to significantly decrease (p ≤ 0.05) over the study 

period from 75-80Ω.cm2 at 30 min to 32-35 Ω.cm2 at 150 min (Figure 2.16).  In 

contrast, TEER values of the inserts maintained in SFM were relatively consistent 

over 210 min with no significant decrease in TEER when compared to 30 min. 
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Figure 2.16: TEER values of PBMEC/C1-2 cells maintained in HBSS and SFM, grown on 

permeable inserts. 

Cells were seeded onto collagen coated permeable inserts and allowed to grown for 4 days. The inserts 
were transferred to either HBSS or SFM media and maintained for up to 210 min, with TEER values 
measured during the study period. Significant, differences between HBSS and serum free media are 
indicated above the appropriate error bars * p ≤ 0.05, ** p ≤ 0.01. 

 

2.12.3.   Functional assessment of BCRP in an in-vitro permeable insert BBB  

model  

The function of BCRP in a representative in-vitro BBB model was assessed by 

measuring the transport of PhA in the presence or absence of Ko143, a known BCRP 

inhibitor. Our results demonstrated that 1 h incubation with Ko143 (1 µM) significantly 

increased the apical-to-basolateral (AB) flux of PhA from 90 min onwards during our 

transport studies (p < 0.05) (Figure 2.17) and this was associated with an increase in 

Papp,AB from 27.2 ± 0.23 x10-6 cm/s to 43.23 ± 0.32 x 10-6 cm/s following Ko143 

incubation.  
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Figure 2.17: Cumulative transport of PhA across an in-vitro BBB model. 

Cells were grown on permeable inserts and transport studies were performed on day 4 in the presence 
and absence of Ko143.  Statistically significant differences between control and Ko143 samples at each 
data point are indicated. * P ≤ 0.05. 

 

2.12.4. Modulation of BCRP function in the absence and presence of up-

regulators  

To assess the impact of BCRP protein up-regulators on the functional efflux of PhA, 

quercetin and naringin were incubated with PBMEC/C1-2 cells, grown on permeable 

inserts, for 24 h prior to the initiation of a transport studying with PhA alone. When 

the transport study was initiated with PhA added to the apical compartment and 

sampling from the basolateral compartment, no significant differences in the transport 

kinetics of PhA were observed for quercetin and naringin when compared to control 

(Figure 2.18) 
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Figure 2.18: Transport of PhA across an in-vitro BBB cell culture model following 24 
hour incubation with quercetin or naringin 

Cells were grown on permeable inserts and pre-treated for 24 h with quercetin and naringin.  Thereafter 
the transport of PhA was assessed on day 4 following the addition of PhA to the apical compartment 
and sampling basolaterally.  

 

As an induction-effect was expected, incubation was repeated by the addition of 

compounds into the basolateral compartment with sampling from the apical 

compartments. Our results demonstrated that 24 h incubation of naringin (25 µM) 

significantly increased the basolateral-to-apical (BA) transport of PhA during our 

transport studies (p < 0.01) (Figure 2.19), with a BA permeability (Papp,BA) of PhA of 

74.23 ± 0.29 x10-6 cm/s when compared to the absence of naringin (23.13 ± 0.31 x 

10-6 cm/s). Similarly for quercetin (25 µM), our results demonstrated a significant 
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increase (p ≤ 0.01) in the BA transport of PhA with a BA permeability (Papp,BA) of PhA 

of 63.21 ± 0.54 x10-6 cm/s. 

 

Figure 2.19: Transport of PhA across an in-vitro BBB cell culture model following 24 
hour incubation with quercetin or naringin.  

Cells were grown on permeable inserts and pre-treated for 24 h with quercetin and naringin.  Thereafter 
the transport of PhA was assessed on day 4 following the addition of PhA to the basolateral compartment 
and sampling apically.  Statistically significant differences between control and modulator exposed 
conditions are indicated as * P ≤ 0.05, ** P ≤ 0.01. 
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2.12.5. Functional assessment of BCRP in the presence of BCRP down-

regulating modulators  

 

The functional assessment of BCRP was evaluated in the presence of BCRP down-

regulators namely, curcumin (1 µM) and 17-β-estradiol (100 nM) in an in-vitro BBB 

model by measuring the transport of PhA. Our results demonstrated that 24 h 

incubation of curcumin and 17-β-estradiol significantly increased the apical-to-

basolateral (AB) passive permeability (Papp,AB) of PhA from 27.20 ± 0.23 x10-6 cm/s 

in the absence of modulators to 78.81 ± 0.65 x10-6 cm/s and 48.11 ± 0.34 x10-6 cm/s 

in the presence of curcumin and 17-β-estradiol respectively (Figure 2.20).  

 

Figure 2.20: Transport of PhA across an in-vitro BBB cell culture model following 24 
hour incubation with curcumin or 17-β-estradiol. 

Cells were grown on permeable insert and transport studies were performed on day 4 using 1 µM 
curcumin and 100 nM 17-β-estradiol. Statistically significant differences between control and modulator 
exposed conditions are indicated as * P ≤ 0.05. 
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2.13. Characterisation of an in-vitro primary porcine brain BBB model 

 

2.13.1.  Morphology of porcine brain primary endothelial cells 

Primary porcine brain microvascular endothelial cells were successfully isolated and 

grown on collagen coated T75 flasks. Explants seeded on the coated flasks were 

visually observed under light microscope using 10x and 40x lenses. The isolated 

capillaries explants were observed initially as short fragments. On the day 3, explants 

had fully attached and endothelial cells proliferated from the explants and formed 

island of cells. On day 5, the cell patches began to reveal a uniform packed monolayer 

and reached confluence on day 10 (Figure 2.21). 

                 

Figure 2.21: Growth of primary porcine brain endothelial cells  

Explant cells were seeded on collagen coated flasks for 10 days at 37°C in a humidified atmosphere of 
5% CO2 in air. Cells morphology was examined under light microscope at 10x and 40x lenses. 
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2.13.2.   Treatments to enhance barrier integrity 

 

Monolayer formation and barrier integrity was assessed by measuring TEER values 

24 h post-seeding and for a total of 5 days. TEER values increased significantly on 

day 3 reaching 80-95 Ω.cm2 (p ≤ 0.01) and 120-125 Ω.cm2 on day 4 (p ≤ 0.001) before 

declining thereafter (Figure 2.22).  

 

Cells were treated with cAMP, RO 20-1724 and hydrocortisone for 24 h on day 3 and 

demonstrated TEER values that were significantly increased to 120-125Ω.cm2 on day 

4 (p ≤ 0.01) (Figure 2.22).   

 

 

Figure 2.22: The impact of media additives to enhance monolayer formation. 

Primary porcine brain endothelial cells were seeded onto collagen coated permeable inserts for 4 days 
at 37°C in a humidified atmosphere of 5% CO2 in air. TEER values were measured and treatment with 
cAMP, RO 20-1724 and hydrocortisone initiated on day 3 for 24 h.  Statistically significant differences 
before treatment and after treatment are indicated as ** P ≤ 0.01. 
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2.13.3.   Immunostaining detection of BCRP in primary porcine brain 

endothelial cells 

The expression of BCRP in porcine primary brain endothelial cells (‘60s’) cultured on 

a permeable insert monolayer was investigated using immunostaining techniques. 

BCRP was found to be localised primarily in the plasma membrane regions. 

Furthermore, the formation of a monolayer structure was apparent by the overlapping 

nature of the brain endothelial cells (Figure 2.23). 

             

Figure 2.23: Localisation of BCRP in primary brain endothelial cells.  

Cells were grown on permeable inserts for 3-4 days and fixed with 4% paraformaldehyde and stained 
for BCRP using the anti-ABCG2 primary antibody and goat anti-rabbit IgG-FITC secondary antibody 
(Green). Cell nuclei were visualised using DAPI (blue). Positive control included staining for anti-ABCG2 
whereas the negative control did not include the primary antibody.  
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2.13.4.   Determination of BCRP protein expression 

The protein expression of BCRP in primary endothelial cells was determined by 

western blot analysis. BCRP was successfully demonstrated to be expressed in 

primary porcine brain cells with an expected size of 72 kDa (Figure 2.24).  

 

Figure 2.24: Protein expression of BCRP in primary porcine brain microvascular 

endothelial cells. 

Cells were seeded onto a 6-well plate for 24 h. Whole cell protein was extracted using RIPA buffer. 
Approximately 50 µg of the protein was loaded to the gel and transferred onto the PVDF membrane. 
The membrane was blocked and incubated with primary ABCG2 antibody for 24 h at 4°C and then 
incubated with goat anti-rabbit IgG-horse radish peroxidise-conjugated. Chemiluminesence detection 
was performed with lab made ECL. 

 
 

 

2.13.5.   Determination of cytotoxicity of modulators in primary cells 

 

The cellular toxicity of modulators towards the primary porcine brain endothelial cells 

was investigated using MTT toxicity assay. Cells were exposed to 25 µM and 100 

µM of modulators for 24 h. The highest cytotoxicity was observed for curcumin 

and α-napthoflavone at 100 µM leading to 80-75% reduction in cell growth (Figure 

2.25). Similarly, apigenin, baiclain, biochanin A (100µM), 17-β-estradiol (100µM), 

flavone (100µM), hesperetin (100µM) and TMF demonstrated 25-50 % reduction 

in cellular viability. Additionally a number of modulators demonstrated minimal 

toxicities up to 100 µM and included biochanin A (10µM), chrysin, fistein, 

hesperidin, naringin, quercetin, resveratrol, rutin and silymarin (Figure 2.25). 
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 Figure 2.25: Cellular toxicity of modulators towards primary porcine brain endothelial cells. 

Cells were seeded onto collagen coated 96-well plates for 10 days. The media was aspirated and cells were incubated for 24 h with 25 µM and 100 µM of modulators. 
Thereafter the media was replaced and 20 µl of MTT solution added to each well and plate was incubated at 37°C for 4h. The media was carefully aspirated and 100µl 
of the DMSO was added to each well and the UV-absorbance was measured at wavelength of 560nm.  
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2.13.6. Modulation of BCRP transport function in a permeable insert based 

in-vitro BBB model 

 

2.13.6.1. Functional assessment of BCRP  

 

BCRP functionality was investigated in a representative in-vitro BBB permeable insert 

model by measuring the transport of PhA in the presence or absence of Ko143, a 

known BCRP inhibitor. Our results demonstrated that a 1 h incubation with Ko143     (1 

µM) significantly increased the apical-to-basolateral (AB) transport of PhA from 30 min 

onwards during our transport studies (p < 0.05) with a Papp,AB of 109.75 ± 1.21 x10-6 

cm/s compared to the absence of Ko143, 60.57 ± 1.32 x10-6 cm/s (Figure 2.26).  

 

 

Figure 2.26: Transport of PhA across an in-vitro primary BBB cell culture model 

following 1-hour incubation Ko143.  

Cells were grown on permeable inserts and transport studies were performed on day 4 in the absence 
and presence of Ko143.Statistically significant differences between control and Ko143 are indicated.* P ≤ 
0.05. 
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2.13.6.2. Modulation of BCRP function in the absence and presence of up-

regulators  

Naringin and quercetin demonstrated up-regulation of BCRP protein expression in 

PBMEC/C1-2 cells and were selected as modulators to assess in the primary cell 

culture model.  Primary cells were seeded onto permeable inserts and incubated with 

quercetin and naringin for 24 h with the addition of PhA and modulators into the 

basolateral chamber and sampling from the apical chamber.  

Our results demonstrated that 24 h incubation of quercetin (25 µM) significantly 

increased the basolateral-to-apical (BA) transport of PhA during our transport studies 

(p< 0.01) (Figure 2.27A), with a BA permeability (Papp,BA) of PhA of 102.93 ± 1.98 x 

10-6 cm/s in the presence of quercetin compared to 38.57 ± 2.15 x10-6 cm/s in the 

absence of quercetin.  Similarly for naringin (25 µM), our results demonstrated a 

significant increase (p ≤ 0.01) in the BA transport of PhA with a BA permeability 

(Papp,BA) of PhA of 98.21 ± 1.23 x10-6 cm/s (Figure 2.27B). 

 



107 
 

 

Figure 2.27: Transport of PhA across an in-vitro primary BBB cell culture model 

following 24 hour incubation with naringin or quercetin. 

Cells were grown on permeable inserts and (A) naringin or (B) quercetin at 25 µM were added on day 3 
followed by the initiation of the transport study 24 h later. Statistically significant differences between 
control and modulator exposed conditions are indicated. ** P ≤ 0.01 and **** P ≤ 0.001. 
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2.13.6.3. Modulation of BCRP function in the absence and presence of down-

regulators  

Curcumin and 17-β-estradiol demonstrated downregulation of BCRP protein 

expression in PBMEC/C1-2 cells and were selected as modulators to assess in the 

primary cell culture model. Primary cells were seeded onto permeable inserts and 

incubated with curcumin or 17-β-estradiol for 24 h with the addition of PhA and 

modulators into the apical chamber and sampling from the basolateral chamber. 

Our results demonstrated that 24 h incubation of curcumin (1 µM) significantly 

increased the apical-to-basolateral (AB) transport of PhA during our transport studies 

(p< 0.01) (Figure 2.28A), with an AB permeability (Papp,AB) of PhA of 83.23 ± 1.25 x 

10-6 cm/s in the presence of curcumin compared 60.57 ± 1.32 x10-6 cm/s in the 

absence of curcumin. Similarly for 17-β-estradiol (100 nM), our results demonstrated 

a significant increase (p ≤ 0.01) in the AB transport of PhA with a AB permeability 

(Papp,AB) of PhA of 83.87 ± 3.25 x10-6 cm/s (Figure 2.28B). 
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Figure 2.28: Transport of PhA across an in-vitro primary BBB cell culture model 

following 24 hour incubation with curcumin or 17-β-estradiol.  

Cells were grown on permeable inserts and (A) curcumin (1 µM) or (B) 17-β-estradiol (100 nM) were 
added on day 3 followed by the initiation of the transport study 24 h later. Statistically significant 
differences between control and modulator exposed conditions are indicated. *P ≤ 0.05, ** P ≤ 0.01,***P 
≤ 0.001. 
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2.14. Discussion 

 

Drug delivery to the CNS has become a major challenge due to the presence of the 

BBB, which acts as a physical and metabolic barrier for the transport of therapeutic 

agents into the wider CNS. The endothelial cells forming the cerebral capillaries act as 

a physical barrier by limiting the transport of molecules in and out of the brain. 

(Pardridge, 2007, Ulrike Tontsch and Bauer, 1989). Drug metabolising enzymes 

present at the BBB and within the brain mass metabolise drugs and reduce circulating 

concentrations and the expression of a range of drug transporter at the BBB play an 

important role in limiting the penetration of drugs into the brain (Pardridge, 2007).  

Breast cancer resistance protein (BCRP) is a member of ATP-binding cassette family 

of membrane transporters and is known to be expressed at the BBB of humans, cows, 

rats, mice and pigs (Cooray et al., 2002, Warren et al., 2009). Chemotherapeutic 

agents were the first identified substrates for BCRP and it is now known that BCRP 

possess a diverse substrate specificity  (Mao, 2005) (Breedveld et al., 2004). 

The use of inhibitor molecules to modulate the efflux transport function of BCRP is a 

viable approach to enhance CNS delivery of BCRP substrates. Ko143 (Choi et al., 

2012) and fumitremorgin C (FTC) (Allen et al., 2002a) are specific known potent 

inhibitors of BCRP but their clinical translation is limited due to the neurotoxic and 

cytotoxic effects.  In an attempt to identify novel candidates that may modulate BCRP 

expression and function, phytochemicals (primarily flavonoids) show promise. 

Flavonoids are important constituents of diet and are present in fruits, fruit juices, 

vegetables, nuts, potatoes and corn (Spencer, 2008). The daily intake of flavonoids 

through the human diet is approximately 200-1000 mg (Kühnau, 1976). It has also 

been reported that phytochemical also reach the plasma circulation, for example 

hesperetin, naringin and quercetin plasma concentrations have been reported as 325 

nmoL/L, 112.9 nmoL/L and 52 nmoL/L in healthy females on high vegetables diet 

(Erlund et al., 2002). Similarly, another study demonstrated increased plasma 

concentrations of epicatechin to 204.4 nmoL/L in adult human after giving flavonoid-

rich dark chocolate (Engler et al., 2004).  

The interest in phytochemicals and flavonoids has stemmed from their proposed health 

benefits flavonoids includes antioxidant, anti-inflammatory, cell proliferation, 

angiogenesis, estrogen biosynthesis and detoxification of carcinogens (Havsteen, 

2002).  
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The ability of flavonoids and other phytochemical compounds to modulate the 

expression and function of BCRP has been reported previously. The exposure of rat 

brain capillaries to 17-β-estradiol was shown to decrease BCRP function and protein 

expression, by down-regulating BCRP transcription and translation through 

interactions with regulatory mechanism resulting the expression of BCRP  (Hartz et al., 

2010). Genistein and naringenin has also been shown to inhibit BCRP at a 

concentration of 3 µM (Imai et al., 2004).   

The primary aim of the chapter was to characterise a porcine brain microvascular 

endothelial cell culture model (PBMEC/C1-2 cells) and to develop an in-vitro BBB 

model which could be used to investigate the gene and protein modulation of BCRP 

when exposed to a range of modulators compounds. These studies were developed 

to identify suitable modulator compounds, which were then further assessed in a 

primary porcine brain microvascular endothelial cell culture model.  Our rationale for 

this approach was that the primary cell cultures model utilised has been reported to 

better resemble the in-vivo BBB model with higher transporter expression levels and a 

more representative BBB phenotype (as judged by the presence of tight junctions 

proteins and BBB markers) (Patabendige et al., 2013). 

2.14.1.   The use of PBMEC/C1-2 cells to develop an in-vitro BBB model 

PBMEC/C1-2 are immortalised cells and developed from the porcine primary brain 

endothelial cells after transfection with SV 40 large T-antigen by lipofection (Teifel and 

Friedl, 1996). The cells show typical morphology of endothelial cells and presence of 

blood brain barrier markers such as γ-glutamyltranspeptidase (γ-GT), the glucose 

transporter Glut-1, and apolipoprotein A-1(Teifel and Friedl, 1996). 

Our results have shown that when grown on the correct extracellular matrix, gelatine, 

PBMEC/C1-2 cells demonstrated a typical elongated to cobblestone endothelial cell 

morphology (Figure 2.1 A and B). Although the PBMEC/C1-2 cells were immortalised 

to induce the barrier integrity, the cells were recommended to be grown in a 50:50 

mixture of astrocytes conditioning media (ACM) obtained from rat glioma C6 cells. The 

use of C6 astrocyte conditioning media with the addition of cyclic AMP and the type IV 

phosphodiesterase inhibitor (RO20-1724) induced TEER values up to 78 ± 6 Ω.cm2 on 

a 12-well permeable inserts (1.1 cm2). Lauer et al (Lauer et al., 2004) and Novotna et 

al (Novotna et al., 2014) achieved the TEER values of 300 Ω.cm2 on 6-well transwell 

insert (4.4 cm2) after the addition of additives. It was also demonstrated that the use of 

freshly obtained ACM showed better effects on the integrity of the monolayer compared 

to frozen ACM (Figure 2.2).  
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Our studies demonstrated that when PBMEC/C1-2 cells were grown on 12-well 

permeable inserts, we achieved TEER values of 78 ± 6 Ω.cm2 which was in a good 

agreement with the published TEER values of 300 Ω.cm2 that were reported from 6-

well inserts (Lauer et al., 2004). Our results are consistent with the TEER values 

reported as we used 12-well permeable inserts with surface area of 1.12 cm2 where as 

other studies reported have used 6-well inserts with surface area of 4.67cm2.  

Several studies have also shown that astrocyte interactions with endothelial cells help 

to induce the BBB morphology, function and protein expression of junctional proteins 

(Denison et al., 1988, Lee et al., 2015, Revalde et al., 2015a). Soluble factors such as 

transforming growth factor β (TGFβ), interferon and Interleukin present in the ACM are 

known to induce the development of BBB (Katayama et al., 2007). Our results 

demonstrated that the use of fresh ACM has enhanced the TEER values significantly 

(Figure 2.3). Freeze thawing ACM might inactivate or degrade the soluble factors in 

the ACM and reduces the TEER values when compared to fresh ACM. 

