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Abstract EMF and GMF are powerful frameworks for
implementing tool support for modelling languages in
Eclipse. However, with power comes complexity; imple-
menting a graphical editor for a modelling language us-
ing EMF and GMF requires developers to hand craft and
maintain several detailed interconnected models through
a loosely guided, labour-intensive and error-prone pro-
cess. We demonstrate how the application of metamodel
annotation and model transformation techniques can
help to manage the complexity of GMF and EMF and
deliver significant productivity, quality, and maintain-
ability benefits. We present Eugenia, an open-source tool
that implements the proposed approach, illustrate its
functionality with an example, evaluate it through an
empirical study, and report on the community’s response
to the tool.

1 Introduction

Domain Specific Languages (DSLs) play an increasingly
important role in Model Driven Engineering: in a recent
survey of MDE practitioners, “almost 40%” of partici-
pants had used custom DSLs, 25% had used off-the-shelf
DSLs, and only UML (used by 85% of participants) had
been used more widely than DSLs [1]. Many tools ex-
ist for implementing DSLs, including the Eclipse Mod-
elling Framework (EMF) [2], a robust, widely used, and
flexible framework for constructing DSLs on top of the
Eclipse software development platform. Over the last few
years, Eclipse and EMF have become the de facto stan-
dards in the MDE community; the majority of MDE
tools (e.g. ATL, Xtend/Xpand, Acceleo, QVT, Epsilon)
have been either implemented directly on top of them, or
are seamlessly integrated with them. Building on EMF,
the Graphical Modelling Framework (GMF) is a robust
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framework that facilitates the development of complex
diagram-based editors for EMF-based DSLs.

Both EMF and GMF adopt a generative approach.
Starting from an Ecore1 metamodel which specifies the
abstract syntax of a (domain-specific) modelling lan-
guage, developers derive and maintain a set of more fine-
grained, lower-level models. These specify the graphical
syntax and other implementation options, and which can
be consumed by EMF and GMF code generators to pro-
duce the concrete artefacts (i.e. Java code and configu-
ration files) that realise the editor. EMF and GMF are
particularly powerful and flexible, providing customisa-
tion options for almost every aspect of the generated
editor.

As is often the case, the price to be paid for power
and flexibility is increased complexity. As discussed in
the industrial experience report presented by Wienands
and Golm [3], implementing a graphical editor for a
modelling language using EMF and GMF is a loosely
guided and error-prone process, mainly because it re-
quires developers to hand craft and maintain a number of
low-level, complicated and interconnected models. Like
Wienands and Golm, we argue that the application of
EMF and GMF to implement a DSL introduces signifi-
cant accidental complexity into the development process:
we demonstrate the way in which developing a graphical
editor with GMF is suboptimal, particular with respect
to the maintainability of the resulting editor and the
productivity of the development process.

In this paper we report on a way in which we have
applied model transformation to reduce the accidental
complexity of GMF and EMF. We propose a combina-
tion of a single-sourcing approach and model transfor-
mation to both raise the level of abstraction at which
DSL developers must work and to deliver significant pro-
ductivity benefits to the process of constructing graph-
ical editors for modelling languages. We demonstrate

1 Ecore is the object-oriented metamodelling language of
EMF.
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our proposed approach through Eugenia, a mature and
widely used tool that abstracts over and automatically
generates the low-level models required by the EMF and
GMF code generators.

This paper is an extension of earlier work presented
at the 2010 edition of the MoDELS conference [4]. Com-
pared to [4], this paper provides an extensive discus-
sion on the transformations that implement the proposed
approach, demonstrates recent extensions related to
pre-transformation validation and code patching, sum-
marises recent experiments investigating the productiv-
ity benefits of Eugenia, and reports on wider evaluation
of Eugenia via feedback gathered from the community.

The paper is organised as follows. Section 2 out-
lines the process of developing a graphical editor using
EMF/GMF and highlights the error-prone and labour-
intensive steps. Following this, Section 3 demonstrates
how we have used metamodel annotation, model-to-
model and in-place model transformation to automate
these steps in the context of Eugenia. Section 4 presents
a concrete example that demonstrates the major fea-
tures of Eugenia. Section 5 reports on a set of experi-
ments used to evaluate the productivity and maintain-
ability benefits delivered by model transformation in this
practical problem, and on feedback from Eugenia’s user
community. Section 6 provides an overview of related
work, and Section 7 concludes the paper and provides
directions for further work on the subject.

2 Motivation

In this section we outline the process of implementing a
graphical editor for a modelling language using EMF and
GMF and we identify the labour-intensive, error-prone
and maintenance-challenging steps it involves. Figure 1
provides a graphical overview of the process and the arte-
facts involved.

The first part of the process involves specifying the
abstract syntax of the language using Ecore and generat-
ing the Java code from it (in two stages), using the EMF
built-in code generator. The second part involves speci-
fying the graphical syntax of the editor using a number of
graphical syntax-specific GMF models (in three stages),
and then using the GMF code generator to generate the
concrete graphical editor.

2.1 Specifying the Abstract Syntax and Generating
Code using EMF

In the first step of the process, the developer needs
to define the abstract syntax (metamodel) of the lan-
guage using Ecore. Following that, the developer can in-
voke a built-in EMF model-to-model transformation to
transform the Ecore metamodel into an EMF generator
model (GenModel). The produced GenModel captures
lower-level information that specifies how the metamodel

should be implemented in Java (e.g. the Java package
under which the code will be generated, copyright infor-
mation to be embedded in the generated files, whether
certain UI elements will be generated or not, etc.). Once
derived from the Ecore metamodel, a GenModel can be
customised and fine-tuned manually. Finally, the Gen-
Model is consumed by a built-in model-to-text transfor-
mation which produces all the necessary Java code and
configuration files.

If the Ecore metamodel is subsequently modified,
EMF provides a built-in reconciler that can detect
changes in the metamodel and propagate them to the
corresponding GenModel without overwriting the user-
defined customisations. However, the reconciler is only
effective for simple changes in the Ecore metamodel; for
more complex changes (e.g. moving EClasses across dif-
ferent EPackages) the GenModel needs to be regenerated
and customised from scratch. This introduces a signifi-
cant maintenance overhead as it is not always clear to
developers which changes in the metamodel can or can-
not be reconciled automatically. Therefore, it is common
practice to maintain documentation about all manual
changes in a separate location (e.g. a text file) so that
they can be reapplied (manually) if or when necessary.

2.2 Specifying Graphical Syntax and Generating Code
with GMF

Once the Ecore metamodel has been defined and the
EMF code has been generated, the developer needs to
construct three additional GMF-specific models to im-
plement a graphical editor for the language.

– The graph model (GMFGraph) specifies the graphi-
cal elements (shapes, connections, labels, decorations
etc.) used in the editor;

– The tooling model (GMFTool) specifies the element
creation tools that will be available in the palette of
the editor;

– The mapping model (GMFMap) maps the graphical
elements in the graph models and the creation tools
in the tooling model with the abstract syntax ele-
ments of the Ecore metamodel (classes, attributes,
references etc.).

Figures 2-4 provide simplified views of the metamod-
els of the three models discussed above as the com-
plete metamodels are too large to illustrate in this paper
(for instance, the GMF Graph metamodel consists of 81
meta-classes containing 140 structural features in total).

The mapping model is then automatically trans-
formed into an even more fine-grained generator model
(GMFGen) which contains all the low-level information
that the GMF code generator needs in order to produce
the concrete artefacts (Java code and configuration files)
that realise the graphical editor.

In terms of automation, GMF provides a built-in
wizard for automatically generating initial versions of
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Fig. 1 EMF/GMF Graphical Editor Development Process Overview

Fig. 2 Excerpt from the GMF Graph Metamodel

Fig. 3 Excerpt from the GMF Tooling Metamodel

Fig. 4 Excerpt from the GMF Mapping Metamodel

the tooling, graph and mapping models from the Ecore
metamodel itself. Unfortunately, in practice this wizard
fails to yield useful results for anything beyond very sim-
ple metamodels [3] – and this is unsurprising given how
little can in general be inferred about the graphical syn-
tax based on the abstract syntax alone.

As a result, these three models need to be hand-
crafted using a set of very basic tree-based editors pro-
vided by GMF. This is liable to be a laborious and
error-prone process, particularly given the complexity
of the GMF metamodels, and the low-level error mes-
sages that GMF produces. Perhaps more challenging
than constructing these GMF-specific models is main-
taining them as, unlike with EMF, GMF does not pro-
vide a reconciler that can update these models auto-
matically (even for very simple changes) when the Ecore
metamodel changes. Therefore, once customised in any
way, these models need to be maintained manually.

Arguably, implementing and maintaining a graphical
editor with EMF and GMF is a laborious and error prone
task, particularly so for inexperienced developers. Given
that implementing a simple graphical editor is typically
one of the first steps attempted by most of the newcom-
ers in MDE [3], the risk of forming a negative impression
about the effort and learning curve imposed by the MDE
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tool-chain from their interaction with GMF is consider-
able. Moreover, even for seasoned MDE developers2, this
predominantly manual and repetitive process is clearly
tedious, which is in a sense ironic: MDE has its strengths
in automating repetitive processes. Arguably, this is a
situation where MDE could “eat its own dog food.”

