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Abstract

Recommender system is a specific type of intelligent systems, which exploits historical user ratings

on items and/or auxiliary information to make recommendations on items to the users. It plays a critical

role in a wide range of online shopping, e-commercial services and social networking applications.

Collaborative filtering (CF) is the most popular approaches used for recommender systems, but it suffers

from complete cold start (CCS) problem where no rating record are available and incomplete cold start

(ICS) problem where only a small number of rating records are available for some new items or users in

the system. In this paper, we propose two recommendation models to solve the CCS and ICS problems

for new items, which are based on a framework of tightly coupled CF approach and deep learning neural

network. A specific deep neural network SADE is used to extract the content features of the items. The

state of the art CF model, timeSVD++, which models and utilizes temporal dynamics of user preferences

and item features, is modified to take the content features into prediction of ratings for cold start items.

Extensive experiments on a large Netflix rating dataset of movies are performed, which show that our

proposed recommendation models largely outperform the baseline models for rating prediction of cold

start items. The two proposed recommendation models are also evaluated and compared on ICS items,

and a flexible scheme of model retraining and switching is proposed to deal with the transition of items

from cold start to non-cold start status. The experiment results on Netflix movie recommendation show

the tight coupling of CF approach and deep learning neural network is feasible and very effective for

cold start item recommendation. The design is general and can be applied to many other recommender

systems for online shopping and social networking applications. The solution of cold start item problem
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can largely improve user experience and trust of recommender systems, and effectively promote cold

start items.

Keywords: Recommendation System; Data Mining; Deep Learning Neural Network; Collabo-

rative Filtering; Cold Start Problem

I. INTRODUCTION

Recommendation systems plays a central role for many online applications and e-commercial

services, such as social-networking, recommendation of products such as films, music and articles

(Shi, Larson, & Hanjalic, 2014; Campos, Dez, & Cantador, 2014; Linden, Smith, & York,

2003). Many big companies such as Amazon, eBay and Netflix have adopted recommendation

techniques to their systems to estimate the potential preferences of customers and recommend

relevant products or items to the user. Recommendation performances have huge impact on the

commercial success of these companies in terms of revenue and user satisfactory.

According to the type of data being collected and the ways of using them in recommen-

dation systems, the approaches for recommendation can be classified as content-based (CB),

collaborative filtering (CF) and hybrid one (Koren, Bell, & Volinsky, 2009).

CB filtering is widely used for recommendation systems design, which utilizes the content

of items to create features and attributes to match user profiles. Items are compared with items

previous liked by the users and the best matched items are then recommended. One major issue

of CB filtering approach is that RS needs to learn user preferences for some types of items and

apply these for other types of items.

CF approach is the most popular approach for recommendation systems design. It utilizes a

large amount of data collected from user behavior in the past and predicts which items users will

like. It does not need to analyze the content of the items. Instead, it relies on the relationship

between users and items, which are typically encoded in a rating feedback matrix with each

element representing a specific user rating on a specific item. An illustration of the CF based

recommendation is shown in Fig. 1. The left of Fig. 1 shows a relationship graph of 3 users

and 4 movies, which are connected by 5 edges. Each edge is associated with a rating of 1 to 5

stars, representing the level of user preference of the connected movie. The matrix in the right

of Fig. 1 is generated according to the relationship graph. The general CF recommendation task

is to predict the missing ratings (such as those represented by the symbol “?” in the matrix) by

given users or for given items by data mining and exploring the user-item rating matrix.
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Fig. 1. A simplified representation for movie CF recommender systems.

However it is widely known that CF approach suffers from sparsity and cold start (CS)

problems. In the rating matrix only a small percentage of elements get values. Even the most

popular items may have only a few ratings. For example, in a large Netflix rating dataset provided

for Netflix Prize competition (Bennett, & Lanning, 2007), there are about 100 million ratings

given by over 480,000 users to about 18,000 movies. There is only around 1% of rating matrix

elements receiving ratings. With a sparse rating matrix it is very challenging to estimate the

relationship between items and users and make effective recommendation. Another well-known

problem for CF approach is the CS problem, which can happen on new users or new items. CF

approach requires a large number of ratings from a user or ratings on an item for an effective

recommendation, which will not work for new users, new items or both due to few ratings

available in the system. In addition, CS problem can be divided into CCS problem and ICS

problem by whether number of rating records is zero or not. Generally, the sparsity of ratings

for CS items is higher than 85% (Zhang et al., 2014), and the sparsity of ratings for CCS items

is 100%. Fig. 2 presents a simple illustration of the classification of CCS, ICS and non-CS items

in recommendation systems.

The hybrid approach is one that combines CB filtering approach and CF approach attempting

to overcome their shortcome and provide a more efficient result (Agarwal, & Chen, 2009; Chen

et al., 2012; Hu et al., 2013). It is noted that the majority of the works on the CS recommendation

problem are trying to provide recommendation of items that may be interesting to given users.

Although a lot of works have been done with the hybrid approach to solve the sparsity and cold

start problems, recommendation of CS items is still an open research issue.