2.14.2. Cytotoxicity of modulators towards PBMEC/C1-2 cells 

 

A total of 18 phytochemicals, primarily flavonoids (Appendix A) were selected from 

literature for this project, and which had previously demonstrated significant 

modulation of BCRP expression and function in other non-cerebral cell lines. To our 

knowledge there have been no studies reporting the cytotoxicity of phytochemical 

modulators on PBMEC/C1-2 cells. Our results demonstrated that the majority of 

modulators exhibited IC50 values in excess of 100 µM (Figure 2.4). However a number 

of modulators demonstrated low IC50 values ranging from 1.5 - 63 µM and included 

flavones such as baiclain (Figure 2.4B), α-napthoflavone (Figure 2.4L) and flavonones 

such as hesperidin (Figure 2.4J) and hesperetin (Figure 2.4I) and 17-β-estradiol 

(Figure 2.4F) and curcumin (Figure 2.4E). 

 

Whilst difficult to compare with reported studies, the IC50 values determined for 

modulators were found to be within the same order of magnitude as published reports 

from, often, non-cerebral origin cell lines. For example, the IC50 for apigenin was 

demonstrated to be 673.8 ± 1.6µM in PBMEC/C1-2 cells, however Bai et al (Bai et al., 

2014) used 80-100 µM to induce apoptosis in human breast cancer line (MCF-7). 

Similarly, the IC50 reported for apigenin in lung epithelium cancer (A549) cells was 93.7 

± 3.7 µM (Livak and Schmittgen, 2001).  
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Baiclain demonstrated an IC50 of 4.96 µg/ml (11.12 nM) in enterovirus 71 (Rice-Evans, 

1995), similarly the IC50 for curcumin has been reported in the literature for CCRF-CM 

human T cell leukaemia cells as 8.68 µM (Morris and Zhang, 2006). α-napthoflavone 

(Figure 2.4L) demonstrated a very low IC50 values of 1.5 µM in PBMEC/C1-2 cells, and 

this concerns with other reports of concentrations ranging from 10-1000 nM (Middleton 

Jr, 1998, Narayana et al., 2001).  

 

Bacanli et al (Bacanli et al., 2015) reported the IC50 of naringin as 1976 µM in Chinese 

hamster fibroblast cell line (V79). Our results were consistent with the study showing 

no cytotoxicity caused up to 1000 µM (Figure 2.4M). Zhang et al (Zhang et al., 2005) 

demonstrated limited cytotoxicity with chrysin at 50 µM in MCF-7 MX100 cells. In our 

study chrysin was demonstrated to show no toxicity, even at higher concentration of 

1000 µM (Figure 2.4 D). The IC50 calculated for quercetin in PBMEC/C1-2 cells was 

169 µM (Figure 2.4 N). This was within the range used in -vivo studies in rats, from 1- 

400 µM  (van Zanden et al., 2007). 

 

2.14.3. Assessment of BCRP expression  in PBMEC/C1-2 cells 

 

To date, BCRP expression in PBMEC/C1-2 cells has not been reported previously. 

Our results confirmed the presence of BCRP protein expression in PBMEC/C1-2 cells 

using reverse transcriptase PCR (Figure 2.5A), western blotting (Figure 2.5B), 

immunofluorescence confocal microscopy (Figure 2.6) and qPCR (Figure 2.14).  

 

BCRP expression at the BBB and other cerebral cell lines has previously been 

reported. Eisenblatter et al (Eisenblätter et al., 2003), confirmed the genomic 

expression and localisation of BCRP by northern blot, RT-PCR and immunostaining in 

porcine brain capillary endothelial cells. Genomic expression of BCRP was 

demonstrated by RT-PCR in primary porcine brain endothelial cells (Thomsen et al., 

2015). Furthermore, human brain tissues and cerebro-microvascular endothelial cells 

have shown protein and genomic expression of BCRP (Zhang et al., 2003b). Thomsen 

et al (Thomsen et al., 2015) recently demonstrated the genomic expression of BCRP 

in porcine brain endothelial cells. Furthermore, BCRP has been found to be expressed 

in human, cow rat and mouse BBB (Warren et al., 2009, Cooray et al., 2002, Lee et 

al., 2007, Revalde et al., 2015b). Furthermore, when assessing the expression of 

BCRP in porcine primary brain microvascular endothelial cells, we confirmed the 

presence of BCRP using immunostaining techniques (Figure 2.23) and western 
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blotting (Figure 2.24), giving the expect protein size of 72 kDa and demonstrating 

primarily membrane localisation. 

 

2.14.4. Functional assessment of BCRP in the absence or presence of 

modulators  

 

The functional activity of BCRP has been extensively studied through the use of the 

BCRP fluorescent substrate H33342 (Zhang et al., 2000, Lai et al., 2004, Choi et al., 

2004).  We adapted these studies to initially assess whether we could detect BCRP in 

PBMEC/C1-2 by measuring its intracellular accumulation. This was then followed by 

assessing the impact of modulator incubation in a short-term assay of 1 h to mimic a 

direct inhibition of functional activity study, followed by a 24 h incubation to detect 

potential genomic/proteomic changes in BCRP, which are translated to changes in 

functional activity. 

We were able to successfully demonstrate functional activity through inhibition of 

BCRP efflux activity by using Ko143 (1 µM), which manifested itself in a significant 

increases in intracellular H33342 concentrations (Figure 2.10) of 1.8-2.3 mean fold that 

of H33342 in the absence of Ko143. 

To then screen the modulators for their ability to directly impact upon the functional 

activity of BCRP, we incubated cells with modulators for 1 h and assessed changes in 

intracellular H33342 accumulation. Our results demonstrated highly significant (p ≤ 

0.0001) increases in intracellular H33342 accumulation after 1 h incubation with 

apigenin (2.5 ± 0.2 fold), hesperidin (2.6 ± 0.5 fold), indole-3-carbinol (4.5 ± 0.4 fold), 

and TMF (6.5 ± 0.8 fold) when compared to Ko143 (Figure 2.10).  

 

TMF demonstrated the greatest increases in intracellular H33342 accumulation and 

hence appears to be a potent inhibitor of BCRP efflux activity at the BBB. Katayama 

et al (Katayama et al., 2007) also identified TMF as a potent BCRP inhibition in a 

screening study where 32 flavonoids were screened for their anti-BCRP activity, 20 

demonstrated inhibition of BCRP in BCRP-transduced human leukaemia K562 cells 

(Katayama et al., 2007). Of these, TMF showed the strongest anti-BCRP activity and 

very low levels of P-gp inhibitor activity. Thus, TMF is a highly potent inhibitor of BCRP 

activity at the BBB. Furthermore, other flavonoids have also demonstrated similar 

inhibitor activity of BCRP-mediate mitoxantrone efflux and include apigenin, chrysin, 

hesperetin, naringin and quercetin (Zhang et al., 2004a). In addition, chrysin (50 µM) 
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and benzoflavone (BF) (5 µM) have been reported to also act as potent inhibitors of 

BCRP-mediated mitoxantrone efflux in MCF-7 MX100 cells (Zhang et al., 2005).  

 

These finding indicate that modulators may play a role in directly inhibiting BCRP at 

the BBB. The exact mechanism of BCRP inhibition is not clear. But it has been reported 

that glycosylated flavonoids have anti-BCRP activity due to their water solubility (Imai 

et al., 2004). Modulators lacking significant inhibitory activity may be hindered by their 

low lipophilicity and reduced permeability. This may explains why we observed no 

inhibitory effects for hesperetin, resveratrol and rutin which are glycosides and have 

lower lipophilicity compared with their respective aglycons (Kühnau, 1976).  

Furthermore, the binding of flavonoids to the nucleotide-binding domain of BCRP has 

been identified as being important the inhibition process (Fleisher et al., 2015, 

Katayama et al., 2007), leading to inhibition of the ATPase function and hence halting 

of the conformational changes required to transport substrates across the cell 

membrane. Additionally QSAR analyses have demonstrated a strong structure-

inhibition relationship between BCRP and flavonoids. Flavonoids with a hydroxyl group 

at position 5, double bond between position 2 and 3 and methoxyl moiety at position 3 

or 6 (Pick et al., 2011) show preference for binding to BCRP and inhibiting the 

functional transport. This may explain why the greatest intracellular accumulation of 

H33342 was observed with TMF, as O-methylation at position 2, 4 and 6 increases the 

local hydrophobicity and hence signifies TMF mediated anti-BCRP activity.  

 

We were also interested to identify the effects of flavonoids on BCRP gene or protein 

expression over longer periods of exposure, namely 24 h. Our results demonstrated 

that incubation with the majority of flavonoids studied resulted in limited change in 

H33342 intracellular accumulation. Of those studied, apigenin, chrysin, curcumin, 17-

β-estradiol, I3C, rutin, silymarin and TMF demonstrated at least a 1.25 fold increase 

(relative to control) in H33342 intracellular accumulation at 1-10 µM (Figure 2.11) and 

hence suggesting a ‘down-regulation’ type effect. Also of note, is naringin and 

quercetin, which resulted in a reduction in H33342 intracellular accumulation of < 0.75 

fold of control, suggesting an ‘up- regulation’ effect (Figure 2.11). 

 

Of the published reports available, curcumin has been reported to inhibit BCRP 

function in HEK293 cells without altering protein levels over 72-hours of incubation nor 

inhibiting the ATPase function of the NBD (Wolfman et al., 1994). Furthermore, it has 

recently been recommended that curcumin be used as the ‘best’ in-vivo inhibitor of 

BCRP (Lee et al., 2015).  
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Our results also demonstrated that 17-β-estradiol increased H33342 accumulation to 

1.35 ± 0.2 fold compared to control. 17-β-estradiol is another widely reported inhibitor 

of BCRP function (Hartz et al., 2010, Mahringer and Fricker, 2010). Estrogens are 

known to regulate BCRP in human in-vitro, rat, and mice in-vivo models (Imai et al., 

2005a, Tanaka et al., 2005, Wang et al., 2006, Wang et al., 2008a). An estrogen 

responsive element in the promoter region of ABCG2 (gene-encoding BCRP) was 

identified in human ovarian cancer cells (Ee et al., 2004b) hence suggesting 17-β-

estradiol may play a role in the down-regulation of BCRP transcription/translation via 

regulatory network.   

 

Naringin and quercetin were also highlighted as leading to reduced H33342 

intracellular accumulation, suggesting they possess BCRP down-regulatory 

properties. Of the reported studies available, quercetin has been demonstrated to 

induce BCRP expression by 5.3 fold in Caco-2 cells at concentration of < 25 µM (Ebert 

et al., 2007). Interestingly, naringin at 50 µM, did not show any effect on the 

accumulation of mitoxantrone in BCRP-overexpressing MCF-7 MX100 cells (Zhang et 

al., 2004a), potentially as a result of being a flavonoids glycoside. 

 

 

2.14.5. Modulation BCRP protein expression in PBMEC/C1-2 cells 

In order to further explore the potential modulation of BCRP protein expression in the 

presence of modulators, western blotting analysis was conducted on all modulators at 

identical concentrations studied for the H33342 accumulation assays. Our results 

demonstrated that biochanin A, hesperidin, I3C, naringin and quercetin significantly 

induced BCRP protein expression leading fold change of 1.7 ± 0.1, 1.7 ± 0.3, 1.5 ± 0.1, 

2.2 ± 0.2 and 2.3 ± 0.1 respectively (Figure 2.12 and 2.13). Notably, naringin and 

quercetin demonstrated the greatest fold-change (> 2 fold) in BCRP protein expression 

and concurs with the H33342 accumulation observations. Additionally, in contrast to 

the study, naringin lead to an induction of BCRP protein expression (Zhang et al., 

2004a). It has been reported that exposure of 25 µM of quercetin, chrysin and I3C to 

Caco-2 cells, for 24 h, leads to a BCRP protein induction-effect and concurs with our 

studies demonstrated induction of BCRP expression with I3C and quercetin (Ebert et 

al., 2007). The lack of correlation following exposure to chrysin, flavone and resveratrol 

is uncertain by may be a result of differences in study time-scales (24 h vs. 72 h) or 

differences in the cell lines utilised (endothelial vs. epithelial). 
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Our studies also identified curcumin (0.4 ± 0.2) and 17-β-estradiol (0.4 ± 0.1) as ‘down-

regulators’ of BCRP protein expression (Figure 2.12 and 2.13). It has been recently 

investigated that curcumin and 23 analogous of curcumin are highly potent than 

curcumin in inhibiting BCRP mediated efflux and reversed BCRP mediated drug 

resistance. However, there are no current studies that have investigated changes in 

BCRP protein expression when exposed to curcumin for prolonged time-period 

(Revalde et al., 2015a). On the other hand, a number of studies have demonstrated 

the down-regulation of BCRP protein and genomic expression with 17-β-estradiol and 

includes modulation of BCRP activity in the mice brain capillaries (Hartz et al., 2010). 

Furthermore Mahringer and Fricker (Mahringer and Fricker, 2010) reported the 

reduced functional and protein expression of BCRP following 6 h incubation with 17-β-

estradiol (1-10 nM) in rat brain capillaries.  

 

2.14.6. Functional assessment of BCRP activity in an in-vitro permeable insert 

BBB model 

 

The functionality of BCRP was further demonstrated using the BCRP substrate 

pheobhorbide A (PhA) and assessing its transport across the PBMEC/C1-2 monolayer 

in the absence and presence of Ko143 or modulators. Initial studies demonstrated 

significant increase in PhA transport when exposed to Ko143 after 90 min and lasting 

until the final time point (180 min) (Figure 2.17), demonstrating the presence of 

functional BCRP. Furthermore, the apparent permeability in the apical-to-basolateral 

direction (Papp,AB) significantly increased (p < 0.01) when cells were exposed to Ko143, 

rising from 27.2 ± 0.23 x10-6 cm/s to 43.23 ± 0.32 x10-6 cm/s. 

 

Cells grown on permeable inserts were then exposed to modulators for 24 h followed 

by assessing the transport of PhA. Western blot and qPCR results (Figure 2.13 and 

2.14) confirmed that quercetin and naringin are potential up-regulators of BCRP at the 

BBB, and these were selected for transport studies. The apical-to-basolateral transport 

of PhA with quercetin and naringin was negligible (Figure 2.18). Thereafter the 

modulators were pre-incubated for 24 h in a similar fashion, but PhA was added into 

the basolateral compartment and the flux of PhA from basolateral-to-apical was 

assessed. Under these conditions both naringin and quercetin demonstrated 

significant increases (p ≤ 0.01) in PhA transport from basolateral-to-apical at all time 

points when compared to control (Figure 2.19) leading to increases in Papp,BA to  74.23 
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± 0.29 x10-6 cm/s and 63.21 ± 0.54 x10-6 cm/s respectively when compared to control 

Papp,BA 23.13 ± 0.31 x10-6 cm/s (p ≤ 0.01).   

 

As the modulators were inducing BCRP expression, the addition of PhA in the apical 

compartment would not alter the concentrations of PhA over the time-course of the 

study due to the ‘retention’ of PhA in the donor compartment as a result of BCRP efflux. 

When the donor compartment was switched to the basolateral compartment, 

alterations in BCRP transporter activity resulted in a more apparent change in receiver 

(apical) compartment concentration. 

 

Western blot and qPCR (Figure 2.13 and Figure 2.14) confirmed that curcumin and 

17-β-estradiol are potential down-regulators of BCRP at the BBB, and these were 

selected for transport studies. In our studies curcumin (1 µM) and 17-β-estradiol (100 

nM) significantly increased PhA Papp,AB to 78.81 ± 0.65 x10-6 cm/s and 48.11 ± 0.34 

x10-6 cm/s when compared to control Papp,AB 27.20 ± 0.23 x10-6 cm/s (p ≤ 0.001) 

representing BCRP down-regulation (Figure 2.20). In both cases the increase in Papp,AB 

is indicative of an increase in the apical-to-basolateral flux, and is a result of the 

associated changes in BCRP protein expression potentially reducing the abundance 

of BCRP in the monolayer and hence reducing the overall kinetic flux of PhA molecules 

across the monolayer. Furthermore, the increase apical-to-basolateral PhA flux when 

exposed to 17-β-estradiol concurs with reports highlighting the potent down-regulation 

imparted by 17-β-estradiol on BCRP expression (Mahringer and Fricker, 2010, Hartz 

and Bauer, 2010). 

 

 

2.14.7. Characterisation of a primary porcine brain endothelial cell BBB model 

 

Whilst immortalised cell models are widely used in BBB research, the use of primary 

cell culture models often leads to a more representative and viable model system. 

Primary porcine brain microvascular endothelial cells were successfully isolated in the 

lab from the fresh porcine brain hemispheres. Cells became confluent after 10-12 days 

post seeding and demonstrated typical elongated, spindle shape morphology under 

light microscopy (Figure 2.21). Patabendige et al (Patabendige et al., 2013) recently 

reported the detailed isolation process, morphology and characteristics of primary 

brain endothelial cells. Our results were consistent with Patabendige and other studies 

reported (Imai et al., 2003, Spencer, 2008). The primary porcine brain endothelial cells 

were seeded onto collagen coated permeable inserts and 3 µg/mL was used to kill the 
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contaminating cells and obtain pure monolayers. On a 12-well permeable inserts (1.1 

cm2) the primary endothelial cells showed the TEER values of 150-200 Ω.cm2.  

 

The type of collagen and amount of collagen is very important for growth of primary 

cells. Our results found that primary porcine brain microvascular endothelial cells take 

longer 12-13 days to confluent when compared with other studies (10 days) 

(Patabendige et al., 2013, Spencer, 2008). The discrepancies between the numbers 

of days could be a result of the use of commercial collagen rather than collagen 

extracted from rat tails, as conducted by Patabendige et al (Patabendige et al., 2013). 

Furthermore, the barrier integrity of the in-vitro was enhanced by switching on day 4 to 

serum free media supplemented with 250 µM CPT-cAMP, 17.5 µM RO20-1724 and 

500 nM of hydrocortisone, as reported elsewhere (Woodward et al., 2009, Ishiwata et 

al., 2005, Schwerk et al., 2012).  

 

The cytotoxicity for the primary cells was also investigated. PBMEC/C1-2 cells 

provided a broad understanding of the potential cellular toxicities of modulators and 

this was used as a basis with which to select two concentrations (25 µM and 100 µM) 

(Figure 2.25), for screening against primary porcine brain endothelial cells. Our results 

demonstrated higher cellular viabilities for most modulators at both 25 µM and 100 µM.  

Where cell viability reduced, this was typically in the range of a viability of between 50-

100%. Of note however is the reduction of cellular viability for modulators at 25 µM for 

baiclain (76 ± 11 %) and α-napthoflavone (63 ± 7 %) and at 100 µM for baiclain (62 ± 

12 %), curcumin (29 ± 18 %), 17-β-estradiol (64 ± 4 %), hesperetin (53 ± 0.8 %) and 

α-napthoflavone (25 ± 7 %) (Figure 2.25). 

 

When compared to cytotoxicity with PBMEC/C1-2 cells, baicalin, curcumin, 17-β-

estradiol, flavone, hesperetin, hesperidin, napthoflavone and resveratrol demonstrated 

similar trends of cytotoxicity in both cell lines although the toxicity with primary cells 

was found to be lower than PBMEC/C1-2 cells. Furthermore, chrysin, fistein, naringin 

and silymarin demonstrated no cytotoxicity above 100 µM and similar trends were 

found in primary cells with no toxicity observed under 100 µM. 

 

Structural and functional relationship of flavonoids has suggested that flavones and 

flavonols are more cytotoxic, whereas flavanones are less toxic (Wen et al., 2005) to 

cells. Our results have demonstrated that flavanones such as naringin did not 

demonstrate any cytotoxicity at higher concentrations unlike baiclain, α-napthoflavone, 

curcumin and hesperidin in PBMEC/C1-2 cells. Naringin is identical to apigenin with 
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the exception of the 2,3-double bond on the C-ring (Figure 2.4 M). In our results, we 

have shown that naringin did not cause any cytotoxicity and apigenin has shown IC50 

of 673.8 µM (Figure 2.4 A) in PBMEC/C1-2 cells. The planar nature of the compound 

and presence of B-ring attached at the 2-position of the benzopyran core is required 

to induce cytotoxicity. The planarity of the compound can help them to cross the cell 

membrane and enter the cytoplasm and B-ring is important to bind to protein targets 

(Wen et al., 2005).  

 

The localisation of BCRP protein expression was further confirmed by immunostaining 

(Figure 2.23) and western blot (Figure 2.24), demonstrating both elongated, tightly 

packed endothelial cell morphology when grown on permeable insert, in addition to the 

confirmed of the expected 72 kDa BCRP protein in western blotting studies. To identify 

and confirm functional BCRP in primary porcine brain microvascular endothelial cells, 

a permeable insert model was developed and the transport of PhA across the 

monolayer was assessed in the absence and presence of Ko143. Our results 

demonstrated a significant increase (p ≤ 0.01) in apical-to-basolateral transport of PhA 

at all time points studied in the presence of Ko143 demonstrating the inhibition of 

BCRP (Figure 2.26).  This is highlighted when considering increase in Papp,AB from 

60.57 ± 1.32 x10-6 cm/s in the absence of and 109.75 ± 1.21 x10-6 cm/s in the presence 

of Ko143 (Figure 2.26).  Furthermore, quercetin and naringin were identified as BCRP 

inducers (Figure 2.13) and when studied in the transport model, demonstrated 

significant increases (p ≤ 0.01) in PhA transport from basolateral-to-apical at all time 

points when compared to control (Figure 2.27). This led to an increase in Papp,BA for 

quercetin and naringin to 102.93 ± 1.98 x 10-6 cm/s and 98.21 ± 1.23 x10-6 cm/s 

respectively when compared to the absence of modulators,  38.57 ± 2.15 x10-6 cm/s. 

