
Co-Simmate: Quick Retrieving All Pairwise Co-Simrank Scores

Weiren Yu, Julie A. McCann
Department of Computing,

Imperial College London, UK
{weiren.yu, j.mccann}@imperial.ac.uk

Abstract

Co-Simrank is a useful Simrank-like mea-
sure of similarity based on graph structure.
The existing method iteratively computes
each pair of Co-Simrank score from a dot
product of two Pagerank vectors, entailing
O(log(1/ǫ)n3) time to compute all pairs
of Co-Simranks in a graph withn nodes,
to attain a desired accuracyǫ. In this study,
we devise a model, Co-Simmate, to speed
up the retrieval of all pairs of Co-Simranks
to O(log2(log(1/ǫ))n

3) time. Moreover,
we show the optimality of Co-Simmate
among other hop-(uk) variations, and inte-
grate it with a matrix decomposition based
method on singular graphs to attain higher
efficiency. The viable experiments verify
the superiority of Co-Simmate to others.

1 Introduction

Many NLP applications require a pairwise graph-
based similarity measure. Examples are bilingual
lexicon extraction (Laws et al., 2010), sentiment
analysis (Scheible and Schütze, 2013), synonym
extraction (Minkov and Cohen, 2014), named en-
tity disambiguation (Alhelbawy and Gaizauskas,
2014), acronym expansion (Zhang et al., 2011).
Recently, Co-Simrank (Rothe and Schütze, 2014)
becomes an appealing graph-theoretical similarity
measure that integrates both features of Simrank
(Jeh and Widom, 2002) and Pagerank (Berkhin,
2005). Co-Simrank works by weighing all the
number of connections between two nodes to eval-
uate how similar two nodes are. The intuition be-
hind Co-Simrank is that “more similar nodes are
likely to be pointed to by other similar nodes”.

Co-Simrank is defined in a recursive style:

S = cATSA+ I, (1)

whereS is the exact Co-Simrank matrix, A is the

column-normalised adjacency matrix of the graph,
c is a decay factor, andI is an identity matrix.

The best-known method by (Rothe and Schütze,
2014) computes a single element ofS iteratively
from a dot product〈∗, ∗〉 of two Pagerank vectors:

Sk(a, b) = ck〈pk(a),pk(b)〉+ Sk−1(a, b) (2)

wherepk(a) is a Pagerank vector, defined as

pk(a) = ATpk−1(a) with p0(a) = I(∗, a) (3)

This method is highly efficient when only a small
fraction of pairs of Co-Simranks need computing
because there is no need to access the entire graph
for computing only a single pair score. However,
partial pairs retrieval is insufficient for many real-
world applications (Zhou et al., 2009; Yu et al.,
2012a; Zwick, 2002; Leicht et al., 2006) which re-
quire all-pairs scores. Let us look at two examples.
a) Co-Citation Analysis.In a co-citation network,
one wants to retrieve the relevance betweenany
two given documentsat any momentbased on
their references. To answer such anad-hocquery,
quantifying scores of all document-pairs provides
a comprehensive way to show where low and high
relevance of pairwise documents may exist (Li et
al., 2010; Yu et al., 2014; Haveliwala, 2002).
b) Water Burst Localization.In a water network,
nodes denote deployed pressure sensor locations,
and edges are pipe sections that connect the nodes.
To determine the burst location, one needs to eval-
uate “proximities” of all pairs of sensor nodes first,
and then compare all these “proximities” with the
difference in the arrival times of the burst transient
at sensor locations, to find the sensor node nearest
to the burst event. (Srirangarajan and Pesch, 2013;
Srirangarajan et al., 2013; Stoianov et al., 2007)

Hence, the retrieval of all pairwise Co-Simranks
is very useful in many applications. Unfortunately,
when it comes toall pairs computation ofS(∗, ∗),
the way of (2) has no advantage over the naive way

Sk = cATSk−1A+ I with S0 = I (4)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/78900099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

as both entailO(log(1/ǫ)n3) time to compute all
pairs of Co-Simranks to attain desired accuracyǫ.

