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Abstract: The Dirichlet process mixture model (DPMM) is a ubiquitous,
flexible Bayesian nonparametric statistical model. However, full probabilis-
tic inference in this model is analytically intractable, so that computa-
tionally intensive techniques such as Gibbs sampling are required. As a
result, DPMM-based methods, which have considerable potential, are re-
stricted to applications in which computational resources and time for in-
ference is plentiful. For example, they would not be practical for digital
signal processing on embedded hardware, where computational resources
are at a serious premium. Here, we develop a simplified yet statistically
rigorous approximate maximum a-posteriori (MAP) inference algorithm
for DPMMs. This algorithm is as simple as DP-means clustering, solves
the MAP problem as well as Gibbs sampling, while requiring only a frac-
tion of the computational effort.† Unlike related small variance asymptotics
(SVA), our method is non-degenerate and so inherits the “rich get richer”
property of the Dirichlet process. It also retains a non-degenerate closed-
form likelihood which enables out-of-sample calculations and the use of
standard tools such as cross-validation. We illustrate the benefits of our
algorithm on a range of examples and contrast it to variational, SVA and
sampling approaches from both a computational complexity perspective as
well as in terms of clustering performance. We demonstrate the wide ap-
plicabiity of our approach by presenting an approximate MAP inference
method for the infinite hidden Markov model whose performance contrasts
favorably with a recently proposed hybrid SVA approach. Similarly, we
show how our algorithm can applied to a semiparametric mixed-effects
regression model where the random effects distribution is modelled us-
ing an infinite mixture model, as used in longitudinal progression mod-
elling in population health science. Finally, we propose directions for fu-
ture research on approximate MAP inference in Bayesian nonparamet-
rics.

∗These authors contributed equally to this work.
†For freely available code that implements the MAP-DP algorithm for Gaussian mixtures

see http://www.maxlittle.net/.
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1. Introduction

Bayesian nonparametric (BNP) models have been successfully applied to a wide
range of domains but despite significant improvements in computational hard-
ware, statistical inference in most BNP models remains infeasible in the context
of large datasets, or for moderate-sized datasets where computational resources
are limited. The flexibility gained by such models is paid for with severe de-
creases in computational efficiency, and this makes these models somewhat im-
practical. This is an important example of the emerging need for approaches to
inference that simultaneously minimize both empirical risk and computational
complexity (Bousquet and Bottou, 2008). Towards that end we study a simple,
statistically rigorous and computationally efficient approach for the estimation
of BNP models that significantly reduces the computational burden involved,
while keeping most of the model properties intact. In this work, we concentrate
on inference for the Dirichlet process mixture model (DPMM) and for the infi-
nite hidden Markov model (iHMM) (Beal et al., 2002) but our arguments are
more general and can be extended to many BNP models.

DPMMs are mixture models which use the Dirichlet process (DP) (Ferguson,
1973) as a prior over the mixing distribution of the model parameters. The data
is modeled with a distribution with potentially infinitely many mixture com-
ponents. The DP is an adaptation of the discrete Dirichlet distribution to the
infinite, uncountable sample space. Where the Dirichlet distribution is formed
over a continuous K-element sample space, if K → ∞ we obtain the DP. A draw
from a DP is itself a probability distribution. A DP is the Bayesian conjugate
prior to the empirical probability distribution, much as the discrete Dirichlet
distribution is conjugate to the categorical distribution. Hence, DPs have value
in Bayesian probabilistic models because they are priors over completely gen-
eral probability distributions. DPs can be also used as building blocks for more
complex hierarchical models; an example being the the hierarchical DP hidden
Markov model (HDP-HMM) for time series data, obtained by modeling the tran-
sition density in a standard HMM with a hierarchical Dirichlet process (HDP)
(Teh et al., 2006).

An interesting property of DP-distributed functions is that they are discrete
in the following sense: they are formed of an infinite, but countable mixture of
Dirac delta functions. Since the Dirac has zero measure everywhere but at a
single point, the support of the function is also a set of discrete points. This dis-
creteness means that draws from such distributions have a non-zero probability
of being repeats of previous draws. Furthermore, the more often a sample is re-
peated, the higher the probability of that sample being drawn again – an effect
known as the “rich get richer” property (known as preferential attachment in the



3550 Y. Raykov et al.

network science literature (Barabási and Albert, 1999)). This repetition, coupled
with preferential attachment, leads to another valuable property of DPs: sam-
ples from DP-distributed densities have a strong clustering property whereby
N draws can be partitioned into K representative draws, where K ≤ N and K
is not fixed a-priori.

Inference in probabilistic models for which closed-form statistical estimation
is intractable, is often performed using computationally demanding Markov-
chain Monte Carlo (MCMC) techniques (Neal, 2000a; Teh et al., 2006; Van Gael
et al., 2008), which generate samples from the distribution of the model param-
eters given the data. Despite the asymptotic convergence guarantees of MCMC,
in practice MCMC often takes too long to converge and this can severely limit
the range of applications. A popular alternative is to cast the inference problem
as an optimization problem for which variational Bayes (VB) techniques can
be used. Blei and Jordan (2004) first introduced VB inference for the DPMM,
but their approach involves truncating the variational distribution of the joint
DPMM posterior. Subsequently, collapsed variational methods (Teh et al., 2008)
reduced the inevitable truncation error by working in a reduced-dimensional
parameter space, but they are based on a sophisticated family of marginal
likelihood bounds for which optimization is challenging. Streaming variational
methods (Broderick et al., 2013a) obtain significant scaling by optimizing local
variational bounds on batches of data visiting data points only once, but as
a result they can easily become trapped in poor local fixed points. Similarly,
stochastic variational methods (Chong et al., 2011) also allow for a single pass
through the data, but sensitivity to initial conditions increases substantially.
Alternatively, methods which learn memoized statistics of the data in a single
pass (Hughes and Sudderth, 2013; Hughes et al., 2015) have recently shown
significant promise.

Daumé (2007) describe a related approach for inference in DPMM based on a
combinatorial search that is guaranteed to find the optimum for objective func-
tions which have a specific computationally tractability property. As the DPMM
complete data likelihood does not have this particular tractability property, their
algorithm is only approximate for the DPMM, and this also makes it sample-
order dependent. On the other hand, Dahl (2009) describe an algorithm that is
guaranteed to find the global optimum in N (N + 1) computations, but only in
the case of univariate product partition models with non-overlapping clusters.
By contrast, our approach does not make any further assumptions beyond the
model structure and being derived from the Gibbs sampler does not suffer from
sample-order dependency. Wang and Dunson (2011) present another approach
for fast inference in DPMMs which discards the exchangeability assumption of
the data partitioning and instead assumes the data is in the correct ordering.
Then a greedy, repeated “uniform resequencing” is proposed to maximize a
pseudo-likelihood that approximates the DPMM complete data likelihood. This
procedure does not have any guarantees for convergence even to a local optima.
Zhang et al. (2014) extend the SUGS algorithm introducing a variational ap-
proximation of the cluster allocation probabilities. This allows replacement of
the greedy allocation updates with updates of an approximation of the alloca-
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tion distribution. However, this extension also lacks optimality guarantees and
is mostly useful in streaming data applications.

Broderick et al. (2013b) propose a general approach to solving the MAP
problem for a wide set of BNP models by forcing the spread of the likelihood of
BNP models to zero. By making some additional simplifying assumptions, this
approach reduces MCMC updates to a fast optimization algorithm that con-
verges quickly to an approximate MAP solution. However, this small variance
asymptotic (SVA) reasoning breaks many of the key properties of the underly-
ing probabilistic model: SVA applied to the DPMM (Kulis and Jordan, 2012;
Jiang et al., 2012) loses the rich-get-richer effect of the infinite clustering, as
the prior term over the partition drops from the likelihood; and degeneracy in
the likelihood forbids any kind of rigorous out-of-sample prediction and thus,
for example, cross-validation. Roychowdhury et al. (2013) impose somewhat
more flexible SVA assumptions to derive an optimization algorithm for infer-
ence in the infinite hidden Markov model (iHMM). Although this approach
overcomes some of the drawbacks of SVA Broderick et al. (2013b), the algo-
rithm departs from the assumptions of the underlying probabilistic graphical
model. The method is shown to be efficient for clustering time dependent data,
but essentially no longer has an underlying probabilistic model. Furthermore,
Roychowdhury et al. (2013) demonstrate that there is more than one way of
applying the SVA concept to a given probabilistic model, and therefore, under
different choices of SVA assumptions, one obtains entirely different inference
algorithms that find different structures in the data, even though the under-
lying probabilistic model remains the same. For example, HDP-means (Jiang
et al., 2012) in the context of time series, and the alternative SVA approach of
Roychowdhury et al. (2013) optimize different objective functions, even though
they address inference for identical probabilistic models. To clarify this and
other issues, we present a novel, unified exposition of the SVA approach in
Section 4, highlighting some of its deficiencies and we show how these can be
overcome using the non-degenerate MAP inference algorithms proposed in this
paper.