In a similar fashion the BCRP down-regulators curcumin and 17-β-estradiol 

demonstrated increased apical-to-basolateral transport of PhA and significantly 

increased Papp,AB to a Papp 83.23 ± 1.25 x 10-6 cm/s and 83.87 ± 3.25 x10-6 cm/s 

respectively when compared to PhA alone 60.57 ± 1.32 x10-6 cm/s (Figure 2.28).   

Whilst gene or protein changes in BCRP expression may suggest at a possible change 

in the functional expression of BCRP, without conducting transport studies using a 

BBB monolayer model, the consequences of any gene/protein level changes in BCRP 

cannot be assessed in a functional sense.  Across both PBMEC/C1-2 and primary cell 

culture model we identified similar behaviours of induction or down-regulation of BCRP 

expression and the functional consequences of this was confirmed using the 

permeable insert models. 
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In this chapter, we characterise the PBMEC/C1-2 cells and primary porcine brain 

microvascular endothelial cells for the protein, genomic and functional expression of 

BCRP. Our results confirmed that BCRP is expressed in PBMEC/C1-2 cells and 

primary porcine brain microvascular endothelial cells. Furthermore, the interaction of 

flavonoids with BCRP was investigated in the presence or absence of modulators. Our 

results indicated that modulators interact with BCRP and can modulate BCRP function, 

protein and genomic expression at BBB. 

The findings presented in this chapter suggest that 17-β-estradiol and curcumin are 

viable down-regulators of BCRP expression and efflux function whereas quercetin and 

naringin are viable inducers of BCRP expression and efflux function. This has clear 

implications for modulating the efflux role of BCRP at the BBB towards either clearing 

agents from the brain biophase back into the systemic blood or forcing equilibrium 

towards enhanced brain delivery of therapeutic compounds. 

2.15. Conclusion 

Due to the limited impose by structural barrier (BBB) the drug delivery to the CNS 

remains a challenge. The Porcine brain endothelial microvascular cell culture model 

has been extensively used due to more close resemblance with human model. The 

phytochemicals have shown less or no cytotoxicity in PBMEC/C1-2 cells whereas 

primary cells have shown more cytotoxicity. This chapter demonstrated that the 

quercetin and naringin has shown to up-regulate the BCRP protein, genomic and 

functional expression, whereas curcumin and 17β-estradiol were down-regulators of 

BCRP. This work can be further exploited to investigate the modulation of BCRP in 

disease conditions to enhance the CNS drug delivery.  
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3. Introduction 

 

The choroid plexus (CP) epithelium represents an important site controlling the 

development and maintenance of brain and CNS biophase and presents itself as the 

key barrier between the systemic blood and the CSF, often termed the blood-CSF-

barrier (BCSFB). Despite the importance, the CP only accounts for approximately 0.25 

% of the total brain weight.  However, due to its limited tissue mass, the isolation of 

primary choroid plexus epithelial cells for laboratory studies is labour and time 

consuming.  

 

A well-characterised in-vitro BCSFB cellular model would present itself as a valuable 

tool to understand the important role the BCSFB plays in controlling entry of 

compounds into the CNS. As a result of this, a number of immortalised choroid plexus 

cell culture models have become important tools to study pathological diseases of the 

CP (Nutt et al., 2003, Rennels et al., 1985), drug permeability (Szentistvanyi et al., 

1984), transporter function (Baehr et al., 2006) and modulation of transporters 

expression (Oldendorf, 1967). The rat chorodial epithelial Z310 cell culture model was 

developed by Dr Wei Zheng, (Zheng and Zhao, 2002) and has been widely 

characterised to assess the epithelial cell morphology, tight junctions and functional, 

genomic and protein expression of drug transporters (Zheng and Zhao, 2002, 

Goodman, 1985, Juliane Kläs et al., 2010, Halwachs et al., 2011), and is therefore a 

viable in-vitro model for the study of the function of the BCSFB. 

 

3.1. Aims and objectives 

The aim of the experimental work reported in this chapter was to develop and 

characterise the use of an in-vitro BCSFB cell culture model to investigate the genomic 

and proteomic modulation of the drug transporter BCRP. To accomplish this, a range 

of phytochemical modulators was screened for the ability to modulate the functional, 

genomic and protein expression of BCRP in Z310 cells.  
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To achieve the aims the objectives were:  

¶ To demonstrate the formation of an in-vitro BCSFB model using Z310 cells  

¶ To investigate the genomic and protein expression of BCRP in the Z310 cells 

¶ To investigate the cytotoxicity of phytochemical modulators towards Z310 cells 

¶ To demonstrate the efflux function of BCRP in Z310 cells 

¶ To identify phytochemical modulators capable of eliciting genomic/proteomic 

changes in BCRP expression  

 

3.2. Materials  

Dulbecco’s modified essential media with glucose (DMEM), fetal bovine serum (FBS), 

amphotericin B, penicillin/streptomycin and gentamycin were obtained from Biosera 

(Sussex, UK); Resveratrol and Ko143 from Santa Cruz Biotechnology (Texas, USA); 

Curcumin from Cayman Chemical (Cambridge, UK); GenElute Total RNA extraction 

kits were purchased from Sigma (Dorset, UK); Rat-tail I collagen solution from First 

Link (Birmingham, UK) and all other chemicals were sourced from Sigma (Dorset, UK). 

My TaqTM One-step RT-PCR kit and Easy Ladder I obtained from Bioline (London, UK). 

All reverse transcriptase PCR primers were synthesised by IDT Dna (Leuven, 

Belgium); Real time PCR housekeeping primers were obtained from Invitrogen, AhR 

and BCRP were custom designed by Primer Design (Sheffield, UK), Total RNA 

extraction kits were purchased from Qiagen (Manchester, UK) and SYBR-green 

master mix were obtained from Primer Design (Sheffield, UK), Optiblot SDS-page gel 

and western blot reagents obtained from Abcam (Cambridge, UK); ABCG2 (M-70), 

beta-actin (C4), broad range markers, goat anti-rabbit IgG-FITC and protease inhibitor 

cocktail were obtained from Santa Cruz Biotechnology (Texas, USA). Stock solutions 

of all test compounds were prepared in dimethylsulfoxide (DMSO) and stored at -20°C 

until use. 

 

A total of 18 phytochemical derived modulators were selected for studies and their 

structures are detailed in Appendix A. 
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3.3. Methods 

 

3.3.1. Culture of Z310 cells 

Z310 cells were grown in T25 flasks containing Z310 media:  DMEM, 10 % v/v FBS, 

1% v/v amphotericin B, 1 % v/v penicillin/streptomycin and gentamycin (20 mg in 500 

mL of media) and epidermal growth factor (EGF) at the final concentration of 10 ng/mL. 

Cells were allowed to attach at 37°C for 24 h. Thereafter the media was changed cells 

grown until 70-80 % confluent before 1 mL of trypsin-EDTA was added to the flask. 

The flask was placed maintained for 5 min at 37°C and the cell suspension was 

resuspended in a 5 mL of media. This cell suspension was transferred to a 15 mL 

centrifuge tube and centrifuged at 1500 rpm for 5 min. The pellet was resuspended in 

2 mL of media and transferred into T75s for subsequent experiments.  

 

3.3.2. Cryopreservation of cells 

After harvesting cells, the pellet was resuspended in cryopreservation media (10% 

DMSO and 90% FBS). 1 mL aliquots of the cell suspension was aliquoted into cryovials 

and stored overnight at -80˚C in a controlled freezing environment (Mr. Frosty, 

Nalgene®, Thermo Fisher Scientific, UK) before being transferred to the liquid nitrogen 

for long term storage. 

 

3.3.3. Development of an in-vitro permeable insert based model of the BCSFB 

 

3.3.3.1. Extracellular matrix coating with collagen  

 

12-well permeable inserts (Greiner ThinCert®) were coated with 200 µL of 0.01% rat 

tail collagen type 1 solution in sterile water, and incubated for 3-4 h in a laminar air flow 

hood. Excess collagen solution was then aspirated and inserts washed with pre-

warmed PBS. The permeable inserts were then immediately used for seeding of cells. 

1 mL of a cell suspension containing 2 x105 cells were seeded onto the permeable 

inserts and cells were grown in the Z310 medium supplemented with 1 µM 

dexamethasone (Shi and Zheng, 2005). 
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3.3.3.2. Visualisation of cell monolayers under light microscopy 

 

Approximately 2-3 days after seeding, cell monolayers were examined using a 

DMI400B microscope (Leica microscope systems (UK) Ltd, Milton Keynes, UK) with a 

10x and 40x objective lenses.  

 

3.3.3.3. Measurement of transcellular electrical resistance 

 

The media was changed every other day and the trans-cellular electrical resistance 

(TEER) values were measured every day up to 8 days post seeding. Monolayer 

formation was monitored by measuring the TEER using a voltohmmeter (EVOM) 

(World Precision Instrument) directly before and after all transport studies.  

 

TEER values were calculated as follows: 

 

4%%2 6ÁÌÕÅÓ ЏȢÃÍ 2  2  Ø!                (1) 

where A = surface area of the permeable insert (cm2), RCell monolayer = resistance across 

permeable insert with cell monolayer and RBlank filter = resistance across permeable 

insert without cells.  Control measurements were made using filters without cells (blank 

filter). A cut-off TEER range of 95 ± 8 Ω.cm2 (Zheng and Zhao, 2002, Juliane Kläs et 

al., 2010) was used a measure of a suitable BCSFB model. 

 

3.3.4. Cellular toxicity of modulators towards Z310 cells: 

methylthiazolyldiphenyl-tetrazolium bromide assay 

 

Stock solutions of all modulators were prepared in DMSO. Sterile working stocks of 

each compound were freshly prepared on the day. Culture medium was used as the 

diluent and the final solvent concentrations in all test drug concentrations did not 

exceed 1 % (v/v).  Cells were seeded with an optimum density of 10,000 cells per well 

onto clear flat bottom 96-well plates and at 60-70 % confluency the media was carefully 

removed and fresh media containing phytochemical modulators over a 7-fold log 

concentration range (0.001 µM-1000 µM) was added and incubated for 24 h. The 

media was then removed and cells were carefully washed with the pre-warmed PBS 

to 37°C and incubated with fresh media for 30 min for the cells to equilibrate. MTT 

powder was dissolved in PBS (5 mg/mL) and filtered through a 0.2 μm pore size filter 
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to sterilise the solution and remove any insoluble residues. 20 µL of the pre- warmed 

MTT solution was added to each well. The plates were protected from light and 

incubated at 37 °C in a humidified atmosphere of 5 % CO2 in air for 4 h. After 4 h 

medium was removed and 100 µL of DMSO was added to the each well of the 96-well 

plate to stop the reaction and solubilise the purple formazan crystals. The plates were 

incubated for 10-15 min at room temperature under dark conditions.  

The UV-absorbance of the samples was measured on a multi-plate reader (Bio-Rad 

laboratories, Hercules, CA) using 570 nm as a test wavelength and 600 nm as a 

reference wavelength. The mean of the blank UV-absorbance was subtracted from the 

UV-absorbance of each controls and samples and percentage viability was calculated. 

The percentage of cellular viability was calculated using the equation below:  

Ϸ ÃÅÌÌ ÖÉÁÂÉÌÉÔÙ
  

   z
ρππ           (2)   

  

The IC50 was subsequently using a sigmoidal dose response function within the 

Graphpad Prism version 5.0 (GraphPad Software, Inc. USA). 

 

      

3.3.5. Immunostaining detection of breast cancer resistance protein in Z310 

cells 

 

A 2 mL cell suspension containing 30,000 cells were seeded onto uncoated coverslips 

for 24 h in an air humidified atmosphere of 5% CO2. Subsequently cell culture media 

was aspirated and coverslips were washed three times with pre-warmed PBS. Cells 

were then fixed with methanol at -20°C for 20 min and washed three times with pre-

warmed PBS. Coverslips were then exposed to blocking solution (1 % BSA in PBS) 

incubated for 30 min at room temperature before being incubated with primary ABCG2 

antibody M-70 (1:200) for 2 h at 37°C. Coverslips were washed twice with PBS and 

incubated with secondary antibody fluorescein iso-thiocyanate (FITC) -labelled mouse 

anti-rabbit IgG (1:500) in blocking solution, for 45 min at room temperature in the dark. 

The secondary antibody was aspirated and cells were washed three times with pre-

warmed PBS.  

 

The coverslips were then carefully removed from the 12-well plate, rinsed with MilliQ 

water and mounted onto glass slides with mounting media containing 4',6-diamidino-

2-phenylindole (DAPI). The coverslips were analysed using an upright confocal 
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microscope (Leica SP5 TCS II MP) and visualised with an oil immersion objective. All 

images were acquired using an argon laser to visualise FITC localisation and a helium 

laser to visualise DAPI localisation at 494 nm and 461 nm respectively.  

 

3.3.6. Measurement of BCRP functional activity in Z310 cells 

 

3.3.6.1. Functional activity of BCRP in Z310 cells using a 96-well plate assay  

The functional activity of BCRP in Z310 cells was assessed using the BCRP inhibitor 

Ko143.  20,000 cells per well were seeded into a 96-well plate and allowed to attach 

for 24 h. Thereafter the cells were washed with pre-warmed HBSS at 37°C and fresh 

media added containing 3.9 nm - 5 µM Ko143 and left to pre-incubate for 1 h. 100 µL 

of media containing 10 µM of H33342 and 3.9 nm - 5 µM Ko143 were added to the 

appropriate wells and incubated for a further 30 min at 37°C. Wells were then washed 

twice with ice cold HBSS and cells lysed by storage of plates at -80°C for 20 minutes 

before being read on a fluorescent plate reader at an excitation wavelength of 355 nm 

and emission wavelength of 460 nm. 

 

3.3.6.2. Assessment of the intracellular accumulation of H33342 in the presence 

of modulators in Z310 cells.  

 

The potential of modulators to alter the functional activity of BCRP in Z310 cells was 

assessed by measuring changes in the intracellular accumulation of H33342 in the 

absence and presence of modulators. Z310 cells were seeded onto clear-bottomed 

96-well plates for 24 h. The experimental assessment for modulators to directly inhibit 

BCRP function or modulate BCRP protein expression was conducted as described in 

section 2.4.5.3 and 2.4.7. 

 

 

3.3.7. Determination of BCRP gene expression by reverse-transcriptase PCR in 

Z310 cells  

 

3.3.7.1. Extraction of total RNA 

 

Isolation of total RNA from Z310 cells was obtained as described in section 2.4.6.1. 
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3.3.7.2. One-step reverse-transcriptase PCR 

 

A one-step RT-PCR assay was developed as described in section 2.4.6.2 using 100 

ng of template (Table 3.1). 

 

       Table 3.1: Preparation of PCR samples 

Reagents     Volume 

My Taq One-Step Mix  25 µL 

Primer Forward   1.5 µL 

Primer Reverse   1.5 µL 

Reverse Transcriptase Enzyme 0.5 µL 

Ribosafe Inhibitor   1 µL 

DEPC Water   15.5 µL 

Template(100ng)      5 µL 

Total Volume     50 µL 

 

Forward and reverse primers (HKG: β-actin and TTR; GOI: BCRP) were designed 

using the PrimerQuest tool (http://www.idtdna.com/primerquest/home/index) and 

custom synthesised (IDTDna, Germany) (Table 3.2).  The thermal cycling was 

conducted using a Hybaid OmniGene Thermal Cycler using a three-step protocol 

(Table 3.3). 

Table 3.2: Primers used for RT-PCR 

Gene Gene Accession Forward Primers   Reverse Primers   

TTR NM_022712 CCACAAGCCAAACAATATCCG  CCAAATGCTCAACGACCACA 

BCRP NM_181381 CTTCTCCATTCACCAGCCTC  TGTAGGGCTCACAGTGGTAA 

β-actin NM_031144 CATGAAGATCCTGACCGAGC  CAGCTCAGTAACAGTCCGC 

 

Table 3.3: Thermal cycle reactions for PCR 

 

 

 

 

    
Cycles   Temperature Time Procedure 

1  45°C  20 min Reverse Transcription 

1  95°C  1 min Polymerase Activation 

40  95°C  10 s Denaturation 

  55°C  10 s Annealing  

  72°C   30 s Extension   

http://www.idtdna.com/primerquest/home/index
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3.3.7.3. Gel electrophoresis 

Visual confirmation of successful PCR product was conducted by agarose gel 

electrophoresis as described in section 2.4.6.3. 

 

3.3.8. Determination of BCRP protein expression in Z310 cells 

 

3.3.8.1. Preparation of cell lysate 

Z310 cells were grown on 6-well plates for 48 h and whole cell obtained as described 

in section 2.4.7.1. To assess the impact of modulators on BCRP protein expression, 

Z310 cells were also incubated with modulators at 25 µM (unless otherwise stated) for 

a further 24 h post-seeding and the whole cell lysate subsequently extracted.  

 

3.3.8.2. Determination of protein concentration: bicinchoninic acid assay 

 

Protein concentration was quantified by a bicinchoninic acid (BCA) assay (Novagen, 

BCA assay protein kit) as described in section 2.4.7.2. 

 

3.3.8.3. Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was 

conducted using 8% SDS precast gels (Abcam, Cambridge, UK) as described in 

section 2.4.7.3. 

 

3.3.8.4. Electrophoretic transfer and blotting of proteins 

 

Electrophoretic transfer and blotting of proteins was conducted as described in section 

2.4.7.4. 

 

3.3.8.5. Immunological detection of BCRP 

The electrophoretic transferred protein membrane was washed with TBST buffer for 

30 min and then blocked with the blocking buffer (5% milk and TBST) for 1 h at room 

temperature. The membrane was subsequently incubated with polyclonal ABCG2 
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antibody (M-70) in blocking buffer (1:500) and incubated overnight at 4 °C. Thereafter 

the membrane was placed on an orbital shaker for 2 h and washed with TBST for 30 

min before being blocked with blocking buffer for 30 min at room temperature. The 

membrane was then incubated for 2 h at room temperature with goat anti-rabbit IgG-

horse radish peroxidise-conjugated (1:5000) in blocking buffer. 

 

3.3.8.6. Chemiluminescent detection of BCRP 

 

Laboratory prepared enhanced chemiluminescent solution was freshly prepared to 

detect BCRP, as described in section 2.4.7.6.  

 

3.3.8.7. Membrane stripping  

 

To allow reprobing of the membrane, a mild stripping agents was used to remove 

attached antibodies (Bendayan et al., 2006) and is described in section 2.4.7.7. 

 

3.3.8.8. Immunological detection of  β-actin 

To reprobe the membrane for the loading control (β-actin) the membrane was 

incubated with blocking buffer, followed by mouse β-actin horseradish peroxidase 

conjugated monoclonal antibody (1:7500) in blocking buffer for 24 h at 4°C. The 

membrane was then washed with TBST for 2 h. Chemiluminescent detection was 

performed as described in section 2.4.7.6. 

 

3.3.9. Determination of modulation of BCRP gene expression by 

phytochemical compounds using quantitative PCR in Z310 cells 

  

3.3.9.1. Isolation of RNA 

Z310 cells were grown on 6-well plates for 24 h followed by the addition of modulators 

at 25 µM (unless otherwise stated) before being incubated for a further 24 h. RNA was 

extracted as detailed in section 2.4.6.1. 
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3.3.9.2. Reverse transcription 

 

A two-step reverse transcription protocol was utilised involving both annealing and 

extension steps and is detailed in section 2.4.8.2. 

 

3.3.9.3. qPCR cycle parameters 

 

The qPCR reaction mixture was prepared as outlined in Table 3.4. 

 

Table 3.4: Preparation of PCR samples 

Reagents       Volume 

10x Master Mix   10 µL 

Primer Forward (6 pmol)  1 µL 

Primer Reverse (6 pmol)  1 µL 

RNase-free Water   3 µL 

Template (25 ng)   5 µL 

Total Volume     20 µL 

 

qPCR primers were custom synthesised as follows: GADPH (NCBI Accession: 

NM_017008) forward primer GGTCAAGCAGCATAATCCAAAG, reverse primer 

CAAGGGCATAGCCTACCACAA and a custom synthesised porcine BCRP (NCBI 

Accession: NM_181381) gene primers (PrimerDesign, UK).  Samples were loaded 

onto a Stratagene MX3000p thermal cycler (Agilent technologies, United States) using 

a SYBR-green detection probe and a two-step cycling protocol (Table 3.5). 