In this paper we investigate the CS recommendation problem of providing prediction on the

popularity of given CS items to the general users, and present a solution to predict the popularity
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Fig. 2. Illustration of non-CS item (a), ICS item (b) and CCS item (c), where
√

indicates a known rating.

of CCS items and ICS items. There are two main motivations for this work:

• CS items need to be recommended to get ratings for improved recommendation and they

should be accurately recommended to give users better experiences with the recommendation

systems. Otherwise the CS items may go to an undesirable cycle of receiving no ratings.

• The estimated ratings for CS items or items that are still under planning can give a measure

of popularity of such items even before they are put into market (such as books, movies, etc),

therefore help make right decisions on product planning and sale strategies. The accuracy

of such estimation is critically important for this type of purposes.

We design two integrated recommendation models, in which item features are learned from

a deep learning architecture SDAE (Vincent, Larochelle, Lajoie, Bengio, & Manzagol, 2010)

using the descriptions of items retrieved online, then these features are exploited and integrated

into the timeSVD++ CF model (Koren, 2010). timeSVD++ is one of the best performing CF

models which tracks time changing behavior in the data and takes the temporal dynamics into

account.

Our contributions are summarized as follows.

• We proposed a general framework of integrating the CF approach and machine learning

algorithms to improve recommendation performance for CS items. In our proposed models,

content features extracted from content descriptions (such as movie plots) by deep learning
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neural networks are used as the key item factor vectors in the recommendation model

for CCS items and approximated by the item factor vectors in the model for ICS items.

The content features are not only used loosely to determine item similarity as done in the

existing hybrid approaches for cold start items, but also become key component of the

recommendation models, which affects both the training of the models and prediction of

the unknown ratings for CS items.

• The framework of integrating the CF approach and machine learning algorithms for CS item

recommendation is general. Various CF approaches and machine learning algorithms can

be used for general recommender systems. The key integration point is on the extraction

of item features by machine learning algorithms and embedding the item features into the

CF recommendation models.

• Based on the general framework specific system design and models are presented, in which

the state of the art CF model, timeSVD++ and an advanced deep learning neural network

model, SADE, are used for CS items recommendation. Application of the models to Netflix

movie recommendation with nearly 100 million ratings was investigated. The experiments

results showed that tight coupling of the CF approach and content based approach for

recommendation is feasible and very effective. For example, the rating prediction RMSE

of the proposed model IRCD-CCS for CCS item recommendation is 0.045 lower than the

second best performing approach, which represents a significant performance improvement

in the research field of recommendation system design.

• In addition to the design and evaluation of recommendation models for CCS items and

ICS items separately, we also compared the performance of IRCD-CCS model and IRCD-

ICS model on rating prediction for ICS items. In practice, recommendation systems keep

introducing new items into the systems over time. If a newly introduced item is a CCS

item, the CF model can not provide rating prediction for it. If the item is an ICS item,

the CF models may not give good recommendation. It may be beneficial to apply a CCS

recommendation model for ICS item rating prediction. We propose a scheme of switching

recommendation models for ICS items and retraining the models to deal with the practical

issues of transition of item status from CS to non-CS. To the best of our knowledge, this

practical issue has not been studied before in the literature.

The remainder of the paper is organized as follows. Section II describes the related works.
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Section III presents the studied problem and the proposed recommendation models. Section IV

presents the evaluation method and experiment results. Finally Section V concludes the paper.

II. RELATED WORK

Technically, matrix factorization (MF) method has been applied to CF by a variety of works.

MF focuses on factorizing the rating matrix into low-dimension user latent vectors and item latent

vectors. Training such a model can be effectively solved by using SGD (Koren, Bell, & Volinsky,

2009) or alternating least squares (ALS) (Zhou, Wilkinson, Schreiber, & Pan, 2008) to minimize

the sum-squared distance. Authors (Salakhutdinov, & Mnih, 2007) introduce the probabilistic

matrix factorization (PMF) that scales linearly on large data sets and outperforms standard

singular value decomposition (SVD) models. Based on PMF, several variants and generalization

are proposed like Bayesian PMF (Salakhutdinov, & Mnih, 2008), generalized PMF (Shan, &

Banerjee, 2010).

As traditional CF algorithms only rely on the relations between users and items, which are

typically encoded in a U-I matrix, the recommendation performance on sparsity problem and CS

problem is largely limited. A large number of approaches incorporating additional information

sources beyond U-I matrix have been developed to overcome the problems. Particularly auxiliary

information of users or items and interaction related information are exploited to improve

recommendation accuracy (Shi, Larson, & Hanjalic, 2014).

Auxiliary information refers to attributes about users and items. For user attributes, trust

network is incorporated into the raw ratings for prediction (Victor, Cornelis, Teredesai, & De

Cock, 2008). Authors (Ma, King, & Lyu, 2011) propose a probabilistic factor analysis framework

which takes users’ social trust relations into account. Authors (Zhang, Liu, Zhang, & Zhou, 2010)

make use of users’ social tags and design a diffusion-based recommendation algorithm which

is only used in social tagging systems. Authors (Lika, Kolomvatsos, & Hadjiefthymiades, 2014)

adopt users’ demographic data and apply a simple prediction rule by summing weighted ratings

made by similar users to produce ratings for new users. Authos (Ocepeka, Rugeljb, & Bosnica,

2015) combines attribute selection and local learning into the recommendation model for CS

users. Both (Lika, Kolomvatsos, & Hadjiefthymiades, 2014) and (Ocepeka, Rugeljb, & Bosnica,

2015) used one of our baseline approaches (the ToU approach) in models to recommend products

to CS users. Authors (Zhou, Yang, & Zha, 2011) try to learn user profiles through an additional

interview process. For item attributes, collaborative topic modeling (CTR) (Wang, & Blei, 2011)
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applies topic model and latent Dirichlet allocation (LDA) to learn item content feature. However,

this model only works on implicit rating prediction problem, and latent representation is not

learned effectively with highly sparse content information.