3 Automation through Metamodel Annotation
and Model Transformation

To shield developers from the complexity of GMF and
address the highlighted challenges, in this work we pro-
pose a single-sourcing approach, in which additional in-
formation necessary for implementing a graphical edi-
tor is captured by embedding high-level annotations in
the Ecore metamodel. We then use automated model-
to-model and in-place transformations to generate, the
platform-specific models required by the EMF and GMF
code generators in a consistent and repeatable manner.

In this section we provide a detailed discussion on
the steps of the proposed approach and highlight the
productivity, quality and maintainability benefits it de-
livers. The proposed approach has been implemented in
the context of the Eugenia open-source tool which, as
discussed in Section 5, has received substantial positive
feedback and validation from the Eclipse Modelling com-
munity and has several users across academia and indus-
try. The reader can now either proceed with the remain-
der of the technical discussion of the proposed approach,
or jump to Section 4 for a concrete example, and then
return to this section.

3.1 Constructing and Maintaining EMF Generator
Models

The first challenge highlighted in Section 2 relates to
customising and maintaining the EMF Generator Model
(GenModel) once it has been produced by the built-in
EMF model-to-model transformation. As discussed, the
existing change reconciler does not support propagating
non-trivial structural changes made to the Ecore meta-
model and therefore, for such changes the GenModel
needs to be re-generated and customised from scratch.

To overcome this limitation, we propose capturing
GenModel-specific information in the form of annota-
tions attached to appropriate elements of the Ecore
metamodel, and replacing the built-in EMF model-to-
model transformation with a more sophisticated trans-
formation (Ecore2GenModel) that can consume these
annotations and propagate their values to the GenModel
automatically. An overview of the proposed approach for
constructing EMF generator models is illustrated in Fig-
ure 5.

2 http://voelterblog.blogspot.com/2009/06/
gmf-is-still-awful.html
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Fig. 5 The Eugenia Ecore2GenModel transformation work-
flow

The Ecore2GenModel transformation is illustrated at
a conceptual level in Figure 6. Each transformation rule
is represented as a titled box with two compartments for
the source and target elements of the rule respectively.
Arrows between elements represent references between
them (for example, the EClass2GenClass rule generates
one GenClass for each EClass, uses the copyAnnota-
tions() operation, and the target GenClass refers back
to the source EClass).

The concrete transformation, which has been im-
plemented using the Epsilon Transformation Language
(ETL) [5], replicates the behaviour of the built-in EMF
transformation, but also adopts a name-matching reflec-
tive approach to copying Ecore annotation values to the
respective GenModel model elements. This is demon-
strated in the excerpt of the transformation illustrated
in Listing 1: in the EPackage2GenPackage rule, after
creating a GenPackage from a source EPackage, the
rule invokes the copyAnnotations operation to copy any
annotations attached to the EPackage to string-typed
attributes of the respective GenPackage with matching
names in a reflective manner3.

For example, in the metamodel of Listing 2 – ex-
pressed using the Emfatic4 textual notation for Ecore
– we have added a GenModel-specific emf.gen annota-
tion to the simplem2 package5 (Line 2) that specifies
that the base package under which the Java implemen-
tation of the metamodel should be generated is org.xyz.
As demonstrated in Figure 7, beyond creating the Sim-
plem2 GenPackage from the simplem2 EPackage, the
GenModel transformation has also copied the value of
the emf.gen basePackage annotation of the simplem2
EPackage, into the basePackage attribute to the respec-
tive GenPackage6. Similarly, every attribute of string/-
boolean type in the GenModel can be controlled by an

3 The transformation also supports copying Boolean anno-
tations but the code for this has been omitted for conciseness.

4 http://www.eclipse.org/emfatic
5 simplem2 stands for simple metamodel.
6 @namespace is a built-in annotation in Emfatic and is

not processed by the transformation.
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Fig. 6 Overview of the Ecore2GenModel transformation

1 rule EPackage2GenPackage
2 transform s : Ecore!EPackage
3 to t : GenModel!GenPackage {
4

5 genModel.genPackages.add(t);
6 t.ecorePackage = s;
7 t.disposableProviderFactory = s.getBooleanAnnotation("disposableProviderFactory", true);
8 t.prefix = s.getAnnotation("prefix", s.name.firstToUpperCase());
9 copyAnnotations(s, t);

10 }
11

12 operation copyAnnotations(source : Any, target : Any) {
13

14 for (stringFeature in target.eClass().eAllStructuralFeatures.
15 select(sf|sf.isOfStringType())) {
16

17 if (source.hasAnnotation(stringFeature.name)) {
18 var annotationValue = source.getAnnotation(stringFeature.name, "");
19 if (stringFeature.many) {
20 var parts = annotationValue.split(",").collect(s|s.trim());
21 target.eGet(stringFeature).addAll(parts);
22 }
23 else {
24 target.eSet(stringFeature, annotationValue);
25 }
26 }
27 }
28

29 ...
30

31 }

Listing 1 Excerpt from the Ecore2GenModel transformation

@emf.gen annotation with the same name, attached to
its Ecore counterpart. For example, to set the value
of the propertyMultiLine property of a GenFeature to
false, an @emf.gen(propertyMultiLine=“false”) annota-
tion can be attached to the respective EStructuralFea-
ture in the Ecore metamodel.

This reflective approach is both concise (with fewer
than 80 lines of transformation code the user can cur-
rently control 106 string and boolean attributes pro-

Fig. 7 Output of the Ecore2GenModel transformation ap-
plied to the Ecore metamodel of Listing 2

vided by elements of the GenModel) and future-proof
as the transformation will support additional string/-
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1 @namespace(uri="simplem2", prefix="")
2 @emf.gen(basePackage = "org.xyz")
3 package simplem2;
4

5 class Object {}

Listing 2 The simplem2 annotated metamodel in Emfatic

boolean properties that may be added in the future to
the GenModel metamodel without modifications.

For more complex customisations which require cre-
ating and deleting elements in the GenModel or modify-
ing their properties in a batch mode, Eugenia supports
user-defined polishing transformations. In this context
we use the term polishing transformation to describe a
user-defined in-place model transformation - with a pre-
defined file-name (Ecore2GenModel.eol in this case) and
location relative to the Ecore metamodel - which is ex-
ecuted by Eugenia after the built-in Ecore2GenModel
transformation and through which the developer can
fine-tune the produced GenModel in a programmatic –
and thus repeatable – manner.

For example, if the developer needs a multi-line at-
tribute value editor for all single-valued string attributes
in the metamodel, instead of annotating all of them as
@emf.gen(multiLineProperty = “true”), they can define
the following in-place transformation (in EOL) under a
pre-defined filename next to their Ecore metamodel.

1 for (gf in GenModel!GenFeature.all) {
2 if (gf.ecoreFeature.isOfStringType() and
3 not gf.ecoreFeature.isMany()) {
4

5 gf.propertyMultiLine = true;
6 }
7 }

Listing 3 Sample GenModel polishing transformation

Using this approach, the GenModel can now be
treated as a fully derived artefact, and as such, there
is no need to edit/maintain it manually any more.

3.2 Generating GMF-specific Models

To automate the construction of the GMF-specific mod-
els, we follow a similar approach to the one outlined
above: we annotate Ecore models with high-level GMF-
specific information and then use a model-to-model
transformation (Ecore2GMF ) to generate the interwo-
ven tooling, graph and mapping GMF models - all in
one step. Once the mapping model has been trans-
formed into a GMF generator model (GMFGen) us-
ing the built-in GMF transformation, Eugenia applies
an in-place update transformation to it (FixGMFGen),
as some of the graphical syntax configuration options
(e.g. compartment layout) can only be specified in
this model. Consistent with the practice followed in

the Ecore2GenModel transformation, the developer can
contribute additional polishing transformations for the
Ecore2GMF and FixGMFGen transformations, to fine-
tune the generated models. It should be stressed that
polishing transformations have read-write access to all
GMF-specific (tooling, graph, mapping and generator)
models and as such, they can be used to make full use of
the expressive power of GMF (i.e. any editor that can be
implemented using pure GMF can also be implemented
using Eugenia). Figure 8 illustrates this workflow. In ad-
dition to polishing transformations, the developer can
optionally specify further, low-level customisation via
parametric patches (Section 3.5), which are applied to
systematically tailor the Java source code generated by
GMF.

The GMF-specific annotations supported by Euge-
nia allow developers to specify a large proportion of the
graphical syntax of the language including node shapes,
feature-based and static labels, class- and reference-
based associations (links), affixed and phantom nodes,
compartments (with a free or a list-based layout),
colours and borders. When we started developing Eu-
genia, we made a conscious decision to only support the
most common elements of graphical syntaxes and leave
any remaining aspects for users to customise through
polishing transformations. Of course, our understanding
of what most common means has evolved over time and
based on the feedback of the user community since the
first release of the tool, we have extended the number of
supported annotations in an organic manner. Currently,
built-in annotations can create instances of 25 of the 61
non-abstract EClasses in the GMF Graph metamodel,
13 of the 28 non-abstract EClasses in he GMF Mapping
metamodel, and 6 of the 19 non-abstract EClasses in
the GMF Tooling metamodel (as discussed above, pol-
ishing transformations can be used to create/configure
instances of the remaining EClasses).