In Section 2 we review the collapsed Gibbs sampler for DPMMs and in Section
3 we show how the collapsed Gibbs sampler may be exploited to produce simpli-
fied MAP inference algorithms for DPMMs. As with DP-means it provides only
point estimates of the joint posterior. However, while DP-means follows the
close relationship between K-means and the (finite) Gaussian mixture model
(GMM) to derive a “nonparametric K-means”, we exploit the concept of iter-
ated conditional modes (ICM) (Kittler and Föglein, 1984). Experiments on both
synthetic and real-world datasets are used to contrast the MAP-DP, collapsed
Gibbs, DP-means and variational DP approaches in Section 5. In Section 6 we
demonstrate how the MAP DPMM approach can be extended to the iHMM
and contrast it to the hybrid SVA approach of Roychowdhury et al. (2013) in a
simulation study. Finally, we demonstrate an application of our new algorithm
to a hierarchical model of longitudinal health data in Section 7 and conclude
with a discussion of future directions for this MAP approach for BNP models
in Section 8.
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2. Collapsed Gibbs sampling for Dirichlet process mixtures

The DPMM is arguably the most popular Bayesian nonparametric model which
extends finite mixture models to the infinite setting by use of the DP prior.
In this work we will restrict ourselves to mixture models with exponential
family distribution data likelihoods. We will denote by X the full data ma-
trix formed of the observed data points xi which are D-dimensional vectors
xi = (xi,1, . . . , xi,d, . . . , xi,D), N0 is the concentration parameter of the DP
prior and G0 is its base measure. The DPMM is then often written as:

G ∼ DP (N0, G0)

ϑi |G i.i.d.∼ G, i = 1, . . . , N (2.1)

xi |ϑi ∼ F (xi;ϑi) , i = 1, . . . , N

where G is a mixing distribution drawn from a DP; ϑ are the atoms of G
which take repeated values and F is the distribution of each data point given
its atom. We can also write the mixing distribution G in terms of mixture
weights π and the distrinct values taken from ϑdenoted with θ, G =

∑∞
k=1 πkδθk

and xi ∼
∑∞

k=1 πkF (θk), where δ (·) denotes the Dirac delta function. The
probability of the data follows an infinite mixture distribution and because this
likelihood is not available in closed form, a Gibbs sampling procedure is not
tractable. A widely used approach to overcome this issue is to collapse the
mixture weights and model the data in terms of the cluster indicator variables
z1, . . . , zN :

(z1, . . . , zN ) ∼ CRP (N0, N)

θ1, . . . , θK |z i.i.d.∼ G0 (2.2)

xi |z, θ ∼ F (xi; θzi) , i = 1, . . . , N

where to simplify notation we denote z = (z1, . . . , zN ) and θ = (θ1, . . . , θK);
CRP stands for the Chinese restaurant process which is a discrete stochastic
process over the space of partitions, or equivalently a probability distribution
over cluster indicator variables. It is strictly defined by the integer N (number
of observed data points) and a positive, real concentration parameter N0. A
draw from a CRP has probability:

p (z1, . . . , zN ) =
Γ (N0)

Γ (N +N0)
NK

0

K∏
k=1

Γ (Nk) (2.3)

with indicators z1, . . . , zN ∈ {1, . . . ,K}, where K is the unknown number of
items and Nk = |{i : zi = k}| is the number of indicators taking value k, with∑K

k=1 Nk = N . For any finite N we will have K ≤ N and usually K will be
much smaller than N , so the CRP returns a partition of N elements into some
smaller number of groups K. The probability over indicators is constructed in
a sequential manner using the following conditional probability:
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p (zn+1 = k |z1, . . . , zn ) =
{

Nk

N0+n if k = 1, . . . ,K
N0

N0+n otherwise
(2.4)

By increasing the value of n from 1 to N and using the corresponding condi-
tional probabilities, we obtain the joint distribution over indicators from Equa-
tion (2.3), p (z1, . . . , zN ) = p (zN |z1, . . . , zN−1 ) p (zN−1 |z1, . . . , zN−2 ) × · · · ×
p (z2 |z1 ).

The probability density function of xi ∼ F (xi; θzi) associated with the com-
ponent indicated by the value of zi, is an exponential family distribution:

p (xi |θzi ) = exp (〈g (xi) , θzi〉 − ψ (θzi)− h (xi)) (2.5)

where g (.) is the sufficient statistic function, ψ(θzi) = log
∫
exp(〈xi, θzi〉 −

h(xi))dxi is the log partition function and h (xi) the base measure of the dis-
tribution. An important property of exponential family distributions is that the
conjugate prior over the natural parameters θk ∼ G0 exists and can be obtained
in closed form:

p (θ |z, τ , η ) = exp (〈θ, τ 〉 − ηψ (θ)− ψ0 (τ , η)) (2.6)

where (τ , η) are the prior hyperparameters of the base measure G0, ψ0 is base
measure of the parameter distribution. From Bayesian conjugacy, the posterior
p (θk |X, τ k, ηk ) will take the same form as the prior where the prior hyperpa-
rameters τ and η will be updated to τ k = τ +

∑
j:zj=k g (xj) and ηk = η+Nk.

Inference can be accomplished via collapsed Gibbs sampling, presented as
Algorithm 3 in Neal (2000b). This MCMC algorithm iteratively samples each
component indicator zi for i = 1, . . . , N , conditional on all others, until conver-
gence:

p (zi = k |xi, z−i ) ∝
{
Nk,−ip (xi |τ k,−i, ηk,−i ) for existing k

N0p (xi |τ , η ) for some new k = K + 1

(2.7)
where the subscript −i denotes the removal of point i from consideration, z−i =
{z1, . . . , zi−1, zi+1, . . . , zN} and p (xi |τ , η ) is the posterior predictive density
of point i obtained after integrating out the cluster parameters, p (xi |τ , η ) =∫
p (xi |θ ) p (θ |τ , η ) dθ. Examples of posterior predictive densities for different

exponential family likelihoods are presented in Appendix B.

3. Introducing MAP-DP: A novel approximate MAP algorithm for
collapsed DPMMs

In this section we propose a novel DPMM inference algorithm based on it-
eratively updating the cluster indicators with the values that maximize their
posterior (MAP values). The cluster parameters are integrated out. This algo-
rithm can be also seen as an an “exact” version of the maximization-expectation
(M-E) algorithm presented in Welling and Kurihara (2006). It is exact in the fol-
lowing sense: while the M-E algorithm is a kind of VB and as with VB makes a
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factorization assumption which departs from the underlying probabilistic model
purely for computational simplicity and tractability purposes, our algorithm is
derived directly from the Gibbs sampler for the probabilistic model. Therefore,
our algorithm does not introduce or require this simplifying factorization as-
sumption. In Section 3.1 we describe how parameter inference for the DPMM
is accomplished and in Section 3.2 we consider out-of-sample prediction.

3.1. Inference

As a starting point, we consider the DPMM introduced in Section 2. In our
algorithm, we iterate through each of the cluster indicators zi and update them
with their respective MAP values. For each observation xi, we compute the
negative log probability for each existing cluster k and for a new cluster K +1:

qi,k =− log p (xi|z−i,X−i, zi = k, τ k,−i, ηk,−i) (3.1)

qi,K+1 =− log p (xi|τ , η) (3.2)

where terms independent of k may be omitted as they do not change with k.
For each observation xi we compute the above K+1-dimensional vector qi and
select the cluster number according to the following:

zi = argmin
k∈{1,...,K,K+1}

[qi,k − logNk,−i]

where Nk,−i is the number of data points assigned to cluster k, excluding data
point xi and, for notational convenience, we define NK+1,−i ≡ N0.

The algorithm proceeds to the next observation xi+1 by updating the cluster
component statistics to reflect the new value of the cluster assignment zi and
remove the effect of data point xi+1. To check convergence of the algorithm we
compute the negative log of the complete data likelihood:

p (x, z|N0) =

(
N∏
i=1

K∏
k=1

p (xi|zi) δ(zi,k)
)
p (z1, . . . , zN ) (3.3)

where δ (zi, k) is the Kronecker delta and p (z1, . . . zN ) is the CRP partition
function (Pitman, 1995) given in Equation (2.3). We show in Algorithm 1 all
the steps involved in approximately maximizing this complete data likelihood.