With great successes in the fields of image, video and artificial intelligence, deep learning

technology attracted large interests in the recommendation system field (Salakhutdinov, Mnih, &

Hinton, 2007; Georgiev, & Nakov, 2013; Sainath, Kingsbury, Sindhwani, Arisoy, & Ramabhad-

ran, 2013). Collaborative deep learning (CDL) (Wang et al., 2015) is a representative example that

applies deep learning to recommendation systems by integrating stacked denoising autoencoder

(SDAE) into a simple latent factor based CF model for movie and article recommendation.

Nevertheless, CDL only focuses on the situation of rare users and implicit interactions between

users and items, and very simple CF model is considered. The main objective of CDL is

recommending top-N items, not for the explicit ratings prediction.

On the other hand, the interaction-associated information refers to the information associated

with U-I interaction behavior, like timestamps and locations of the ratings being made. Recently

there is a strong interest in the utilization of time information for CF, which demonstrates superior

recommendation performance (Koren, 2010; Xiong, Chen, Huang, Schneider, & Carbonell, 2010;

Zhang, Wang, Yu, Sun, & Lim, 2014). TimeSVD++ (Koren, 2010) is a model that simulates

the temporal dynamics of user interests by changing static biases and latent factors into time-

dependent ones. Authors (Xiong, Chen, Huang, Schneider, & Carbonell, 2010) introduce a set

of additional time feature vector and use tensor factorization to learn the features. A different

modeling scheme on user preferences is presented in (Zhang, Wang, Yu, Sun, & Lim, 2014),

where a latent transition matrix is used to summarize the evolving preferences for each user.

Authors (Xiao, Ai, Hsu, Wang, & Jiao, 2015) propose a time-dependent method to compute the

similarity among different users. But they are not directly applicable to CS problem.

Generally, CS problem can be classified to CS user problem and CS item problem according

to the completely missing ratings for the users or the items. For CS user problem, as system

information like locations and gender does not describe user interest efficiently, several recent

studies attempt to enrich user profiles with information from other channels, such as social trust

network (Victor, Cornelis, Teredesai, & De Cock, 2008; Ma, King, & Lyu, 2011), tagging system

(Zhang, Liu, Zhang, & Zhou, 2010), interview process (Zhou, Yang, & Zha, 2011). But these

kinds of information are hard to collect in normal conditions. In addition, it is more difficult to

acquire personal information of new users because of privacy issues. By the contrast the focus
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of this paper is on the CS item problem with the motivations described previous. In order to

alleviate the information scarcity of CS items, most research efforts so far have been devoted

to profiling new items with additional information (e.g., collecting item attributes). However,

there still exist a number of limitations in the existing research works. Firstly, it is hard to dig

out the specific features of new items with limited rough attributes. And gathering fine-grained

attributes like tags, keywords and categories are always time-consuming and costly. Secondly,

most studies that combine item content information with ratings data (Wang, & Blei, 2011; Wang

et al., 2015; Schein, Popescul, Ungar, & Pennock, 2001) adopt generative probabilistic models

and tend to overfit easily on CS item situations. The last problem with these works is that they

do not take time information into account. In this paper a solution integrating deep learning

and collaborative filtering approach is proposed to address these limitations and largely improve

recommendation performance for CS items.

III. PROPOSED RECOMMENDATION MODEL

In this section, we propose two integrated recommendation models with CF and deep learning ,

called IRCD-CCS and IRCD-ICS for CCS items and ICS items, respectively. A recommendation

system is assumed with U users and V non-CS items. In addition it is assumed there are J CCS

items, which receive no ratings from the users until the time of investigation, and I ICS items,

which receive only a few ratings from the users. We let rating rui(t) denote the rate by user u on

item i at time t. The recommendation task considered in this paper is to estimate the unknown

ratings for both CCS and ICS items based on the known ones. We let r̂ui(t) denote the predicted

values of rui(t).

A. Deep Learning of Content Features

As traditional CF models are not able to estimate the ratings for CS items, additional content

descriptions for the items are obtained for the proposed model. Item features are extracted from

the content descriptions and used with a CF model for CS item rating estimation.

Firstly the raw content information of all items are processed to generate vectors based on

the bag of words approach. These item associated vectors are then learned by a SDAE to obtain

item content features, which are then used in the CF models. SDAE is a deep network that is

stacked by multiple denoising autoencoders (DAEs). Each layer of SDAE is trained as a DAE

by minimizing the error in reconstructing its input (which is the output of the previous layer).
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Usually we consider the first half layers of the network as an encoding part and the last half

layers as a decoding part. Encoding part tries to learn the feature representations of the noise-

corrupted input, and decoding part tries to reconstruct the clean input itself in the output. An

example structure of SDAE is shown in Fig. 3.