 

  Table 3.5: qPCR thermal cycles 

Cycles   Step   Time Temperature 

  Enzyme activation 2 min 95°C  

40 Cycles Denaturation 15 s 95°C  

40 Cycles Data Collection 60 s 60°C   

  

 

3.3.9.4. qPCR quantification method 

Relative quantification determines the mRNA changes in gene of interest (BCRP) 

relative to the levels of a housekeeping gene (GADPH) RNA. Threshold cycle (Ct) 
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values were determined and changes in the expression of target gene normalised with 

GADPH calculated for each reaction condition (ddCT method) (Livak and Schmittgen, 

2001) (Equation 3) 

&ÏÌÄ ÃÈÁÎÇÅ ςЎЎ  (3)    

 where ΔCt = CT,BCRP-CT,GADPH 

The efficiency of all genes were pre-validated for specificity by the manufacturer. 

 

3.3.10.  Assessing the functional activity of BCRP in an in-vitro BCSFB 

monolayer model  

 

3.3.10.1. HPLC detection of sulfasalazine 

 

To assess the function of BCRP in-vitro, the BCRP substrate sulfasalazine was used. 

A isocratic HPLC method was utilised for the HPLC-UV detection of sulfasalazine, 

(Gurvitch and Metzler, 2009). HPLC analysis (Shimadzu, LC- 2010A HT) of 

sulfasalazine was performed using a reversed-phase C18 column (Phenomenex Luna 

5-µm) with a mobile phase consisting of 70:29:1 methanol:millQ water:acetic acid and 

flow rate of 1 mL/min. The method was validated by evaluating the parameters such 

as linearity, limit of quantification (LOQ) and limit of detection (LOD). The linearity was 

determined by analysing the sulfasalazine standards (0.01-50 µM). The standards 

were prepared in triplicates and a calibration curve was generated to determine the 

coefficient (r2). The LOD is the lowest amount of a substance that can be detected and 

LOQ is the concentration at which the quantitative results can be reported. The LOD 

and LOQ was determined by as follows:  

 

,/$ σȢσʎ3ϳ   (4) 

,/1ρπʎ3ϳ   (5) 

 

where σ is the standard deviation of the response; S is slope of the calibration curve. 

Regression analysis was performed with the standards to calculate the standard 

deviation and slope of the calibration curve. 
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3.3.10.2. Optimisation of in-vitro transport media 

 

Permeable Z310 inserts were prepared according to section 3.4.3. TEER values were 

used a measure of monolayer formation and suitability of transport media.  Preliminary 

experiments were performed to assess integrity of monolayers when incubated with 

either HBSS supplemented with glucose (10 mM) and HEPES (10 mM) or Z310 serum 

free media. TEER values were determined after 30 min, 60 min, 90 min, 120 min, 150 

min and 180 min exposure to media. 

 

3.3.10.3. Lucifer yellow permeability assay 

 

To assess the formation of a suitable monolayer, lucifer yellow was used as a 

permeation marker, as described in section 2.4.9.3. Inserts were rejected for 

permeability assays if the percentage LY transported was greater than 1 %. 

 

3.3.10.4. Modulation of BCRP transport function  

To assess the potential for phytochemical modulators to modulate the in-vitro 

transporter function of BCRP in the permeable insert BCSFB model, modulators 

identified as resulting in induction or down-regulation of BCRP protein from western 

blotting studies (section 3.4.8) were selected to assess their potential to modulate the 

efflux of the BCRP substrate sulfasalazine.  Cells were seeded onto collagen-coated 

permeable inserts (see section 3.4.3) and TEER values used to assess the formation 

of a monolayer.   

Z310 seeded permeable inserts were washed with pre-warmed PBS and freshly 

prepared working stocks of modulators (optimal non-toxic concentrations were used 

and determined from cytotoxicity and western blotting studies) and Ko143 in serum 

free media were added to the permeable inserts and incubated for either 1 h (Ko143: 

to pre-load cells with inhibitor) or 24h (modulators: to modulate the protein expression 

of BCRP) at 37°C.  

Cells were subsequently washed with pre-warmed PBS followed by the addition of 

serum free media (SFM) containing Ko143 (1 µM) or modulators and 10 µM 

sulfasalazine into the apical compartment.  The basolateral compartment received 

media with modulators only. 50 µL aliquots were taken at 0, 30, 60, 90, 120, 150, 180 

and 210 min and the transport of sulfasalazine determined by HPLC-UV methods.  For 
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modulators demonstrating induction of BCRP, all compounds were added into the 

basolateral compartment and sampling of the apical compartment was conducted. 

3.3.10.5. Calculation of permeability coefficients 

The apparent membrane permeability (Papp: x10-6 cm/s) of sulfasalazine was 

calculated according to equation 6. 

0ÁÐÐ 
Ὠὗ
ὨὸϽ       (6) 

where dQ/dt is the rate of appearance of sulfasalazine on the receiver side (calculated 

from the slope of the cumulative transport graph), C0 is the initial concentration of 

sulfasalazine in the donor compartment and A (cm2) is the surface area of the insert. 

3.3.11. Statistical analysis 

 

All statistical analyses were performed in Graph pad Prism (La Jolla, California, USA). 

One-way ANOVA and t-tests were carried out to determine the differences between 

the mean values. For all multi-well based assay replicates of at least 6 were used in 

three independent experiments. For western blot and transport studies replicates of at 

least three were used and repeated in three independent experiments.  IC50 and EC50 

metrics were calculated using sigmoidal fit functions within Graph pad Prism. A 

significance p-value of < 0.05 was considered as statistically significant.  
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3.4. Results 

 

3.4.1. Z310 cell morphology 

Z310 cells were grown on uncoated plastic surfaces and typically became confluent in 

2-3 days.  Cells show formation of closely packed islands under light microscopy with 

typical polygonal epithelial morphology at 10X and 40X (Figure 3.1).  

             

             Figure 3.1: Morphology of Z310 cells grown on tissue culture surfaces.  

Z310 cells were seeded at a density of 4x104 cells/cm2 and incubated at 37˚C with 5% CO2 in a humidified 
atmosphere for two days. The cells were examined under 10x (A) and 40x (B) objective lens.  

 

 

 

3.4.2. Development of a Z310 in-vitro BCSFB model 

 

3.4.2.1. Assessment of monolayer formation and barrier integrity 

 

The formation of a monolayer was determined by assessing the TEER values for 12 

days post seeding in order to identify the optimal growth time on inserts. TEER values 

demonstrated a steady increase as the monolayer started to form and reached 92 ± 5 

Ω.cm2 on day 8 before starting to decline thereafter (Figure 3.2).  
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Figure 3.2:  Monolayer resistance of Z310 grown on permeable inserts. 

Z310 cells were seeded at a density of 2.0 x105 cells/cm2 onto collagen coated inserts at 37˚C with 5% 
CO2 in a humidified atmosphere. The media was replaced every other day and TEER values were 
measured with EVOM voltammeter up to 12 days. Statistical analysis compares TEER at day 2 to all other 
data points. *** P ≤ 0.001 and ****P≤0.001. 

 

 

3.4.2.2. Measurement of CSF formation 

A key function of the choroid plexus epithelial cells is the production of cerebrospinal 

fluid (CSF). Z310 cells grown on permeable inserts demonstrated the production of 

fluid in the inner chamber and an increase in the volume height, which was maintained 

at > 2 mm for 48 h (Figure 3.3).  

 

 

Figure 3.3: Measurement of fluid formation in permeable inserts 

Z310 cells were seeded at a density of 2.0 x105 cells/cm2 onto the collagen coated inserts for 7 days at 
37˚C with 5% CO2 in a humidified atmosphere. The media was replaced every other day. After 3-4 days 
when the monolayer was formed the volume of inner chamber was increased and remained consistent 
for at least 48 h. 
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3.4.3. Cellular toxicity of modulators towards Z310 cells 

To investigate the cellular toxicity of modulators towards the Z310 cells, a MTT cellular 

toxicity assay was conducted whereby cells were exposed to a 7-fold log 

concentration range of modulators, 0.001 µM-1000 µM, for 24 h. 

The majority of modulators demonstrated IC50 values above 140 ± 1.5 µM.  The lowest 

IC50 values (1.4 ± 0.8 µM) was identified for α-napthoflavone (Figure 3.4L) followed by 

quercetin (107 ± 2.3 µM) (Figure 3.4N).  Additionally a number of modulators 

demonstrated minimal toxicities up to 1000 µM and included chrysin (Figure 3.4D), 

17-β-estradiol (Figure 3.4F), hesperidin (Figure 3.4J), naringin (Figure 3.4M), silymarin 

(Figure 3.4Q) and TMF (Figure 3.4R). 
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Figure 3.4: Phytochemical cytotoxicity towards Z310 cells  (A-F) 

The Z310 cells were seeded on to the  96-well plates at 37°C in a humidified atmosphere of 5% CO2 in 
air for 24h. The media was aspirated and cells were incubated with 7-fold log concentration range (0.001 
µM-1000 µM) of apigenin (A), baiclain (B), biochanin A (C), chrysin (D), curcumin (E) and 17-β-estradiol 
(F) for 24 h, prior to the assessment of cytotoxicity. 
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Figure 3.4: Phytochemical cytotoxicity towards Z310 cells (G-L) 

The Z310 cells were seeded on to the gelatine coated 96-well plates at 37°C in a humidified atmosphere 
of 5% CO2 in air for 24h. The media was aspirated and cells were incubated with a 7-fold log concentration 
range (0.001 µM-1000 µM) of fistein (G), flavone (H), hesperetin (I), hesperidin (J), indole 3 carbinol (K) 
and α-napthoflavone (L) for 24h prior to the assessment of cytotoxicity.  



141 
 

 

Figure 3.4: Phytochemical cytotoxicity towards Z310 cells (M-R) 

The Z310 cells were seeded on to the  96-well plates at 37°C in a humidified atmosphere of 5% CO2 in 
air for 24h. The media was aspirated and cells were incubated with a 7-fold log concentration range (0.001 
µM-1000 µM) of naringin (M), quercetin (N), resveratrol (O), rutin (P), silymarin (Q) and TMF (R) for 24h 
prior to the assessment of cytotoxicity.  
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3.5. Determination of BCRP expression in Z310 cells 

 

3.5.1. Determination of BCRP genomic and protein expression  

 

Z310 cells were characterised to determine the expression of BCRP along with the 

choroid plexus marker transthyretin (TTR). Reverse–transcriptase PCR confirmed the 

genomic expression of BCRP in Z310 cells with an expected product size of 146 base 

pairs alongside the presence of choroid plexus phenotypic markers transthyretin (TTR) 

and β-actin (BA) loading control (Figure 3.5A). Western blot analysis confirmed the 

BCRP protein expression in Z310 cells with an expected size of 72 kDa (Figure 3.5B). 

 

 

   

       

Figure 3.5: Genomic expression of BCRP in Z310 cells. 

(A) Cells were seeded to a 6-well plate for 48h. Total RNA was extracted and 500ng of the RNA was 
loaded to the reverse transcriptase prior to PCR. Gel electrophoresis was performed with the PCR 
product. The amplicon products for transthyretin (TTR), loading control β-actin and BCRP were detected 
(B) Protein expression of BCRP in Z310 cells. Cells were seeded into a 6-well plate for 48 h. Whole cell 
protein was extracted using RIPA buffer. Approximately 80 µg of the protein was loaded to the gel and 
transferred onto the PVDF membrane. The membrane was blocked and incubated with ABCG2 M-70 
antibody for 24h at 4°C and then incubated with goat anti-rabbit IgG-horse radish peroxidise-conjugated 
(Santa Cruz biotechnology, Sc-2004).  
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3.5.2. Immunostaining detection of BCRP in Z310 cells 

The expression of BCRP in Z310 cells was investigated using immunostaining 

techniques. Confocal laser microscopy was able to demonstrate BCRP localisation in 

Z310 cells with staining against BCRP throughout the cells and greater localisation in 

the cell membrane (Figure 3.6).  

 

             

Figure 3.6:  Localisation of BCRP in Z310 cells.  

Cells were grown on coverslips for 2-3 days and fixed with 4% paraformaldehyde and stained for BCRP 
using the ABCG2-M70 primary antibody and goat anti-rabbit IgG-FITC secondary antibody (green). Cell 
nuclei were visualised using DAPI (blue). The positive control includes ABCG2-M70 and FITC secondary 
whereas a negative control excludes the primary antibody. 

 

 

3.6. Measurement of BCRP cellular functional activity in Z310 cells  

 

3.6.1. Assessment of intracellular H33342 accumulation in the absence and 

presence of Ko143  

To assess the functional activity of BCRP in Z310 cells a 96-well plate assay was 

utilised to measure the intracellular accumulation of H33342, a substrate of BCRP in 

the absence and presence of Ko143, a known potent inhibitor of BCRP. When exposed 

to Ko143 over a concentration range of 0.039 nM-5 µM, the intracellular accumulation 
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was significantly increased by approximately 3-fold (p ≤ 0.0001), regardless of the 

Ko143 concentration used (Figure 3.7).  

      

 

Figure 3.7:  Functionality of BCRP in Z310 cells.  

15,000 cells/well were seeded into wells of a clear 96-well plate at 37°C and 5% CO2 for 24 h. 
Subsequently cells were washed with PBS to remove media and 200 µL of growth media a range of Ko143 
concentration (0.0039 µM-5 µM) was added and the plate pre-incubated for 1 h before the media was 
removed.  Thereafter the cells were again incubated with media containing Ko143 (0.0039 µM-5 µM) in 
addition to 10 µM H33342 for 30 min before the intracellular accumualtion of H33342 assessed using a 
fluoresecent plate reader with an excitation wavelength of 355 nm and an emission wavelength of 460 
nm.  Significant differences between control and Ko143 concentrations are indicated above the 
appropriate error bars (**** p ≤ 0.0001). 
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3.6.2. Modulator inhibition of BCRP function in an H33342 intracellualr 

accumulation assay 

To assess the potential of modulators to directly inhibit BCRP, BCRP functional activity 

was assessed by measuring the accumulation of H33342 in the presence of 

modulators and Ko143 for 1 h. Our results demonstrated significant increase of 

intracellular H33342 accumulation for apigenin, chrysin (100 µM), curcumin (1µM), 17-

β-estradiol (1 µM), hesperetin (10 and 100 µM) (P≤0.01), naringin and TMF (100µM) 

(p ≤ 0.001) by a fold change of 1.05-1.35 (mean fold change), 1.35 ± 0.5, 1.37 ± 0.2, 

1.40 ± 0.70, 1.35-1.42 (mean fold change), 1.6 ± 0.1 and 1.6 ± 0.2 respectively when 

compared to control (Figure 3.8).  

Similarly, flavone (100 µM), indole 3 carbinol (1 and 100 µM), rutin (100µM), silymarin 

(100µM) and TMF (10 µM) also shown significant increases (P≤0.05) of intracellular 

H33342 accumulation by 1.15 ± 0.4, 1.28-1.32 (mean fold change), 1.29 ± 0.5, 1.32 ± 

0.1 and 1.33 ± 0.3 respectively when compared to control.  

Furthermore, 17-β-estradiol (100 µM), flavone (1 µM), quercetin (100 µM) 

demonstrated significant reduction in H33342 intracellular accumulation leading to a 

fold change of 0.25 ± 0.1, 0.26 ± 0.2, 0.45 ± 0.05.  Whereas, biochanin A, hesperidin 

and resveratrol did not demonstrate any change in intracellular H33342 accumulation.   
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Figure 3.8: Modulation of intracellular accumulation of H33342 following a 1-hour incubation with modulators. 

Cells were grown in a 96 well plate for 48 h and washed with warm HBSS supplemented and incubated for 1 h with media containing 25 µM of test compound, except  
α-napthoflavone (1µM) and 17-β-estradiol (100nM).  Subsequently cells were incubated with media containing H33342 for 30 min and lysed. The change in H33342 
intracellular accumulation in the presence of Ko143 is highlighted by the shaded regions (2-fold change). Significant differences between Ko143 and modulators are 
indicated above the appropriate error bars. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 and **** P ≤ 0.0001. The hash symbol (#) indicates modulators excluded due to auto 
fluorescence.
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3.6.3. Modulator mediated changes in BCRP function following 24 hours 

incubation  

The time dependent functional activity of BCRP was also evaluated following 

incubation of H33342 in the presence of modulators for a 24 h period. Z310 cells were 

exposed to modulators at 1 µM, 10 µM and 100 µM. 

 Our results demonstrated that I3C (1 µM) and naringin (1 µM) significantly increased 

(p ≤ 0.001) the intracellular H33342 accumulation by 1.65 ± 0.1 and 1.75 ± 0.2 fold 

respectively, when compared to Ko143 a known potent inhibitor of BCRP. Similarly, 

apigenin (1-100 µM), biochanin A (10 and 100 µM), chrysin (1-100 µM), curcumin (1 

µM), 17-β-estradiol (1 and 10 µM), hesperetin (1 µM), resveratrol (100µM), rutin 

(100µM), silymarin (1-100 µM) and TMF (1 µM) also increased the H33342 

accumulation leading to a fold change of 1.15 -1.35 (mean fold change), 1.20-1.22 

(mean fold change), 1.25-1.27 (mean fold change),  1.25 ± 0.2, 1.25-1.30 (mean fold 

change), 1.45 ± 0.5, 1.35 ± 0.3, 1.35 ± 0.1, 1.25-1.27 (mean fold change) and 1.35 ± 

0.1 respectively when compared to control. Interestingly, 17-β-estradiol (100 µM), 

quercetin, resveratrol and rutin (1 µM) significantly reduced (p ≤ 0.01) intracellular 

H33342 accumulation (Figure 3.9). 
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Figure 3.9: Modulation of intracellular accumulation of H33342 following a 24-hour incubation with modulators  

Cells were grown in a 96 well plate for 24 h and washed with pre- warm HBSS supplemented and incubated for 24h with media containing 1-100 µM of test compound, 
except  α-napthoflavone (1 µM) and 17-β-estradiol (100 nM). After 24h cells were incubated with media containing H33342 for 30 min and lysed. H33342 fold change 
in the control is represented by shade. Significant differences between control and modulators are indicated above the appropriate error bars. * P ≤ 0.05, ** P ≤ 0.01, 
*** P ≤ 0.001 and **** P ≤ 0.0001. The hash symbol (#) indicates modulators excluded due to auto fluorescence. 
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3.7. Modulation of BCRP protein expression by phytochemical modulators 

 To assess the effect of modulators on BCRP protein expression, Z310 cells were 

incubated with modulators for 24 h and western blot analysis was performed. Our 

results demonstrated a significant increase (p ≤ 0.0001) in BCRP protein for flavone 

(2.65 ± 0.12 fold), baicalin (2.42 ± 0.19 fold) and hesperidin (2.43 ± 0.09 fold) (Figure 

3.10 and 3.11). Furthermore, a significant down-regulation in BCRP was observed for 

naringin (p ≤ 0.001) (0.16 ± 0.07 fold) and silymarin (p ≤ 0.001) (0.22 ± 0.09 fold), 

quercetin (p ≤ 0.01) (0.29 ± 0.08 fold) and 17-β estradiol (p ≤ 0.05) (0.49 ± 0.11 fold).   

α-napthoflavone was excluded from the study due to its cytotoxicity. 
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              Figure 3.10: Changes in BCRP Protein expression under 24-hours exposure to modulators  

Cells were seeded in a 6-well plate for 24 h to attach and subsequently incubated with 25µM modulators except 17-β-estradiol (100 nM) for 24 h. Whole cell protein 
was extracted using RIPA buffer. Approximately 100 µg of the protein was loaded onto a SDS-PAGE gel to separate proteins bands.  The resulting gel was then 
transferred onto a PVDF membrane and incubated with ABCG2 M-70 antibody for 24 h at 4°C and then incubated with goat anti-rabbit IgG-horse radish peroxidise-
conjugated (Santa Cruz biotechnology, Sc-2004). Chemiluminescence detection was performed with lab made ECL and a representative image is displayed. Z310 
represent  BCRP expression in the absence of modulators. 
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.   

 

 

Figure 3.11: Fold change in BCRP protein expression.  