It is worth pointing out that unlike MCMC approaches, MAP-DP does not
increase the negative log of the complete data likelihood at each step and as a
result is guaranteed to converge to a fixed point. Where the convergence reached
by MCMC sampling is convergence in distribution to the stationary posterior
measure, the convergence of MAP-DP is only to local maxima of the posterior
measure and so it is much quicker to reach. The main disadvantages with this are
that the solution at convergence is only guaranteed to be a local maximum and
that information about the whole distribution of the posterior is lost. Multiple
restarts using random permutations of the data can be used to overcome poor
local maximum. With MAP-DP it is possible to learn all model hyperparameters
as we discuss in Appendix A and this is a strong advantage over the fast SVA
approaches.
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Input: x1, . . . ,xN : data; N0 > 0: concentration parameter, ε > 0: convergence
threshold; (τ , η): cluster prior parameters; ψ0(.): prior log partition function;
g(.): sufficient statistic function.

Output: z1, . . . , zN : cluster assignments, K: number of clusters.
K = 1, zi = 1, for all i ∈ 1, . . . , N ;
Enew = ∞;
repeat

Eold = Enew;
for i ∈ 1, . . . , N do

for k ∈ 1, . . . ,K do
qi,k =

ψ0

(
τ +

∑
j:zj=k,j �=i g (xj) , η +Nk,−i

)
−ψ0

(
τ +

∑
j:zj=k g (xj) , η +Nk

)
end
qi,K+1 = ψ0 (τ , η)− ψ0 (τ + g(xi), η + 1);

zi = argmink∈1,...,K,K+1

[
qi,k − logNk,−i

]
;

if zi = K + 1 then
K = K + 1;

end

end

Enew =
∑K

k=1

∑
i:zi=k qi,k −K log (N0)−

∑K
k=1 log Γ (Nk);

until Eold − Enew < ε;

Algorithm 1: MAP-DP: Exponential Families

3.2. Out-of-sample prediction

To compute the out-of-sample likelihood for a new observation xN+1 we consider
two approaches that differ in how the indicator zN+1 is treated:

1. Mixture predictive density. The unknown indicator zN+1 can be integrated
out resulting in a mixture density:

p (xN+1|N0, z,X) =

K+1∑
k=1

p (zN+1 = k|N0, z,X) p (xN+1|z,X, zN+1 = k) (3.4)

The assignment probability p (zN+1 = k|z,N0,X) is Nk

N0+N for an existing

cluster and N0

N0+N for a new cluster. The second term corresponds to the
predictive distribution of point N + 1 according to the predictive densi-
ties p (xN+1|z,X, τ k, ηk, zN+1 = k) and p (xN+1|τ , η, zN+1 = K + 1) for
an existing and new cluster respectively.

2. MAP cluster assignment. We can also use a point estimate for zN+1 by
picking the minimum negative log posterior of the indicator
p (zN+1|xN+1, N0, z,X), equivalently:

zMAP
N+1 = argmin

k∈{1,...,K,K+1}
[− log p (xN+1|z,X, zN+1 = k)

− log p (zN+1 = k|N0, z,X)] (3.5)
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where p (xN+1|z,X, zN+1 = k) and p (zN+1 = k|N0, z,X) are exactly as
above. This approach is useful for clustering applications when we are
interested in estimating zMAP

N+1 explicitly. Once the MAP assignment for
point N +1 is updated, we estimate the probability of xN+1 given that it
belongs to the component pointed by zMAP

N+1 , p
(
xN+1|z,X, zMAP

N+1

)
.

The first (marginalization) approach is used in Blei and Jordan (2004) and is
more “robust” as it incorporates the probability of all cluster components while
the second (modal) approach can be useful in cases where only a point cluster
assignment is needed. Integrating over variable zN+1 for more robust estimation
of xN+1 is an example of the well studied process known as Rao-Blackwellization
(Blackwell, 1947) which is often used in Bayesian inference for improving the
quality of statistical estimation of uncertainty.

Even when using the first approach however, the mixture density is still
computed assuming point assignments for the training data z1, . . . , zN . There-
fore the predictive density obtained using MAP-DP will be comparable to the
one obtained using Gibbs sampler inference only when the sufficient statistics
N1, . . . NK of the categorical likelihood for the assignment variables estimated
from a Gibbs chain are similar to the ones estimated from the modal esti-
mates for z1, . . . , zN . Empirically, we have observed this often to be the case.
Furthermore, we have noticed that the predictive density for popular (with
a lot of points) cluster components tend to be well approximated by MAP-
DP where the effect of the smaller cluster components diminishes when using
only modal estimates for z. Note that the DPMM usually models data with
a lot of inconsistent small spurious components (Miller and Harrison, 2013),
those and any consistent components with small effect are likely to be ig-
nored when using MAP-DP as we later show in Section 5.1. To summarize,
using only modal estimates for the cluster assignments we are likely to in-
fer correctly only larger components which have a large effect on the model
likelihood and which will also affect the estimated predictive density accord-
ingly.

4. Another look at small variance asymptotics (SVA)

The novel MAP-DP algorithm presented here has the “flavor” of an SVA-like
algorithm, but there are critical differences and advantages, which we discuss in
detail in this section.

Firstly, some background to the SVA approach is required. There exists a well
known connection between the expectation-maximization (E-M) algorithm for
the finite Gaussian Mixture Model (GMM) andK-means. That is, by assuming a
GMM with equal variance, spherical (diagonal) component covariance matrices,
we can obtain K-means from the E-M algorithm for the corresponding GMM
by shrinking the component variances in each dimension to 0. This approach is
more recently referred to as the small variance asymptotic (SVA) derivation of
the K-means algorithm (Bishop, 2006, page 423).
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Using Bregman divergences Dφ (·) (see Appendix C), Banerjee et al. (2005)
has extended the SVA reasoning to any exponential family finite mixtures and
K-means like clustering procedures can be derived. Banerjee et al. (2005) showed
that the likelihood of point xi from component k given the component parameter
θk and the posterior of parameter θk given its posterior hyperparameters can
be rewritten using Bregman divergences as:

p (xi |θk ) = exp (−Dφ (xi,μk) fφ (xi))

p (θk |τ k, ηk ) =exp

(
−ηDφ

(
τ k

ηk
,μk

))
gφ (τ k, ηk) (4.1)

where φ is the Legendre-conjugate function of ψ, fφ (xi) = exp (φ (xi)− h (xi))
and gφ (τ , η) = exp (ηφ (θ)− ψ0 (τ , η)) with h (·) and ψ0 (·) denoting the base
measure of the corresponding distributions and μ is the expectation parameter
satisfying μ = ∇ψ (θ). Kulis and Jordan (2012) extended this more compact
form to the nonparametric DPMM and with some further assumptions derived
a nonparametric K-means like algorithm that we now review in detail. Consider
the DPMM above (with non-integrated component parameters), but with a

scaled exponential family likelihood F̃
(
θ̃
)

that is parameterized by a scaled

natural parameter θ̃ = ξθ and log-partition function ψ̃
(
θ̃
)
= ξψ

(
θ̃/ξ

)
for some

ξ > 0. Further assume that the prior parameters of the natural parameter are
also scaled appropriately, such that τ̃ = τ

ξ and η̃ = η
ξ . It is then straightforward

to see that the conjugate prior of ψ̃ will be also scaled and so φ̃ = ξφ. Then

Jiang et al. (2012) have shown that F̃
(
θ̃
)

has the same mean as F (θ), but

scaled covariance, cov
(
θ̃
)
= cov (θ) /ξ. Let us also assume that N0 is a function

of ξ, η and τ , taking the form:

N0 =

(
gφ̃

(
τ

ξ
,
η

ξ

)(
2π

ξ + η

)D/2

ξD

)−1

exp (−ξλ) (4.2)

for some free parameter λ that will replace the concentration parameter in the
new formulation; D denotes dimension of the data and is unrelated to Dφ (·).
Then we can write the scaled exponential family DPMM as ξ → ∞ and as a

consequence cov
[
θ̃
]
→ 0. Following Jiang et al. (2012) we can write out the

Gibbs sampler probabilities in terms of Dφ (·) (see Appendix C) after canceling
out fφ̃ (xi) terms from all probabilities:

p (zi = k |z−i,xi, ξ,μ ) =
Nk,−i exp (−ξDφ (xi,μk))

Cxi exp (−ξλ) +
∑K

j=1 Nj exp
(
−ξDφ

(
xi,μj

))
p (zi = K + 1 |z−i,xi, ξ,μ ) =

Cxi exp (−ξλ)

Cxi exp (−ξλ) +
∑K

j=1 Nj exp
(
−ξDφ

(
xi,μj

))
where Cxi approaches a positive, finite constant for a given xi as ξ → ∞ and we
have used the fact that for a Bregman divergence, Dξφ (�, �) = ξDφ (�, �). Now,
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both of the above probabilities will become binary (take on the values 0 or 1) as
ξ → ∞ and so all K + 1 values will be increasingly dominated by the smallest
value of {Dφ (xi,μ1) , Dφ (xi,μ2) , . . . , Dφ (xi,μK) , λ}. That is, the data point
xi will be assigned to the nearest cluster with Bregman divergence at most λ.
If the closest mean has a divergence greater then λ, we create a new cluster
containing only xi.