Fig. 3. A graphic structure of SDAE.

Formally, given a set C of vectors as raw content information of all items, an L-layer SDAE

solves the following optimization problem:

min
Wl,bl
‖C − CL‖2 + λ

∑
l

‖Wl‖2, (1)

where CL denotes the the output of layer L of the network and Wl and bl denote the weight

matrix and bias vector of layer l of the network. More details on the SDAE structure and training

are referred to (Wang et al., 2015). Once the model is trained, the item content features could be

obtained from the hidden layer CL/2 of the network. For a given item i, the feature representation,

denoted by θi, is a vector with low dimensions.

It is noted that apart from the goal of learning the features from the rating records, another

goal of using SDAE is to reduce the dimensionality of the item content-based vectors to be same

with latent factor vectors, which can then be fused into the CF process.

B. timeSVD++ Model

The CF model used in the proposed IRCD is timeSVD++. There are several variants of

timeSVD++ model. In this paper the latent factor based variant is considered. For a latent factor
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based model, a rating by a user u on an item i is computed by the inner product of a vector

qi (the item factor for item i) and a vector pu (the user factor for user u) using the following

formula:

r̂ui(t) = qTi pu. (2)

In order to take the biases, additional implicit feedback and temporal effects into account,

timeSVD++ uses a revised prediction rule by adding some baseline predictors to (2) as follows:

r̂ui(t) = µ+ bi(t) + bu(t) + qi
T
[
pu(t) + |N(u)|

1
2

∑
j∈N(u)

yj

]
. (3)

Here, µ denotes the overall mean rating, bi(t) and bu(t) indicate the time-aware biases of item i

and user u respectively. Item factors do not change with time as they are more static in nature

than humans. The set N(u) contains the items rated by user u. The factor |N(u)|
1
2
∑

j∈N(u) yj

indicates the perspective of implicit feedback, where yj is a vector for item j related to implicit

feedback and is to be learned from training process.

The biases bi(t) and bu(t) for items and users, respectively, are computed by the following

formulae:

bi(t) = bi + bi,Bin(t), (4)

bu(t) = bu + αu · devu(t) + bu,t. (5)

It is noted that the time-aware item bias bi(t) is composed of a stationary part bi and a time

changing part bi,Bin(t), where the whole timeline is split into time-based bins Bin(t). For user

bias bu(t), bu represents the stationary part, αu · devu(t) captures a possible gradual drift, in

which the time deviation devu(t) is defined as:

devu(t) = sign(t− tu) · |t− tu|β, (6)

and bu,t denotes the day-specific sudden drift. Similar to user biases, user factors also become

time-aware as pu(t).

pu(t) = (pu1(t), pu2(t), ..., pud(t)). (7)

puk(t) = puk + αuk · devu(t) + puk,t k = 1, ..., d. (8)

Here d is the dimensionality of user factors.
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In order to learn the model parameters, the system minimizes the regularized squared error

on the training ratings:

min
q∗,p∗,b∗

∑
u,i,t

(rui − r̂ui)2 + λ
[
‖qi‖2 + ‖pu‖2 + ‖αu‖2 + ‖put‖2

+
∑

j∈N(u)
‖yj‖2 + bi

2 + bi,Bin(t)
2 + bu

2 + αu
2 + bu,t

2
]
.

(9)

According to the above regularized squared error function, a SGD optimization method is used

to iteratively learn the model parameters. The algorithm loops through all ratings in the training

set iteratively and updates each parameter according to the associated gradient until system

converges.

C. Rating Prediction Model for CCS Items

Next we present the the IRCD-CCS model for rating prediction of CCS items. We first present

the computation of content similarity. Two baseline rating prediction approaches based on content

similarity are then presented. Finally the IRCD-CCS model for CCS items is presented, which

integrates content similarities based approach and timeSVD++ model.

To predict the ratings for CCS items, we first use similarity measure to relate CCS items to the

non-CS items, and predict the ratings for the CCS items from their most related non-CS items.

Based on the item features obtained from the SDAE deep learning process, we use Pearson’s

correlation coefficient formula to compute the similarity between CCS items and non-CS items.

For any two feature vectors θi and θj of items i and j, the similarity is computed as below:

sij =

∑d
k=1

(
θik − θ̄i

)
·
(
θjk − θ̄j

)√∑d
k=1

(
θik − θ̄i

)2 ·∑d
k=1 (θjk − θ̄j)

2
. (10)

where θ̄i and θ̄j are the mean values of vectors θi and θj .

We consider two baseline approaches to predict ratings for CCS items. The first approach

predicts the ratings for CCS items from their M most similar non-CS items within the whole

non-CS item set after the missing ratings for the non-CS items are predicted, which is called

Top-of-All (ToA) approach. Let SM(j) denote the set of the M most similar non-CS items to

a CCS item j, j ∈ [1, J ]. For the ToA approach, the following formula is used to predict rating

by user u on CCS item j:

r̂uj =

∑
i∈SM (j)

r̂uisij∑
i∈SM (j)

sij
. (11)
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It is noted that the ratings r̂ui can be both real and predicted ones.