Section 4 provides a detailed example that demon-
strates a substantial subset of the supported annota-
tions. A complete list of all the annotations supported
by Eugenia is available in Appendix A. In brief, Eugenia
provides six categories of annotation:

1. @gmf.diagram annotations are used to specify
diagram-wide settings, such as the type of the root
model element, the file extension for the graphical
editor, and whether to generate Eclipse plug-ins or a
standalone Java application.

2. @gmf.node annotations are used to indicate which
types in the abstract syntax will be represented as
nodes (vertices) in the graphical syntax, and to spec-
ify the shape, colour, size, label, etc., of each node in
the graphical syntax.

3. @gmf.link annotations are used to indicate which
types in the abstract syntax will be represented as
edges in the graphical syntax, and to specify the
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Fig. 8 The Eugenia Ecore2GMF and FixGMFGen transformation workflow

thickness, colour, style, arrowheads, labels, etc., of
each edge in the graphical syntax.

4. @gmf.compartment annotations are used to indi-
cate which nodes may be nested inside other nodes
in the graphical syntax (e.g., attributes are nested
inside classes in UML class diagram syntax).

5. @gmf.affixed annotations are used to indicate
which nodes may be attached to the border of other
nodes in the graphical syntax (e.g., boundary events
are attached to the borders of activities in BPMN 2.0
syntax).

6. @gmf.label annotations are used to specify addi-
tional labels for a node in the graphical syntax.

3.3 The Ecore2GMF transformation

Having enumerated the annotations supported by Eu-
genia, in this section we present the organisation of the
Ecore2GMF transformation into functional units. As the
concrete transformation comprises more than 1200 lines
of code, our intention here is to provide a high-level
overview of each functional unit. However, even at this
level of abstraction it is impossible not to refer to spe-
cific constructs in the involved metamodels. As such, this
section is mostly targeted towards readers who already
possess some understanding of the GMF Graph, Tooling,
and Mapping metamodels.

It should be mentioned that as the GMF models do
not provide any notion of inheritance, during the trans-
formation process, the inheritance hierarchy of the input
metamodel is logically flattened: EClasses inherit all the
annotations (and can override annotation details) from
their super-classes, and features (attributes, references,
and operations) are logically copied to all sub-classes.

3.3.1 Transforming @gmf.diagram-annotated EClasses
The transformation assumes that one EClass of the
metamodel is annotated as @gmf.diagram (as such, the
@gmf.diagram annotation is not inherited). As displayed
in Figure 9, from this EClass, the transformation cre-
ates the scaffolding of the Graph, Mapping and Tooling
models under which all other model elements produced

in the transformation will be placed. More specifically,
it creates a Canvas and a FigureGallery in the Graph
model and a ToolRegistry, a Palette and two built-in
ToolGroups (one for nodes and one for connections) in
the palette. In the Mapping model, the transformation
creates a CanvasMapping that links back to the EClass
and contains one TopNodeReference and NodeMapping
for each sub-type of each of the containment references
of the EClass.

3.3.2 Transforming @gmf.node-annotated EClasses As
displayed in Figure 10, for each such EClass, the trans-
formation creates interwoven elements in all three output
models. More specifically, in the Graph model it creates
a Node of an appropriate Shape and MarginBorder and
- optionally a - Label. The shape and its background
colour are controlled by the figure and color annotation
details, while the properties of the border are controlled
by the border.* annotation details. The properties of
the generated Label and DiagramLabel are controlled by
the label.* annotation details. For external labels (la-
bel.position=“external”) an additional FigureDescriptor
is produced. The transformation also creates a Creation-
Tool and respective DefaultImages in the tooling model
(configured via the tool.* annotation details) and brings
everything together by generating a NodeMapping and
a FeatureLabelMapping in the Mapping model.

3.3.3 Transforming @gmf.link-annotated EClasses and
EReferences As illustrated in Figures 11 and 12, for
@gmf.link-annotated EClasses and EReferences the
transformation produces, in the Graph model, one Fig-
ureDescriptor for the link and (optionally) one for its
label. It also produces a Connection, a PolylineConnec-
tion and the link-end PolylineDecorations, the shapes
of which are controlled by the *.decoration annotation
details. In the Tooling model, it creates a CreationTool
and its respective icons.

In the Mapping model, the transformation produces
a LinkMapping that binds the EClass/EReference to the
Connection in the Graph model and to the Creation-
Tool in the Tooling model. Depending on whether the
annotation is attached to an EClass or to an EReference,
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the transformation also produces a FeatureLabelMapping
which links the generated label with the label-attributes
of the EClass or a read-only DesignLabelMapping.

3.3.4 Transforming @gmf.compartment-annotated ERef-
erences As illustrated in Figure 13, for each contain-
ment EReference annotated as @gmf.compartment in
the flattened metamodel, the transformation produces
a Compartment in the Graph model, and as many Chil-
dReferences as the subclasses of the type of the ERefer-
ence in the Mapping model.

3.4 Pre-Transformation Validation

In its earlier versions, the Ecore2GMF transformation
would assume that the GMF-specific annotations at-
tached to the input Ecore metamodel would conform
to the constraints specified above and would fail with
a runtime exception in case they did not. To remedy
this limitation, since publishing an earlier version of this
work [4], we have implemented a set of constraints (using
EVL - the validation language of Epsilon), which guard
the transformation against invalid input and provide un-
derstandable error messages to the user. For example,

the metamodel of Listing 4 does not satisfy the EVL
constraints of Listing 5, and as such the following error
messages are produced and the transformation process
is aborted:

– No polygon x/y coordinates provided for polygon fig-
ure Base (error).

– The value of @gmf.node(figure) of Hazard must be
one of: rectangle, ellipse, rounded, svg, polygon or a
fully-qualified Java class name (warning).

3.5 Post-transformation parametric patching

Not all aspects of the appearance and behaviour of a
GMF editor can be controlled via the GMF models de-
scribed in the previous sections, because the GMF code
generator hardcodes many details of the generated Java
code. Customisations that cannot be specified in the
GMF models must instead be made by either altering
or extending the GMF code generator, or by customis-
ing the Java source code generated by GMF. The for-
mer approach is limited by the developer’s knowledge
of the code generation language used by GMF (cur-
rently Xpand), the extensibility mechanisms provided
by that code generation language, and the modularity of
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the GMF code generator. At present, using the aspect-
oriented programming constructs of Xpand is likely the
most maintainable approach to extending the GMF code
generator7 but this limits extension to the existing point-
cuts of the GMF code generator. In other words, only
customisations that have been anticipated by the devel-
opers of the GMF code generator are possible. The latter
approach – altering the generated Java source code – re-
quires no knowledge of Xpand or of the GMF code gener-

7 http://community.bonitasoft.com/blog/
customize-your-gmf-editor-customizing-
templates

ator, but is not easily repeatable if performed manually.
This section discusses the parametric patching capabil-
ities of Eugenia, which we have added since publishing
an earlier version of this work [4], and which allow a de-
veloper to automate the latter approach to tailoring the
generated source code of a GMF editor.

With Eugenia, customisation of the Java source code
generated by GMF involves the automated application
of patches, deltas generated by source code management
systems such as Subversion or Git. After invoking the
GMF code generator on the GMFGen model, Eugenia
will automatically apply any .patch files (conventionally
located in a patches directory) to the generated Java
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1 context EClass {
2

3 guard: self.isNode()
4

5 /* Checks that polygon nodes also provide polygon.x and polygon.y coordinates*/
6 constraint IsValidPolygonNode {
7

8 check : (self.getAnnotationValue("gmf.node", "figure") = "polygon") implies
9 (

10 self.getAnnotationValue("gmf.node", "polygon.x").isDefined() and
11 self.getAnnotationValue("gmf.node", "polygon.y").isDefined()
12 )
13

14 message : "No polygon x/y coordinates provided for polygon figure " + self.name
15

16 }
17 }
18

19 context EStringToStringMapEntry {
20

21 critique IsValidNodeFigure {
22

23 guard : self.is("gmf.node", "figure")
24

25 check {
26 var values = Sequence{"rectangle", "ellipse", "rounded", "svg", "polygon"};
27 return self.value.isWithinValuesOrLooksLikeJavaClassName(values);
28 }
29

30 message : "The value of " + self.toEmfatic() + " must be one of: " +
31 values.concat(", ") + " or a fully-qualified Java class name."
32 }
33 }

Listing 5 Excerpt from the set of pre-transformation constraints

source code. Because the .patch files used with Eugenia
are generated by existing source code management sys-
tems, Eugenia reuses the Compare library of the Eclipse
Platform to programmatically apply patches using a
PatchParser to obtain IFilePatchResults (Listing 6).
By automatically applying source code patches, Eugenia
makes customisation of the generated Java source code a
repeatable process, and hence simplifies the maintenance
of altering generated code.

For similar modifications that need to be applied in
several places in the generated source code, Eugenia sup-
ports parametric patches, deltas created by a patch gen-
erator defined by the developer. Instead of – or in addi-
tion to – any .patch files, the developer provides a patch
generator (a model-to-text transformation, convention-
ally named GeneratePatches.egx ) that specifies how one
or more .patch files are to be generated by Eugenia at
runtime. After invoking the GMF code generator, Euge-
nia executes the patch generator, and then applies any
.patch files (generated or otherwise). A patch generator
has access to all of the (polished) GMF and EMF models
described in the previous sections, and hence can progra-

matically generate multiple patches that apply the same
change to different parts of the generated Java source
code. Currently, Eugenia only supports patch generators
that are specified in the Epsilon Generation Language
(EGL), the model-to-text transformation language of the
Epsilon platform, but the conceptual approach is not
limited to EGL.