The complexityO(log(1/ǫ)n3) has two parts:
The first partO(n3) is for matrix multiplications
(ATSk−1A) at each step. A careful implementa-
tion, e.g.,partial sums memoisation (Lizorkin et
al., 2010) or fast matrix multiplications (Yu et al.,
2012b),1 can optimise this part further toO(dn2)
or O(nlog2 7), with d the average graph degree.
The second partO(log(1/ǫ)) is the total number
of steps required to guarantee a given accuracyǫ,
because, as implied by (Rothe and Schütze, 2014),

|Sk(a, b) − S(a, b)| ≤ ck+1. ∀a, b, ∀k (5)

To the best of our knowledge, there is a paucity of
work on optimising the second partO(log(1/ǫ)).
Yu et al. (2012b) used a successive over-relaxation
(SOR) method to reduce the number of steps for
Simrank, which is also applicable to Co-Simrank.
However, this method requires a judicious choice
of an internal parameter (i.e., relaxation factorω),
which is hard to determine a-priori. Most recently,
Yu et al. (2015) propose an exponential model to
speed up the convergence of Simrank:

S̄0 = exp(−c) · I, dS̄t/dt = AT · S ·A.

However,̄S andS do not produce the same results.
Thus, this exponential model, if used to compute
Co-Simrank, will lose some ranking accuracy.

Contributions. In this paper, we propose an effi-
cient method, Co-Simmate, that computes all pairs
of Co-Simranks in justO(log2(log(1/ǫ))n

3) time,
without any compromise in accuracy. In addition,
Co-Simmate is parameter-free, and easy to imple-
ment. It can also integrate the best-of-breed matrix
decomposition based method by Yu and McCann
(2014) to achieve even higher efficiency.

2 Co-Simmate Model

First, we provide the main idea of Co-Simmate.
We notice that Co-Simrank solutionS in (1) is

expressible as a matrix series:

S = I+ cATA+ c2(AT)
2
A2

+ c3(AT)
3
A3 + c4(AT)

4
A4 + · · ·

(6)

The existing iterative method (4) essentially uses
the following association to compute (6):

S =

(

cAT

=S2
︷ ︸︸ ︷(

cAT
(
cATA+ I

)

︸ ︷︷ ︸

=S1

A+ I
)

A+ I

)

+ · · · (7)

1These Simranks methods also suit Co-Simranks.

The downside of this association is that the result-
ing Sk−1 of the last step can be reused onlyonce
to computeSk. Thus, afterk iterations,Sk in (4)
grasps only the firstk-th partial sums ofS in (6).

To speed up the computation, we observe that
(6) can be reorganised as follows:

S =

(

I+ cA
T
A

)

+

(

c
2(AT)

2
A

2 + c
3(AT)

3
A

3

)

+

+

(

c
4(AT)

4
A

4 + · · ·+ c
7(AT)

7
A

7

)

+ · · ·

=

(

I+ cA
T
A

)

+

(

c
2(AT)

2
(I+ cA

T
A)A2

)

+

+

(

c
4(AT)

4
(

I+ cA
T
A+ · · ·+ c

3(AT)
3
A

3
)

A
4

)

+ · · ·

Thereby, we can derive the following novel associ-
ation, referred to as Co-Simmate, to compute (6):

S =
(

=R1
︷ ︸︸ ︷

(I+ cATA) + (cAT)
2

=R1
︷ ︸︸ ︷

(I+ cATA)A2
)

︸ ︷︷ ︸

=R2

+ (8)

(
cAT

)4
((

I+ cATA
)
+

(
cAT

)2(
I+ cATA

)
A2

)

︸ ︷︷ ︸

=R2

A4 + · · ·

There are two advantages of our association: one
is that the resultingRk−1 from the last step can
be reusedtwice to computeRk. Hence,Rk can
grasp the first(2k−1)-th partial sums2 of S in (6).
Another merit is thatA2k can be obtained from
the result of squaringA2k−1

, e.g.,A4 = (A2)2.
With these advantages, Co-Simmate can compute
all pairs of scores much faster.

Next, let us formally introduce Co-Simmate:

Definition 1. We callRk a Co-Simmate matrix at
k-th step if it is iterated as

R0 = I, A0 = A

Rk+1 = Rk + c2
k

(Ak
TRkAk)

Ak+1 = Ak
2

(9)

By successive substitution in (9), one can verify
that limk→∞Rk is the exact solution ofS in (6).
More precisely, the following theorem shows that,
at stepk, how many first terms ofS in (6) can be
grasped byRk, showing the fast speedup of (9).