Alternatively, we can use the second approach to predict the ratings by a user for CCS items

from their M most similar non-CS items within the set of non-CS items rated by the user,

which is called Top-of-User (ToU) approach. Let SM(u, j) denote the set of the M most similar

non-CS items among the non-CS items rated by u to a CCS item j, j ∈ [1, J ]. For the ToU

approach, the following formula is used to predict rating by user u on CCS item j:

r̂uj =

∑
i∈SM (u,j)

ruisij∑
i∈SM (u,j)

sij
. (12)

Note that in this case, the ratings rui are real ratings in the training set.

The above two simple and straightforward approaches make rating prediction entirely based

on similar non-CS items and ignore the other information in the rating matrix. According to our

experiments, the ToU approach has higher accuracy than the ToA approach. Next we propose

an integrated model by combining the ToU approach and timeSVD++ together.

As conventional CF methods are not directly applicable to the CCS problems, we set the item

factor qi in timeSVD++ model to item content feature θi and replace the overall average rating

µ and item biases bi(t) with predicted ratings, which is generated by the ToU approach. We

extend the ToU approach to generate predicted ratings for all the real ratings in the training set.

The following prediction rule is used in the proposed IRCD-CCS model:

r̂ui(t) = bu(t) + θi
T
[
pu(t) + |N(u)|

1
2

∑
j∈R(u)

yj

]
+

∑
j∈SM (u,i)

rujsij∑
j∈SM (u,i)

sij
. (13)

and the corresponding regularized squared error function is:

min
p∗,b∗

∑
u,i,t

(rui − r̂ui)2 + λ
[
‖pu‖2 + ‖αu‖2 + ‖put‖2 +

∑
j∈N(u)

‖yj‖2 + bu
2 + αu

2 + bu,t
2
]
.

(14)

Because all the parameters are user-associated, it can be used to predict ratings for CCS items

after training.

It is noted that in the IRCD-CCS model for CCS items, CCS items did not receive any

rating from users. Therefore the CCS items do not participate in the timeSVD++ model training.

However, to enable prediction with the rule (13), we train the IRCD-CCS model with the rating

matrix by setting the item factors qi of non-CCS items to their content feature thetai. It means
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that the content features learned from the SDAE is utilized instead of the item features hidden

in the rating matrix in the IRCD-CCS model for the CCS items.

Fig.III-C shows a graphical framework of traditional MF model (left part) and IRCD-CCS

model (right part). For each user u and item i, traditional MF model computes the predicted

rating rui by adding the latent factors with biases predictor. Latent factor is the inner product of

item factor qi and user factor pu. Biases predictor include the overall mean rating µ, item bias

bi and user bias bu. Compared with traditional MF, the IRCD-CCS model first applies SDAE

to learn the item content feature θi from the raw item content information C. Then the ToU

approach is used to obtain a preliminary predicted rating r,ui based on the similarity measure of

item content feature. In the model training item factor qi is set to item content feature θi. Finally

ratings can be prediction by adding the two parts together with the rule shown in (13).

It is noted that the IRCD-CCS model needs pre-processing to generate the rating prediction

for every real ratings in the training set offline, but the online prediction can be computed

immediately with the prediction rule.

Fig. 4. The graphical modification of IRCD-CCS framework.

D. Rating Prediction Model for ICS Items

The IRCD-ICS model modifies the timeSVD++ by applying content features learned from

SDAE into item latent factor training process. In our proposed model IRCD-ICS for ICS items,

the prediction rule (3) is reused, but the model parameters are learned by minimizing a different

regularized squared error function. The modified regularized squared error function is shown

below:

min
q∗,p∗,b∗

∑
u,i,t

(rui − r̂ui)2 + λ
[
‖qi − θi‖2 + ‖pu‖2 + ‖αu‖2 + ‖put‖2

+
∑

j∈N(u)
‖yj‖2 + bi

2 + bi,Bin(t)
2 + bu

2 + αu
2 + bu,t

2
]
.

(15)
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Note that the dimensionality of both qi and θi is d.

It is noted that the trained IRCD-ICS model is used for both ICS items and the general non-CS

(NCS) items (with relatively larger number of ratings). We do not create separate recommendation

models for the ICS items and the general NCS items. For the ICS items, it is desirable to learn

the item factor from the content description as much as possible, as there is very little useful

information to be learned for the ICS items from the rating matrix. Therefore the content features

play a key role in the recommendation for ICS items. For the NCS items, both rating matrix

and content description (content features) can be utilized and should be used to improve the

rating prediction performance. The introduction of factor ‖qi − θi‖2 can help achieve the goal

of learning item factors for both ICS and NCS items.

Compared with timeSVD++, the following main changes are made on the update rule of

item factor vectors. For each given rating rui(t), the prediction error is computed by eui(t) =

rui(t)− r̂ui(t). The original update equation of item factor qi used in timeSVD++ is:

qi ← qi + γ

{
eui(t)

[
pu(t) + |N(u)|−

1
2

∑
j∈N(u)

yj

]
− λ · qi

}
. (16)

In the proposed model the following update rule for the item factor qi is used:

qi ← qi + γ

{
eui(t)

[
pu(t) + |N(u)|−

1
2

∑
j∈N(u)

yj

]
− λ · (qi − θi)

}
, (17)

where γ denotes the learning rate. The interested readers are referred to (Koren, 2010) for more

details on the timeSVD++ model learning process. Fig. III-D shows a graphical framework for

traditional MF model (left part) and IRCD-ICS model (right part). For the IRCD-ICS model the

item content feature θi is utilized to learn item factor qi in the training process according to rule

(17).

