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Abstract—In this paper, we propose a novel entropic sig-
nature for graphs, where we probe the graphs by means of
continuous-time quantum walks. More precisely, we characterise
the structure of a graph through its average mixing matrix.
The average mixing matrix is a doubly-stochastic matrix that
encapsulates the time-averaged behaviour of a continuous-time
quantum walk on the graph, i.e., the ij-th element of the
average mixing matrix represents the time-averaged transition
probability of a continuous-time quantum walk from the vertex
vi to the vertex vj . With this matrix to hand, we can associate a
probability distribution with each vertex of the graph. We define
a novel entropic signature by concatenating the average Shannon
entropy of these probability distributions with their Jensen-
Shannon divergence. We show that this new entropic measure
can encaspulate the rich structural information of the graphs,
thus allowing to discriminate between different structures. We
explore the proposed entropic measure on several graph datasets
abstracted from bioinformatics databases and we compare it with
alternative entropic signatures in the literature. The experimental
results demonstrate the effectiveness and efficiency of our method.

I. INTRODUCTION

Graph-based representations have proven to be powerful
tools in structural pattern recognition. Compared to vector
based pattern recognition, a major drawback with graph rep-
resentations is the lack of a natural correspondence order
for vertices. This limits the direct application of standard
machine learning algorithms to problems such as classifying
or clustering graphs.

One way to overcome this problem is to embed graphs
onto a vectorial space by computing some entropy-based
vectorial signature. Several approaches have been proposed in
the literature to associate an entropic complexity measure to
a graph. Dehmer et al. [1], [2] have developed a means of
computing entropies of undirected graphs by using information
functionals. For a given graph, the information functional is de-
rived from its topological structure and quantify its information
content. Anand et al. [3] and Passerini et al. [4] have applied
the von Neumann entropy or quantum entropy to graphs, by
mapping quantum states into discrete graph Laplacians [5]. In
particular, Passerini et al. note that if the discrete Laplacian [6]
is scaled by the inverse of the volume of the graph the resulting
matrix is a density matrix, whose entropy can be computed
using the spectrum of the discrete Laplacian. Moreover, they
indicate that when there is degree heterogeneity then the
Shannon (classical) and von Neumann (quantum) entropies
are correlated. Since the von Neumann entropy relies on
the computation of the normalized Laplacian spectrum, its

computational complexity is cubic in the number of vertices.
To render the computation of the von Neumann entropy more
efficient, Han et al. [7] have shown how the computation can
be rendered quadratic in the number of vertices of the graph
by using a quadratic approximation of the Shannon entropy
of the Laplacian eigenvalues. An analysis of the quadratic
entropy reveals that it can be computed from a number of
permutation invariant matrix trace expressions. This leads to a
simple expression for the approximate entropy in terms of the
degrees of adjacent vertices. Furthermore, to develop this work
further, Ye et al. [8] have shown how the von Neumann entropy
for undirected graphs can be generalized to directed graphs.
To this end, they commenced by using Chung’s [9] definition
of the normalized Laplacian on a directed graph. According to
this definition, the normalized Laplacian matrix of a directed
graph is Hermitian, and so the interpretation of Passerini et
al. in [3] still holds for the domain of directed graphs. By
observing that the Von Neumann entropy of the normalized
Laplacian is essentially the Shannon entropy associated with
the normalized Laplacian eigenvalues, the authors provide an
expression for the von Neumann entropy of directed line
graphs which depends on the in-degree and out-degree of pairs
of connected vertices.

It should be noted that most of these entropy measures can
only capture limited structural information of a graph. This
is because the entropy based on information functionals of
Dehmer et al. [1] and the Von Neumann entropy approxima-
tions of Han et al. [7] and Ye et al. [8] are all based on the
computation of relatively simple structural characteristics.

Another way to apply standard machine learning and
pattern recognition techniques to graphs is to use kernels
methods [10]. The idea underpinning graph kernels is to mea-
sure the similarity between two graphs by first decomposing
them into simpler substructures and then enumerating the
number of substructures they share. For example, random walk
graph kernels describe the structure of a graph using random
walks [11]. More recently, graph kernels based on quantum
walks have been shown to easily outperform their classical
counterpart [12], [13]. Unlike explicit embedding methods,
however, graph kernels provide an indirect embedding, where
only the dot product of the graphs in the embedding space is
known. With respect to entropic signature, graph kernels tend
to have a higher computational cost.