An overview of the parametric patching workflow is
shown in Figure 14. A similar workflow could be ap-
plied to the generation of code from the EMFGen model,
though we have not yet found a practical need for ex-
tending the EMF code generator in this manner.

An example of using parametric patching to cus-
tomise a GMF editor is described in Section 4. In the
context of the example, we also describe the way in which
parametric patches can be specified in a manner that
makes them reusable over different GMF editors.

3.6 Implementation Notes

The Eugenia transformations are implemented using
the Epsilon platform [6]. More specifically, the built-in
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1 package org.eclipse.epsilon.eugenia.patches;
2

3 public class Patcher {
4

5 ...
6

7 private void applyPartialPatch(IFile targetFile, IFilePatchResult result) {
8 if (targetFile.exists()) {
9 // Alter contents of existing file according to patch

10 targetFile.setContents(result.getPatchedContents(), IFile.KEEP_HISTORY, null);
11 } else {
12 // Create new file from patch
13 targetFile.create(result.getPatchedContents(), false, null);
14 }
15

16 // If the file has no content after the patch has been applied
17 // assume that the file should be deleted.
18 if (isEmpty(result.getPatchedContents())) {
19 targetFile.delete(false, null);
20 }
21 }
22 }

Listing 6 Excerpt of the patch application code

1 package sample;
2

3 @gmf.diagram
4 class Map {
5 val Hazard[*] hazards;
6 val Base[*] bases;
7 }
8

9 @gmf.node(label="name",
10 figure="triangle")
11 class Hazard {
12 attr String name;
13 }
14

15 @gmf.node(label="name", figure="polygon")
16 class Base {
17 attr String name;
18 }

Listing 4 Sample invalid Ecore metamodel in Emfatic

(optional) (optional)

Source code 
patches

GMF code 
generator

(Polished)
GMFGen model

Generated
Java code

User-defined
patch generator

User-defined
source code 

patches

Fig. 14 The GMF code generation and parametric patching
workflow

Ecore2GenModel transformation has been implemented
using the rule-based ETL [5] model-to-model transfor-
mation language, while the Ecore2GMF and FixGMF-
Gen transformations have been implemented using the
imperative EOL language [7]. The Ecore2GMF transfor-
mation is implemented with an imperative – as opposed
to a rule-based – language due to its high complexity and
need for low-level control of the execution flow. Valida-
tion constraints have been specified using EVL and share
code with the ETL and EOL transformations discussed
above. In terms of size, the Ecore2GenModel transfor-
mation is 264 lines long, the Ecore2GMF transforma-
tion contains 1217 lines of code (including operation li-
braries), the FixGMFGen transformation is 91 long and
the EVL constraints that guard the transformation span
353 lines of code.

These transformations could also be implemented us-
ing other M2M languages (e.g. ATL, QVT and Kermeta)
as long as they provide the following capabilities:

– Managing more than one source and target model in
the same transformation.

– In-place as well as model-to-model transformation.
– Establishing and navigating cross-model references.
– Reflective access to model elements (i.e. the ability to

find a feature of a given element by name and get/set
its value at runtime), which is particularly desirable
in the Ecore2GenModel transformation that other-
wise will contain many explicit annotation copying
statements (76 for EPackages alone).

The transformations can be launched both manu-
ally and automatically from Eclipse. Eugenia extends
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1 <?xml version="1.0" encoding="UTF-8"?>
2 <project name="run-eugenia">
3 <target name="main">
4 <epsilon.eugenia src="metamodel.emf"/>
5 </target>
6 </project>

Listing 7 Sample project description for automatically
invoking Eugenia on the Emfatic source file metamodel.emf
through the Ant build system in Eclipse.

the Ant build system integrated in Eclipse with an addi-
tional task that can run the entire Eugenia workflow or
only a part of it. This Ant task can be then integrated
into the advanced workflows required by some develop-
ers, and can be invoked automatically by Eclipse when
the annotated metamodel is changed. Listing 7 shows the
simplest Ant build file needed to invoke Eugenia. The
Ant task can be further configured to provide additional
models for the user-defined polishing transformations or
to start or stop the process at different steps than usual.

3.7 Scalability

Due to the annotation inheritance mechanism discussed
above, for large metamodels, Eugenia annotations ar-
guably scale up better than manually maintaining the
respective GMF models. A potential point of concern
is that for highly-customised editors, polishing transfor-
mations can become disproportionately large. In such
a case, developers can leverage the modularity mecha-
nisms and the mature tool support provided by EOL
(e.g. syntax-aware editor, debugger) to manage these
transformations efficiently.

4 Example

In this section we present an example that demonstrates
using Eugenia for implementing the graphical editor of
a Simple Component-connector Language (SCL) using
EMF and GMF8. Firstly, we specify the abstract syn-
tax of SCL using Ecore. Briefly, an SCL model contains
named components, which contain any number of ports
and subcomponents. Pairs of components can be linked
through their ports. The Ecore metamodel of SCL, ex-
pressed in the Emfatic textual notation for Ecore is il-
lustrated in Listing 8.

1 @namespace(uri="scl", prefix="scl")
2 package scl;
3 class Component {
4 attr String name;

8 Additional examples are available on the Epsilon web-
site: http://eclipse.org/epsilon/doc/articles/
#eugenia

Fig. 15 The first version of the GMF SCL editor

5 attr String description;
6 val Component[*] subcomponents;
7 val Port[*] ports;
8 }
9

10 class Connector {
11 attr String name;
12 ref Port#outgoing from;
13 ref Port#incoming to;
14 }
15

16 class Port {
17 attr String name;
18 val Connector#from outgoing;
19 ref Connector#to incoming;
20 }

Listing 8 The SCL Ecore metamodel in Emfatic

For Eugenia to realise the graphical editor for SCL
using EMF and GMF, we need to annotate the Ecore
metamodel as shown in Listing 9. In particular, the an-
notations specify the following:

– Line 2: Source code should be generated in the
org.eclipse.epsilon.eugenia.examples Java package.

– Line 5: Each diagram contains a top-level Component
model element.

– Line 6: Each component is represented in the diagram
as a light grey node labelled with the name of the
component.

– Line 11: Each Component has a compartment in
which sub-components are placed.

– Line 17: Each Connector is represented as a link (as-
sociation) between its from and to ports. The end
attached to the to port is decorated with an arrow.

– Lines 24, 25: Each Port is represented as a 15x15
icon-less circle, attached to the border of the compo-
nent to which it belongs (Line 13).

From this annotated metamodel, Eugenia can auto-
matically generate the GMF editor that appears in Fig-
ure 15. While the generated editor is fully-functional, we
wish to further customise it to match our requirements
(see Figure 16) .

To achieve this, we specify the polishing transforma-
tion shown in Listing 10 and place it in a predefined
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1 @namespace(uri="scl", prefix="scl")
2 @emf.gen(basePackage="org.eclipse.epsilon.eugenia.examples")
3 package scl;
4

5 @gmf.diagram
6 @gmf.node(label="name", color="232,232,232")
7 class Component {
8 attr String name;
9 @emf.gen(propertyMultiline="true")

10 attr String description;
11 @gmf.compartment(layout="free")
12 val Component[*] subcomponents;
13 @gmf.affixed
14 val Port[*] ports;
15 }
16

17 @gmf.link(source="from", target="to", label="name", target.decoration="arrow")
18 class Connector {
19 attr String name;
20 ref Port#outgoing from;
21 ref Port#incoming to;
22 }
23

24 @gmf.node(figure="ellipse", size="15,15", label.icon="false",
25 label.placement="external", label="name")
26 class Port {
27 attr String name;
28 val Connector#from outgoing;
29 ref Connector#to incoming;
30 }

Listing 9 The annotated SCL Ecore metamodel in Emfatic

Fig. 16 The polished and patched version of the GMF SCL
editor

location (a file named Ecore2GMF.eol in the same di-
rectory as SCL.ecore) so that Eugenia can locate and
execute it it after the built-in Ecore2GMF transforma-
tion every time it is invoked. The polishing transforma-
tion fulfils almost all of our requirements, but cannot be
used to adjust the position of the labels placed external
to our Port construct (see, for example, the position of
the speed and friction labels in Figure 15). Instead, we
specify the patch generator shown in Listing 11 and also
place it in a predefined location (a file named Gener-
atePatches.egx ) in the same directory as SCL.ecore so

that Eugenia can locate and execute it after invoking
the GMF code generator. Our patch generator makes
use of the patch template shown in Listing 12 to gen-
erate a .patch file for each node in our Ecore file which
has a label placement set to external. Currently, only the
Port construct of SCL uses GMF nodes with externally
placed labels, but our patch generator can be reused for
future iterations of SCL.

Specifying the graphical syntax information in the
form of annotations in the SCL metamodel involved
adding 7 lines of Emfatic code (excluding line-breaks for
formatting reasons). From these 7 lines, 59 elements were
produced by Eugenia in the graph, tooling and mapping
models. The productivity benefits delivered by Eugenia
increase alongside the size and complexity of the meta-
model - mainly because the graph, mapping and tool-
ing models do not support the notion of inheritance and
therefore inheritance in the Ecore metamodel causes a
significant amount of duplication in these models. For
example, for the FileSystem metamodel9, 5 lines of Em-
fatic annotations result in 102 elements in the graph,
tooling and mapping models.