Fig. 5. The graphical modification of IRCD-ICS framework.
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IV. PERFORMANCE EVALUATION

In this section, the recommendation performance of the proposed models IRCD-CCS for CCS

items and IRCD-ICS for ICS items is evaluated. The experiment data preparation and results

are presented and discussed.

A. Experiment Dataset and Settings

A large real-world dataset created by the Netflix Prize is used to evaluate the proposed models.

The Netflix dataset contains more than 100 million explicit ratings on a scale of 1 to 5 stars for

17770 movies defined by 480189 anonymous users. The corresponding timespan ranges from

Dec 12, 1999 to Dec 12, 2005.

In order to predict ratings for CS items we also collect the plots of the movies from IMDB

to extract item content information. We first collected the corresponding movie plots by OMDb

API1, which is a free web service to obtain movie information. A Python-based program was

written, which traverses the movies in the Netflix dataset and automatically sends search requests

of plots according to the movie titles to the OMDb database. Then the collected movie plots were

filtered by removing stop words, which refer to the most common words in a language offering

little useful information. In the experiments the list of stop words was obtained with a built in

Python package. Then we computed the term frequency-inverse document frequency (tf-idf) of

each word in the corpus. Tf-idf is the product of term frequency and inverse document frequency.

Term frequency refers to the number of occurrence of words in a document, and inverse document

frequency is calculated by dividing the total number of documents by the number of documents

containing the word. Generally tf-idf is used as a weighting factor to reflect how important a

word is to a document. Based on tf-idf, the most important S words with the highest tf-idf values

are chosen to form a dictionary. S is set to 20000 in our experiments. Each movie plot is then

represented by a S-dimensional bag-of-words vector, in which each entry of the vector indicates

the count of corresponding word occurs in the plot. The last step is the normalization for all the

vectors. After the movies with missing plots were removed, the final dataset has 476691 users,

14657 movies, and 95975845 ratings.

A workflow of obtaining and processing the movie plots is presented in Fig. 6.

1http://www.omdbapi.com
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Fig. 6. Workflow of data preprocessing on movie plots.

As we are interested in the performance of rating prediction for both CCS items and ICS

items, the original dataset is partitioned into one training set and one test set for CCS items and

ICS items, respectively. The movies are ordered by the timestamp of their first received rating.

The histogram of movies on the date of their first rating is shown in Fig. 7. We divide the entire

timespan of the dataset (2240 days) into 100 intervals, and count how many movies fall into

each interval. Generally, new movies appeared late, and thus located at far right in the figure.

For the preparation of training and test set for CCS experiments, we choose the most recent

L movies for test set and the other movies for training set. The ratings of the L CCS movies

are used for testing and it is guaranteed that none of these CCS movies could be seen by any

user in the training set. To prepare the ICS training and test sets, we choose the most recent

K movies for test set and the other movies for training set. Meanwhile the earliest N ratings

of each tested movie are added into training set and all the remaining ratings of these K ICS

movies are used for test purpose.

For the experiment setting of some parameters, we chose some typical values for performance

evaluation. The proposed recommendation models can work with general configurations of the

parameters. As there is a large space of values for the parameters, it is very time consuming

to test all the combinations of the settings for the parameters. After quick check on the recom-
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Fig. 7. Histogram of movies on the date of their first ratings.

mendation performance with a number of parameters settings, we determined the settings for

model parameters (e.g., setting dimensionality d of feature vectors to 50) with those giving good

performance.

For the experiment datasets, the rating statistics for the training and test sets are presented in

Table I and Table II for CCS experiment and ICS experiment, respectively.

TABLE I

STATISTICS OF THE TRAINING AND TEST DATASETS FOR CCS MOVIE EXPERIMENT.

L=100 L=300

Training set Test set Training set Test set

Number of users 476691 11764 476691 51171

Number of movies 14557 100 14357 300

Number of ratings 95959733 16112 95874146 101699

Mean rates 3.6042 3.4975 3.6043 3.5652

TABLE II

STATISTICS OF THE TRAINING AND TEST DATASETS FOR ICS MOVIE EXPERIMENT(N=5).

K=100 K=200 K=300

Training set Test set Training set Test set Training set Test set

Number of users 476691 11603 476691 31725 476691 50918

Number of movies 14657 100 14657 200 14657 300

Number of ratings 95960233 15612 95924771 51074 95875646 100199

Mean rates 3.6042 3.5135 3.6043 3.4288 3.6043 3.5718

We first conduct experiments for CCS movies and compare our model IRCD-CCS against
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three recommendation models: ToA model, ToU model, and simple average (SA) model. ToA

model and ToU model are presented in Sec. III-C. As the existing models for CCS item prediction

use different content information and features, they are not directly comparable to the proposed

model. Therefore the simple prediction model SA for CCS items is used: every CCS item rating

by a user is set to the average of ratings of the user.