A. Contribution

In this paper, we propose to exploit the rich expressive
power of quantum walks to define a novel entropic signature
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which is able to capture the structural information of graphs
better than existing entropic signatures. With respect to existing
quantum walk graph kernels, we propose to use the average
mixing matrix [14] to summarize the time-averaged behaviour
of the walk. The reason for using continuous-time quantum
walks and the average mixing matrix is twofold. Firstly,
quantum walks have been shown to discriminate between
different structures better than their classical counterparts [12],
[13]. For example, while the long-term behaviour of classical
random walks is governed by the leading eigenvector of the
graph Laplacian, all the eigenvectors of the Hamiltonian (i.e.,
the graph Laplacian or the adjacency matrix, depending on the
setting) contribute to the long-term behaviour of a quantum
walk. Secondly, the average mixing matrix concisely summa-
rizes the time-averaged behaviour of continuous-time quantum
walk. In this sense, the average mixing matrix represents the
closest quantum analogue of the steady state of a classical
random walk, which has been used to measure the Shannon
entropy of a graph [15]. Therefore, the average mixing matrix
represents a natural choice for our entropic signature based on
quantum walks.

The proposed entropic signature is computed as follows.
Given a graph, we commence by computing the average
mixing matrix associated wit it. We then show how this
allows us to associated a probability distribution over the
graph vertices, for each vertex of the graph. Then, we define
our entropic signature by concatenating the average Shannon
entropy of these probability distributions with their Jensen-
Shannon divergence. We show that this new entropic measure
can encaspulate the rich structural information of the graphs,
thus allowing to discriminate between different structures.
We explore the proposed entropic measure on several graph
datasets abstracted from bioinformatics databases and we com-
pare it with alternative entropic signatures in the literature.
The experimental results demonstrate the effectiveness and
efficiency of our method.

The remainder of this paper is organized as follows.
Section II introduces the concepts of continuous-time quantum
walks and average mixing matrix. We then show how this
allows us to associate a probability distribution with each
vertex of the graph. Section III gives the definition of the
proposed entropic signature for graphs. Section IV provides
experiments, while Section V concludes our work.

II. PRELIMINARY CONCEPTS

In this section, we commence by introducing the concepts
of continuous-time quantum walka and average mixing matrix.
We then proceed to show how to associated a probability distri-
bution with each vertex of a graph based on the corresponding
average mixing matrix.

A. Continuous-time Quantum Walks

The continuous-time quantum walk represents the quan-
tum analogue of the continuous-time random walk [16]. A
continuous-time random walk models a Markovian diffusion
process over the vertices of a graph, where transitions are
only allowed between adjacent vertices. Let G = (V,E) be
an undirected graph with vertex set V and edge set E, and
let p(t) ∈ Rn denote the state of walk at time t, i.e, the i-th

component of p(t) is the probability of the random walker to
be at vertex vi at time t. In a continuous-time random walk
the state vector evolves according to the equation

p(t) = e−Ltp(0), (1)

where the graph Laplacian L = D − A is the infinitesimal
generator matrix of the underlying continuous-time Markov
process, A denotes the adjacency matrix and D is the diagonal
matrix with the vertex degrees as diagonal elements.

Similarly to its classical counterpart, the state space of
the continuous-time quantum walks is the vertex set of the
graph. The state vector of classical random walks is replaced
by a vector of complex amplitudes over V whose squared
norm sums to unity, and as such the state of the system is
not constrained to lie in a probability space, thus allowing
interference to take place. The state of the quantum walk at
time t is a complex linear combination of the basis states |u〉

|ψ(t)〉 =
∑
u∈V

αu(t) |u〉 , (2)

where the amplitude αu(t) ∈ C and |ψ(t)〉 ∈ C|V | are
both complex. Moreover, we have that αu(t)α

∗
u(t) gives the

probability that at time t the walker is at the vertex u, and
thus

∑
u∈V αu(t)α

∗
u(t) = 1 and αu(t)α

∗
u(t) ∈ [0, 1], for all

u ∈ V , t ∈ R+.

Unlike the classical random walk, the evolution of the
quantum walk is governed by the Schrödinger equation
∂/∂t |ψt〉 = −iH |ψt〉, where H denotes the system Hamilto-
nian. This is usually either the adjancency matrix or the graph
Laplacian.