9 http://www.eclipse.org/epsilon/doc/
articles/eugenia-gmf-tutorial/
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1 // Add bold font to component label
2 var componentLabel = GmfGraph!Label.all.
3 selectOne(l|l.name="ComponentLabelFigure");
4 componentLabel.font = new GmfGraph!BasicFont;
5 componentLabel.font.style = GmfGraph!FontStyle#BOLD;
6

7 //Set background color and border
8 //of the component compartment
9 var componentCompartment = GmfGraph!Rectangle.all.

10 selectOne(r|r.name="ComponentSubcomponentsCompartmentFigure");
11 var lineBorder = new GmfGraph!LineBorder;
12 lineBorder.width = 1;
13 componentCompartment.backgroundColor = createColor(245,245,245);
14 componentCompartment.border = lineBorder;
15

16 operation createColor(red : Integer, green : Integer,
17 blue : Integer) : GmfGraph!RGBColor {
18

19 var color = new GmfGraph!RGBColor;
20 color.red = red;
21 color.blue = blue;
22 color.green = green;
23 return color;
24 }

Listing 10 The polishing in-place transformation in EOL

1 // Imports the EClass#getLabelPlacement() operation from Eugenia
2 import "platform:/plugin/org.eclipse.epsilon.eugenia/transformations/ECoreUtil.eol";
3

4 rule FixExternalLabelMargins
5 // apply this rule to all EClasses where...
6 transform c : ECore!EClass {
7

8 // ... the EClass is annotated with @gmf.node(label.placement="external")
9 guard: c.getLabelPlacement() == "external"

10

11 // invoke the following EGL template on the EClass
12 template : "FixExternalLabelMargin.egl"
13

14 // make the source directory and name of the node available to the template
15 parameters : Map{ "srcDir" = getSourceDirectory(), "node" = c.name }
16

17 // and save the generated text to the following .patch file
18 target : "FixExternalLabelMarginsFor" + c.name + ".patch"
19 }
20

21 // Determine source directory from GMF Gen model
22 @cache
23 operation getSourceDirectory() {
24 var genEditor = GmfGen!GenEditorGenerator.all.first;
25 return genEditor.pluginDirectory.substring(1) + "/" +
26 genEditor.packageNamePrefix.replace("\\.", "/");
27 }

Listing 11 The patch generator in EGL
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1 diff --git [%=srcDir%]/edit/parts/[%=node%]EditPart.java [%=srcDir%]/edit/parts/[%=node%]
EditPart.java

2 index d0684d6..f162365 100644
3 --- [%=srcDir%]/edit/parts/[%=node%]EditPart.java
4 +++ [%=srcDir%]/edit/parts/[%=node%]EditPart.java
5 @@ -143,7 +143,7 @@
6 if (borderItemEditPart instanceof [%=node%]NameEditPart) {
7 BorderItemLocator locator = new BorderItemLocator(getMainFigure(),
8 PositionConstants.SOUTH);
9 - locator.setBorderItemOffset(new Dimension(-20, -20));

10 + locator.setBorderItemOffset(new Dimension(-5, -5));
11 borderItemContainer.add(borderItemEditPart.getFigure(), locator);
12 } else {
13 super.addBorderItem(borderItemContainer, borderItemEditPart);

Listing 12 The patch template for customising the margins of externally placed labels in EGL

Polishing transformations and parametric patching
may not have similar productivity results in terms of the
number of model elements they produce/modify. For ex-
ample the polishing transformation in Listing 10 takes
25 lines of code to create 3 and modify 2 elements, and
the patch generator and template in Listings 11 and 12
take 41 lines of code to customise 1 line of code per appli-
cable node in the generated Java source. However, in our
experience the effort spent for constructing them quickly
pays off as graphical editor development is a highly it-
erative process [3] and because common polishing and
patching code can be shared between projects.

5 Evaluation

To assess the extent to which Eugenia delivers the en-
visioned productivity benefits compared to pure GMF
in a conclusive manner, ideally, a large-scale experiment
would need to be performed. In such an experiment, pro-
ductivity would be assessed by comparing the results of
two substantially large groups of developers (to minimise
skill-related bias), developing graphical editors for a wide
range of DSLs (to avoid language-related bias), with and
without Eugenia. As GMF targets a niche developer au-
dience, recruiting a sufficiently large number of devel-
opers with substantial GMF experience to perform such
an experiment in a meaningful way proved to be beyond
our capacity. This is consistent with existing related lit-
erature (e.g. [8,9]), which also lacks evidence of exper-
iments of this scale. To partially overcome this restric-
tion, in this section, we i) discuss our observations from
two small-scale experiments involving two developers, ii)
report on our experiences in re-implementing an existing
non-trivial graphical editor with Eugenia, ii) present a
summary of the feedback collected from Eugenia’s user
community, and iv) discuss the testing mechanisms used
to evaluate the correctness of Eugenia. Finally, we con-
sider the limitations of the proposed approach.

5.1 Small-Scale Evaluation Experiments

Two small-scale experiments were performed to assess
the productivity of developers and the maintainabil-
ity of the produced artefacts using Eugenia versus the
standard GMF tooling. Both experiments involved (the
same) two volunteers (A, B), both of whom had substan-
tial experience with Eclipse and EMF, but no experience
with GMF.

In each experiment, the volunteers were asked to de-
velop a GMF editor for a provided Ecore metamodel.
In both experiments, developer A was asked to develop
the editor with Eugenia while developer B was asked to
develop the editor using standard GMF tooling.

Each experiment consisted of three tasks. In the first
task, developers were asked to develop an editor for a
provided metamodel that matched in its appearance a
provided screenshot. For the next task they were asked
to customise an aspect of the editor so that the edi-
tor matched a second screenshot. It is worth noting that
the customisation requested in both cases was intention-
ally not supported by Eugenia annotations (i.e. the font
weight of certain labels). For the final task, developers
were asked to modify the Ecore metamodel (rename an
EClass) and then evolve their GMF editor to reflect this
change. Developers were asked to keep track of the time
it took them to complete each task and record any chal-
lenges they faced.

Each experiment involved a 15-minute briefing ses-
sion, a 2-hour development session and a 15-minute de-
briefing session where developers would report on their
progress, on the time it took them to complete each task,
and on any challenges they faced.

Our initial intention was to run only one experiment,
however, during the debriefing session that followed the
first experiment we identified that both developers had
spent a significant amount of time learning how to use
the respective tools, by reviewing documentation and
trial-by-error. As such, we decided to perform a second
experiment that was similar in structure to the first ex-
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Fig. 17 Maze Metamodel

periment, but asked the developers to construct a graphi-
cal editor for a different DSL. Both developers performed
significantly better in the second experiment than they
did in the first.

5.1.1 Experiment 1 For the first task of this experi-
ment, the two developers were asked to build a GMF
editor for a maze game metamodel, which the authors
had originally prepared for an MSc module on MDE.
The metamodel appears in Figure 17 and the provided
reference screenshot appears in Figure 18. For the next
task of the experiment, the developers were asked to cus-
tomise the editor by changing the font weight of room
labels to bold. For the final task, developers were asked
to rename the Room class of the metamodel to Level
and update their editor accordingly. The following sec-
tions report on the performance of the two developers.

Developer A (Standard GMF tooling) Developer A com-
pleted only the first of the three tasks. Developing the
first version of the editor took 100 minutes. The last 20
minutes were used to try and add composition to the
diagram but no results were accomplished. As it was the
first time that Developer A had used GMF, most of the
time on the first task was spent trying to understand
the functionality and limitations of the different wizards
provided by GMF, and how to appropriately customise
the models produced by the wizards.

Developer B (Eugenia) Developer B completed 2 of the
3 tasks within the 2-hour slot. In particular, develop-
ing the first version of the editor for the first task took
78 minutes, and polishing the appearance of the editor
(the second task) took 41 minutes. Developer B com-
mented that once he became familiar with the tool and
created a first functional version of the editor which sup-
ported one or two meta-model concepts, completing the
task by introducing the required metamodel annotations

Fig. 18 Maze Reference Editor

Fig. 19 State Machine Metamodel

was quite straightforward. Regarding task 2, Developer
B commented that the most difficult part of the task was
to identify the changes that needed to be performed on
the GMF Map model; encoding them in EOL was then
straightforward.

5.1.2 Experiment 2 For the first task of this experi-
ment, the two developers were asked to develop a GMF
editor for a state machine metamodel (Figure 19). The
developers were provided with a reference screenshot
(Figure 20) for their eventual graphical editor. As in the
first experiment, Developer A worked with GMF and
Developer B with Eugenia. In the second task of the
experiment, the developers were asked to customise the
editor by changing the background colour of the state
machine compartment to light grey (Figure 21). In the
last step of the experiment, developers were asked to
rename the State class of the metamodel to Step and
update their editor accordingly. The following sections
report on the performance of the two developers.
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Fig. 20 State Machine Reference Editor

Fig. 21 Polished State Machine Reference Editor

Fig. 22 Developer A’s State Machine Editor

Developer A (Standard GMF tooling) Within the avail-
able time for the experiment, Developer A managed to
produce a nearly complete editor for the provided meta-
model with the following limitations: as demonstrated
in Figure 22, the editor does not provide a black back-
ground colour for the initial and final states, and does
not provide an arrowhead on the target of transitions.
Developer A did not have time to attempt the second
and third task.