The posterior distribution over the cluster parameters for some component k
is concentrated around the sample mean of points assigned to that component
1
Nk

∑Nk

i=1 xi as ξ → ∞, so we update the cluster means with the sample mean
of data points in each cluster, as with the corresponding parameter update step
in K-means. The resulting algorithm approximately minimizes the following
objective function over (z, μ):

K∑
k=1

∑
i:zi=k

Dφ (xi,μk) + λK (4.3)

Similar objective function omitting the penalty term λK was utilized in Banerjee
et al. (2005) in the context of finite mixture models.

Although this algorithm is straightforward, it has various drawbacks in prac-
tice. The most troublesome is that the functional dependency between the con-
centration parameter and the covariances destroys the rich-get-richer property
of the DPMM because the counts of assignments to components Nk,−i no longer
influence which component gets assigned to an observed data point. Only the
geometry in the data space matters. A new cluster is created by comparing
the parameter λ against the distances between cluster centers and data points
so that the number of clusters is controlled by the geometry alone, and not
by the number of data points already assigned to each cluster. So, for high-
dimensional datasets, it is not clear how to choose the parameter λ. By con-
trast, in the DPMM Gibbs sampler, the concentration parameter N0 controls
the rate at which new clusters are produced in a way which is, for fixed ge-
ometries, independent of the geometry. Another problem is that shrinking di-
agonal covariances to zero variance means that the component likelihoods be-
come degenerate Dirac point masses which causes likelihood comparisons to
be meaningless since the likelihood becomes infinite. So, we cannot choose
parameters such as λ using standard model selection methods such as cross-
validation.

While Jiang et al. (2012) can be seen as a nonparametric extension of the
well known derivation of K-means from the (E-M) algorithm, Roychowdhury
et al. (2013) have suggested an alternative SVA approach in the context of the
iHMM. Herein we review their approach in the context of DPMMs and discuss
their original formulation in Section 6.3. Instead of simply reducing the diago-
nal likelihood covariance to 0 variance in each dimension, Roychowdhury et al.
(2013) represent the categorical distribution over the latent variables z1, . . . , zN
in the more general exponential family form. The conditional distribution of the
cluster indicator for point i given the mixture weights is given by:

p (zi |π ) = exp (−Dφ (zi,π)) bφ (zi) (4.4)
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where π = (πk)
K
k=1 is the vector of mixture weights. Written in this form now we

can also scale the variance of the categorical distribution over z. Furthermore,
Roychowdhury et al. (2013) assume an additional dependency (which is not part
of the DPMM) between the distribution of the cluster indicators and the com-
ponent mixture distribution, in order for their diagonal variances to approach 0
simultaneously. That is, while Jiang et al. (2012) change the underlying DPMM
structure only by assuming shrinking covariance, Roychowdhury et al. (2013)
modify the underlying DPMM such that the conditional independence of the
cluster parameters and cluster indicators no longer holds. Let us replace the
distribution from Equation (4.4) with a scaled one:

p (zi |π ) = exp
(
−ξ̂Dφ (zi,π)

)
bφ̃ (zi) (4.5)

where φ̃ = ξ̂φ which will keep the same mean as in Equation (4.4). Then follow-

ing Roychowdhury et al. (2013) we assume that the likelihood F̃
(
θ̃
)
is scaled

with ξ for which the equality ξ̂ = λ1ξ holds for some real λ1. Now, taking
ξ → ∞ would result in the appropriate scaling. After taking the limit and re-
moving the constant terms we obtain the objective function of this new SVA
approach:

K∑
k=1

∑
i:zi=k

Dφ (xi,μk) + λ1Dφ (zi, πk) + λK (4.6)

which is optimized with respect to (z, μ, π), and where Dφ (zi, πk) � − log πk.
Optimization with respect to the mixture weights results in the empirical prob-
ability for the cluster weights πk = Nk

N . So, this objective function then can be
rewritten as:

K∑
k=1

∑
i:zi=k

Dφ (xi,μk)− λ1 log
Nk

N
+ λK (4.7)

The E-M procedure that tries to optimize this objective function computes,
for each observation xi, the K divergences to each of the existing clusters:
Dφ (xi,μk) for k = 1, . . . ,K. Then, it takes into account the number of data
points in each component by adjusting the corresponding divergence for cluster k
by subtracting λ1 log

Nk

N . After computing these adjusted distances, observation
xi is assigned to the closest cluster unless λ is smaller than all of these adjusted
distances, in which case a new cluster is created. Then the cluster means are
updated with the sample mean of observations assigned to each cluster, and in
addition we now have to update the counts N1, . . . , NK .

By contrast to the SVA algorithm proposed by Jiang et al. (2012), the SVA
algoritm of Roychowdhury et al. (2013) no longer clusters the data purely on
geometric considerations, but also takes into account the number of data points
in each cluster. In this respect the method has greater flexibility, but at the
same time, unlike MAP-DP, we can see that SVA algorithms do not actually-
optimize the complete data likelihood of the original underlying probabilistic
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DPMM which motivates their derivation. By assuming additional ad-hoc de-
pendencies between the likelihood distribution and the distribution over the
indicator variables, SVA algorithms effectively start from a different underlying
probabilistic model which is not explicitly given. This makes them less princi-
pled and more heuristic than the MAP-DP algorithm we present here. So, while
SVA algorithms are quite simple, they sacrifice several key statistical principals
including structural interpretability and the existence of an underlying proba-
bilistic generative model.

5. DPMM experiments

This section provides some empirical results so that we can compare the perfor-
mance of MAP-DP against existing approaches.

5.1. Synthetic CRP parameter estimation

We examine the performance of the MAP-DP, collapsed Gibbs, DP-means (Kulis
and Jordan, 2012) and variational DP (Blei and Jordan, 2004) on CRP-parti-
tioned, non-spherical Gaussian data in terms of estimation error and compu-
tational effort. We generate 100 samples from a two-dimensional DPMM. The
partitions are sampled from a CRP with fixed concentration parameter N0 = 3
and data size N = 600. Gaussian component parameters are sampled from
a normal-Wishart (NW) prior with parameters μ0 = [2, 3], c0 = 0.5, ν0 =

30, Λ0 =

[
2 1
1 3

]
. This prior ensures a combination of both well-separated

and overlapping clusters. We fit the model using MAP-DP, variational DP and
Gibbs algorithms using the ground truth model values for the NW prior and
the N0 used to generate the data. Convergence for the Gibbs algorithm is tested
using the Raftery diagnostic (q = 0.025, r = 0.1, s = 0.95) (Raftery and Lewis,
1992). We use a high convergence acceptance tolerance of r = 0.1 to obtain less
conservative estimates for the number of iterations required. We use the most
likely value from the Gibbs chain after burn-in samples (1/3 of the samples)
have been removed.

Clustering estimation accuracy is measured using the normalized mutual in-
formation (NMI) metric (Vinh et al., 2010). The parameter λ for DP-means is
set using a binary search procedure such that the algorithm gives rise to the cor-
rect number of partitions (see Appendix D). This approach favours DP-means
as it is given knowledge of the true number of clusters which is not available
to the other algorithms. For variational DP we set the truncation limit to ten
times the number of clusters in the current CRP sample.

Both MAP-DP and Gibbs achieve similar clustering performance in terms of
NMI whilst variational DP and DP-means have lower scores (Table 1). MAP-DP
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Table 1

Performance of clustering algorithms on the CRP mixture experiment (Section 5.1). Mean
and standard deviation (in brackets) reported across 100 CRP mixture samples. The range

of the NMI is [0, 1] with higher values reflecting higher clustering accuracy.

Gibbs-MAP MAP-DP DP-means Variational DP

Training set NMI 0.81 (0.1) 0.82 (0.1) 0.68 (0.1) 0.75 (0.1)
Iterations 1395 (651) 10 (3) 18 (7) 45 (18)

requires the smallest number of iterations to converge with the Gibbs sampler
requiring, on average, 140 more iterations and DP-means 1.8 times. In Figure
5.1(a) the median partitioning1 is shown in terms of the partitioning Nk/N
and the number of clusters. As expected, when using a CRP prior, the sizes
of the different clusters vary significantly with many small clusters containing
only a few observations. MAP-DP and variational DP fail to identify the smaller
clusters whereas the Gibbs sampler is able to do so to a greater extent. This is a
form of underfitting where the algorithm captures the mode of the partitioning
distribution but fails to put enough mass on the tails (the smaller clusters). The
NMI scores do not reflect this effect as the impact of the smaller clusters on the
overall measure is minimal. The poorer performance of the DP-means algorithm
can be attributed to the non-spherical nature of the data as well as the lack of
reinforcement effect that leads to underestimation of the larger clusters and
overestimation of the smaller clusters.