B. The Average Mixing Matrix

Given a graph G = (V,E), the behaviour of a continuous-
time quantum walk at time t can be summarized using the
mixing matrix [14]

M(t) = U(t) ◦ U(−t) (3)
= eiHt ◦ e−iHt,

where ◦ denotes the Schur-Hadamard product of two matrices,
i.e., [A◦B]uv = AuvBuv . Since U is unitary, M(t) is a doubly
stochastic matrix, i.e., a non-negative real matrix such that its
rows and columns sum to 1. Intuitively, the entry M(t)uv is
equal to the probability that at time t a quantum walker that
started from vertex u is found at vertex v.

Since U(t) is unitary and thus norm-preserving, M(t) does
not converge. However, we can enforce convergence by taking
a time average. More specifically, we can introduce the average
mixing matrix by taking the Cesàro mean

M̂ = lim
T→∞

∫ T

0

M(t)dt. (4)

The entry M̂vivj can be interpreted as the average probability
that a quantum walker that started from the vertex vi is
found at vj . Note that the average mixing matrix is still
a doubly stochastic matrix. Godsil [14] also proved that its
entries are rational numbers. The average mixing matrix can
be easily computed from the spectrum of the Hamiltonian. Let



H =
∑M

j=1 λjPj , where the λjs are the M distinct eigenvalues
of H and Pm is the matrix representation of the orthogonal
projection on the eigenspace associated with λm. Then, the
average mixing matrix can be written as

M̂(t) =

M∑
j=1

Pj ◦ Pj . (5)

C. Shannon Entropy from the Average Mixing Matrix

In this subsection, we show how to associate a Shannon
entropy with each vertex of a graph. Let G = (V,E) be
a sample graph and M̂(t) be the average mixing matrix of
G. For the i-th vertex vi ∈ V , the corresponding row of
the average mixing matrix gives time-averaged probability for
the quantumw walker to reach the vertices v1, . . . , v|V | ∈ V
starting from vi, i.e.,

Pi = {pi(v1), . . . , pi(vj), . . . , pi(v|V |)}. (6)

where pi(vj) = M̂vivj is the time-averaged probability of
going from vi to vj .

Thus, the Shannon entropy associated with the vertex vi
can be computed as

HS(vi) = −
∑
vj∈V

pi(vj) log pi(vj). (7)

III. AN ENTROPIC SIGNATURE FROM THE AVERAGE
MIXING MATRIX

In this section, we propose a define the proposed entropic
signature. We commence by introducing the concept of Jensen-
Shannon divergence. With the Jensen-Shannon divergence to
hand, we then proceed to show how to define a novel graph
entropic signature.

A. The Jensen-Shannon Divergence

The Jensen-Shannon divergence is a dissimilarity measure
defined between probability distributions [17]. Consider two
(discrete) probability distributions P = (p1, . . . , pm, . . . , pM )
and Q = (q1, . . . , qm, . . . , qM ), then the Jensen-Shannon
divergence between P and Q is defined as

DJS(P,Q) = HS(
P +Q

2
)− HS(P) +HS(Q)

2

= −
M∑

m=1

pm + qm
2

log
pm + qm

2

+

M∑
m=1

pm log pm +

M∑
m=1

qm log qm. (8)

where HS(P) =
∑M

m=1 pm log pm is the Shannon entropy of
the probability distribution P . For a mixture of N probability
distributions P1, . . . ,PN associated with mixing proportions
π1, . . . , πN , the Jensen-Shannon divergence defined in Eq.(8)
can be re-written as

DJS(P1, . . . ,PN ) = HS(

N∑
i=1

πiPi)−
N∑
i=1

πiHS(Pi). (9)

Note that the Jensen-Shannon divergence DJS , both in Eq.(8)
or Eq.(9), is always well defined, symmetric, negative definite
and bounded, i.e., 0 ≤ DJS ≤ 1.