The cells were seeded to a 6-well plate for 24h. The cells were incubated with 25µM modulators except 17-β-estradiol (100 nM) for 24h. Whole cell protein was 
extracted using RIPA buffer. 100 µg of the protein was loaded to the gel and transferred onto the PVDF membrane. The membrane was blocked and incubated 
with ABCG2 M-70 antibody for 24h at 4°C and then incubated with goat anti-rabbit IgG-horse radish peroxidise-conjugated (Santa Cruz biotechnology, Sc-2004). 
Chemiluminescence detection was performed with lab made ECL. Significant differences in protein expression are indicated above the appropriate error bars. * P 
≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 and **** P ≤ 0.0001. 
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3.8. Quantitative PCR assessment of the changes in BCRP genomic expression 

following exposure to modulators 

 The modulation of BCRP genomic expression was evaluated by qPCR using 4 

identified modulators of BCRP protein expression, namely baiclain, flavone as up-

regulators and naringin and quercetin as down-regulators. A significant increase (p ≤ 

0.0001) in genomic expression of BCRP for baiclain (1.48 ± 0.23 fold) and flavone 

(1.22 ± 0.25 fold), whereas naringin was slightly downregulated but this was not 

significant.  On the other hand quercetin was significantly (p ≤ 0.01) down regulated by 

0.75 ± 0.11 fold of control (Figure 3.12).  

 

Figure 3.12: Modulation of BCRP gene expression after 24 h incubation with modulator 

compounds. 

Z310 cells were seeded onto a 6-well plate in the growth medium and incubated at 37°C and 5% CO2 for 
24h. The media was removed and modulators prepared in media were added to the wells and incubated 
for 24h. After 24 h the media was removed cells were washed with the pre-warmed PBS and RNA was 
extracted according to manufacture s instructions. Total RNA was reverse transcribed and gene 
expression assessed by qPCR using a SYBR green master mix.  Dashed line indicated 0.5-fold change.  
Significant differences between control and modulators are indicated above the appropriate error bars *** 
P ≤ 0.001 and **** P ≤ 0.0001. 

.
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3.9. Modulation of BCRP transport function using an in -vitro BCSFB model 

 

3.9.1.  HPLC-UV Detection of sulfasalazine  

 A HPLC method for the detection of sulfasalazine successfully detected sulfasalazine 

with a consistent retention time of 3.36 min (Figure 3.13) with a second smaller solvent 

front peak at 1.81 min. The serum free media was used as a solvent in the transport 

study and the solvent front is more likely glucose as for the Z310 cells DMEM high 

glucose was used as stated in methods.  

              

Figure 3.13: Chromatogram of sulfasalazine.  

Sulfasalazine was detected with a rentetion time of 3.36 min using a reversed-phase C18 column 
(Phenomenex Luna 5-µm) with a mobile phase consisting of 70:29:1 methanol:millQ water:acetic acid 
and flow rate of 1 mL/min.   
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3.9.2. Linearity  

 

The linearity of the HPLC method determined by constructing a calibration curve with 

over a concentration range of 0.1 µM-50 µM.  The area under the curve was linearly 

regressed under the concentration range used and the coefficient of correlation (r2) 

was 0.9998. The slope and intercept were 31872.15 ± 3181 and 4991.831 ± 586 

respectively. The LOD and LOQ were found to be 0.081 ± 0.004 and 0.089 ± 0.006 

µM respectively. 

 

           

Figure 3.14: Linearity of sulfasalazine.  

Concentrations of sulfasalazine (0.1 µM-100 µM) were prepared in serum free transport media and 20 µL 
of the each concentration was injected to the HPLC machine and area under curve was obtained. 
Calibration curve was constructed by plotting average peak area against concertation. LOD and LOQ was 
calculated by using regression analysis.   

 

3.9.3. The impact of transport media on in-vitro BCSFB monolayer integrity 

 

To assess the impact of transport media on the stability of the monolayer formation, 

preliminary transport studies were conducted assessing the impact of HBSS transport 

media (HBSS supplemented with 10 mM glucose and HEPES (10 mM) and serum free 

media (SFM) on the TEER of the monolayer. 

It was demonstrated that SFM provided a more stable media for the preservation of 

TEER values over the duration of the incubation study with no significant difference in 

TEER values when compared to the start of the study (Figure 3.15).  Furthermore, the 
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use of HBSS resulted in a significant (p ≤ 0.001) decline in TEER values 92 ± 5 Ω.cm2  

to 25 ± 8 Ω.cm2  after 180 min (Figure 3.15).    

 

 

Figure 3.15: TEER values of Z310 cells maintained in HBSS and SFM, grown in permeable 

inserts 

Cells were seeded onto the collagen coated permeable inserts for 8 days, TEER values were measured 

on the day before, and after running the assay for 210 min. Significant, differences between HBSS and 

serum free media are indicated above the appropriate error bars * P ≤ 0.05, ** P ≤ 0.01. 

3.9.4. Functional assessment of BCRP in an in-vitro permeable insert BCSFB 

model  

 

The in-vitro BCSFB model was developed by growing Z310 cells on permeable inserts 

for 8-10 days. The functionality of BCRP was assessed by measuring the transport of 

sulfasalazine, a substrate of BCRP, in the presence or absence of Ko143, a known 

BCRP inhibitor. Our results demonstrated a significant increase in sulfasalazine 

transport from apical-to-basolateral from all time points when compared with control, 

signifying the functional presence of BCRP with a 10% increase in sulfasalazine 

transport in the presence of Ko143 (Figure 3.16) and causing an apical-to-basolateral 

apparent permeability (Papp,AB) increase from 1.32 ± 0.12 x10-6 cm/s to 2.11 ± 0.09 x10-

6 cm/s when exposed to Ko143. 
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Figure 3.16:  Assessment of BCRP functionality in an in-vitro BCSFB model.  

Cells were grown on permeable insert and transport studies were performed on day 8 (TEER ≥ 60 Ω.cm2) 
following 1 h incubation with Ko143. Results are reported as the fraction of sulfasalazine transporter 
(receiver concentration/ donor concentration). Statistically significant differences between control and 
Ko143 conditions are indicated. * P ≤ 0.05 and ** P ≤ 0.01.   
 
 

 

3.9.5. Functional assessment of BCRP in the presence of BCRP up-regulating 

modulators 

Modulators identified as demonstrating significant up-regulation of BCRP at in Z310 

cells, namely baiclain and flavone were assessed for their ability to modulate BCRP 

function in an in-vitro transport model. Baicalin (Figure 3.17A) demonstrated a 

significant decrease (p ≤ 0.05) the transport of sulfasalazine across the insert by 

approximately 10 % (CR/CD) for portions of the assay and this was coupled with a 

significant (p < 0.05) decrease in Papp,AB from 1.32 ± 0.12  x10-6 cm/s to 1.10 ± 0.08 

x10-6 (Figure 3.17A). However exposure to flavone did not result in any significant 

change in the transport of sulfasalazine across the in-vitro BCSFB barrier model 

(Figure 3.17B). 
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Figure 3.17: Transport of sulfasalazine across an in vitro BCSFB model following 24 

hour incubation with baicalin or flavone.  

Cells were grown on permeable insert and transport studies were performed on day 8 (TEER ≥ 60 
Ω.cm2) following 24 h incubation with modulators, baicalin (A) or flavone (B).  Results are reported 
as the fraction of sulfasazine transporter (receiver concentration/ donor concentration). Statistically 
significant differences between control and modulator are indicated. * P ≤ 0.05 and ** P ≤ 0.01.   
 
 
 
 

3.9.6. Functional assessment of BCRP in the presence of BCRP down-

regulating modulators 

 The functional assessment of BCRP was evaluated in the presence of BCRP down-

regulators namely, naringin, silymarin and 17-β-estradiol in the in-vitro BCSFB model 

by measuring the transport of sulfasalazine. Naringin, silymarin and 17-β-estradiol 

resulted in significant increases in sulfasalazine Papp,AB to 3.83 ± 0.34 x10-6 cm/s, 3.33 

± 0.61 x10-6 cm/s and 2.01 ± 0.23 x10-6 cm/s respectively, when compared to the 

absence of modulators 1.32 ± 0.12 x10-6 cm/s (Figure 3.18). This translated into an 

increase of 43% in sulfasalazine transport for naringin and 36% increase for silymarin 

with a smaller 11% increase for 17-β-estradiol.  
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Figure 3.18:  Transport of sulfasalazine across an in vitro BCSFB model following 24 

hour incubation with 17-β-estradiol, naringin or silymarin. 

Cells were grown on permeable insert and transport studies were performed on day 8 (TEER ≥ 60 

Ω.cm2) following 24 h incubation with modulators, namely 17-β-estradiol (A), naringin (B) 
or silymarin (C). Results are reported as the fraction of sulfasalazine transporter (receiver 
concentration/ donor concentration). Statistically significant differences between control 
and modulator are indicated. * P ≤ 0.05 and ** P ≤ 0.01.   

 
 
 
 
 



159 
 

3.10. Discussion 

 

The BBB and the BCSFB regulate the influx and efflux of endogenous substrates and 

drugs into the brain. Drug transporters at the BBB limit the ability of drugs to permeate 

into the brain biophase but not in the CSF (Abbott and Romero, 1996), similarly, the 

transporters at the BCSFB affects the transport of drugs into the CSF not into the brain 

parenchymal tissues.  

 ABC transporters are key membrane localised proteins, which often serve a xenobiotic 

protective mechanism for the CNS but are often the primary cause of poor therapeutic 

distribution into the CNS. BCRP is an ABC efflux transporter that has been shown to 

confer resistance to large number of therapeutic agents such as mitoxantrone, 

methotrexate, topotecan, SN38, doxorubicin and flavopiridol (Doyle and Ross, 2003b, 

Maliepaard et al., 2001). Although the body of work assessing the important role the 

BBB plays in governing CNS drug distribution is significant, very little has been 

reported on the functional role of BCRP at the BCSFB and the role it plays in controlling 

drug transport across the BCSFB.  Knock-out animals data have demonstrated that 

cells at the BCSFB differ from the BBB in the distribution of ABC transporters and, 

therefore, the effects of changes in transporter expression on drug distribution. For 

example, topotecan distribution into the brain was reported to be increased but its 

penetration into the ventricular CSF was reduced with Bcrp KO mice (Shen et al., 2009) 

as a result of the asymmetrical expression of the transporter at the BBB and BCSFB 

(Urquhart and Kim, 2009, Rao et al., 1999). However results can be contrasting 

depending on the site/location of CSF sampling (i.e. ventricular CSFs vs bulk CSF 

sampling from the cisterna magna) (Doran et al., 2005, Shen et al., 2009). 

Furthermore, the complexities in site-specific knock-down of Bcrp (in the CP alone, the 

CP+BBB or the CP +parenchymal cells) would further compound the interpretation of 

the changes in gross drug transport. 

Several strategies have been considered to enhance drug accumulation into the CNS, 

the most common of which is to directly inhibit BCRP using chemical modulators such 

GF120918 (elacridar) or Ko143 (Breedveld et al., 2006, Pick et al., 2008). 

Unfortunately these inhibitors cause severe neurotoxicity which limits their clinical 

applications (Thomas and Coley, 2003, Varma et al., 2003).  
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In an attempt to identify novel candidates that may modulate BCRP expression and 

function, phytochemicals (primarily flavonoids) show promise as potential BCRP 

expression and transport function modulators (see section 2.14.5 and 2.14.6). 

 

The key focus of this chapter was to characterise the Z310 rodent choroid plexus 

epithelial cell line to assess whether BCRP is expressed and to subsequently examine 

the role phytochemical modulators may play in the cytotoxicity towards Z310 cells but 

also their ability to modulate BCRP expression and transport functions.  

 

3.10.1.  The use of Z310 cells to develop an in-vitro BCSFB model  

 

 Z310 were first established by Zheng and Zhao (Zheng and Zhao, 2002) by 

transfection with a viral plasmid (pSV3neo). The cells show typical epithelial cell 

morphology and presence of BCSFB markers such as transthyretin (TTR), a thyroxine 

transport protein (Zheng and Zhao, 2002).  Z310 cells were selected for their high 

reported TEER values (130-200 Ω.cm2) and expression of important transporter 

proteins such as P-gp, Mrp1, Mrp4 and BCRP (Juliane Kläs et al., 2010) and presence 

of the key choroid plexus marker (TTR) (Zheng and Zhao, 2002, Juliane Kläs et al., 

2010, Szmydynger-Chodobska et al., 2007, Shi et al., 2008b). In contrast other CP cell 

lines, such as TR-CSFB, demonstrate low TEER value (30-35 Ω.cm2) and require 

growth at reduced lower temperatures (Juliane Kläs et al., 2010) (Kitazawa et al., 

2001). 

 

 Our results demonstrated that Z310 cells, when grown on uncoated tissue culture 

surfaces, demonstrate typical uniform polygonal epithelial cell morphology, with 

tendency to form closely packed islands (Figure 3.1 A and B). The formation of a cell 

monolayer was assessed by measuring the height of the media in the inner chamber 

when compared to permeable inserts without cells. The height of the medium was 

about 2 mm higher for up to 24 h representing the formation of CSF (Shi et al., 2008a) 

(Figure 3.2) and achieved TEER values of 92 ± 5 Ω.cm2 at day 8 post seeding (Figure 

3.3), which would place it within the range of reported TEER values when accounting 

the growth surface area (1.12 cm2 versus 4.4. cm2). 
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3.10.2. Cytotoxicity assessment of modulators 

 

To date no studies have been reported to our knowledge, assessing the interaction of 

phytochemical modulators with Z310 cells. As a result, a clear indication of the 

cytotoxicity for each modulator needed to be identified for subsequent experiments.  

Our results reported that most modulators demonstrated IC50 values of > 100 µM 

(Figure 3.4), with the exception of α-napthoflavone (1.4 ± 0.8 µM) (Figure 3.4 L). 

Furthermore, a number of flavonoids demonstrated no appreciable toxicity at 1000 µM 

and included chrysin, 17-β-estradiol, hesperidin, naringin, silymarin and TMF (Figure 

3.4 D, F, J, M, Q and R, respectively). To date, there is a lack of published cytotoxicity 

data reported for phytochemical modulators against Z310 cells.  However, with some 

level of caution, comparisons can be made with other cell lines. α-napthoflavone is a 

synthetic flavonoid and known as a strong inhibitor of CYP1B1 (Vincent et al., 1998). 

The IC50 calculated to inhibit CYP1B1 in MCF-7 cells was 0.2 nM (Zeichner, 2010), 

which is significantly below our reported values but highlight the potentially cytotoxic 

nature of this modulator. Zhang, et al (Zhang et al., 2005) demonstrated limited 

cytotoxicity with chrysin at 50 µM in MCF-7 MX100 cells. Furthermore in another study 

HepG2 were incubated with 5 µM chyrin to assess changes in the expression of 

UGT1A1 (Sugatani et al., 2004). In Caco-2 cells 150 µM biochanin A was reported to 

show no significant decrease in cellular viability, which compares with our calculated 

IC50 216 ± 1.36 µM (Figure 3.4C).  

In another study (Dornan et al., 2007) it was reported the lack of cytotoxicity of apigenin 

up to 250 µM in rat hepatoma H4IIE cells and C6 glioma cells. Similarly, our results 

report an IC50 of apigenin of 355 ± 8.1µM in Z310 cells (Figure 3.4A). Furthermore, 120 

µM fistein reduced the viability of human colonic cancer (COLO205) cells by 27.6% 

(Wu et al., 2013). Our results demonstrated a 50% reduction in Z310 cell viability by 

fistein at 154 ± 1.78 µM (Figure 3.4H).   

Quercetin has been used in-vivo studies in rats, from 1- 400 µM  (van Zanden et al., 

2007) with no resultant toxicity and concurns with our calculated IC50 of 107 ± 2.3 µM 

(Figure 3.4N). In contrast, naringin was found to use to inhibit BCRP at 3 µM 

concentration in K562 cells (Imai et al., 2004), however our results demonstrated that 

narignin was not toxic to Z310 cells up to 1000 µM (Figure 3.4 M).  Interestingly, the 

IC50` for for α-napthoflavone was similar to that reported at the BBB (section 2.7and 

Figure 2.4 L), however limited correlation was observed with other modulators such as 
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17-β- estradiol, chrysin and naringin, which demonstrated reduced or no toxicity in 

Z310 and PBMEC/C1-2 cells.  

In contrast to their widely cited beneficial effects, flavonoids also have been found to 

be pro-oxidant or mutagenic and to produce toxicity (Sahu and Gray, 1997, Galati et 

al., 2002). The beneficial effects of flavonoids (outside of interacting with BCRP) is 

often perceived to be because of their antioxidant properties (Kris-Etherton and Keen, 

2002, Kelly, 1998, Bonnefoy et al., 2002). In a study comparing 20 flavonoids for their 

sensitivities towards L-02 and HepG2 cells, it was noted that L-02 cells were more 

sensitive towards the flavonoids studied.  It was proposed that this was related to the 

fact that L-02 cells possessed a greater level of intracellular antioxidant enzymes and 

GSH, which are essential and beneficial to help maintain the redox balance in cells 

due to the fact that the cytotoxic effects of flavonoids are associated with their pro-

oxidant activity (Rietjens et al., 2002, Dickancaite et al., 1998, Galati et al., 2002).  

Furthermore, flavonoid cytotoxicity may have also occurred through apoptosis-

inducing properties in cells by interactions with protein kinase, lipid kinase, or other 

apoptosis related signalling pathways (Kampa et al., 2007, Hadi et al., 2000, 

Cunningham et al., 1992), which may produce different extents of toxicity in different 

cell lines, particularly where the expression/abundance of signalling pathway elements 

are diminished/different. 

 

It is also possible that flavonoids produce both an effect on BCRP whilst at the same 

time being highly cytotoxic and act in this manner as conventional hydrogen donators, 

particularly for flavonoids with multihydroxyls, which may form phenoxyl radicals to 

induce cytotoxicity (Galati et al., 2001, Galati et al., 2002).  Furthermore flavonoids 

may result in cytotoxicity by destroying the intracellular antioxidant systems or 

negatively impacting on antioxidant-sensitive signalling pathways (Son et al., 2004, 

Ramos, 2007, Haddad, 2004). Finally, other reports have also suggested the disruption 

of the mitochondrial respiratory chain or depletion of GSH by forming GSSG or GSH 

conjugates (Sabzevari et al., 2004). 

 

 GST is the most abundant phase-II enzyme in the brain and hence may predispose 

the BBB to greater levels of sensitives towards phytochemicals compared to the CP. 

However, given the complex nature of the proposed mechanism of cytotoxicity, the 

difference in cell origin species (porcine versus rats) the potential for inter-species 

variability of the abundance of signally pathway elements or metabolism enzymes may 

confound the mechanism understanding the nature of this toxicity. 
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3.10.3. Assessment of BCRP expression in Z310 cells  

Our results have confirmed the expression of BCRP in Z310 cells using reverse-

transcriptase polymerase chain reaction (Figure 3.5A), western blot analysis (Figure 

3.5B) and immunosfluoresecene confocal microscopy (Figure 3.6).  Our results were 

consistent with previous study reported the portein expression of BCRP in Z310 cells 

(Halwachs et al., 2011). Reichel et al (Reichel et al., 2011) reported BCRP genomic 

and protein expression in rat choroid plexus. Furthermore, BCRP protein expression 

was demonstrated in rat choroid plexus TR-CSFB cell lines (Hosoya et al., 2004).  

 

3.10.4. Functional assessment of BCRP in the absence and presence of 

modulators  

BCRP functional activity was assessed using a H33342 accumulation assay in the 

presence of BCRP inhibitor Ko143 (1 µM), and our results demonstrated a significant 

1.8 ± 0.2 fold increase in intracellular H33342 accamulation (Figure 3.8), signifing the 

presence of functional BCRP in Z310 cells.  This was then followed by assessing the 

impact of modulator incubation in a short-term assay of 1 h to mimic a direct inhibition 

of functional activity study and a 24 h incubation to detect potential genomic/proteomic 

changes in BCRP, which are translated to changes in functional activity. Our results 

demonstrated highly significant (p ≤ 0.001) increases of 1.35 ± 0.5 to 1.6 ± 0.2 fold in 

intracellular H33342 accumulation for a number of modulators following a 1 h 

incubation, however none were able to elicit a similar fold-change as observed with 

Ko143 expect for hesperetin (100 µM), naringin (100 µM) and TMF (100 µM) (Figure 

3.8). This indicated that these modulators may act as competitive inhibitors of BCRP, 

given the short incubation time. In contrast flavone (1 µM), quercetin (100 µM) and 

rutin (1 µM) demonstrated reduced H33342 accumulation (< 0.5 fold) suggesting an 

induced/increased efflux effect has occurred (Figure 3.8). Of the published studies 

available, TMF, apigenin, chrysin, hesperetin, naringin and quercetin have previously 

demonstrated an ability to inhibit BCRP functional efflux of substrates (see section 

2.14.4 for further discussion of these modulators).  The role of glycosylation status, 

resultant hydrophobicity and potential targeting of the ATPase site within the NBD of 

BCRP may also be an important factor governing the eventual effect observed over 

short incubation periods (see section 2.14.4 for further discussion of these 

modulators). 
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We were also interested to identify the effects of flavonoids on BCRP gene or protein 

expression over longer periods of exposure, namely 24 h. Our results demonstrated 

that incubation with the majority of modulators studied resulted significant changes to 

H33342 intracellular accumulation.  The majority of modulators studied resulted in an 

increase in H33342 accumulation by > 25 % (1.25 fold of greater) with naringin         (1 

µM), IC3 (1 µM) and silymarin (100 µM) eliciting a > 1.5 fold increase in H33342 

accumulation, and hence demonstrating potential down-regulation of BCRP to 

enhance H33342 intracellular accumulation.  In contrast curcumin (10 µM), flavone (1 

µM), quercetin (1 µM) and resveratrol (1 µM) significantly reduced intracellular H33342 

accumulation by to 0.5 fold or lower, suggesting at a possible induction of BCRP to 

reduce H33342 intracellular accumulation (Figure 3.9).  