This poor performance of DP-means is confirmed by modifying the CRP ex-
periment to sample from spherical clusters (Figure 5.1(b)). The CRP is again
sampled 100 times and the MAP-DP algorithm attains NMI scores of 0.88 (0.1)
and DP-means scores NMI 0.73 (0.1). As the clusters are spherical, the lower
performance of the DP-means algorithms is solely explained by the lack of re-
inforcement effect.

Fig 5.1. CRP mixture experiment; distribution of cluster sizes, actual and estimated using

different methods. Cluster number ordered by decreasing size (horizontal axis) vs Nk
N

(vertical
axis).

1For each inference method, this is the median paritioning in terms of NMI out of the 100
DPMM sampled datasets.
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Table 2

Clustering performance of DP-means, MAP-DP, and Gibbs samplers on UCI datasets,
measured using NMI (two standard deviations in brackets), averaged over all runs. Higher

NMI is better.

DP-means Gibbs MAP-DP

Wine(178 observations, 13 dimensions) 0.42 0.71 (0.06) 0.86
Iris(150 observations, 4 dimensions) 0.76 0.75 (0.06) 0.76

Breast cancer(683 observations, 9 dimensions) 0.75 0.72 (0.01) 0.71
Soybean(266 observations, 35 dimensions) 0.36 0.45 (0.00) 0.40
Pima(768 observations, 8 dimensions) 0.03 0.14 (0.01) 0.07

Vehicle(846 observations, 18 dimensions) 0.21 0.10 (0.02) 0.15

5.2. UCI datasets

Next, we compare DP-means, MAP-DP and Gibbs sampling on six UCI machine
learning repository datasets (Blake and Merz, 1998): Wine; Iris; Breast cancer ;
Soybean; Pima and Vechicle. We assess the performance of the methods using
the same NMI measure as in Section 5.1. Class labels in the datasets are treated
as cluster numbers.2 There is either no or a negligibly small number of missing
values in each of the data sets. The data types vary between datasets and
features: Wine consists of integer and real data; Iris contains real data; Breast
cancer consists of integer and categorical data; Soybean is categorical data; Pima
is real data and Vehicle consists of integer data.

As in Section 5.1 we stop the Gibbs sampler using the Raftery diagnostic
(Raftery and Lewis, 1992). For DP-means, we choose λ to give the true number
of clusters in the corresponding dataset (Kulis and Jordan, 2012). For the Gibbs
algorithm, we report the NMI of the most likely clustering from the whole chain
of samples (Table 2). We also report the two standard deviations of the NMI
computed at each sample of the chain after burn-in.

On almost all of the datasets (5 out of 6), MAP-DP is comparable to, or
even better than, the Gibbs sampler, and on 4 out of 6 datasets it performs as
well as or better than DP-means (Table 2). DP-means performs well on lower-
dimensional datasets with a small number of clusters. In higher dimensions,
it is more likely for the clusters to be elliptical rather than spherical and in
such cases the other algorithms outperform DP-means because of the more
flexible model assumptions. In addition, for higher dimensional data it is more
often the case that the different features have different numerical scaling, so the
squared Euclidean distance used in DP-means is inappropriate. Furthermore,
MAP-DP and the Gibbs sampler are more robust to smaller clusters due to
the longer tails of the Student-T predictive distribution (Appendix B) and the
rich-get-richer effect of existing clusters assigned many observations. DP-means
is particularly sensitive to geometric outliers and can easily produce excessive
numbers of spurious clusters for poor choices of λ.

2We do not assess “Car” and “Balance scale” datasets used in Kulis and Jordan (2012)
because they consist of a complete enumeration of 6 and 4 categorical factors respectively,
and it is not meaningful to apply an unsupervised clustering algorithm to such a setting.
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Table 3

Iterations required to achieve convergence for the DP-means and MAP-DP algorithm, and
the Gibbs sampler, on datasets from the UCI repository.

DP-means Gibbs MAP-DP

Wine 19 2,365 11
Iris 8 1,543 5

Breast cancer 8 939 8
Soybean 14 1059 9
Pima 20 1,189 17
Vehicle 12 939 9

Even though MAP-DP only gives a point estimate of the full joint posterior
distribution, MAP-DP can in practice achieve higher NMI scores than for Gibbs
due to MCMC convergence issues.

We emphasize that these algorithms attempt to maximize the model fit rather
than maximize NMI. The true labels would not be available in practice and it
is not always the case that maximizing the likelihood also maximizes NMI. Fur-
thermore, if we choose the model hyperparameters for each dataset separately,
by minimizing the negative log likelihood with respect to each parameter, higher
NMI can been achieved, but choosing empirical estimates for the model param-
eters simplifies the computations.

In all cases, the MAP-DP algorithm converges more rapidly than the other al-
gorithms (Table 3). The Gibbs sampler takes, typically, greater than 1000 more
iterations than MAP-DP to achieve comparable NMI scores. The computational
complexity per iteration for Gibbs and MAP-DP is comparable, requiring the
computation of the same quantities. This makes the Gibbs sampler significantly
less efficient than MAP-DP in finding a good labeling for the data. The com-
putational price per iteration for DP-means can often be considerably smaller
than MAP-DP or the Gibbs sampler, as one iteration often does not include a
scan through all N data points. This occurs because the scan ends when a new
cluster has to be created, unlike MAP-DP and Gibbs. But, this also implies that
DP-means requires more iterations to converge than MAP-DP.

6. MAP-DP for infinite hidden Markov models

The simplicity of MAP-DP makes it straightforward to extend to more complex
nonparametric models, such as the popular time series hidden Markov model.
Mirroring the approach taken in Section 3, we can obtain an approximate MAP
algorithm for the infinite HMM (Beal et al., 2002) (also known as the HDP-
HMM (Teh et al., 2006)) for modeling sequential, time-series data.

HMMs can be seen as a generalization of finite mixture models where the
cluster indicators that denote mixture component assignments are not indepen-
dent of each other, but related through a Markov process. That is, each data
point xt of a sequence observations (x1, . . . ,xT ) is drawn independently of the
other observations when conditioned on the state variable for time t, zt. The
state variables are linked through a state transition matrix where each row de-
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fines a mixture model for one of the values of the categorical distribution on the
states. The current state zt indexes a specific row of the transition matrix, with
probabilities in this row serving as the mixing proportions for the choice of the
next state zt+1. Therefore the HMM does not involve a single mixture model,
but rather a set of different mixture models, one for each value of the current
state. (Beal et al., 2002) showed that if we replace the mixture models with a
set of DPs, one for each value of the current state, a nonparametric variant of
HMM is obtained that allows an unbounded set of states. In order to obtain
sharing of available states across the sequence, the atoms associated with the
state-conditional DPs are shared and so the transition matrix is modeled with
an HDP (Teh et al., 2006).

Let us denote the base measure of the HDP by H where we restrict H to an
exponential family distribution (for Bayesian conjugacy); N0 and M0 are local
and global concentration parameters; zt−1 indicates the state chosen at time
t− 1. The HDP-HMM can then be written as:

G0 ∼ DP (M0, H)

Gzt−1 ∼ DP (N0, G0)

ϑtzt−1 ∼ Gzt−1

xt ∼ F
(
ϑtzt−1

)
where distribution over the data F

(
ϑtzt−1

)
is a mixture distribution with mixing

distribution Gzt−1 over ϑ determined by the state pointed by zt−1. We can also
write the mixing distribution in terms of transition matrix π and base measure
atoms θ,Gzt−1 =

∑∞
k=1 πzt−1kδθk and xt ∼

∑∞
k=1 πzt−1F (θk) for allG1, . . . , GK .

The rows of the transition matrix π denote the mixture weights for each of the
local DPs, while θ1, . . . , θK are the shared atoms which are the same across
G1, . . . , GK , where K denotes the number of represented components, which in
a nonparametric setting is unknown. The global DP is then characterized with
G0 =

∑∞
k=1 κkδθk where the elements of κ are the mixture weights of this global

DP.