Developer B (Eugenia) Developer B completed all three
tasks within 45 minutes. In particular, he was able to
construct the first version of the editor (the first task)
within 25 minutes, customise the background colour of
the state compartment (the second task) within 18 min-
utes, and co-evolve their editor to reflect the change re-
quested in the third task within 3 minutes. Developer
B reported that most of the time spent on the second
task was used to find the way in which the GMF Graph
model should be modified through the built-in editor,
and only relatively little time was then used to express

the same change as a polishing transformation in EOL
code.

5.1.3 Discussion The results obtained through these
small-scale experiments are in line with our informal
experience that Eugenia can significantly simplify and
speed up the editor development process, and make
GMF accessible to inexperienced developers. However,
as discussed at the beginning of Section 5, due to
the small number of developers and the small number
of DSLs involved in the experiment, the obtained re-
sults are not necessarily generalisable. To further assess
whether Eugenia is a significant improvement compared
to pure GMF, the following section discusses our ob-
servations from a re-implementation of an existing non-
trivial graphical editor with Eugenia.

5.2 Implementation of a Simplified BPMN Editor

In [8], the authors performed a comparative evaluation of
different graphical modelling frameworks by using them
to implement graphical editors for the simplified BPMN
metamodel illustrated in Figure 23. In this experiment
we attempted to implement a graphical editor that con-
forms to the visual guidelines proposed in Figure 24 us-
ing Eugenia, and compare the development effort against
that required by the authors of the paper to implement
the same editor using pure GMF (25 man-days).

Our implementation consists of the Eugenia-
annotated copy of the metamodel of Figure 23, seven
SVG images, a concise polishing transformation and two
custom Java classes10.

5.2.1 Annotated BPMN metamodel The annotated
metamodel illustrated in Listing 13, defines the bulk of
the graphical BPMN syntax, using SVG images to rep-
resent non-trivial graphical elements such as gateways
(lines 50, 54 and 68) and events (lines 61 and 66), and
required 73 minutes to develop. However, we were un-
able to define the left-to-right layout of pools and lanes
and the source decoration (white circle) of message flows
(see Figure 24) using the built-in annotations provided
by Eugenia.

5.2.2 Polishing Transformation To address these limi-
tations, we had to use Java to define a custom layout for
pools and lanes (24 lines of code), and a custom white
circle figure (44 lines of code) to be used as the source
decoration of message flows (see Figure 24). To integrate

10 The complete source code is available under
http://dev.eclipse.org/svnroot/modeling/
org.eclipse.epsilon/trunk/examples/org.
eclipse.epsilon.eugenia.bpmn and http:
//dev.eclipse.org/svnroot/modeling/org.
eclipse.epsilon/trunk/examples/org.eclipse.
epsilon.eugenia.bpmn.diagram.custom.
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Fig. 23 Simplified BPMN metamodel from [8]

Fig. 24 Core set of BPMN elements from [8]

this custom code with the generated part of the editor,
we had to write a brief polishing transformation illus-
trated in Listing 14. This required 92 minutes of addi-
tional effort.

5.2.3 Discussion Overall, implementing an editor for
the simplified BPMN metamodel using Eugenia required
165 minutes (2.75 hours), which is a significant reduction
from the 25 days measured by the authors of [8]. Similar
to the set of experiments discussed in Section 5.1, com-
paring the two figures directly is not straightforward as
performance may have been affected by the familiarity
of the developers with the respective tools and the cho-
sen subset of BPMN. The following section extends the
discussion by reviewing feedback obtained from the user
community of Eugenia.

5.3 Community Validation and Feedback

Since its first release, Eugenia has been used extensively
by researchers and engineers both in academia and in
industry. Evidence for this exists in the large number
of posts in the Epsilon forum11, and in several publi-
cations that discuss using Eugenia to develop graphical
editors for domain specific languages across a number of
domains.

Seehusen and Stølen [10] describe their experiences in
constructing a GMF editor for a risk modelling language
(CORAS) with and without Eugenia. When using GMF
alone, Seehusen and Stølen report that the development
of the GMF editor took longer than anticipated (about
3.5 man-months), partly due to the time taken to iter-

11 http://www.eclipse.org/epsilon/forum
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1 @namespace(uri="http://eclipse.org/eugenia/simplebpmn", prefix="sbpmn")
2 @gmf
3 package SimpleBPMN;
4

5 @gmf.diagram
6 class BusinessProcessDiagram {
7 val BPMNElement[*] elements;
8 }
9

10 class BPMNElement {
11 attr String name;
12 }
13

14 @gmf.node(label="name")
15 abstract class Swimlane extends BPMNElement {}
16

17 class Lane extends Swimlane {
18 @gmf.compartment
19 val FlowObject[*] flowObjects;
20 }
21

22 class Pool extends Swimlane {
23 @gmf.compartment
24 val Lane[*] lanes;
25 }
26

27 @gmf.link(label="name", source="from", target="to", color="0,0,0")
28 abstract class ConnectingObject extends BPMNElement {
29 ref FlowObject from;
30 ref FlowObject to;
31 }
32

33 @gmf.link(tool.name="Message Flow", style="dash", target.decoration="closedarrow")
34 class MessageFlow extends ConnectingObject {}
35

36 @gmf.link(tool.name="Sequence Flow", target.decoration="filledclosedarrow")
37 class SequenceFlow extends ConnectingObject {}
38

39 @gmf.link(style="dot", target.decoration="arrow")
40 class Association extends ConnectingObject {}
41

42 @gmf.node(label="name")
43 abstract class FlowObject extends BPMNElement {}
44

45 @gmf.node(figure="svg", margin="2", label.icon="false",
46 label.placement="external", resizable="false")
47 abstract class Gateway extends FlowObject {}
48

49 @gmf.node(tool.name="XOR Gateway",
50 svg.uri="platform:/plugin/org.eclipse.epsilon.eugenia.bpmn/svg/xor-gateway.svg")
51 class XOR extends Gateway {}
52

53 @gmf.node(tool.name="OR Gateway",
54 svg.uri="platform:/plugin/org.eclipse.epsilon.eugenia.bpmn/svg/or-gateway.svg")
55 class OR extends Gateway {}
56

57 @gmf.node(tool.name="AND Gateway",
58 svg.uri="platform:/plugin/org.eclipse.epsilon.eugenia.bpmn/svg/and-gateway.svg")
59 class AND extends Gateway {}
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60 @gmf.node(tool.name="Start Event", figure="svg",
61 svg.uri="platform:/plugin/org.eclipse.epsilon.eugenia.bpmn/svg/start-event.svg",
62 label.icon="false", label.placement="external", resizable="false", margin="2")
63 class StartEvent extends FlowObject {}
64

65 @gmf.node(tool.name="Intermediate Event", figure="svg",
66 svg.uri="platform:/plugin/org.eclipse.epsilon.eugenia.bpmn/svg/intermediate-event.svg",
67 label.icon="false", label.placement="external", resizable="false", margin="2")
68 class IntermediateEvent extends FlowObject {}
69

70 @gmf.node(tool.name="End Event", figure="svg", label.icon="false",
71 label.placement="external", resizable="false", margin="2"
72 svg.uri="platform:/plugin/org.eclipse.epsilon.eugenia.bpmn/svg/end-event.svg")
73 class EndEvent extends FlowObject {}
74

75 class Activity extends FlowObject {}
76

77 @gmf.node(label="name")
78 abstract class Artifact extends BPMNElement {}
79

80 @gmf.node(tool.name="Data Object", figure="svg", label.icon="false",
81 label.placement="external", resizable="false", margin="2",
82 svg.uri="platform:/plugin/org.eclipse.epsilon.eugenia.bpmn/svg/data-object.svg")
83 class DataObject extends Artifact {}
84

85 @gmf.node(label.placement="external", label.icon="false", border.style="dash", margin="2")
86 class Group extends Artifact {
87 @gmf.compartment
88 val BPMNElement[*] elements;
89 }

Listing 13 Eugenia-annotated copy of the Simplified BMPN metamodel

atively develop the various EMF and GMF artefacts in
Figure 1. After switching to Eugenia, the authors remark
that “This [Eugenia] worked very well; it was very easy
to learn and the execution of the transformation [that
produced a GMF editor from the CORAS metamodel]
was reduced to pressing a button as opposed to clicking
through a series of dialogs”. A primary concern with
the GMF transformations were that they were found
to be impractical due to their interactive nature, and
that the single-sourcing approach of Eugenia “worked
far better than the GMF dialog based approach”. See-
husen and Stølen also report that their unfamiliarity
with GMF (and related technologies) and that a lack
of good GMF documentation were also contributing fac-
tors to the longer-than-anticipated development time of
their GMF editor. It is possible that the GMF annota-
tions provided by Eugenia increase the learnability of
GMF and reduce the need for detailed documentation
of low-level GMF features, but Seehusen and Stølen do
not consider this in their evaluation.

Sun et al. [11] report and reflect on their experi-
ences in developing a graphical DSL for distributed time-
triggered systems. Sun et al. notes that Eugenia was cho-
sen over GMF due to “previous experience with the com-
plexities and inefficiencies of GMF” and that applying

Eugenia “considerably sped up the creation of graphi-
cal DSL editors”. Sun et al. focuses on the benefits of
the single-sourcing approach employed by Eugenia, not-
ing that “building and maintaining a modeling tool with
GMF is by no means an easy task, which requires six in-
dividual models that are highly dependent on each and
all need to be in sync with each other. The Eugenia tool
essentially reduces development and maintenance down
to one model and some optional, separate customization
information”.