Theorem 1. LetRk be the Co-Simmate matrix in
(9), andSk the Co-Simrank matrix in(4). Then,

Rk = S2k−1 ∀k = 0, 1, 2, · · · (10)

2This amount of the first partial sums will be proved later.

S1 S2 S3
S4 S5

S6 S7

S0 S1

S2 S3 S4 S5 S6

R2

A
T

A

A
T

A

A
T

A

A
T

A

A
T

A

A
T

A

A
T

A

((AT)2)2

(A2)2

S0

R1
R3

R0 R1

A
T

A

R0

(AT)2

A
2

R2

R1

(AT)2

A
2 R2

((AT)2)2

(A2)2
R2

((AT)2)2

(A2)2
R2

((AT)2)2

(A2)2

Figure 1: Co-Simmate speeds up Co-Simrank by aggregating more first terms ofS in (6) at each step

Proof. Successive substitution in (4) produces

Sk =
∑k

i=0 c
i(Ai)

T
Ai (11)

Thus, proving (10) is equivalent to showing that

Rk =
∑2k−1

i=0 ci(Ai)
T
Ai (12)

To show (12), we will use induction onk.

1. Fork = 0, we haveR0 = I = c0(A0)
T
A0.

2. Whenk > 0, we assume that (12) holds fork,
and want to prove that (12) holds fork + 1.

FromAk+1 = Ak
2 andA0 = A follows that

Ak = Ak−1
2 = Ak−2

22 = · · · = A2k (13)

PluggingRk (12) andAk (13) into (9) yields

Rk+1 = {using (12) and (13)}

= Rk + c2
k(
A2k

)T
(∑2k−1

i=0
ci(Ai)

T
Ai

)

A2k

= Rk +
∑2k−1

i=0
ci+2k(Ai+2k)

T
Ai+2k

= Rk +
∑2k−1+2k

j=2k
cj(Aj)

T
Aj

=
∑2k+1

−1

j=0
cj(Aj)

T
Aj

Lastly, coupling (11) and (12) concludes (10).

Theorem 1 implies that, at each stepk,Rk in (9)
can grasp the first(2k − 1)-th terms ofS, whereas
Sk in (4) can grasp only the firstk-th terms ofS.
Thus, given the number of stepsK, Co-Simmate
is always more accurate than Co-Simrank because
RK is exponentially closer toS thanSK to S.

Convergence Rate.We next provide a quantita-
tive result on how closerRk is toS thanSk to S.

Theorem 2. For any given stepk, the difference
betweenRk andS can be bounded by

|Rk(a, b) − S(a, b)| ≤ c2
k

, ∀a, b (14)

Proof. The Co-Simrank result in (5) implies that

|S2k−1(a, b)− S(a, b)| ≤ c2
k

, ∀a, b

Plugging (10) into this inequality yields (14).

Theorem 2 implies that, to attain a desired accu-
racyǫ, Co-Simmate (9) takes exponentially fewer
steps than Co-Simrank (4) since the total number
of steps required forRK , as implied by (14), is

K = max{0, ⌈log2 logc ǫ⌉+ 1},

in contrast to the⌈logc ǫ⌉ steps required forSK .

Total Computational Cost. Though Co-Simmate
takes fewer steps than Co-Simrank for a desiredǫ,
in each step Co-Simmate (9) performs one more
matrix multiplication than Co-Simrank (4). Next,
we compare their total computational time.

Theorem 3. To guarantee a desired accuracyǫ,
the total time of Co-Simmate(9) is exponentially
faster than that of Co-Simrank(4).

Proof. For k = 1, both Co-Simmate (9) and Co-
Simrank (4) take 2 matrix multiplications.

Fork > 1, Co-Simmate (9) takes 3 matrix mul-
tiplications (2 forAT

kRkAk and 1 forA2
k), whilst

Co-Simrank (4) takes 2 (only forAT
k SkAk).

Let |M| be the number of operations for one
matrix multiplication. Then, for Co-Simmate (9),

(total # of operations forRk) = 3k|M|,

whereas for Co-Simrank (4), by Theorem 1,

(total # of operations forSk) = 2(2k − 1)|M|.

Since3k|M| ≤ 2(2k − 1)|M|, ∀k = 2, 3, · · · , we
can conclude that the total time of Co-Simmate is
exponentially faster than that of Co-Simrank.