 

Of the published reports available, curcumin, 17-β-estradiol, naringin and quercetin 

have demonstrated the ability to modulate BCRP expression over similar concentration 

ranges studied (see section 2.9.5. for further discussion of these modulators). 

 

When comparing modulators eliciting inhibitor effects between PBMEC/C1-2 and Z310 

cells, there is some clear discord between the extents of inhibition. For example in 

PBMEC/C1-2 apigenin and hesperidin elicits a strong inhibition at 1 µM but these 

effects are absent in Z310.  Furthermore in Z310 concentration dependant effects on 

BCRP modulation are more apparent and which are absent from PBMEC/C1-2 studies 

and examples include chrysin, flavone, naringin, rutin, silymarin and TMF.   The 

rationale for this is relatively unclear.  However a primary cause may be the differences 

in the species that each cell line is derived from. A BLAST 

(www.blast.ncbi.nlm.nih.gov) comparison of both porcine and rat BCRP nucleotide 

sequeces highlights a sequence identity of 80 %, with the key mutation causing non-

functioning BCRP at position 482 missing.  This difference in sequence identity may 

alter the three-dimensinoal structrure of the protein and hence potentially alter the 

extent of modulator-BCRP interactions. Similar mismatches between in-vitro and in-

vivo inhibition across species have been observed (Zhang et al., 2005), however this 

requires further investigation in each cell line to identify the primary cause of this 

mismatch. 

 

 

 

 

 

http://www.blast.ncbi.nlm.nih.gov/
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3.10.5. Modulating BCRP protein expression in Z310 cells 

In order to further explore the potential modulation of BCRP protein expression in the 

presence of modulators, western blotting analysis was conducted on all modulators at 

identical concentrations studied for the H33342 accumulation assays. 

Our results demonstrated that out of the 18 modulators studied, only 8 showed a 

statistically significant change in BCRP expression with baiclain, hesperidin and 

flavone demonstrating a BCRP up-regulation effect (2.5 fold or more) and 17-β-

estradiol, naringin, quercetin and sliymarin demonstrating a down-regulation effect 

(0.16-4.9 fold) (Figure 3.11). Of the non-phytoestrogenic compounds 17-β-estradiol 

demonstrated the expected trend of downregulation of BCRP. This down regulation 

could be the result of interference with 17-β-estradiol signalling pathways by ERα and 

ERβ.  

Despite the fact that H33342 accumulation assay demonstrated a significant increase 

in intracellular accumulation under prolonged exposure (24 h), it is apparent that this 

effect is only tangible in influencing the expression of BCRP in the highlighted 

modulators. It has been reported that H33342 may also be substrate for P-gp, and 

hence the discord between the increased intracellular accumulation of H33342 for all 

modulators and selective changes in BCRP protein expression observed may be 

indicative of a potential change in P-gp expression (Werner  and Schneider 1974).  

Imai et al (Imai et al., 2005a) demonstrated that 17-β-estradiol significantly reduced 

the expression of BCRP in MCF-7 cells at low nanomolar concentrations (3 nmol/L) for 

1,2 and 4 days (2-,5- and 10-fold down regulation respectively). Furthermore, Hartz et 

al (Hartz et al., 2010) found that the protein expression of BCRP was down regulated 

in the presence of 17-β-estradiol in rat brain capillaries. It has been (Ebert et al., 2007) 

reported that 25 µM and 50 µM quercetin increased BCRP protein expression in Caco-

2 by 2.6 and 5.3 fold after 72h incubation. Furthermore at the genomic level a 19-37 

fold increase in BCRP mRNA was reported when exposed to 50µM of chrysin, 

quercetin, resveratrol and flavone.  

When comparing the modulation of BCRP protein expression in PBMEC/C1-2 and 

Z310, the lack of similarity in the modulation of protein expression is evident. For 

example quercetin and naringin are clear up-regulators of BCRP gene and protein 

expression in PBMEC/C1-2 cells (Figure 2.13 and 2.14) whereas in Z310 the opposing 

trend is evident with quercetin being a down-regulator in gene (Figure 3.12) and protein 

expression (Figure 3.11) but naringin shows no significant down-regulation of BCRP 

gene expression (Figure 3.12) but a highly significant decrease in BCRP protein 
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(Figure 3.11). This would suggest that naringin does not interfere with a transcriptional 

element of BCRP but rather is capable of initiate a translational change in BCRP 

expression. The discord between PBMEC/C1-2 and Z310 changes in BCRP protein 

expression may be indicative of differences in cellular mechanisms such as differences 

in the abundance of transcriptional/translational signalling pathways.  Some species 

differences have been identified with AhR, for example differences in the regulation of 

AhR has been reported between humans and rodents (Flaveny et al., 2010), and the 

AhR-mediated BCRP regulator pathway was not able to be demonstrated in mouse 

cell lines but were evident in human intestinal cells (Tan et al., 2010). 

 

3.10.6. Functional assessment of BCRP activity in an in-vitro permeable insert 

BCSFB model 

The functionality of BCRP was further demonstrated using the BCRP substrate 

sulfasalazine and assessing its transport across the Z310 monolayer in the absence 

and presence of Ko143 or modulators, using the SFM as the optimal transport study 

media (Figure 3.15). In the in-vitro construct developed, the apical chamber represents 

the CSF and the basolateral the blood, hence the direction of efflux for BCRP is 

towards the CSF. Initial studies demonstrated that Ko143 significantly increased the 

apical-to-basolateral sulfasalazine flux at all time points leading to an increase in Papp,AB 

from 1.32 ± 0.12 x10-6 cm/s to 2.11 ± 0.17 x10-6 cm/s, and hence demonstrating 

functional activity of BCRP (Figure 3.16) and it’s inhibition leading to enhanced 

penetration across the in-vitro BCSFB and delivery into the basolaterial (blood) 

compartment. 

Cells grown on permeable inserts were further exposed to modulators for 24 h followed 

by assessing the transport of sulfasalazine across the in-vitro BCSFB. Western blot 

and qPCR result (Figure 3.11 and 3.12) confirmed that baiclain and flavone are up-

regulators of BCRP protein at the BCSFB and these were selected to study further to 

assess the functional consequences of this up-regulation. Baiclain demonstrated a 

significant decrease (p ≤ 0.05) in the transport of sulfasalazine across the insert by 

approximately 10 % (CR/CD) for portions of the assay and this was coupled with a 

decrease in Papp,AB from 1.32 ± 0.12  x 10-6 cm/s to 1.10 ± 0.08 x 10-6  and hence 

diminishing of the overall apical-to-basolateral flux (Figure 3.17A). However, when 

examining the impact of flavone on BCRP, no significant differences were observed in 

apical-to-basolateral flux for the duration of the study (Figure 3.17B). This was 

surprising as flavone demonstrated the greatest up-regulation of BCRP protein in 
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western blots (Figure 3.11) and may indicate time-dependant protein decay following 

the up-regulation phenomena.  

When investigating the impact of the down-regulators 17-β-estradiol, naringin and 

silymarin, we observed statistically significant differences across all time-points with 11 

%, 43% and 36% increase in sulfasalazine transport, for 17-β- estradiol, naringin  and 

silymarin leading to an increase in Papp,AB from 1.32 ± 0.12  x10-6 cm/s to 2.01 ± 0.23 

x10-6 cm/s, 3.83 ± 0.34 x10-6 cm/s and 3.33 ± 0.61 x10-6 cm/s respectively (Figure 

3.18). Of interest is the translational effect of downregulation in BCRP protein when 

exposed to naringin and silymarin (0.16 ± 0.07 fold and 0.22 ± 0.09 fold change in 

protein expression, respectively, Figure 3.11) and the resultant effect on ‘CSF-to-blood’ 

sulfasalazine transport where Papp,AB for naringin and silymarin was increased by 2.9- 

and 2.5-fold, respectively. This effect clearly highlights the potential impact of 

prolonged exposure of flavonoids to BCRP may have on substrate transport and how 

this may influence the disposition of transporter substrate at the BCSFB and wider 

CNS.   

It is important to note that the design of the transport study, namely pre-incubation with 

modulators for 24 h followed by a short washout-period and subsequent initiation of a 

transport study in the presence of the substrate along, would negate the impact of 

modulators themselves inhibiting the transporters directly. It is more likely that this 

approach would lead to a change in BCRP protein as evident from western blotting 

studies and the transport studies have therefore demonstrated that the down-

regulators are able to significantly alter the equilibrium of sulfasalazine across the 

BCSFB leading to an increase in flux towards the blood.  As the formation of CSF is, 

in part, related to the draining of ISF from the brain, the bulk flow from ISF-to-CSF 

would drive the equilibrium within the cranium towards the CSF and this would then be 

followed by CSF draining, driving largely by gravity back into the systemic blood via 

dural venous sinuses drainage (Pollay, 2010, Johanson et al., 2008b, Wraith and 

Nicholson, 2012). Hence, both naringin and silymarin and phytochemical modulators 

along with 17-β-estradiol, are potential viable candidates, which may limit the entry of 

systemically administered BCRP substrates into the CSF or enhance the removal of 

compounds from the CSF. This may be an important application in age-associated 

diseases states such as Alzheimer’s disease where the amyloid beta plaques 

circulating the CSF and originating from the brain are drained into the systemic 

circulation through CSF drainage and passage across the BCSFB (Pascale et al., 

2011) . As amyloid-beta peptides (Aβ) has previously been reported to be a substrate 

of BCRP (Xiong et al., 2009, Candela et al., 2010, Carrano et al., 2014). it is possible 



168 
 

that down-regulation of BCRP at the BCSFB may enhance the opportunities for 

clearance of Aβ out of the CNS through the traditional sinuses drainage routes and 

enhance flux across the BCSFB, as a result of diminished BCRP protein.   

 

3.11. Conclusion 

In this chapter, the modulation of BCRP by phytochemicals at the BCSFB was 

investigated. Our results confirmed the presence of genomic, protein and functional  

expression of BCRP in choroid plexus Z310 cells. Baiclain and flavone has shown to 

be the up-regulators of BCRP protein, genomic and functional expression whereas, 

17β-estradiol, quercetin and naringin were the down-regulators. From this study, it is 

concluded that phytochemicals can modulate the expression of BCRP at the BCSFB 

model, which can help to enhance the drugs to the CSF or remove neurotoxins from 

the CSF.  
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4.1. Introduction 

 

The aryl hydrocarbon receptor (AhR) is involved in a wide range of cellular processes 

such as cell proliferation, xenobiotic metabolism and the development of the immune 

system (Lindsey and Papoutsakis, 2012, Ma and Whitlock, 1996, Boitano et al., 2010, 

Mulero-Navarro et al., 2006). AhR is a member of the basic helix-loop-helix (bHLH) 

PER-AhR nuclear translocator (ARNT)-SIM superfamily of transcription factors. AhR 

is localised in the form of a complex with two molecules of heat shock protein 90 

(hsp90) and Ah receptor-interacting protein (AIP) in the cytoplasm. Upon ligand 

binding the AhR with its associated heat shock proteins, forms a dimer complex and is 

translocated to the nucleus where it binds with ARNT and transcribes the required 

target genes (Nebert et al., 2004).  

 

The activity of AhR has been shown to be modulated by several compounds including 

phytochemicals (Ashida et al., 2000, Ciolino et al., 1998a, Nishiumi et al., 2007b).  

Furthermore, AhR has previously been shown to play a role in the induction of BCRP 

through interactions with a range of compounds, including phytochemicals (Ebert et 

al., 2007, Tan et al., 2010). Examples include quercetin, chrysin, flavone and indole-

3-carbinol which have all shown to significantly induce BCRP genomic and proteomic 

levels following exposure concentration of 25µM and 50µM concentration (Ebert et al., 

2007).  

 

The direct inhibition of BCRP, through the use of existing inhibitors has not yielded 

fruition of viable clinical inhibitors as a result of their severe neurotoxicity (Nutton, 1973, 

Allen et al., 2002a) (Allen et al., 2002b).The modulation of regulatory pathways is a 

new promising approach to target BCRP to enhance delivery to BCRP substrates into 

the brain. The expression of drug transporters and drug metabolising enzymes at the 

BBB is thought to be regulated by a network of regulatory pathways including the 

pregnane-X-receptor (PXR), the peroxisome proliferator-activated receptor α 

(PPARα), the constitutive androstane receptor (CAR), and the aryl hydrocarbon 

receptor (AhR) (Jacob et al., 2011, Xu et al., 2005, Dauchy et al., 2008a, Granberg et 

al., 2003, Hoque et al., 2012).  
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Whilst most studies have focussed on the role of AhR in regulating the expression of 

xenobiotic metabolism pathways (e.g. CYP isozymes), a few studies have 

demonstrated the role AhR plays in regulating BCRP expression. A known AhR 

agonists, 3-methylcholanthrene (3MC), has been demonstrated to cause an AhR 

mediated 80-fold induction of BCRP in LS174T cells when exposed to 3MC, with 

reversal of this induction (by 65 %) when AhR was knock-down (Tompkins et al., 2010).  

Wang et al (Wang et al., 2011) also demonstrated that the well-known AhR agonist, 

TCDD, up-regulated the expression and transporter activity of BCRP in rat brain 

capillaries. In a further study (Campos et al., 2012), exposure of the AhR agonist TCDD 

to rat spinal cord capillaries increased BCRP protein expression. 

 

Although BCRP is known to play an important role in governing the entry of a range of 

therapeutic compounds into the brain, approaches to target its transcriptional 

regulation have been poorly studied. This chapter will explore the role AhR plays in 

regulating the expression of BCRP and will attempt to identity suitable candidate 

compounds, which modulate the genomic regulation of BCRP by AhR at the BBB and 

BCSFB. 

 

4.2. Aims and objectives 

The aim of the work reported in this chapter was to investigate whether modulators 

identified from earlier studies with their interactions at the BBB and BCSFB, regulated 

the expression of BCRP by AhR pathways. The objectives were:  

¶ To demonstrate activation of AhR by a chemically-activated luciferase assay 

system (H1L6.1c2 cells) 

¶ To assess modulation of BCRP and AhR following modulator exposure in 

PBMEC/C1-2 and Z310 cells 

¶ To silence the AhR gene by dicer substrate siRNA approaches and assess 

subsequent changes in BCRP expression in PBMEC/C1-2 and Z310 cells. 

 

4.3. Materials 

Alpha-MEM (Corning, USA); fetal bovine serum (FBS) (Biosera, UK); Opti-MEM® (Life 

Technologies, USA); Transfection reagents and fluorescent control plasmid (TYE-563)  

(Mirus, USA); Curcumin (Cayman Chemical, UK); all other chemicals were sourced 

from Sigma (Dorset, UK). 
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Stock solutions of all test compounds were prepared in dimethylsulfoxide (DMSO) and 

stored at -20°C until use.  

The materials used to grow PBMEC/C1-2 cells and Z310 were detailed in chapter 2 

(section 2.3) and chapter 3 (section 3.3). 

 

4.4. Culture of H1L6.1c2 cells 

H1L6.1c2 cells are mouse hepatoma cell lines, which were a kind gift from Dr.Michael 

Denison and was stably transfected with a luciferase firefly plasmid (Garrison et al., 

1996, Nagy et al., 2002). Cells were seeded into a T25 flask containing alpha-MEM 

supplemented with 10% FBS at 37°C and allowed to attach for 24 h before the media 

was changed.  At 70-80% confluency, cells were washed with warm PBS and 1 mL of 

trypsin-EDTA was added to the flask. The flask was placed in the incubator for 5 min 

and cell suspension was resuspened in a 5 mL of media before the being transferred 

to a 15 mL centrifuge tube and centrifuged at 1000 rpm for 5 min. The pellet was 

resuspened in 2 mL of the media and transferred to a T75 for subsequent experiments.  

 

4.4.1. Cryopreservation of the cells 

After harvesting cells as described in section 4.4, the pellet was resuspended in 

freezing media (10% DMSO and 90% FBS). A 1 mL volume of the cell suspension was 

aliquot to the cryovials and stored overnight at -80˚C in cell cooling box (Mr. Frosty, 

Nalgene®, Thermo Fisher Scientific, UK). After 24 h, vials were transferred to the liquid 

nitrogen for long-term storage. 

 

4.4.2. Activation of AhR by omeprazole in H1L6.1c2 cells 

 

Omeprazole is a known non-toxic AhR antagonist. To assess the functional activity of 

AhR in H1L6.1c2 cells, the activation of AhR was assessed across a concentration 

range of omeprazole, to identify an EC50.  Sterile working stocks of omeprazole were 

freshly prepared on the day. Culture medium was used as the diluent and the final 

solvent concentrations in all test drug concentrations did not exceed 1 % (v/v). 

Cells were seeded with a density of 75,000 cells per well onto a clear flat bottom 96-

well plates and grown to 60-70% confluence. Media was then carefully removed and 
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fresh media containing 0.5 µM -100 µM omeprazole or lacking omeprazole (control) 

incubated for 24 h. 

 

To assess the activation of AhR, a commercial luciferase-based luminescence assay 

(Promega, USA) was utilised. Cells were washed with pre-warmed PBS followed by 

the addition of 20 µL of Lysis Buffer (Promega, USA) to each well.  The plates were 

transferred to an orbital plate shaker and shaken at 1000 rpm for 20 minutes. 20 µL of 

the cell lysate was then transferred into opaque 96-well plate and 100 µL of Luciferase 

Reagent was added to each well. The luminescence was measured immediately and 

at 10 seconds intervals for duration of 60 seconds using a Spectra Max MX5 plate 

reader (Molecular Devices LLC, Sunnyvale, CA). The peak average time-resolved 

stable luminescence signal was calculated as a measure of luminosity. 

 

4.4.3. Activation of AhR by modulators in H1L6.1c2 cells 

To assess the potential activation of AhR by phytochemical modulators, a luciferase-

based assay was developed as described in section 4.4.2. All modulators were 

prepared at 25 µM concentration (unless otherwise indicated) and 100 µL added to the 

appropriate wells. The plates were incubated at 37°C for 24 h prior to the luciferase 

assay. 

4.5. Silencing AhR gene expression  

 

4.5.1. Preparation of siRNA reaction 

 

A commercial transfection kit, TransIT-TKO (Mirus Bio, USA), was used for 

transfection studies.  100 µL of Opti-MEM® was added into a sterile tube, followed by 

3 µL of the TransIT-TKO and 1.4 µL of the siRNA (final concentration 25 nM) and 

mixed gently by pipetting up and down. The tube was incubated for 30 min at room 

temperature. Dicer substrate siRNA duplexes were custom synthesised by IDTDna 

against porcine AhR (Table 4.1) and rodent AhR (Table 4.2) and obtained in a 

commercial gene transfection kit, TriFECTa® (IDTDna, Belgium). 
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Table 4. 1: Porcine AhR siRNA duplexes  

Duplex Size Sense         Anti-sense     

1 16566 GAACAUUAUCACUUCCCAUUGGUGCAA CTUGUAAUAGUGAAGGGUAACCACG 

2 16520 UUUCUGACACAGUUGUUGCUGCUGCUC AAAGACUGUGUCAACAACGACGACG 

3 16490 ACACAUUGAAAUAGGUGCCUUAUUCUU TGUGUAACUUUAUCCACGGAAUAAG 

    

 

 Table 4.2: Rodent AhR siRNA duplexes  

Duplex Size Sense       Anti-sense       

1 16506 ACCAAAGACACGGGAUAAACUCACA UUUGGUUUCUGUGCCCUAUUUGAGUGU 

2 16544 CGACAUAACAGACGAAAUCCUGACG UAGCUGUAUUGUCUGCUUUAGGACUGC 

3 16544 AGCAUCAUGAGAAACCUAGGGAUCG UAUCGUAGUACUCUUUGGAUCCCUAGC 
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4.5.2. Culture of PBMEC/C1-2 and Z310 cells 

PBMEC/C1-2 and Z310 cells were grown in 12-well plates for studies as described in 

chapter 2 (section 2.4.2) and chapter 3 (section 3.4.1). Media was aspirated and cells 

were washed with the pre-warmed Opti-MEM®. The three sets of dicer substrate siRNA 

were added to the individual wells to identify the most efficient silencing ‘set’, and 

incubated at 37°C for 6 h. Thereafter the media was removed and replaced with the 

pre-warmed Opti-MEM and incubated for a further 18 h. 