6.1. Gibbs sampler

As in the case of DPMMs (Section 2), exact inference is not available and Gibbs
sampling is a standard choice for inference. A popular approach is based upon
the direct assignment sampling approach for the HDP (Teh et al., 2006), where
the cluster parameters θ and the transition matrix π are integrated out. The
resulting Gibbs sampler then iterates between sampling the state indicators z
and the global mixture weights κ. The mixture weights can be sampled from
the corresponding Dirichlet posterior:

κ1, . . . , κK , κK+1 ∼ Dirichlet (M1, . . . ,MK ,M0) (6.1)

where Mk counts how many times the transition to state k has been drawn from
the global DP. In this representation, we do not keep the assignment variables for
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the global DP and some extra effort is needed to compute the global counts; we
only use the assignments zt of a point to its corresponding state and those assign-
ments are used to compute the local DP counts, Npk = |{t : zt−1 = p, zt = k}|,
that count how many times a transition occurred from state p to state k. Letmpk

be the count of how many times transitions from state p to state k have been
drawn as a new transition from the global DP. We then have Mk =

∑
p mpk. It

is straightforward to see that if Npk �= 0 then mpk �= 0, because the first time
the transition occurs from state p to state k, it is sampled from the global DP.
Furthermore, the count mpk will be limited by Npk, as at most all transitions
from state p to state k are sampled from the global DP. We can then use the
Polya urn sampling scheme underlying the transition probability from state p
to state k to sample mpk:

p (zt+1 = k |zt = p ) ∝
{
N

−zt+1

pk − 1 for an existing transition from p to k

N0κk for a new transition from p to k

(6.2)

Due to the exchangeability of rows in the transition matrix, we can sam-
ple from Equation (6.2) sequentially Npk times, gradually increasing Npk, and
keeping count of how many times the transition from the second term has been
sampled. The recorded count mpk is unbiased and can be marginalized over p
to obtain Mk (Van Gael, 2012).

In order to update the state indicators, for t = 1, ..., T we sample zt from the
corresponding probability:

p (zt |X, z−t, κ ) ∝ p (xt|z−t, zt,X) p (zt |z−t, κ ) (6.3)

where z−t denotes all indicators excluding the one for data point t. The first
term is the posterior predictive distribution of data point xt given its state
and it will be obtained after integrating out the state parameters θ assuming a
conjugate prior for the exponential family likelihood. The resulting distribution
is computed in the same way as in Section 3.1:

p (xt| . . . ) ∝ exp

⎛
⎝ψ0

⎛
⎝τ +

∑
j:zj=k

g (xj) , η +Nk

⎞
⎠

−ψ0

⎛
⎝τ +

∑
j:zj=k,j �=t

g (xj) , η +Nk,−t

⎞
⎠
⎞
⎠ (6.4)

To compute the second term recall that DPs for each row of the transition
matrix are independent, given the shared base measure κ. Then if Nk· denotes
number of transitions from state k and N·k number of transitions to state k we
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can write:

p (zt = k |z−t, κ )∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
N−t

zt−1k
+N0κk

) (
N−t

kzt+1
+N0κzt+1

)
N−t

k· +N0
for k ≤ K, zt−1 �= k(

N−t
zt−1k

+N0κ
) (

N−t
kzt+1

+1+N0κzt+1

)
N−t

k· +N0+1
for zt−1 = zt+1 = k(

N−t
zt−1k

+N0κk

) (
N−t

kzt+1
+N0κzt+1

)
N−t

k· +N0+1
for zt−1 = k �= zt+1

N0κkκzt+1 for k = K + 1

(6.5)

6.2. MAP-DP for iHMMs

In our proposed iterative MAP approach, we sweep through the latent variables
and at each iteration update them one at a time with their respective MAP
values. Following the direct assignment construction presented in the previous
section, the random variables to be updated are the global DP mixture weights
κ and the state indicators z. The mode of the Dirichlet posterior is available in
closed form for concentration parameter M0 ≥ 1, so we can update κ using:

κk = Mk−1
M·−K−1 for an existing state k = 1, . . . ,K

κK+1 = M0−1
M·−K−1 for a new state

(6.6)

where M· =
∑K

k=0 Mk. The counts mpk can be computed by numerical opti-
mization of the corresponding distribution over partitions provided in (Anto-
niak, 1974). However, the expression involves Stirling numbers of the first kind
which may be numerically challenging to compute when the method is applied
to time series with a large number of observations. One approach to avoid this
issue is using Equation (6.2) to sequentially compute the corresponding counts.

In order to update the state indicators, we sweep through each observation
xt and then compute the negative log probability for each existing state k and
for a new state K + 1:

qt,k =− log p (xt |zt = k,X−t )− log p (zt = k |z−t, κ )

qt,K+1 = − log p (xt |τ, η )− log (N0κK+1κzt+1)

where again and without losing generality, we can omit the terms independent
of k. For each observation in the time series, we compute the K+1-dimensional
vector qt and select the state number according to:

zt = argmin
k∈{1,...,K,K+1}

qt,k (6.7)

As with the MAP-DP case, the algorithm proceeds to the next point in the
time series xt+1 by updating the state sufficient statistics to reflect the new
value of the cluster assignment zt and remove the effect of data point xt+1. The
scheme is still guaranteed to converge to a fixed point solution as each step does



Simple approximate MAP inference for Dirichlet processes mixtures 3567

not increase the NLL. However, when the Polya urn scheme in Equation (6.2) is
used to compute the global DP counts its stochastic nature will result in minor
fluctuations in the model NLL. The algorithm still falls into a local optima, but
minor fluctuations occur between iterations. As the NLL is significantly more
influenced by the likelihood terms log p (xt |zt = k,X−t ) and the assignment
probabilities, stopping the scheme at the local minima is straightforward.

6.3. SVA for iHMMs

Jiang et al. (2012) propose an alternative inference algorithm for efficient estima-
tion of iHMMs based on the SVA approach (Section 4). Mirroring the simplified
inference assumptions explained in Section 4, Jiang et al. (2012) have extended
the SVA approach to HDP mixtures and so can be readily applied for infer-
ence in the HDP-HMM model. The resulting algorithm extends the objective
function derived for the simpler DPMM with an additional term penalizing the
number of transitions leading out of each state:

min
z,μ,K

T∑
t=1

Kglobal∑
k=1

Dφ (xt, μk) + λ1

Kglobal∑
p=1

K local
p + λ2K

global (6.8)

In the case of the iHMM, K local
p denotes the number of states for which a

transition from state p exists, and Kglobal denotes the total number of repre-
sented states in the finite time series. Then λ2 penalizes the creation of new
states, while λ1 controls how likely new transitions are between existing states.
As in the DPMM SVA algorithm (Section 4), standard model selection tech-
niques cannot be applied to select the values of λ1 and λ2 and reinforcement
terms have been stripped away. Alternatively, introducing some additional as-
sumptions which imply an entirely ad-hoc coupling between the state indicator
distribution and the data likelihood probabilities, (Roychowdhury et al., 2013)
derives an SVA algorithm that optimizes the following objective function:

min
K,Z,μ,T

T∑
t=1

Kglobal∑
k=1

Dφ (xt, μk)−λ

T∑
t=2

Kglobal∑
k=1

log
Nzt−1k

Nzt−1·
+λ1

Kglobal∑
p=1

K local
p +λ2K

global

(6.9)
(Roychowdhury et al., 2013) also introduces a further algorithm, unrelated

to Gibbs sampling, that attempts to optimize this objective function whilst
also taking advantage of dynamic programming. The method is referred to as
asymp-iHMM in our synthetic experiment below.

6.4. Synthetic study

We compare the performance of the Gibbs, SVA and MAP-DP algorithms for
iHMMs on synthetically generated 3-dimensional data from a five-state HMM
with Gaussian data models. The five Gaussian components are parameterized



3568 Y. Raykov et al.

Table 4

NMI and number of iterations to convergence for different iHMM inference algorithms. ‘+’
indicates convergence was not obtained.

NMI Iterations

Gibbs sampler 0.77 2500+
asymp-iHMM 0.58 12
MAP-iHMM 0.62 13

with isotropic means
[
μd
1, μ

d
2, μ

d
3, μ

d
4, μ

d
5

]
= [0.2, 1.1, 1.8, 3.4, 4.8] for d = 1, 2, 3,

each with shared spherical covariance σI3 where σ = 0.9. At each time step
the HMM has 0.96 probability of self-transition and equal probability to tran-
sition to any of the remaining four states. 4000 data points are generated and
performance of the algorithms is measured using the NMI between the true
and estimated state assignments. The Gibbs sampler is evaluated for the state
assignments that maximize the model likelihood. As shown in Table 4, MAP-
iHMM performs similarly to asymp-iHMM from (Roychowdhury et al., 2013)
whilst keeping the underlying probabilistic iHMM model intact and retaining a
non-degenerate complete data likelihood.