Example. Figure 1 pictorially visualises how Co-
Simmate accelerates Co-Simrank computation by
aggregating more first terms ofS in (6) each step.

Algorithm 1: Co-Simmate on Singular Graphs

Input : A – column-normalised adjacency matrix,
c – decay factor, ǫ – desired accuracy.

1 DecomposeA s.t. [Vr,H
T

r]← Gram-Schmidt(A).
2 ComputeP← H

T

r Vr.
3 InitialiseK ← max{0, ⌈log2 logc

ǫ⌉ + 1}.
4 InitialiseS0 ← Ir, P0 ← P.
5 for k ← 0, 1, · · · ,K − 1 do
6 ComputeSk+1 ← c2

k

(Pk)
T
Sk(Pk) + Sk.

7 ComputePk+1 ← (Pk)
2.

8 return S← cHrSKH
T

r + I.

At k-th step, Co-SimrankSk connects only two
newhop-1paths with the old retrieved pathsSk−1,
whereas Co-SimmateRk connects two newhop-
(2k) paths (by squaring the old hop-(2k−1) paths)
with the old retrieved pathsRk−1. Consequently,
in each step of Co-Simrank, Co-Simmate is expo-
nential steps faster than Co-Simrank. Moreover,
the speedup is more obvious ask grows.

Optimality of Co-Simmate. To computeS in (6),
besides the prior association methods (7) and (8),
the following association can also be adopted:

S =

=T1
︷ ︸︸ ︷(

I+ cATA+ c2
(
AT

)2
A2

)

+ (15)

c3
(
AT

)3
(

I+ cATA+ c2
(
AT

)2
A2

)

︸ ︷︷ ︸

=T1

A3 + · · ·

More generally, we can write the following model
that covers (8) and (15) as special cases:

R
(u)
0 = I, A0 = A

R
(u)
k+1 = R

(u)
k + cu

k

·AT
k ·R

(u)
k ·Ak

+ c2·u
k

· (Ak
2)T ·R

(u)
k

·Ak
2 + · · ·+

+ c(u−1)·uk

· (Ak
u−1)T ·R

(u)
k ·Ak

u−1

Ak+1 = Ak
u (u = 2, 3, · · ·)

R
(u)
k is a hop-(uk) Co-Simmate matrixat stepk.

R
(u)
k becomes Co-SimmateRk in (8) whenu = 2;

and reduces toTk in (15) whenu = 3. For allu,
it is easy to verify thatlimk→∞R

(u)
k = S. Below,

we show that Co-Simmate (8)(u = 2) is optimal.

Theorem 4. To attain a desired accuracyǫ, the to-
tal time of Co-Simmate(8) is minimum among all
hop-(uk) Co-Simmate modelsR(u)

k (u = 2, 3, · · ·).

Proof. Similar to Theorem 1, we can show that

|R
(u)
k

(a, b)− S(a, b)| ≤ cu
k

, ∀a, b, ∀u (16)

Thus, givenǫ, the total number of steps forR(u)
K is

K = max{0, ⌈logu logc ǫ⌉+ 1}.

For each stepk, for hop-(uk) Co-SimmateR(u)
k ,

(# of operations)= ((u− 1) +
∑u−2

i=0 i)|M| = (u−1)u
2 |M|.

Therefore, the total time of computingR(u)
k is

O(max{0, ⌈logu logc ǫ⌉+ 1}(u− 1)u|M|).

This complexity is increasing withu = 2, 3, · · · .
Thus, Co-Simmate (8)(u = 2) is minimum.

Incorporate Co-Simmate into Singular Graphs.
Co-Simmate (9) can also be combined with other
factorisation methods,e.g.,Sig-SR, a Co-Simrank
algorithm proposed by (Yu and McCann, 2014),
to speed up all pairs of Co-Simrank computation
fromO(rn2+Kr3) toO(rn2+(log2K)r3) time
further on a singular graph with rankr for K steps.
The enhancedSig-SR is shown in Algorithm 1.

3 Experiments

3.1 Experimental Settings

Datasets.We use both real and synthetic datasets.
Three real graphs (Twitter, Email, Facebook) are
taken from SNAP (Leskovec and Sosič, 2014).

1) Twitter is a who-follows-whom social graph
crawled from the entire Twitter site. Each node is
a user, and each edge represents a social relation.