On the other hand, the baseline models for ICS movie experiment includes ALS, SGD,

timeSVD++ and CDL. ALS and SGD are two major algorithms for learning parameters. In

our experiment, we use them to minimize the error function of (2). As described in the previous

section, timeSVD++ is a time-aware CF model, taking the temporal effects into consideration.

CDL is a model jointly performing deep representation learning and CF, which applies an ALS-

style algorithm for learning. ALS and SGD provide recommendation based on plain ratings,

while timeSVD++ and CDL utilize additional time information and item content information

respectively.

The overall experiment procedure has four major steps, which are described below:

• Configure the system parameters: the parameters to be configured include learning rate,

regularization and factor dimension for each model as described in Sec. IV-A. These settings

remain the same throughout the experiments.

• Prepare training and test sets: as described in Sec. IV-A, training and test sets are generated

respectively according to the configurations with different test sizes (L for CCS experiment

and K for ICS experiment). Moreover, the number of training samples for tested ICS items

N is also configured to different values in ICS experiments.

• Train the model by fitting the data in training set: specifically, ALS and CDL apply the ALS

algorithm to update model parameters, while IRCD models, SGD and timeSVD++ learn

model parameters by SGD algorithm. ToA and ToU approaches compute the prediction

result directly using Eq. (11),(12).

• Predict the ratings in the test set: this is done by using the trained models. The prediction

performance is then computed and recorded.

B. Results and Analysis

In this subsection, the proposed models are evaluated in terms of RMSE and compared

with other baseline recommendation models. RMSE is an objective metric widely used for
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performance evaluation of recommendation system models, which is defined as:

RMSE =

√
1

Np

∑
u,i

(r̂ui − rui)2, (18)

where Np denotes the total number of predictions.

After tuning the parameters on the validation set, we compare our proposed IRCD models with

other baseline models. Dimensionality d of the feature vectors is set to 50 for all the models.

1) Performance Evaluation of of IRCD-CCS Model on CCS Movies: Firstly we evaluate the

prediction performance of IRCD-CCS model for CCS items. Table III presents the prediction

result RMSE, against the number of most related items M , the size of the test dataset for CCS

movies, L for CCS new movies. The SA model, ToA model, ToU model and IRCD-CCS model

are compared. The number M of most related items is configured to 20 and 100, and the size

Lof the test dataset for CCS movies is configured to 100 and 300, respectively.

It is noted that the IRCD-CCS model performs the best for all the investigated scenarios. Its

performance is significantly better than the baseline models. The result shows an improvement

of about 0.05 on RMSE compared to the second best model ToU. The performance of both

IRCD-CCS model and ToU model improves largely as M increases. On the contrary, the ToA

model works well with small M (e.g., with only 20 most related ICS items for rating prediction),

but with a large M such as 100 it has a poor performance, which is even worse than the SA

model. This can be explained by that the influence of prediction error is accumulated as M

increases.

TABLE III

PERFORMANCE COMPARISON OF PREDICTION MODELS FOR CCS MOVIES WITH NETFLIX DATASET.

Approaches
ToA ToU IRCD-CCS

SA
M=20 M=100 M=20 M=100 M=20 M=100

RMSE
1.155 1.224 1.133 1.113 1.075 1.053 1.146

(L=100)

RMSE
1.134 1.218 1.140 1.127 1.096 1.082 1.157

(L=300)

2) Performance Evaluation of IRCD-ICS Model on ICS Movies: Next we compare the pre-

diction performance RMSE of the IRCD-ICS model with the existing models for ICS movies.

Table IV presents the experiment results. In the experiments the number of associated training

ratings N is set to 5. The size K of the tested ICS movies is set to 100, 200 and 300. It is
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observed that the proposed method IRCD-ICS achieves the best accuracy in all cases. CDL

performs the worst even though it applies SDAE for the content information learning. The main

reason is that CDL is proposed on the use of implicit rating data instead of explicit data. The

large gap (around 0.05) between SGD and ALS demonstrates that SGD is effective on making

better predictions for ICS items than ALS. By modeling the temporal dynamics, timeSVD++

outperforms SGD by a significant margin of 0.002 to 0.017. Compared to timeSVD++, IRCD-

ICS model shows further consistent improvement of more than 0.004 with inclusion of content

information and deep learning process.

TABLE IV

PERFORMANCE COMPARISON OF PREDICTION MODELS FOR ICS MOVIES WITH NETFLIX DATASET.

Algorithms RMSE RMSE RMSE

(K=100) (K=200) (K=300)

ALS 1.124 1.112 1.097

SGD 1.070 1.076 1.058

timeSVD++ 1.053 1.074 1.053

CDL 1.179 1.151 1.148

IRCD-ICS 1.049 1.070 1.048

To have a deep comparison of timeSVD++ and the proposed model IRCD-ICS, we investigate

how the prediction performance RMSE changes with the training iterations. Representative

training curves are presented in Fig. IV-B2. For both models the RMSE decreases monotonically

without overfitting problem. The IRCD-ICS model converges faster than timeSVD++ in the

training process. For the case of K being 100, the IRCD-ICS model takes only 25 iterations to

end while timeSVD++ needs more than 35 iterations, which means more computation time.