 

4.5.3. Measurement of transfection efficiency using a fluorescent plasmid 

To assess transfection efficiency, PBMEC/C1-2 and Z310 cells were seeded at a 

density of 25,000 and 15,000 into wells of a 6-well plate and allowed to attach for 24 

h. Thereafter, cells were incubated with a fluorescent transfection control duplex  (TYE-

563®) (IDTDna, Belgium) at 5, 10 and 25 nM for 24 h and visually inspected every 6 

hours to assess transfection efficiency. Cells were observed under inverted DMI400B 

microscope (Leica microscope systems (UK) Ltd, Milton Keynes, UK). 

 

4.5.4. Chemically mediated antagonism of AhR 

In addition to gene silencing through siRNA, the AhR antagonist CH223191 (Choi et 

al., 2012) was assessed for its ability to silence AhR. 1 µM and 10 µM CH223191 

solutions were prepared in cell culture media and incubated with cells seeded in 24-

well plates (as described in section 4.4).  RNA was subsequently extracted and AhR 

expression was quantified. 

 

4.5.5. Quantification of AhR and BCRP gene expression  

 

4.5.5.1. Extraction of RNA  

RNA was extracted in triplicate from wells for each set of siRNA or CH223191 as 

described in Chapter 2 section 2.4.8.1. 
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4.5.5.2. Reverse transcription and qPCR analysis of AhR and BCRP gene 

expression 

To confirm the presence of BCRP and AhR genes in cells, reverse transcription and 

qPCR was conducted as described in chapter 2 4.8.2 and for AhR and for BCRP in 

the absence of siRNA.  Furthermore to identify AhR mediated regulation of BCRP, 

knockdown of AhR by siRNA was then used to both confirm successful AhR 

knockdown and also assess any associated changes in BCRP. 

Gene expression levels was measured using a relative quantification method as 

discussed in Chapter 2 (Section 2.4.8.4 and equation 3) and Chapter 3 (Section 

3.4.9.4).  

 

4.5.6. Phytoestrogen mediated modulation of AhR gene expression  

 

To assess whether phytoestrogen identified as modulators of BCRP protein and 

functional expression: 

(i) Could directly alter AhR expression  

(ii) Could directly alter BCRP expression 

(iii) Will show diminished effects on BCRP when silencing AhR (i.e. modulator 

mediated effects on BCRP and directly related to AhR) 

phystoestrogenic modulators were prepared in an incubation mixture combined with 

either siRNA (25 nM) or CH223191 (1 µM or 10 µM) and incubated with cells for 24 h 

(see section 4.4.2). In PBMEC/C1-2 cells, modulators which induced BCRP protein 

included quercetin (25 µM) and naringin (25 µM), with curcumin (1 µM) and estradiol 

(100 nM) selected as down-regulators of BCRP. In Z310 cells, modulators studied 

which induced BCRP protein included baiclain (25 µM) and flavone (25 µM), with 

quercetin (25 µM) and naringin (25 µM) selected as down-regulators of BCRP.      RNA 

was extracted and qPCR was performed as described in section 4.5.5.  
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4.6. Statistical Analysis 

 

All statistical analyses were performed in Graph pad Prism (La Jolla, California, USA). 

One-way ANOVA and t-tests were carried out to determine the differences between 

the mean values. For all multi-well based assay replicates of at least 3 were used in 

three independent experiments. EC50 metrics were calculated using sigmoidal fit 

functions within Graph pad Prism. 

 

A significance p-value of < 0.05 was considered as statistically significant.  
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4.7.   Results 

 

4.7.1.   Activation of AhR by omeprazole in H1L6.1c2 cells 

 

The concentration dependent activation of AhR in H1L6.1c2 cells by the AhR activator 

omeprazole was assessed by measuring the luminescence produced from transfected 

firefly luciferase gene. The concentration dependent activation of AhR was confirmed 

over the concentration range, with a sigmoidal response curve (Figure 4.1) with a 

calculated EC50 of 9.73 ± 0.05 µM. 

 

 

Figure 4.1: Concentration dependent activation of AHR activity.  

The luciferase firefly stably transfected mouse hepatoma cell line, H1L6.1c2, was seeded to a 
96-well plate and incubated for 24 h with omeprazole (0.5 µM-100 µM). A luciferase assay was 
subsequently performed and luminescence was measured and reported as the fold change 
compared to non-activated control. 
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4.7.2. Activation of AhR by modulators in H1L6.1c2 cells  

To assess the activation of AhR by modulators, a chemically-activated luciferase 

(CALUX) assay was employed to screen modulators at optimal concentration of 

25 µM known to modulate BCRP protein expression in both Z310 and 

PBMEC/C1-2 cells Chapter 2 (section  2.10) and Chapter 3 (section 3.8). Using 

the luminescence quantified from the maximum activation of AhR by omeprazole, 

the activation of AhR by modulators was reported as percentage maximum 

omeprazlole induction, with values greater than 1 % indicating induction, 50 % 

reflecting the 50 % of the maximum induction and 100% reflecting identical 

induction as achieved with omeprazole. To simplify the analysis, a cut off which 

equated to 50 % maximum induction was used as a metric for identified 

modulators, with values of greater than 75 % being classified as ‘potent’ 

activators of AhR. 

 Modulators identified as ‘potent’ included biochanin a (73.9 % ° 4.8 %), chrysin 

(80.6   % ° 2.7 %), curcumin (81.21 % ° 3.8 %), hesperidin (88.16 % ° 9.3 %) 

and rutin (81.17 % ° 6.3 %). All other flavonoids demonstrated > 50 % maximum 

induction (when considering the SD) (Figure 4.2). 
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  Figure 4.2:  The activation of AhR by phytochemical modulators. 

H1L6.1c2 cells were seeded to a 96-well plate and incubated with modulators for 24 h 
and CALUX assay was performed. Shaded areas reflect modulators activation of AhR by 
up to 50% and greater than 75%.       
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4.7.3. Assessing transfection efficiency using a fluorescent plasmid 

Transfection efficacy was assessed using a concentration range of 5, 10 and 25 

nM for 24 h and visually inspected every 6 h to assess transfection efficiency. 

Optimal transfection efficiency was demonstrated at 24 h post-seeding for 25 nM 

concentrations of plasmid which demonstrated successful transfection of the 

TYE™-563 labelled plasmid in PBMEC/C1-2 (Figure 4.3) and Z310 cells (Figure 

4.4).  

 

 Figure 4.3: Assessment of fluorescence efficiency in PBMEC/C1-2 cells.  

 PBMEC1-2 cells were seeded onto a 6-well plate and incubated with fluorescently-
labelled transfection control duplex (TYE 563™) for 24 h and 25 nM. Cells were visualised 
24 h post-transfection under fluorescent microscope (excitation 556 nm, emission max 
570 nm).  
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  Figure 4.4:  Assessment of fluorescence efficiency in Z310 cells.  

Z310 cells were seeded onto a 6-well plate and incubated with fluorescently-labelled 
transfection control duplex (TYE 563™) for 24 h and 25 nM. Cells were visualised 24 h 
post-transfection under fluorescent microscope (excitation 556 nm, emission max 570 
nm).  

 

4.7.4. Modulation of BCRP and AhR gene expression in PBMEC/C1-2 cells 

 

4.7.4.1. Assessment of AhR down-regulation by siRNA and CH223191 

To identify whether AhR and BCRP were present in PBMEC/C1-2 cells, qPCR 

was conducted using porcine specific AhR primers.  The primers were designed 

and pre-validated by PrimerDesign (Sheffield, UK). qPCR was successfully 

performed with single-peak dissociation-curves for both AhR (Figure 4.5A) and 

BCRP (Figure 4.5B).   
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 Figure 4.5: qPCR dissociation curves for AHR and BCRP in PBMEC/C1-2. 

(A) Representative dissociation curves showing the primer specificity for AhR gene and (B) Representative dissociation curves showing primer specificity for the           
BCRP gene in PBMEC/C1-2 cells.  
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AhR knockdown in PBMEC/C1-2 cells was performed using siRNA and 

CH223191. AhR gene expression was successfully detected in PBMEC/C1-2 

cells using qPCR approaches (Figure 4.6). Following incubation with the AhR 

antagonist CH223191, a significant down-regulation of AhR was observed at 1 

µM (p ≤ 0.001) and 10 µM (p ≤ 0.05) resulting in down-regulation of AhR by 1.71 

± 0.12 and 1.17 ± 0.16 fold change in AhR gene levels (Figure 4.6). Furthermore, 

dicer siRNA set 2 demonstrated successful down-regulation of AhR (P ≤ 0.01) 

leading to a 2.31 ± 0.08 fold change in gene expression. 

BCRP gene expression was also quantified in the same samples that were 

treated with CH223191 and demonstrated down-regulation when exposed to 1 

µM (P ≤ 0.001) and 10 µM (P ≤ 0.05) leading to a 1.12 ± 0.09 and 0.79 ± 0.12 

fold change respectively. In samples exposed to dicer AhR siRNA set 2, BCRP 

gene expression was also significantly down-regulated (P < 0.01) leading to a 

1.75 ± 0.08 fold change (Figure 4.6) 
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 Figure 4.6: Modulation of AhR and BCRP gene expression in the presence of siRNA 

or CH223191 in PBMEC/C1-2 cells.  

PBMEC/C1-2 cells were seeded onto a 24-well plate and incubated with siRNA or CH223191 (1 
and 10 µM), followed by RNA isolation and qPCR quantification of AhR and BCRP gene 
expression.  Change in gene expression was calculated relative to normalised control samples 
(absence of siRNA or CH223191). Significant differences between control and siRNA or CH223191 
exposed samples are indicated above the appropriate error bars (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 
0.001). 
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4.7.4.2. Phytochemical mediated modulation of AhR gene expression  

Modulation of AhR and BCRP gene expression mediated by phytochemicals was 

investigated in PBMEC/C1-2 cells. siRNA transfected cells were incubated with 

modulators which instigated an induction of BCRP protein, quercetin (25 µM) and 

naringin (25 µM) and those causing a down-regulation of BCRP protein, curcumin 

(1 µM) and 17-β-estradiol (100 nM). 

 

In the absence of siRNA, AhR gene expression was significantly increased (p ≤ 

0.0001) when exposed to BCRP protein inducers, namely quercetin (0.62 ± 0.31 

fold) and naringin (0.84 ± 0.08 fold), relative to control samples (Figure 4.7). 

However for BCRP protein down-regulates namely curcumin and 17-β-estradiol, 

no significant differences in AhR gene expression was detected (Figure 4.7). 

 

When AhR was silenced using siRNA, AhR gene expression was significantly 

reduced (when compared to control samples), when exposed to BCRP protein 

inducers, namely quercetin (1.26 ± 0.06 fold) (p ≤ 0.0001) and naringin (0.64 ± 

0.08 fold) (p ≤ 0.05). Additionally, significant differences existed when compared 

the absence and presence of siRNA (p < 0.0001). Furthermore AhR gene 

expression was significantly reduced when exposed to BCRP protein down-

regulators, namely curcumin (1.06 ± 0.09 fold) (p ≤ 0.01) and 17-β-estradiol (0.97 

± 0.09 fold) (p ≤ 0.01 (Figure 4.7).  However, no significant difference was 

detected when comparing samples in the absence or presence of siRNA (Figure 

4.7). 
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Figure 4.7:  Phytoestrogen modulation of AhR gene expression in the absence and 
presence of AhR specific siRNA in PBMEC/C1-2 cells.  

 
PBMEC/C1-2 cells were seeded onto 24-well plates and incubated with quercetin, naringin, 
curcumin and 17-β-estradiol for 24 h along with siRNA targeted to AhR. RNA was extracted and 
qPCR analysis conducted. Significant differences between groups are indicated above the 
appropriate error bars (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001 and **** P ≤ 0.0001). 
 
 

4.7.4.3. Phytoestrogen mediated modulation of BCRP gene expression in 

PBMEC/C1-2 cells  

In the absence of siRNA, BCRP gene expression was significantly increased (P 

≤ 0.0001) for BCRP protein inducers, namely quercetin (1.63 ± 0.28 fold) and 

naringin (1.36 ± 0.71 fold), relative to control samples (Figure 4.8). Similarly 

BCRP protein down-regulators demonstrated significant decrease in BCRP gene 

expression, curcumin (1.78 ± 0.05 fold) (P ≤ 0.0001) and 17-β-estradiol (1.54 ± 

0.05 fold) (P ≤ 0.01) (Figure 4.8).   

 

When AhR gene expression was silenced using siRNA, BCRP gene expression 

was reduced compared to control samples for BCRP protein inducers, quercetin 

(0.18 ± 0.12 fold) and naringin (0.41 ± 0.09 fold) and were not significantly 
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different from control (absence of modulators) (Figure 4.8)  but were significantly 

different from results obtained for BCRP expression in the absence of siRNA. For 

BCRP protein down-regulators, BCRP gene expression increased when 

compared to samples in the absence of siRNA for curcumin (0.62 ± 0.10 fold) 

and 17-β-estradiol (0.22 ± 0.21 fold) but were not significantly different from 

control (absence of modulators) (Figure 4.8).  Furthermore, when compared to 

samples in the absence of siRNA significant differences between –siRNA and 

+siRNA samples existed for curcumin (P ≤ 0.01) and naringin (P ≤ 0.05) (Figure 

4.8).      

 

 

Figure 4.8: Phytoestrogen modulation of BCRP gene expression in the absence 

and presence of AhR specific siRNA in PBMEC/C1-2 cells. 

PBMEC/C1-2 cells were seeded onto 24-well plates and incubated with quercetin, naringin, 
curcumin and 17-β-estradiol for 24 h along with siRNA for AhR. RNA was extracted and qPCR 
analysis conducted. Significant differences between groups are indicated above the appropriate 
error bars (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001). 
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4.7.5. Modulation of BCRP and AhR gene expression in Z310 cells 

 

4.7.5.1. Assessment of AHR downregulation with siRNA and CH223191  

 

To identify whether AhR and BCRP were present in Z310, qPCR was conducted 

using rodent specific AhR primers.  The primers were designed and pre-validated 

by PrimerDesign (Sheffield, UK). qPCR was successfully performed with single-

peak dissociation-curves for both AhR (Figure 4.9A) and BCRP (Figure 4.9B). 
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   Figure 4.9: qPCR dissociation curves for AHR and BCRP in Z310 cells. 

A) Representative dissociation curves showing the primer specificity for AhR gene and (B) Representative dissociation curves showing primer specificity for  
the BCRP gene in PBMEC/C1-2 cells.  
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AhR knockdown in Z310 cells was performed using siRNA and CH223191.  AhR 

gene expression was successfully detected in Z310 cells using qPCR 

approaches (Figure 4.10). Following incubation with the AhR antagonist 

CH223191, a significant down-regulation of AhR was observed at 1 µM (p ≤ 

0.001) and 10 µM (p ≤ 0.05) resulting in down-regulation of AhR by 1.81 ± 0.05 

and 1.09 ± 0.07 fold change in AhR gene levels (Figure 4.10). Furthermore, dicer 

siRNA set 3 demonstrated successful down-regulation of AhR (P ≤ 0.01) leading 

to a 1.01 ± 0.04 fold change in gene expression. 

BCRP gene expression was also quantified in the same samples that were 

treated with CH223191 and demonstrated down-regulation when exposed to 1 

µM (P ≤ 0.001) and 10 µM (P ≤ 0.001) leading to a 1.86 ± 0.10 and 1.47 ± 0.09 

fold change respectively. In samples exposed to dicer AhR siRNA set 3, BCRP 

gene expression was also significantly down-regulated (P < 0.01) leading to a 

0.75 ± 0.08 fold change (Figure 4.10).  
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Figure 4.10: Modulation of AhR and BCRP gene expression in the presence of  

siRNA or CH223191 in Z310 cells.  

Z310 cells were seeded onto a 24-well plate and incubated with siRNA or CH223191 (1 and 10 
µM), followed by RNA isolation and qPCR quantification of AhR and BCRP gene expression.  
Change in gene expression was calculated relative to normalised control samples (absence of 
siRNA or CH223191). Significant differences between control and siRNA or CH223191 exposed 
samples are indicated above the appropriate error bars (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001). 

 

 

4.7.5.2. Phytoestrogen mediated modulation of AhR gene expression  

Modulation of AhR and BCRP gene expression mediated by phytochemicals was 

investigated in Z310 cells. siRNA transfected cells were incubated with 

modulators which instigated an induction of BCRP protein, baiclain (25 µM) and 

flavone (25 µM) and those causing a down-regulation of BCRP protein, narinign 

(25 µM) and quercetin  (25 µM). 
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In the absence of siRNA, AhR gene expression was significantly increased (p ≤ 

0.0001) when exposed to BCRP protein inducers, namely baiclain (1.23 ± 0.31 

fold) and flavone (1.28 ± 0.35 fold), relative to control samples (Figure 4.11). 

However, for BCRP protein down-regulators, namely naringin and quercetin, a 

decrease in AhR gene levels were detected but this was not significant when 

compared to control (absence of modulators), < 0.4 fold (Figure 4.11). 

 

When AhR was silenced using siRNA, AhR gene expression was significantly 

reduced (when compared to the samples in the absence of siRNA) when 

exposed to BCRP protein inducers, namely baiclain (0.25 ± 0.06 fold) (p ≤ 

0.0001) and flavone (0.09 ± 0.16 fold) (p ≤ 0.0001). Additionally, when compared 

to control (absence of modulators), no significant differences were observed. 

However for BCRP protein down-regulators namely naringin and quercetin, 

decrease in AhR gene levels were detected but this was not significant when 

compared to control (absence of modulators), < 0.4 fold (Figure 4.11). 

 

Furthermore, when compared to 1 µM CH223191, AhR gene expression was 

significantly reduced compared to the samples in the absence of siRNA for BCRP 

inducers, namely baiclain (0.41 ± 0.09 fold) (P ≤ 0.0001) and flavone (0.68 ± 0.09 

fold) (P ≤ 0.0001).  When compared to samples in the absence of siRNA 

significant differences between –siRNA and +siRNA or CH223191 existed for 

baiclain (P ≤ 0.0001) and quercetin (P ≤ 0.0001) (Figure 4.11). 

 

However BCRP protein down-regulators (naringin and quercetin) demonstrated 

a non-significant decrease in AhR gene levels, when compared to control 

(absence of modulators), < 0.4 fold (Figure 4.11). 
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Figure 4.11: Phytoestrogen modulation of AhR gene expression in the absence 

and presence of AhR specific siRNA or CH223191 in Z310 cells.  

Z310 cells were seeded onto 24-well plates and incubated with baiclain, flavone, naringin and 
quercetin for 24 h along with siRNA for AhR. RNA was extracted and qPCR analysis conducted. 
Significant differences between groups are indicated above the appropriate error bars (*P ≤ 0.05; 
**P ≤ 0.01; ***P ≤ 0.001). 

 

 

4.7.5.3. Phytoestrogen mediated modulation of BCRP gene expression in 

Z310 cells  

Modulation of BCRP gene expression mediated by phytochemicals was 

investigated in Z310 cells.  In the absence of siRNA, BCRP gene expression was 

significantly increased (p ≤ 0.0001) when exposed to BCRP protein inducers, 

namely baiclain (1.28 ± 0.31 fold) and flavone (1.21 ± 0.35 fold), relative to control 

samples (Figure 4.12). However for BCRP protein down-regulators namely 

naringin and quercetin, a decrease in BCRP gene levels were detected but this 

was not significant for naringin when compared to control (absence of 
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modulators), < 0.4 fold but was significant for quercetin (0.74 ± 0.13 fold)  (p ≤ 

0.05) (Figure 4.12). 

 

When AhR was silenced using siRNA, BCRP gene expression was significantly 

reduced (when compared to the samples in the absence of siRNA) when 

exposed to BCRP protein inducers, namely baiclain (0.15 ± 0.12 fold) (p ≤ 0.001) 

and flavone (0.02 ± 0.16 fold) (p ≤ 0.01). Additionally, when compared to control 

(absence of modulators), no significant differences were observed.  