2) Email is an Email communication network
from Enron. If an addressi sent at least one email
to addressj, there is a link fromi to j.

3) FB contains ‘circles’ (or ‘friends lists’) from
Facebook. This dataset is collected from the sur-
vey participants using the Facebook app, including
node features (profiles), circles, and ego networks.

The statistics of these datasets are as follows:
Datasets # edges # nodes ave degree
Twitter 1,768,149 81,306 21.70
Email 183,831 36,692 5.01
FB 88,234 4,039 21.84

To build synthetic data, we use Boost toolkit
(Lee et al., 2001).We control the number of nodes
n and edgesm to follow densification power laws
(Leskovec et al., 2005; Faloutsos et al., 1999).
Baselines.We compare our Co-Simmate with 1)
Ite-Mat (Rothe and Schütze, 2014), a Co-Simrank
method using the dot product of Pagerank vectors.
2) K-Sim (Kusumoto et al., 2014), a linearized
method modified to Co-Simrank. 3)Sig-SR (Yu
and McCann, 2014), a SVD Co-Simrank method.

All experiments are on 64bit Ubuntu 14.04 with
Intel Xeon E2650 2.0GHz CPU and 16GB RAM.

10
−2

10
−1

10
0

0

5

10

15

20

accuracy (ǫ)

#
of

st
ep

s
(k
)

Simmate
Simrank

(a) Rate of Convergence
(onFB dataset,c = 0.8)

Twitter Email FB

10
2

10
4

10
6

T
im

e
(s
ec
)

Simmate
Sig−SR
Ite−Mat
K−Sim

(b) Total Computational Time
(on three real datasets,c = 0.8)

ǫ
c = 0.6 c = 0.7 c = 0.8

SM SR SM SR SM SR
0.1 3 4 3 6 4 10
0.01 4 9 4 12 5 20
0.001 4 13 5 19 5 30
0.0001 5 18 5 25 6 41
0.00001 5 22 6 32 6 51

(c) Effect of Damping Factorc on Iterationsk (onFB)

4K 5K 6K 7K 8K 9K 10K
0

500

1000

1500

2000

2500

n

T
im

e
(s
ec
)

Simmate
Simrank (Ite−Mat)

(d) Scalabilityw.r.t. # nodes
(on 7 synthetic datasets)

2 3 4 5 6
0

50

100

150

200

u

T
im

e
(s
ec
)

hop-(uk) Simmate

3

3

6

4 3
k

(e) Effect of Hop-(uk)
(onFB dataset,c = 0.8)

Figure 2: Compare Co-Simmate with Baselines

3.2 Experimental Results

Exp-I. Convergence Rate.We compare the num-
ber of stepsk needed for Co-Simmate and Co-
Simrank (Ite-Mat) to attain a desired accuracyǫ on
Twitter, Email, FB. The results on all the datasets
are similar. Due to space limits, Figure 2(a) only
reports the result onFB. We can discern that, when
ǫ varies from 0.01 to 1,k increases from 1 to 5
for Co-Simmate, but from 1 to 20 for Co-Simrank.
The fast convergence rate of Co-Simmate is due to
our model thattwicereusesRk−1 of the last step.

Exp-II. Total Computational Time. Figure 2(b)
compares the total computational time of Co-
Simmate with 3 best-known methods on real data.
The result shows Co-Simmate runs 10x, 5.6x, 4.3x
faster thanK-Sim, Ite-Mat, Sig-SR, respectively.
This is because 1)K-Sim is efficient only when a
fraction pair of scores are computed, whereas Co-
Simmate can efficiently handle all pairs scores, by
twice sharingRk−1 and repeated squaringA2k−1

.
2) Co-Simmate grasps exponential new terms ofS

per step, butIte-Mat grasps just 1 new term ofS.
3) Sig-SR does not adopt association tricks in the
subspace, unlike our methods that integrate (9).