Inferring states in this data is difficult due to overlapping observation likeli-
hood models, and we find that the Gibbs sampler significantly outperforms both
point estimation approaches, but at an even greater computational cost than
for the simpler DPMM. This example illustrates the computational challenges
of using MCMC inference for more complex hierarchical models. In Figure 6.1
we observe that the state sequence obtained by MAP and SVA is similar and
underestimates the true number of states.

7. MAP-DP for semiparametric mixed effects models

Hierarchical modeling is commonly used in the analysis of longitudinal health
data. A particular model that is widely used in practice is the linear mixed
effects model :

yi = Xiβi + εi (7.1)

βi ∼ P

where yi the observation vector for individual i ∈ {1, . . . , N}, εi ∼ N
(
0, τ−1

σ I
)

is the subject-specific observation noise with τσ the within-subject precision and
P the distribution of the random effects βi (Dunson, 2010). Xi are the inputs
for the random effects βi and the fixed effect regression parameters are equal to
the mean of the distribution P . The distribution P is commonly specified to be
Gaussian due to analytical tractability and computational simplicity. However,
the assumption of normality is seldom justified and the assumptions of symmetry
and unimodality are often found to be inappropriate (Dunson, 2010).

Semiparametric mixed effects models have been proposed to relax the nor-
mality assumption by placing a DPMM prior on P (Kleinman and Ibrahim,
1998). However, inference for such models is usually performed using MCMC
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Fig 6.1. Synthetically generated HMM data is in blue. The red line is the estimated state
centroids associated with each point, where centroids have been estimated using (a) asymp-
iHMM and (b) MAP-iHMM.

requiring large computational resources and careful tuning of algorithmic pa-
rameters. This makes MCMC approaches particularly difficult to implement on
large data sets. The increasing availability of large longitudinal data sets war-
rants the investigation of computationally efficient inference approaches such as
MAP-DP. Here in order to construct a semiparametric mixed effects model, we
will use an iterative MAP algorithm similar to MAP-DP above with the only
difference of not integrating out the component parameters.

We construct the model by first placing a DPMM prior on βi in Equation
(7.1). As we are interested in the interpretation of the clusters we do not collapse
out the cluster parameters and the update steps described for MAP-DP are
slightly altered (as in non-collapsed Gibbs) where the random effects βi are



3570 Y. Raykov et al.

substituted for the individual data points xi; an additional step updating the
component means and precisions also needs to be included. Two further steps
are needed to update the random effects βi and within-subject precision τσ.
The conditional p (βi|τσ, zi = k,μk,Rk) for the random effects βi is:

N
(
βi

∣∣∣(τσXT
i Xi +Rk

)−1 (
τσX

T
i yi +Rkμk

)
,
(
τσX

T
i Xi +Rk

)−1
)

(7.2)

where the conditioning is on the assigned cluster k with mean μk and precision
Rk. We place a conjugate Gamma prior on the within-subject precision τσ ∼
Gamma (aσ2 , bσ2) allowing for the calculation of the conditional posterior:

p (τσ|B, aσ2 , bσ2)

= Gamma

(
τσ

∣∣∣∣∣aσ2 +
N

2
, bσ2 +

1

2

N∑
i=1

(yi −Xiβi)
T
(yi −Xiβi)

)
(7.3)

where B is the collection of all random effects (βi)
N
i=1. The modes of both

conditionals needed for MAP-DP are easily calculated in addition to the negative
log likelihood necessary to check for convergence.

7.1. English longitudinal survey of ageing

We apply the semiparametric mixed effects model above to the English lon-
gitudinal survey of ageing (ELSA), a large longitudinal survey of older adults
aged over 50 in the United Kingdom. ELSA is a multi-purpose health study
which follows individuals aged 50 years or older (Netuveli et al., 2006). Collected
health-related factors include clinical, physical, financial and general well-being.
Of primary interest is the effect of the different factors on quality of life (QoL)
measured using a compound measure of several health and socio-economic indi-
cators. The ELSA survey has been conducted in five waves spanning ten years.
In this preliminary study we look at the response of 6,805 individuals across all
5 waves.

We wish to check the hypothesis that measures of cognition such as memory
and executive mental function, as estimated by verbal fluency, are useful pre-
dictors of QoL and whether they are more informative than standard measures
of depression and activities of daily living (ADL) that have been found to be
statistically significant predictors of QoL (Netuveli et al., 2006). We propose
to answer these two questions via selection of two models with different sets
of covariates. The first model includes depression and ADL as inputs whereas
the second model includes measures of cognitive ability, specifically prospective
memory and verbal fluency. The models are assessed using 5-fold cross-validation
and computing the average held-out likelihood (Equation (3.4) in Section 3.2).

The model that includes ADL and depression as covariates achieves a signif-
icantly lower average held-out likelihood than the competing model containing
cognitive measures suggesting that ADL and depression are more informative
predictors of QoL than the cognitive measures we considered (Table 5).



Simple approximate MAP inference for Dirichlet processes mixtures 3571

Table 5

Cross-validation average held-out likelihood for two models.

Cognitive measures Depression + ADL
0.364 3.834

The average elapsed time for fitting the models using MAP inference is 11.05
seconds and 16.29 seconds3. For comparison we performed inference using a
truncated DP random effects model with MCMC and 100,000 iterations to en-
sure convergence on less than half of the data (3,000 individuals) and the result-
ing time to convergence is in excess of five hours making inference on larger data
sets impractical. On the other hand, the rapid inference obtained using MAP-
DP enables a wide array of diagnostic and validation methods to be exploited,
which suggests the approach can be scaled up to very large datasets.

8. Discussion and future directions

We have presented a simple algorithm for inference in DPMMs based on non-
degenerate MAP, and demonstrated its efficiency and accuracy by comparison
to the ubiquitous Gibbs sampler, variational DP, and the SVA algorithms. The
attractiveness of SVA lies in the simplicity and scalability of the resulting algo-
rithms but as we have shown, it entails significant structural departures from
the DPMM as well as removing from the modeler’s arsenal standard tools of
model comparison and selection. We believe our approach is highly relevant to
applications since, unlike SVA, it retains the preferential attachment (rich-get-
richer) property while needing two orders of magnitude fewer iterations than
Gibbs. Unlike SVA, the out-of-sample likelihood may be computed allowing the
use of standard model selection and model fit diagnostic procedures. Lastly, this
non-degenerate MAP approach does not require the approximation inherent to
the factorization assumptions of VB.

As with most MAP methods, MAP-DP can get trapped in local minima,
however, standard heuristics such as multiple random restarts can be employed
to mitigate this risk. This would increase the total computational cost of the
algorithm somewhat but even with random restarts it would still be far more
efficient than the Gibbs sampler.

Although not reported here due to space limitations, we point out that differ-
ent implementations of the Gibbs sampler can lead to different MAP inference
algorithms for DPMMs. For example, different MAP procedures can be derived
from the different Gibbs samplers presented in (Neal, 2000b). In general, we
have found these alternative algorithms to be less robust in practice, as they
do not integrate over the uncertainty in the cluster parameters. However, when
such assumptions are justified, our MAP approach can be readily applied to
different constructions of the DPMM, for example to allow for non-conjugate
choice of priors (extending Algorithm 7 (Neal, 2000b)).

3The reported runtimes for MAP-DP and MCMC were obtained on Matlab R2013a
(8.1.0.604) 64-bit (glnxa64), i7-2600 CPU with 3.40GHz processor, ubuntu PC.
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The simplicity of MAP-DP allows us to easily extend the algorithm to more
complex, composite models such as the iHMM as demonstrated in Section 6
or semiparametric hierarchical mixed-effects models in Section 7. On sequential
time series data, MAP-DP does as well as the hybrid SVA approach of Roy-
chowdhury et al. (2013) in terms of accuracy and computational load whilst
avoiding many of its limitations. We have also contrasted the MAP and SVA
approaches from a theoretical perspective and highlighted some of the inherent
theoretical and practical limitations of the latter.

The generality and the simplicity of MAP-DP makes it reasonable to adapt
to other Bayesian nonparametric mixture models, for example the Pitman-Yor
process which generalizes the CRP (Pitman and Yor, 1997). The MAP ap-
proach can also be applied to hierarchical BNP models such as the nested DP
(Rodriguez et al., 2008). Another useful direction, for large-scale datasets in
particular, would be to extend our approach to perform inference that does
not need to sweep through the entire dataset in each iteration, for increased
efficiency (Welling and Teh, 2011).

Appendix A: Estimating the model hyperparameters

In Bayesian models, we would ideally like to choose our hyperparameters (θ0, N0)
where θ0 = (τ , η) using some additional information that we have for the data.
This could be related to the way data is collected, the nature of the data itself,
or expert knowledge about the problem at hand. For instance, when there is
prior knowledge on the number of clusters, the concentration parameter N0

could be set using the fact that the prior expected number of clusters for a DP
is N0 logN .