Dayibaş and Oǧutüzün [12] applied Eugenia to
develop a graphical editor for feature-driven product
derivation, and noted that Eugenia makes “editor devel-
opment easier” as compared to GMF, which “requires
lots of configurations [sic]”.

Eugenia has also been used to develop graphical edi-
tors for DSLs in fields such as distributed time-triggered
systems , software architectures [13–15], industrial robot
control [16], mobile robotics12, distributed application
modelling [17], access control policies [18], and enterprise
application integration [19].

12 https://code.google.com/p/rbcodegen (Last ac-
cessed: May 2013)
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1 var laneFigure = GmfGraph!RoundedRectangle.all.selectOne(r|r.name="LaneFigure");
2 var poolFigure = GmfGraph!RoundedRectangle.all.selectOne(r|r.name="PoolFigure");
3

4 poolFigure.setCustomLayout(
5 "org.eclipse.epsilon.eugenia.bpmn.diagram.custom.SwimlaneLayout");
6 laneFigure.setCustomLayout(
7 "org.eclipse.epsilon.eugenia.bpmn.diagram.custom.SwimlaneLayout");
8

9 var laneLabelFigure = GmfGraph!Label.all.selectOne(l|l.name="LaneLabelFigure");
10 var poolLabelFigure = GmfGraph!Label.all.selectOne(l|l.name="PoolLabelFigure");
11 laneLabelFigure.makeVertical();
12 poolLabelFigure.makeVertical();
13

14 var circleDecoration = new GmfGraph!CustomDecoration;
15 circleDecoration.qualifiedClassName =
16 "org.eclipse.epsilon.eugenia.bpmn.diagram.custom.CircleDecoration";
17 circleDecoration.name = "Circle";
18 GmfGraph!FigureGallery.all.first().figures.add(circleDecoration);
19 GmfGraph!PolylineConnection.all.
20 selectOne(pc|pc.name="MessageFlowFigure").sourceDecoration = circleDecoration;
21

22 operation GmfGraph!Layoutable setCustomLayout(class : String) {
23 var layout = new GmfGraph!CustomLayout;
24 layout.qualifiedClassName = class;
25 self.layout = layout;
26 }
27

28 operation GmfGraph!Label makeVertical() {
29 var labelFigure = self;
30 var labelFigureName = labelFigure.name;
31 var labelFigureText = labelFigure.text;
32 var figure = labelFigure.eContainer();
33 var labelFigureChildAccess =
34 GmfGraph!ChildAccess.all.selectOne(ca|ca.figure = labelFigure);
35 delete labelFigure;
36 labelFigure = new GmfGraph!VerticalLabel;
37 labelFigure.name = labelFigureName;
38 labelFigure.text = labelFigureText;
39 figure.children.add(0, labelFigure);
40 labelFigureChildAccess.figure = labelFigure;
41 }

Listing 14 Simplified BPMN editor polishing transformation

As a teaching tool, Eugenia has been used in lectures
at universities in Kassel (Germany)13, Madrid (Spain)14

and Oslo (Norway)15. An introductory book recently
written by the Spanish MDE research community in-
cludes a chapter on Eugenia [20]. Eugenia has been used

13 http://seblog.cs.uni-kassel.de/wp-
content/uploads/2011/11/Uebung2.pdf (Last ac-
cessed: April 2013)
14 http://astreo.ii.uam.es/˜jlara/doctorado.
2010/3_DSLs_tecnologias.pdf (Last accessed: April
2013)
15 http://www.uio.no/studier/emner/matnat/
ifi/INF5120/v11/undervisningsmateriale/
Lecture4_ModelTransformation.pdf (Last accessed:
April 2013)

to implement an arcade game16 for a project that seeks
to teach DSLs via educational videogames17 at the Uni-
versity of Cadiz. It is also used at York (UK) for both
MSc teaching on MDE18, and to introduce high-school
students to MDE [21].

16 http://github.com/chelder86/ArcadeTongame
(Last accessed: May 2013)
17 http://wikis.uca.es/wikiPILI/index.php/
Videojuegos_Educativos_DSL (Last accessed: May
2013)
18 http://www.cs.york.ac.uk/postgraduate/
modules/mode.html (Last accessed: February 2014)
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5.4 Regression Testing

Eugenia provides a set of transformations on top of an-
other model-driven workflow (GMF). Ideally, each as-
pect of the transformation should be individually tested
with an appropriate set of input models and assertions
on the resulting models. However, these tests would be
brittle, as a new version of GMF with revised meta-
models and transformations of its own could potentially
break many of them. The tests would also potentially
need to consider many model elements, as a single anno-
tation in the Emfatic code could produce large changes
in the GMF models.

As a compromise, we use regression testing for val-
idating each new version of Eugenia, using the EUnit
testing framework [22]. We run Eugenia against sev-
eral annotated metamodels that provide a representa-
tive sample of all features in Eugenia, and ensure that
there are no significant differences between the generated
GMF models and a previously generated set of mod-
els which have been manually validated. Non-significant
differences are normalised using the available options in
EUnit and custom EOL code: for instance, some of the
GMF models contain Java code, and differences due to
whitespace in the code should not be treated as signif-
icant. However, if the significant differences are due to
a change in GMF and not a bug in Eugenia, the newly
generated models are manually validated and replace the
old generated models.

5.5 Limitations

Eugenia currently demonstrates four notable limitations.
Firstly, Eugenia annotations pollute metamodels with
information irrelevant to their primary purpose (ab-
stract syntax definition). While user feedback indicates
that this is often an acceptable trade-off for the increased
efficiency offered by the tool, to avoid metamodel pollu-
tion without sacrificing usability, we are experimenting
with extracting a standalone text-based language from
the annotations provided by Eugenia.

The second limitation of Eugenia is that it does not
provide support for automating the process of develop-
ing graphical editors comprising of more than one type
of diagrams. Developers can still use the standard GMF
process for achieving this, but as this is a fragile and
error-prone process it would benefit from additional au-
tomation.

A third limitation of Eugenia is that, to compose
polishing transformations, developers need to become fa-
miliar with a particular transformation language (EOL).
To overcome this limitation, future versions of Eugenia
would benefit from modular support for custom trans-
formation languages.

Finally, this annotation-based approach is arguably
more suitable for languages in which the structure of the

abstract and concrete (graphical) syntax are not radi-
cally different. For languages with divergent abstract and
graphical syntaxes, or where substantial customisation is
required, a substantial amount of polishing transforma-
tion code may need to be developed and maintained as
discussed in Section 3.7.

6 Related Work

Similarly to Eugenia, GmfGen [23] also aims at simpli-
fying the incremental development of GMF editors. The
graph, mapping and tooling models depicted in Figure 1
typically contain some duplication of information. This
duplication exasperates any inconsistency problems that
may arise when changes are made to one of the mod-
els. GmfGen provides templates for generating the mod-
els needed to construct a GMF editor. The templates
remove most of the duplication present in GMF mod-
els. However, GmfGen does not address the steep learn-
ing curve encountered when first using GMF to gener-
ate a visual editor. In fact, knowledge of GMF is re-
quired to understand the way in which the GmfGen tem-
plates are constructed. Instead, Eugenia focuses on ab-
stracting away from GMF. In [24], the authors present a
metamodel-annotation-based framework that postdates
Eugenia and targets a home-grown graphical modelling
framework instead of GMF.

Obeo Designer (OD) is a commercial product that
builds on top of the GMF runtime but does not make use
of the GMF code generation facilities. Obeo Designer re-
places the 3 intermediate models of GMF (Graph, Tool,
Mapping) with a single model that contains similar con-
structs and provides more elaborate — but still tree-
based editors — to define this model. A strong advan-
tage of OD over the default GMF tooling is that the
former does not involve a code generation step and as
such changes to the graphical syntax can be tested more
quickly.

This work focuses on GMF as, despite its short-
comings, it is still one of the most powerful, flexible
and widely-used open-source graphical editor frame-
works available today. GMF has a large user community
and when tuned appropriately it can achieve impressive
results (the widely used IBM RSA UML19 modeller, as
well as the open-source Topcased20 and Papyrus21 mod-
elling tools are all implemented atop GMF).

Beyond GMF there is a large number of open-
source and commercial frameworks that provide compa-
rable support for developing graphical editors, most no-
tably MetaEdit+ [25], GME [26] (and its Eclipse-based
GEMS branch), AToM3 [27], Graphiti (and its Spray

19 http://www-01.ibm.com/software/websphere
20 http://www.topcased.org/
21 http://www.eclipse.org/papyrus/
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extension22). In our view, comparing these frameworks
against Eugenia would quickly boil down to a compari-
son against GMF, which has been attempted before [8,
9]. This is beyond the scope of this paper, but a very
interesting direction for future work.

7 Conclusions and Further Work

In this paper we have presented an approach that em-
ploys metamodel annotations, model-to-model and in-
place model transformations to deliver productivity and
consistency benefits to the process of developing graph-
ical model editors with the EMF and GMF frameworks.
The tool that implements the proposed approach (Eu-
genia) has been well-received from the Eclipse modelling
community and there is strong evidence that it is exten-
sively used by both researchers and practitioners.