Exp-III. Effect of Damping Factor c. Using real
datasets (Twitter, Email, FB), we next evaluate the
effect of damping factorc on the number of itera-
tionsk to guarantee a given accuracyǫ. We varyǫ
from 0.1 to 0.00001 andc from 0.6 to 0.8, the re-
sults ofk on all the datasets are similar. For the in-
terests of space, Figure 2(c) tabularises only the re-
sults onFB, where ‘SM’ columns list the number
of iterations required for Co-Simmate, and ‘SR’
columns lists that for Co-Simrank. From the re-
sults, we can see that, for any givenǫ andc, the
number of iterations for Co-Simmate is consis-
tently smaller than that for Co-Simrank. Their gap
is more pronounced whenǫ becomes smaller or
c is increased. This is because, at each iteration,
Co-Simmate can grasp far more first terms ofS

than Co-Simrank. Thus, for a fixed accuracy, Co-
Simmate requires less iterations than Co-Simrank.
This is consistent with our analysis in Theorem 2.

Exp-IV. Scalability. By using synthetic datasets,
we fix ǫ = 0.0001 and varyn from 4,000 to
10,000. Figure 2(d) depicts the total time of Co-
Simmate andIte-Mat. We can notice that, asn
grows, the time of Co-Simmate does not increase
so fast as Co-Simrank. The reason is that the num-
ber of steps of Co-Simmate is greatly cut down by
twiceRk−1 sharing andA2k−1

memoisation.

Exp-V. Effect of Hop-uk. Finally, we test the im-
pact ofu on the total time of our hop-(uk) Co-
Simmate variations on real datasets. Due to sim-
ilar results, Figure 2(e) merely reports the results
on FB. It can be observed that, asu grows from
2 to 6, the total number of steps for hop-(uk) Co-
Simmate decreases, but their total time still grows.
This is because, in each step, the cost of hop-(uk)
Co-Simmate is increasing withu. Thus, the lowest
cost is Co-Simmate whenu = 2.

4 Conclusions

We propose an efficient algorithm, Co-Simmate,
to speed up all pairs Co-Simranks retrieval from
O(log(1/ǫ)n3) to O(log2(log(1/ǫ))n

3) time, to
attain a desired accuracyǫ. Besides, we integrate
Co-Simmate withSig-SR on singular graphs to
attain higher efficacy. The experiments show that
Co-Simmate can be 10.2x faster than the state-of-
the-art competitors. As future work, we will incor-
porate our partial-pairs Simrank (Yu and McCann,
2015) into partial-pairs Co-Simmate search.

Acknowledgement.This research is supported by
NEC Smart Water Network research project.

References

Ayman Alhelbawy and Robert J. Gaizauskas. 2014.
Graph ranking for collective named entity disam-
biguation. InProceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(ACL 2014), pages 75–80.

Pavel Berkhin. 2005. Survey: A survey on PageRank
computing.Internet Mathematics, 2(1):73–120.

Michalis Faloutsos, Petros Faloutsos, and Christos
Faloutsos. 1999. On power-law relationships of
the internet topology. InProceedings of the Confer-
ence on Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIG-
COMM 1999), pages 251–262.

Taher H Haveliwala. 2002. Topic-sensitive PageRank.
In Proceedings of the 11th International Conference
on World Wide Web (WWW 2002), pages 517–526.
ACM.

Glen Jeh and Jennifer Widom. 2002. SimRank: A
measure of structural-context similarity. InProceed-
ings of the 8th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining
(SIGKDD 2002), pages 538–543.

Mitsuru Kusumoto, Takanori Maehara, and Ken-ichi
Kawarabayashi. 2014. Scalable similarity search
for SimRank. InProceedings of the 2014 ACM SIG-
MOD International Conference on Management of
Data (SIGMOD 2014), pages 325–336.

Florian Laws, Lukas Michelbacher, Beate Dorow,
Christian Scheible, Ulrich Heid, and Hinrich
Schütze. 2010. A linguistically grounded graph
model for bilingual lexicon extraction. InPro-
ceedings of the 23rd International Conference on
Computational Linguistics (COLING 2010, Poster),
pages 614–622.

Lie-Quan Lee, Andrew Lumsdaine, and Jeremy G Siek.
2001. The boost graph library.http://www.
boost.org/.

E. A. Leicht, Petter Holme, and M. E. J. Newman.
2006. Vertex similarity in networks.Physical Re-
view E, 73(2):026120.

Jure Leskovec and Rok Sosič. 2014. SNAP: A gen-
eral purpose network analysis and graph mining li-
brary in C++.http://snap.stanford.edu/
snap, June.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos.
2005. Graphs over time: Densification laws, shrink-
ing diameters and possible explanations. InPro-
ceedings of the 11th ACM SIGKDD International
Conference on Knowledge Discovery in Data Min-
ing (SIGKDD 2005), pages 177–187. ACM.