3) Performance Evaluation of Both Models on ICS Movies: In general if an item has a

sufficient number of ratings the IRCD-ICS model for this item will certainly outperform the

IRCD-CCS model. But when the number of ratings for an ICS items is close to zero, it is

not clear whether IRCD-ICS model or IRCD-CCS model performs better. Therefore in this

subsection we compare the two models IRCD-CCS and IRCD-ICS on recommending ICS items.

To evaluate and compare the models under different degrees of rating matrix sparsity, the number

of associated training ratings N is set to 1, 3, 5 and 7 for ICS movies. Fig. 9 shows the RMSE

results of timeSVD++ and the IRCD-ICS model with different N for the ICS movies. The green
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dashed line indicates the RMSE of IRCD-CCS model, which is irrelevant to N . As we can see

from Fig. 9 , the RMSE value of both timeSVD++ and IRCD-ICS decreases as N increases.

However, when N is less than 5, the ICS item based models including timeSVD++ and IRCD-

ICS even perform worse than IRCD-CCS model. It is shown that ICS item based models do not

make good prediction of ratings for items with only a small number of ratings, in which case

the CCS item based model is preferred.

C. Discussions

In the above experiments, different recommendation models are used for CCS items and

non-CCS (ICS and NCS) items. However, in practical operation of recommendation systems, if

ratings for a CCS item are received from users, the item becomes an ICS item. In this case,

for this new ICS item rating prediction with the model trained and used for CCS items may be

worse than with a model used for ICS items. However, the existing recommendation model for

non-CCS items does not use any information (ratings and content description) related to this

ICS item, which just changed its status from CCS item. Therefore there is a need to retrain the

recommendation model for non-CCS items with extra rating and content description information

from the new non-CCS items.

There are two key issues to consider with regards to the retraining of the model for non-CCS

items: 1) how frequently the model should be retrained? 2) which part of the model should be

retrained?

For the issue of retraining frequency, we do not need immediately retrain the ICS model

whenever some items change their status from CCS to ICS. As the recommendation of items

is not made continuously, there is no need to retrain the ICS model too frequently, which will

incur a very high computation cost. Even if the IRCD-ICS model is not retrained when a CCS

item changes to ICS item, the CCS model can be used temporally for recommendation of that

item. According to the evaluation results, there is not large performance degradation when the

CCS model is applied to ICS items. Therefore we can design a recommendation system, which

collects and stores the new ratings made by the users, and regularly retrains the ICS and CCS

recommendation models, for example, in the scale of days or weeks according to the rating

activities.

For the issues of which parts of the models to be trained, there is very little impact in the

trained model with inclusion of new ratings to the training set, as they take very small proportion
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of the total ratings in the training set. To reduce computation loads, in the model retraining, we

can keep the values for trained model parameters (such as qi, pu and bi) which are well trained

in the previous round of training process and should be stable in short term, and only learn the

parameter values for the new items.

V. CONCLUSIONS

Recommendation of cold start items is challenging and still an open research issue for

recommendation systems. Cold start items can be classified to complete cold start (CCS) items

which receive no ratings and incomplete cold start (ICS) items which receive more than zero

but very few ratings. In this paper we proposed two recommendation models to address the

recommendation problems for CCS and ICS items, respectively. The models combine a time-

aware collaborative filtering (CF) model timeSVD++ with a deep learning architecture SDAE.

The deep learning neural network SDAE is responsible for the extraction of item content features,

while the timeSVD++ model is responsible for prediction of unknown ratings. It considered

temporal dynamics of user preferences and item features. A large number of experiments were

run to evaluate the proposed models in terms of recommendation prediction error RMSE on

Netflix dataset. The results showed that our models outperformed existing baseline approaches

for cold start item recommendation. From our analysis and experiments, the impact of including

the time and item content information is very large. Especially for CCS problem, our model

can successfully takes the advantage of CF latent factor models to gain significant performance

improvement. In addition, we also compared our proposed models on the ICS new items rec-

ommendation with different degrees of rating matrix sparsity. It was found out that the ICS

item-based model does not make good recommendations for items that received very few ratings

(e.g. 3 ratings). In that case the CCS item based model should be used instead of the ICS item

based model.

In the future we plan to extend our recommendation models for cold start items and work

on the following research directions. First, we are interested in the investigation of the recom-

mendation performance for CCS and ICS items with more system configurations and parameters

setting, in order to reveal more insights to their impact on recommendation performance and

system optimization. Second, we create and maintain two separate recommendation models for

CCS items and ICS items, respectively. This approach requires extra storage and computation

resources. We plan to design a recommendation model, which is applicable to recommendation
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of both CCS and ICS items. Third, recommendation models are evaluated by the RSME of rating

predictions, which may not effectively reflect the performance of real recommendation systems.

We are interested in the design of an additional performance evaluation approach, which can

take item recommendation decisions into account and quantify the impact of the decisions on

user acceptance of recommended items. Finally, in this paper we run experiments of cold start

item recommendation on Netflix movies. We are interested in the application of the models to

the recommendation of other products such as online music.
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(a) K=100.

(b) K=200.

(c) K=300.

Fig. 8. Training curves of timeSVD++ and IRCD-ICS model.
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Fig. 9. Performance comparison of IRCD-CCS and IRCD-ICS models for rating prediction of ICS models, K=100.