 

However for the BCRP protein down-regulator naringin, a significant 

downregulation of BCRP was observed (1.78 ± 0.12 fold) (p ≤ 0.0001) when 

compared to control and this was also significantly difference when compared to 

the absence of siRNA (p ≤ 0.01).  For quercetin, a non-significant change in 

BCRP was observed when compared to control (absence of modulators) but this 

was highly significant when compared to modulators in the absence of siRNA 

(Figure 4.12). 

 

Furthermore, when compared to 1 µM CH223191, BCRP gene expression was 

significantly reduced compared to the samples in the absence of siRNA for the 

BCRP inducers baiclain (0.51 ± 0.09 fold) (P ≤ 0.001) but was not significantly 

different for flavone, which has recovered to control levels.  When compared to 

samples in the absence of siRNA significant differences between –siRNA and 

+siRNA for CH223191 existed for baiclain (P ≤ 0.0001) and quercetin (P ≤ 

0.0001) (Figure 4.12). However BCRP protein down-regulators (naringin and 

quercetin) demonstrated a non-significant decrease in AhR gene levels, when 

compared to control (absence of modulators), < 0.4 fold (Figure 4.11). 
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Figure 4.12: Phytoestrogen modulation of BCRP gene expression in the absence 

and presence of AhR specific siRNA or CH223191 in Z310 cells.  

Z310 cells were seeded onto 24-well plates and incubated with baiclain, flavone, naringin and 
quercetin for 24 h along with siRNA for AhR. RNA was extracted and qPCR analysis conducted. 
Significant differences between groups are indicated above the appropriate error bars (*P ≤ 0.05; 
**P ≤ 0.01; ***P ≤ 0.001). 
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4.8. Discussion 

 

AhR plays a vital role in controlling and mediating transcription signals from 

environment toxins such as polycyclic aromatic hydrocarbons (PAHs) (Denison 

and Nagy, 2003), with the classical common environmental pollutants such as 2, 

3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]pyrene (BaP) known to 

induce or activate the activity of AhR.  

 

AhR, to date, has primarily been studied for the role it plays in xenobiotic 

signalling. In its non-active state, it can be found in the cytoplasm of cells in an 

intricate protein complex. Activation of AhR leads to nuclear transformation 

(Perdew, 1988) and binding to promoter regions of target genes that contains an 

AhR binding consensus (5’-T/GNGCGTGA/CG/CA-3’) (Denison et al., 1988). 

The role of AhR at the BBB is not well understood. However it has been reported 

that the  higher expression of AhR at the human BBB compared to other 

regulatory genes such CAR and PXR, potentially highlights the important role 

AhR may play in transcriptional regulation of xenobiotic clearance mechanisms 

such as BCRP (Dauchy et al., 2008b). At the BBB, AhR regulates the expression 

of drug metabolising enzymes such as CYP1A1 and CYP1B1 and ABC 

transporters (Granberg et al., 2003, Dauchy et al., 2008a). Furthermore, 

activation or modulation of AhR has previously been shown to alter the 

expression of BCRP. For example 3-methylcholanthrene (3MC) is a known AhR 

agonists and has been demonstrated to lead to an AhR mediated, 80-fold 

induction of BCRP in LS174T cells, which was reduced by 65% in AhR  

knockdown cells (Tompkins et al., 2010). Furthermore TCDD has been 

demonstrated to up-regulated BCRP expression and in rat brain capillaries 

(Wang et al., 2011) and rat spinal cord capillaries (Campos et al., 2012). 

In light of the current clinical failures in specific BCRP inhibitor molecules (Nutton, 

1973, Allen et al., 2002a) (Allen et al., 2002b), the identification of new candidates 

that show limited cellular toxicity and an ability to mediate alterations in BCRP 

expression (transcriptional and translational) is of interest.  In this respect, 

phytochemicals such as flavonoids are promising leads. 

Phytochemicals (primarily flavonoids) are natural compounds found in the foods 

consumed as part of the human diet, with an estimated intake of 1g/per day 
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(Formica and Regelson, 1995). Several studies have demonstrated that 

flavonoids act as agonists and antagonist of AhR in a concentration dependant 

manner (Ashida et al., 2000) (Ciolino et al., 1998a, Zhang et al., 2003a). The 

exact mechanism of action is unclear, but is thought to supress the nuclear 

translocation of AhR (Mukai et al., 2010) with flavonoids such as quercetin, 

flavone, apigenin, kaempferol and galangin (Ebert et al., 2007) (Mukai et al., 

2010) (Tan et al., 2010). 

 

The primary focus of this chapter was to evaluate whether flavonoids were 

capable of modulating AhR, and to further assess the impact of any potential 

modulation of BCRP expression at the BBB and BCSFB. AhR activation by all 

modulators was evaluated using a chemically activated luciferase assay 

(CALUX). Thereafter the regulatory control of BCRP by AhR was demonstrated 

by AhR silencing (dicer substrate siRNA) in both PBMEC/C1-2 and Z310 cells. 

Finally, the impact of up- and down-regulators of BCRP at the BBB and BCSFB 

on BCRP and AhR were identified in +AhR and –AhR cells. 

 

  We selected the stably transfected H1L6.1c2 cell lines along with an associated  

luciferase assay based on the CALUX assay developed by He et al (He et al., 

2004).  We confirmed the functional activity of the luciferase plasmid within the 

cells with a non-toxic agonist of AhR, omeprazole, which has previously been 

used as an AhR activator for the CALUX assay (Zhao et al., 2013). 

 

Our results have shown that omeprazole demonstrated AhR activation in a 

concentration dependent manner by forming typical sigmoidal curve (Figure 4.1). 

The EC50 for omeprazole induction of AHR gene was estimated to be 9.73 ± 0.05 

µM in H1L6.1c2 cells. AhR is known to induce the expression of CYP1A1 and 

omeprazole induction of CYP1A1 in human cancer cells and primary human 

hepatocytes was determined over a concentration range of 10-100 µM (Novotna 

et al., 2014). Furthermore, the EC50 for omeprazole induction of the human 

CYP1A1 gene was found to be 100 µM (Quattrochi and Tukey, 1993). Our 

calculated EC50 is within the same order of magnitude to other reports and 

highlights the functionally active luciferase firefly response.  

It should be noted that the most appropriate agonist to use would have been 

TCDD (He et al., 2004). However TCDD is considered a highly carcinogenic 

compound, even at very low concentrations (Kociba and Schwetz, 1982), and 
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was deemed unsafe for use in this project. However, the similarity of EC50 

calculations for omeprazole, coupled with the concentration dependent sigmoidal 

profile justifies its use.  

 

We next assessed whether modulators were capable of modulating AhR by 

activating a luciferase response following a period of 24 h incubation in H1L6.1c2 

cells. Modulators were assessed for the ability to activate a maximum luminesce 

response based on the maximum fold-change to control obtained with 

omeprazole (Figure 4.1).  To aid in categorising the response, a marker of 50% 

maximum induction and 75% maximum induction of luciferase activity (relative 

to omeprazole maximum induction) was chosen as a moderate and good 

respectively. Chrysin, curcumin, hesperidin and rutin resulted in luciferase 

activity of 75% or above (‘good’) and hence can be classified as potentially potent 

AhR activators, whereas BaP, biochanin A, 17-β-estradiol, flavone, hesperetin, 

I3C, napthoflavone, naringin, quercetin, resveratrol, silymarin and TBHQ 

demonstrated 50% or above (‘moderate’) AhR activation (Figure 4.2).  

It has been reported that quercetin significantly increased AhR activity by 

inducing CYP1A1 in human hepatoma HepG2 cells, whereas rutin a glycoside of 

quercetin failed to induce AHR and activation of CYP1A1 (Vrba et al., 2012).  Our 

results demonstrated that both quercetin and rutin elicited a luciferase response, 

although the response from rutin (84 ± 1.8 %) was greater than that elicited by 

quercetin (70 ± 2.3 %).  However, the concentration used by Vrba et al was 

similar to those used in this study (10-50 µM) (Vrba et al., 2012). Additionally, 

other studies have also confirmed AhR activation by similar modulators identified 

in our studies.  For example quercetin has been shown to activate AhR mediated 

CYP1A1 mRNA expression in Caco-2 cells (Pohl et al., 2006, Niestroy et al., 

2011) and MCF-7 cells (Ciolino et al., 1999) at concentrations of 0.5-10 µM. 

Another study also reported that chrysin, baiclain, galangin and genistein induced 

the luciferase activity in stably transfected Hepa-1 cells whereas quercetin, 

emodin and apigenin demonstrated inhibitory effect on AHR induction relative to 

TCDD and act in a concentration dependant manner(Amakura et al., 2008). 

Having identified the modulation of AhR activity by modulators studied, the 

relationship between BCRP expression and AhR regulation was important to 

elucidate. To this end we first assessed each cell line (PBMEC/C1-2 and Z310) 

for the ability to be transfected using a TYE™-563 fluorescently labelled plasmid 
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with a view to subsequently silencing AhR using dicer substrate siRNA.  Both 

cells lines were amenable to transfection and demonstrate successful 

transfection at 24 hours with an optimal plasmid concentration of 25 nM 

(PBMEC/C1-2: Figure 4.3; Z310: Figure 4.4). 

Thereafter, gene silencing of AhR was conducted using siRNA specific to AhR 

and changes in both AhR and BCRP expression was assessed using qPCR 

approaches. Furthermore, we utilised the selective antagonist of AhR, 

CH223191 (Zhao et al., 2010), as a positive control to compare against siRNA-

based AhR silencing. Using both a chemical antagonist of AhR and siRNA, we 

were demonstrated successful down-regulation of AhR in both PBMEC/C1-2 and 

Z310 cells. In PBMEC/C1-2 cells, CH223191 at 1 µM and 10 µM resulted in a 

1.71 ± 0.12 and 1.17 ± 0.16 fold down-regulation of AhR expression, with 2.31 ± 

0.08 fold down-regulation with siRNA (Figure 4.6). In Z310 cells CH223191 at 1 

µM and 10 µM successfully down-regulated AhR expression by 1.81 ± 0.05 and 

1.09 ± 0.07 fold respectively with siRNA knockdown resulting in 1.01 ± 0.04 fold 

down-regulation (Figure 4.10). 

Of interest however, is the associated downregulation of BCRP under all 

treatment conditions in both cells lines (PBMEC/C1-2- CH223191 1 µM: 1.12 ± 

0.09, 10 µM: 0.79 ± 0.12; siRNA: 1.75 ± 0.08 (Figure 4.6); Z310- CH223191 1 

µM: 1.86 ± 0.10, 10 µM: 1.47 ± 0.09; siRNA: 0.75 ± 0.08) (Figure 4.10).  This 

associated down-regulation of BCRP confirms the role that AhR regulates BCRP 

at transcriptional level, which is clearly evident when considering the statistical 

analysis of results, which show statistically significant differences in AhR and 

BCRP expression under both CH223191 and siRNA treatment when compared 

to control (untreated: fold-change = 0). 

Previously, only one study has reported the modulation of BCRP through AhR 

dependent manner in Caco-2 cells (Tan et al., 2010).  It is demonstrated that a 

1.5-2.0 fold induction in BCRP expression when cells were treated with AhR 

agonist TCDD, and after knockdown of AhR, gene expression of BCRP was 

significantly reduced (Tan et al., 2010). The relationship between AhR and its 

transcriptional regulation of BCRP was also identified by Tompkins et al 

(Tompkins et al., 2010), who reported that activation of BCRP expression in 

human colon adenocarcinoma-derived LS174T cells is regulated by AhR.  Taken 
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together, our results suggest that AhR plays a significant role in the 

transcriptional regulation of BCRP. 

Having identified this relationship, we then wished to assess the potential impact 

of modulators on both AhR and BCRP expression. From the H33342 

accumulation assays, western blots and transport assays we were able to identify 

modulations possessed BCRP induction or down-regulation properties. In 

PBMEC/C1-2 cells, two up-regulators of BCRP protein (quercetin and naringin) 

and two down-regulators (curcumin and 17-β-estradiol) were selected based on 

the western blot (Figure 2.13) and qPCR (Figure 2.14) results in PBMEC/C1-2 

cells. Similarly, for Z310 cells two up-regulators (baiclain and flavone) and two 

down-regulators (quercetin and naringin) were selected (Figure 3.11 and 3.12). 

In PBMEC/C1-2 cells, in the absence of siRNA treatment, quercetin and naringin 

significantly (p < 0.0001) up-regulated AhR expression by 0.62 ± 0.31 and 0.84 

± 0.08 fold (Figure 4.7) which was abolished when treated with siRNA (1.26 ± 

0.06 and 0.64 ± 0.08 fold down-regulated, respectively). Similarly, BCRP 

expression was also up-regulated in the absence of AhR siRNA by 1.63 ± 0.28 

and 1.36 ± 0.71 fold which was abolished when treated with siRNA (0.18 ± 0.12 

and 0.41 ± 0.09 fold down-regulated, respectively).  In both cases highly 

statistically significant differences (p < 0.0001) are evident when comparing – 

with + siRNA, highlighting the important role AhR plays as one potential target 

site for quercetin and naringin interactions.  Interestingly the lack of statistically 

significant differences between control and + siRNA for changes in BCRP 

expression highlight a ‘normalisation’ of BCRP gene expression as it returns to 

baseline and hence no significant difference in gene expression compared to 

control. 

 

Curcumin and 17-β-estradiol were identified as down-regulators of BCRP.  When 

assessing their impact on AhR, no significant differences were observed between 

modulator treated and control in the absence of siRNA, suggesting that curcumin 

and 17-β-estradiol do not alter AhR gene expression (Figure 4.7 and 4.8).  

However when considering their effects on BCRP, curcumin down-regulates 

BCRP to 1.78 ± 0.05 of control and 17-β-estradiol to 1.54 ± 0.05 of control (Figure 

4.8).  Furthermore, in the presence of siRNA, AhR is confirmed as being down 

regulated for both modulators and BCRP expression recovers to 0.51 ± 0.09 and 
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0.29 ± 0.19 of control and is not significantly different from control, again 

suggesting a return to baseline expression for BCRP. 

At the BBB (using PBMEC/C1-2 cells), this confirms that AhR has a significant 

role to play in the regulation of BCRP. Furthermore, the modulators identified as 

up- or down-regulators of BCRP expression may, in part, act to impact directly 

upon the activity of AhR, such as nuclear translocation (Mukai et al., 2010) (Li et 

al., 2009), as a possible mechanism which can alter the gene expression of 

BCRP. 

In Z310 cells, in the absence of siRNA treatment, baiclain and flavone 

significantly (p < 0.0001) up-regulated AhR expression by 1.23 ± 0.31 and 1.28 

± 0.35 fold (Figure 4.11) which was down-regulated when treated with siRNA (< 

0.5 fold and not significantly different from control).  Similarly, BCRP expression 

was also up-regulated in the absence of AhR siRNA by 1.28 ± 0.31 and 1.21 ± 

0.35 fold (Figure 4.12) which was also down-regulated when treated with siRNA 

(< 0.5 fold). In both cases statistically significant differences are evident when 

comparing – with + siRNA, highlighting the important role AhR plays in causing 

the up-regulating phenomena with baiclain and flavone. A similar ‘normalisation’ 

of BCRP gene expression effect was also observed between control and + siRNA 

as it returns to baseline. 

Naringin and quercetin were identified as down-regulators of BCRP in Z310 cells. 

When assessing their impact on AhR, no significant differences were observed 

between modulator treated and control in the absence or presence of siRNA, 

suggesting that naringin and quercetin do not alter AhR gene expression. We 

also confirmed no significant difference in AhR expression when using the 

chemical antagonist CH223191. However when considering their effects on 

BCRP, naringin does not significantly down-regulate BCRP whereas quercetin 

significantly (p < 0.05) down-regulates BCRP 0.86 ± 0.09 of control.  

Furthermore, in the presence of siRNA, BCRP expression is further down-

regulated to 1.78 ± 0.12 for naringin but recovers to 0.22 ± 0.21 for quercetin and 

is not significantly different from control, suggesting a return to baseline 

expression for BCRP.  

  

At the BCSFB (using Z310 cells), this again confirms that AhR has a significant 

role to play in the regulation of BCRP. Interestingly, the trends in modulation of 
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BCRP and AhR were different for Z310 cells compared to PBMEC/C1-2, 

particularly for the down-regulators, where both naringin and quercetin seemed 

to have no significant direct effect on AhR levels. Furthermore, naringin 

demonstrated no significant effects on BCRP expression in the absence of siRNA 

whereas quercetin significantly downregulated BCRP expression. The 

differences observed between the up-/down-regulators of BCRP, with 

PBMEC/C1-2 and Z310 cells, may be a result of the inherently lower expression 

of AhR in Z310 cells compared to PBMEC/C1-2 cells. Indeed, studies have 

reported a similar phenomenon in rodent primary choroid plexus cells and TR-

CSFB cell lines (Halwachs et al., 2011, Reichel et al., 2011). 

 

4.9. Conclusion 

This chapter has highlighted the transcriptional regulation of BCRP by AhR in 

both PBMEC/C1-2 and Z310 cells. We further investigated the up-regulators and 

down-regulators of BCRP in both cell culture models. All phytochemicals were 

shown to the AhR activators when compared to omeprazole. Furthermore, we 

have identified that up-regulators and down-regulators studied are able to directly 

alter BCRP gene expression, which is mediated by AhR.  
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Conclusion 
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5.1. Conclusion 
 

The overall aim of this work was to investigate whether phytochemical 

modulators were capable of modulating the expression and efflux function of 

BCRP at both the BBB and BCSFB, with a secondary aim of assessing whether 

BCRP transcriptional regulation is mediated by AhR, and whether 

phytochemicals act upon this regulatory pathway. 

In the first part of the work in this thesis, in-vitro models of the BBB and BCSFB 

were used to assess the cytotoxicity of selected modulators. We determined that, 

in general, most modulators demonstrated relatively little toxicity below 100 µM, 

but that species differences between the in-vitro model cell systems resulted in 

distinct differences in the level of toxicity mediated by some modulators. 

In order to screen modulators for the ability to impact upon BCRP, a high-

throughput 96-well plate assay was developed to assess the intracellular 

accumulation of a fluorescent BCRP substrate. In this model system, we 

demonstrated that many phytochemicals are capable of eliciting inhibition of 

BCRP efflux function in both cell lines during a 1 h pre-incubation. Furthermore, 

during a longer incubation time-period (24 h) we also demonstrated that 

modulators mediated potential up-regulation or down-regulation of BCRP 

functional activity resulting in alterations of H33342 intracellular accumulation. To 

confirm that these alterations were at the level of the proteome, western blotting 

identified a number of modulators in both cell lines which significantly altered 

protein expression by induction (2-3 fold) or down-regulation (0.2-0.4 fold). 

Next, we identified phytochemical modulators from both up- and down-regulation 

categories and assessed their ability to mediate functional changes in BCRP 

substrate transport in an in-vitro BBB or BCSFB permeable insert cell culture 

model.  We identified significant changes in BCRP substrate transport under both 

groups at the BBB and BCSFB, however when assessing the transcriptional 

changes using qPCR the down-regulators of protein expression did not seen to 

initiate similar changes in BCRP genome.   

The final part of this work focussed on examining the role AhR plays in regulating 

BCRP expression in knock-down studies employing dicer substrate siRNA 

directed towards AhR.  We demonstrated that with knockdown of AhR came a 

significant decrease in BCRP gene expression that was also confirmed when 
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using the AhR antagonist CH223191.  This demonstrated that BCRP 

transcription is indeed regulated by the AhR.  We then demonstrated that the 

phytochemical modulators were also capable of acting directly upon AhR, 

resulting in changes in AhR gene expression but also initiating subsequent 

alteration of BCRP gene expression, the effects of which were diminished when 

silencing AhR. 

In summary we have demonstrated that phytochemicals demonstrate little 

cytotoxicity in-vitro at both the BBB and the BCSFB and are indeed capable of 

modulating BCRP expression and functional transport of BCRP substrates. 

However further work is required to assess the importance of the translation of 

this work to humans as distinct differences in the impact of phytochemicals on 

BCRP expression and function were also observed between each cell system.  

A potential cause of this could be the differences in species from which the cell 

systems were developed (BBB: porcine and BCSFB: rat), but also differences in 

regulatory networks and other cascade systems are required to be characterised 

in order to make better comparisons between results obtained from each cell 

system/barrier site.  Furthermore, the permeation of flavonoids into the CNS and 

their distribution around the CNS would allow an understanding of the temporal 

changes in phytochemical concentrations within the CNS and therefore whether 

the exposure concentrations are significant enough to translate our in-vitro 

observations into an in-vivo effect, and the role of pharmacokinetic modelling may 

aid in this translation. 
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