Cuiping Li, Jiawei Han, Guoming He, Xin Jin, Yizhou
Sun, Yintao Yu, and Tianyi Wu. 2010. Fast compu-
tation of SimRank for static and dynamic informa-
tion networks. InProceedings of the 13th Interna-
tional Conference on Extending Database Technol-
ogy (EDBT 2010), pages 465–476.

Dmitry Lizorkin, Pavel Velikhov, Maxim N. Grinev,
and Denis Turdakov. 2010. Accuracy estimate and
optimization techniques for SimRank computation.
The VLDB Journal (The International Journal on
Very Large Data Bases), 19(1):45–66.

Einat Minkov and William W. Cohen. 2014. Adap-
tive graph walk-based similarity measures for parsed
text. Natural Language Engineering, 20(3):361–
397.

Sascha Rothe and Hinrich Schütze. 2014. CoSim-
Rank: A flexible & efficient graph-theoretic simi-
larity measure. InProceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (ACL 2014), pages 1392–1402.

Christian Scheible and Hinrich Schütze. 2013. Senti-
ment relevance. InProceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (ACL 2013), pages 954–963.

Seshan Srirangarajan and Dirk Pesch. 2013. Source
localization using graph-based optimization tech-
nique. InIEEE Wireless Communications and Net-
working Conference (WCNC 2013), pages 1127–
1132.

Seshan Srirangarajan, Michael Allen, Ami Preis, Mu-
dasser Iqbal, HockBeng Lim, and AndrewJ. Whittle.
2013. Wavelet-based burst event detection and lo-
calization in water distribution systems.Journal of
Signal Processing Systems, 72(1):1–16.

Ivan Stoianov, Lama Nachman, Steve Madden, Timur
Tokmouline, and M Csail. 2007. PIPENET: A
wireless sensor network for pipeline monitoring. In
The 6th International Symposium on Information
Processing in Sensor Networks (IPSN 2007), pages
264–273.

Weiren Yu and Julie A. McCann. 2014. Sig-SR: Sim-
Rank search over singular graphs. InProceedings
of the 37th ACM SIGIR International Conference on
Research & Development in Information Retrieval
(SIGIR 2014), pages 859–862.

Weiren Yu and Julie A McCann. 2015. Efficient
partial-pairs SimRank search on large networks.
Proceedings of the VLDB Endowment (PVLDB
2015), 8(5):569–580.

Weiren Yu, Xuemin Lin, Wenjie Zhang, Ying Zhang,
and Jiajin Le. 2012a. SimFusion+: Extending Sim-
Fusion towards efficient estimation on large and dy-
namic networks. InProceedings of the 35th ACM
SIGIR International Conference on Research & De-
velopment in Information Retrieval (SIGIR 2012),
pages 365–374.

Weiren Yu, Wenjie Zhang, Xuemin Lin, Qing Zhang,
and Jiajin Le. 2012b. A space and time efficient
algorithm for SimRank computation.World Wide
Web, 15(3):327–353.

Weiren Yu, Xuemin Lin, and Wenjie Zhang. 2014.
Fast incremental SimRank on link-evolving graphs.
In Proceedings of the 30th IEEE International Con-
ference on Data Engineering (ICDE 2014), pages
304–315.

Weiren Yu, Xuemin Lin, Wenjie Zhang, and Julie A.
McCann. 2015. Fast all-pairs SimRank assess-
ment on large graphs and bipartite domains.IEEE
Transactions on Knowledge and Data Engineering
(TKDE), 27(7):1810–1823.

Wei Zhang, Yan Chuan Sim, Jian Su, and Chew Lim
Tan. 2011. Entity linking with effective acronym
expansion, instance selection and topic modeling. In
Proceedings of the 22nd International Joint Confer-
ence on Artificial Intelligence (IJCAI 2011), pages
1909–1914.

Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. 2009.
Graph clustering based on structural / attribute sim-
ilarities. Proceedings of the VLDB Endowment
(PVLDB), 2(1):718–729.

Uri Zwick. 2002. All pairs shortest paths using bridg-
ing sets and rectangular matrix multiplication.Jour-
nal of the ACM (JACM), 49(3):289–317.