In cases where this is not feasible, we have considered the following alterna-
tives:

1. Empirical Bayes. Set the hyperparameters to their corresponding maxi-
mum marginal likelihood values. The maximum marginal likelihood ex-
pression for θ0 will be different for different data types and will not always
be available in closed form.

2. Multiple restarts. Run MAP-DP with different starting values for each of
the hyper parameters (θ0, N0), compute the negative log likelihood, and
change one of the hyperparameters while holding the rest fixed. Then,
restart MAP-DP with the prior parameter. Set that hyperparameter to
the value resulting in the smallest negative log likelihood and proceed
in the same way for the next hyperparameter of the model. Bayesian
optimisation (BO) (Snoek et al., 2012) has also been proposed to fit model
hyperparameters but requires the specification of a Gaussian process and
associated priors for this that may be challenging in practice. We have
therefore not utilised this approach and prefer the simpler greedy search.
However in certain cases BO may be more efficient in terms of the number
of MAP-DP iterations required.
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3. MAP estimate. Place a prior on the hyperparameter and numerically com-
pute the mode of that posterior. For instance, using a gamma prior on N0,
p (N0) = Gamma (aN0 , bN0), the posterior is proportional to

p (N0|N,K) ∝ Γ (N0)

Γ (N0 +N)
N

K+aN0
−1

0 exp (−bN0N0) (A.1)

We can numerically minimize the negative log of this posterior using New-
ton’s method. To ensure the solution is positive we compute the gradient
with respect to logN0: as Rasmussen (1999) notes p (logN0|N,K) is log-
concave and therefore has a unique maximum.

4. Cross-validation. By considering a finite set of values for (θ0, N0), choose
the value corresponding to the maximum average out-of-sample likelihood
across all cross-validation repetitions (see Section 3.2). This approach is
taken in Blei and Jordan (2004) to compare different inference methods.

We have found the second approach above to be the most effective where empir-
ical Bayes can be used to obtain the values of the hyperparameters at the first
run of MAP-DP. For small datasets we recommend using the cross-validation
approach as it can be less prone to overfitting.

Appendix B: Predictive distribution functions

In MAP-DP, the computation requires the collapsed prior predictive distribution
p (x|τ , η), and also the collapsed posterior predictive distribution
p (x|τ k,−i, ηk,−i). These predictive distributions require the updated cluster pos-
terior hyper parameters. These updates depend upon the distribution, and the
data type, of each data point xi. When the distribution is from the exponential
family, the prior distribution over the parameters can be chosen to be conjugate:
the prior over the parameters of the data distribution and the posterior have
the same form of distribution. This simplifies the hyper parameter updates, and,
furthermore, the form of the prior and posterior predictive distributions is the
same and is available in closed form. The table below lists some possible data
types and distributions, their conjugate prior/posterior distribution, the names
given to the hyper parameters and the corresponding name of the predictive
distributions.

Distribution of
data xi

Data type Conjugate
prior/posterior

Parameters Predictive
distribution

Spherical normal
(known variance)

x ∈ R
D Spherical normal

(
μ, σ2

)
Spherical normal

Multivariate
normal (known
covariance)

x ∈ R
D Multivariate normal (μ,Σ) Multivariate

normal

Multivariate
normal

x ∈ R
D Normal-Wishart

(NW)
(m, c,B, a) Multivariate

Student-T
Exponential x ∈ R, x ≥ 0 Gamma (α, β) Lomax
Categorical x ∈ {1, 2, . . . D} Dirichlet (α1, . . . , αD) Dirichlet

multinomial



3574 Y. Raykov et al.

Distribution of
data xi

Data type Conjugate
prior/posterior

Parameters Predictive
distribution

Binomial x ∈ {0, 1, . . . n} Beta (α, β) Beta-binomial
Poisson x ∈ Z, x ≥ 0 Gamma (α, β) Negative-

binomial
Geometric x ∈ Z, x ≥ 0 Beta (α, β) Ratio of beta

functions

In the examples presented in this paper the data likelihood is multivari-
ate Gaussian and we describe this case in more detail. Specifically when each
data point x ∈ R

D is assumed to be multivariate Gaussian with unknown
mean vector and precision matrix, the conjugate prior distribution of the Gaus-
sian parameters is NW, with hyperparameters θ0 = (m0, c0,B0, a0). Then,
the posterior distribution for each cluster is also NW, with hyperparameters
θ−i
k =

(
m−i

k , c−i
k ,B−i

k , a−i
k

)
. These are updated for each cluster according to:

m−i
k =

c0m0 +Nk,−ix̄k,−i

c0 +Nk,−i

c−i
k = c0 +Nk,−i

B−i
k =

(
B−1

0 + Sk,−i +
c0Nk,−i

c0 +Nk,−i
(x̄k,−i −m0) (x̄k,−i −m0)

T

)−1

a−i
k = a0 +Nk,−i

(B.1)

where:

x̄k,−i =
1

Nk,−i

∑
j:zj=k,j �=i

xj

Sk,−i =
∑

j:zj=k,j �=i

(xj − x̄k,−i) (xj − x̄k,−i)
T

(B.2)

The predictive distributions p (x|τ , η) and p (x|τ k,−i, ηk,−i) are D-dimen-
sional multivariate Student-T distributions, whose negative log, written in terms
of the parameters (μ,Λ, ν) is:

− log f (x|.) =
ν +D

2
log

[
1 + ν−1 (x− μ)

T
Λ (x− μ)

]
−1

2
log |Λ|+ log Γ

(ν
2

)
+

D

2
log (vπ)− log Γ

(
ν +D

2

)

where the Student-T parameters (μ,Λ, ν) are given in terms of the NW param-
eters μ = m, ν = a − D + 1 and Λ = cν

c+1B. We note that fast incremental
updates of all these parameters are possible when including and then removing
a single data point from a cluster, see Raykov et al. (2014) for details.

Appendix C: Bregman divergences

The conditional probabilities for the DPMM can be expressed using the general
distortion measure known as Bregman divergence (Banerjee et al., 2005). The
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Bregman divergence between any two vectors x and θ is defined as Dφ (x, θ) =
φ (x) − φ (θ) − 〈x− θ,∇φ (θ)〉 for the function φ : S → R being differentiable
and strictly convex on a closed convex set S ⊆ RD. Bregman divergences can
be efficiently used to provide a compact parameterization of exponential family
distributions with their expectation parameter. This generalizes the result that
a group of points are summarized by their mean in Euclidean space to all spaces
that can be described with Bregman divergence as a distortion measure.

Appendix D: DP-means λ parameter binary search

In our experiments with the DP-means algorithm, it is necessary to have an
automatic way of obtaining the parameter λ for synthetic experiments where
we wish to obtain a specific number of clusters Ktarget. We use a binary search
approach where λ is set in a sequence of binary search steps:

1. Initialisation: Set λ to the mid-point of the range
[
L1 = 0, U1 = M2

]
where L1, U1 are respectively the lower and upper bounds of the range
for the first iteration. M2 is the maximal squared Euclidean distance and
is set to M2 =

∑D
d=1 (max (xd)−min (xd))

2
where max (xd), min (xd)

are respectively the upper and lower bounds of the data for dimension d.
(The use of the maximal Euclidean distance originates in the DP-means
algorithm step which creates a new cluster when di,k > λ where di,k is the
squared Euclidean distance of data point i to the mean of cluster k.)

2. For iteration i = 1, 2, . . .

(a) Run the DP-means algorithm with λ = 1
2 (Ui + Li) which returns

Kobtained,

(b) If Kobtained > Ktarget then there are too many clusters so we will
increase λ. We update the lower bound Li+1 = λ and leave the upper
bound unchanged Ui+1 = Ui,

(c) IfKobtained < Ktarget there are too few clusters so we need to decrease
λ. We update the upper bound Ui+1 = λ and leave the lower bound
unchanged Li+1 = Li,

(d) Stop when Kobtained = Ktarget.
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Olivier Bousquet and Léon Bottou. The tradeoffs of large scale learn-
ing. In Advances in Neural Information Processing Systems, pages 161–168,
2008.

Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C. Wil-

son, and Michael I. Jordan. Streaming variational Bayes. In Advances in
Neural Information Processing Systems, pages 1727–1735, 2013a.

Tamara Broderick, Brian Kulis, and Michael I. Jordan. Mad-bayes:
Map-based asymptotic derivations from bayes. In ICML (3), pages 226–234,
2013b.

Wang Chong, John W. Paisley, and David M. Blei. Online variational
inference for the hierarchical Dirichlet process. In International Conference
on Artificial Intelligence and Statistics, pages 752–760, 2011.

David B. Dahl. Modal clustering in a class of product partition models.
Bayesian Analysis, 4(2):243–264, 2009. MR2507363
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