While Eugenia already greatly improves the usabil-
ity of GMF and lowers the entrance barrier for inex-
perienced developers, a significant amount of work re-
mains, including support for: sub-diagrams, multiple
(non-hierarchical) diagrams in the same file, and ad-
vanced property editing. Ongoing research seeks to ad-
dresses some of these issues in the MOSKitt23 and EEF24

projects. We aim to converge with these projects and
progressively extend Eugenia to support, in a usable and
intuitive manner, all of the features discussed above.

An additional interesting direction for further re-
search is to target alternative graphical editor frame-
works such as Graphiti, or web-based frameworks such
as UMLCanvas25.
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A List of Annotations Supported by Eugenia

The complete list of metamodel annotations currently
supported by Eugenia is given below. Features of GMF
that are not made available via annotations can be man-
aged using the polishing transformation mechanism. An
up-to-date reference guide to the annotations of Eugenia
is available on the Epsilon website26.

A.1 gmf.diagram

Denotes the root EClass for the editor. Only one (non-
abstract) EClass must be annotated as gmf.diagram.
The annotation accepts the following details.

– diagram.extension (optional): the file extension for
the diagram file;

– model.extension (optional): the file extension for the
domain (EMF) model;

– onefile (optional): specifies whether the domain
model and the diagram should be stored in the same
file;

– rcp (optional): specifies whether the editor is in-
tended to be part of a Rich Client Platform product;

– units (optional): the units for the diagram (e.g. Pix-
els).

A.2 gmf.node

Applies to an EClass and denotes that its instances
should appear on the diagram as nodes. The annotation
accepts the following details.

– figure (optional): the figure that will represent the
node. Can be set to rectangle, ellipse, rounded (de-
fault), svg (see svg.uri), polygon (see polygon.x and
polygon.y) or to the fully qualified name of a Java
class that implements the GMF Figure interface;

– border.color (optional): an RGB color (e.g. 255,0,0 )
that will be set as the node’s border color;

– border.style (optional): the style of the node’s border.
Can be set to solid (default), dash or dot ;

– border.width (optional): an integer that specifies the
width of the node’s border;

– color (optional): an RGB color that specifies the
node’s background color;

– label : the name(s) of the EAttribute(s) of the EClass,
the value(s) of which will be displayed as the label of
the node. If label.placement is set to none, this detail
is not required;

– label.icon (optional): if set to true (default) a small
icon appears on the left of the label;

– label.parser (optional): indicates the unqualified
name of the class that will parse the text entered by
the user into the label;

26 http://www.eclipse.org/epsilon/doc/
eugenia/
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– label.edit.pattern (optional): similar to label.pattern,
but only for editing the label;

– label.pattern (optional): if more than one attributes
are specified in the label, the format detail is neces-
sary to specify how their values will be rendered in
the label. The format follows the Java Message For-
mat style (e.g. {0} : {1}). The same pattern is used
for editing and viewing the label.

– label.view.pattern (optional): similar to label.pattern,
but only for viewing the label;

– label.placement (optional): defines the placement of
the label in relation to the node. Can be set to inter-
nal, external or none (in which case, no label will be
shown);

– label.text (optional): defines the default text to be
used when the EAttribute(s) in label are not set. By
default, it is set to the name of the EClass;

– label.readOnly (optional): a value of true denotes that
the label cannot be changed in the generated diagram
editor;

– margin (optional): inset margin (5 units by default)
for the node;

– phantom (optional): defines if the node is phantom
(true/false). Phantom nodes are particularly useful
in order to visualize containment references using
links instead of spatial containment27;

– polygon.x (when figure is set to polygon): list of
space-separated integers with the X coordinates of
the polygon used as figure;

– polygon.y (when figure is set to polygon): list of
space-separated integers with the Y coordinates of
the polygon used as figure;

– resizable (optional): a value of false disables all the
resize handles for the node;

– size (optional): a GMF dimension that will be used
as the node’s preferred size (e.g. 10,5 );

– svg.uri (when figure is set to svg): URI of the .svg
file to be used as figure for the node. For instance,
platform:/plugin/my.plugin/my.svg will access the
my.svg file in the my.plugin plugin.

A.3 gmf.link

Applies to EClasses that should appear on the diagram
as links, and to non-containment EReferences.

A.4 gmf.link (for EClasses)

The annotation accepts the following details.

– color (optional): the RGB color of the link;

27 For an example involving phantom nodes, the reader
can refer to http://eclipse.org/epsilon/doc/articles/eugenia-
phantom-nodes/

– incoming (optional): specifies whether the generated
editor should allow links to be created from target to
source. Defaults to false;

– label (optional): the names of the EAttributes of the
EClass the value of which will be displayed as the
label of the link;

– label.parser (optional): indicates the unqualified
name of the class that will parse the text entered by
the user into the label;

– label.text (optional): defines the default text to be
used when the EAttribute(s) in label are not set. By
default, it is set to the name of the EClass;

– source : the source non-containment EReference of
the link;

– source.constraint (optional): OCL assertion that
should be checked by the graphical editor when cre-
ating a link. For instance, self <> oppositeEnd
would forbid users for creating a link from a node to
itself (a self-loop): self is the source of the link, and
oppositeEnd is the target of the link;

– source.decoration (optional): the decoration of
the source end of the link. Can be set to none,
arrow, rhomb, filledrhomb, square, filledsquare,
closedarrow, filledclosedarrow, or the fully qual-
ified name of a Java class that implements the
org.eclipse.draw2d.RotatableDecoration interface;

– style (optional): the style of the link (see border.style
above);

– target : the target non-containment EReference of
the link;

– target.constraint (optional): See source.constraint ;
– target.decoration (optional): See source.decoration;
– width (optional): the width of the link.

A.5 gmf.link (for non-containment EReferences)

It accepts the following details:

– color (optional): the RGB color of the link;
– label (optional): The static text that will be displayed

as the label of the link. If no label is specified, the
name of the reference is displayed instead;

– label.text (optional): equivalent to label in this case;
– source.decoration (optional): See source.decoration

above;
– style (optional): the style of the link (see border.style

above);
– target.decoration (optional): As above;
– width (optional): the width of the link.

A.6 gmf.compartment (for containment EReferences)

Defines that the containment reference will create a com-
partment where model elements that conform to the type
of the reference can be placed. It accepts the following
details:
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– collapsible (optional): When set to false it prevents
the compartment from collapsing (default is true);

– layout (optional): The layout of the compartment.
Can be set to free (default) or list.

A.7 gmf.affixed (for containment EReferences)

Defines that the containment reference will create nodes
which are affixed to the edges of the containing node. An
example demonstrating affixed references is illustrated in
Section 5.

A.8 gmf.label (for EAttributes)

Defines additional labels for the containing EClass.
These labels will be displayed underneath the default
label for the containing EClass. It accepts the following
details:

– label.edit.pattern (optional): like label.pattern, but
only for editing the label;

– label.parser (optional): indicates the unqualified
name of the class that will parse the text entered by
the user into the label;

– label.pattern (optional): if more than one attributes
are specified in the label, the format detail is neces-
sary to show how their values will be rendered in the
label. The format follows the Java Message Format
style (e.g. 0 : 1 ). The same pattern is used for editing
and viewing the label;

– label.readOnly (optional): a value of true denotes that
the label cannot be changed in the generated diagram
editor;

– label.text (optional): defines the default text to be
used when the attribute is not set;

– label.view.pattern (optional): similar to label.pattern,
but only for viewing the label.

All gmf.node and gmf.link annotations also support
the following details which can be used to define the
appearance of the respective palette tools of the editor.

– tool.description (optional): the description of the cre-
ation tool.

– tool.large.bundle (optional): the bundle of the large
icon of the creation tool.

– tool.large.path (optional): the path of the large icon
of the creation tool.

– tool.name (optional): the name of the creation tool.
– tool.small.bundle (optional): the bundle of the small

icon of the creation tool.
– tool.small.path (optional): the path of the small icon

of the creation tool.
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22. Antonio Garćıa-Domı́nguez, Dimitrios S. Kolovos,
Louis M. Rose, Richard F. Paige, and Inmaculada
Medina-Bulo. EUnit: a unit testing framework for model
management tasks. In Proceedings of the 14th interna-
tional conference on Model driven engineering languages
and systems, MODELS’11, pages 395–409, Berlin, Hei-
delberg, 2011. Springer-Verlag.

23. Enrico Schnepel. GenGMF: Efficient editor development
for large meta models using the Graphical Modelling
Framework. In Proc. Special Interest Group on Model-
Driven Software Engineering (SIG-MDSE), 2008.

24. S. Temate, L. Broto, A. Tchana, and D. Hagimont.
A high level approach for generating model’s graphical
editors. In Information Technology: New Generations
(ITNG), 2011 Eighth International Conference on, pages
743–749, 2011.

25. MetaCase. Meta-Edit+. http://www.metacase.com.
26. Generic Modeling Environment. http://www.isis.

vanderbilt.edu/Projects/gme.
27. Juan De Lara, Hans Vangheluwe. Using AToM3 as a

Meta-CASE Tool. In Proc. 4th International Conference
on Enterprise Information Systems, pages 642–649, Ciu-
dad Real - Spain, April 2002.

26