B. Graph Entropic Signature

Let G(V,E) be a sample graph. We commence by comput-
ing the average mixing matrix M̂(t) for G. As observed in the
previous Section, the i-th row of M̂(t) corresponds to the time-
averaged probability distribution Pi induced by a continuous-
time quantum walk starting from vi ∈ V . We define the
mixture of |V | probability distributions corresponding to the
|V | vertices of G by associating a weight πi = 1/|V | with
each row of the average mixing matrix. The entropic signature
of G is then computed as

EG = [DJS(P1, . . . , P|V |), ĤS(v1, . . . , v|V |)], (10)

where DJS(P1, . . . , P|V |) is the entropic dissimilarity of G

DJS(P1, . . . , P|V |) = HS(

|V |∑
i=1

πiPi)−
|V |∑
i=1

πiHS(Pi), (11)

and ĤS(v1, . . . , v|V |) is the average entropic measure of G

ĤS(v1, . . . , v|V |) =

|V |∑
i=1

πiHS(Pi). (12)

Note that, for EG the element DJS(P1, . . . , P|V |) reflects
the entropic dissimilarity between the probability distribution
associated with the graph vertices. On the other hand, the
element ĤS(v1, . . . , v|V |) encapsulates the average Shannon
entropy associated with the vertices. Both the elements of
our entropic measure rely on the average mixing matrix of
continuous-time quantum walks. As we have stated, quantum
walks encapsulate rich interior graph information. As a result,
the proposed entropic signature not only encapsulates the rich
information from the Shannon entropies of the distributions
induced by the quantum walk, but also captures the interior
dissimilarity information between vertices.

C. Computational Complexity

For a graph G(V,E) having n vertices, computing
the entropic characteristics measure has time complexity
O(n3). This is because the required average mixing matrix
from continuous-time quantum walks relies on the eigen-
decomposition of the graph Laplacian, that requires time
complexity O(n3). This indicates that the proposed entropic
characteristics measure for a graph can be computed in a
polynomial time. Note that this is the same complexity of
the von Neumann entropy computation. However, as our
experimental results show, the proposed signature is better able
to discriminate between different graph structures.

IV. EXPERIMENTAL RESULTS

A. Graph Datasets

We demonstrate the performance of our new kernel on six
standard graph datasets from bioinformatics databases. These
datasets include: MUTAG, NCI1, NCI109, ENZYMES, PPIs
and PTC(MR). More details are shown in Table.I.

MUTAG: The MUTAG dataset consists of graphs representing
188 chemical compounds, and aims to predict whether each
compound possesses mutagenicity.



TABLE I. SUMMARY STATISTICS FOR THE SELECTED GRAPH DATASETS

Datasets MUTAG NCI1 NCI109 ENZYMES PPIs CATH1 CATH2
Max # vertices 28 111 111 126 232 568 568
Min # vertices 10 3 4 2 3 44 143
Mean # vertices 17.93 29.87 29.68 32.63 109.60 205.70 308.03

Number of graphs 188 4110 4127 600 86 712 190

NCI1 and NCI109: The NCI1 and NCI109 datasets consist
of graphs representing two balanced subsets of datasets of
chemical compounds screened for activity against non-small
cell lung cancer and ovarian cancer cell lines respectively.
There are 4110 and 4127 graph based structures in NCI1 and
NCI109 respectively.

ENZYMES: This dataset consists of graphs representing pro-
tein tertiary structures consisting of 600 enzymes from the
BRENDA enzyme database. In this case the task is to correctly
assign each enzyme to one of the 6 EC top-level classes.

PPIs: The PPIs dataset consists of protein-protein interaction
networks (PPIs). The graphs describe the interaction relation-
ships between histidine kinase in different species of bacteria.
Histidine kinase is a key protein in the development of signal
transduction. If two proteins have direct (physical) or indirect
(functional) association, they are connected by an edge. There
are 219 PPIs in this dataset and they are collected from
5 different kinds of bacteria with the following evolution
order (from older to more recent) Aquifex4 and thermotoga4
PPIs from Aquifex aelicus and Thermotoga maritima, Gram-
Positive52 PPIs from Staphylococcus aureus, Cyanobacteria73
PPIs from Anabaena variabilis and Proteobacteria40 PPIs
from Acidovorax avenae. There is an additional class (Aci-
dobacteria46 PPIs) which is more controversial in terms of
the bacterial evolution since they were discovered. We select
Proteobacteria40 PPIs and Acidobacteria46 PPIs as the second
group test graphs.

CATH1 and CATH2: The CATH1 dataset consists of proteins
in the same class (i.e Mixed Alpha-Beta), but the proteins
have different architectures (i.e. Alpha-Beta Barrel vs. 2-layer
Sandwich). CATH2 contains proteins in the same class (i.e.
Mixed Alpha-Beta), architecture (i.e. Alpha-Beta Barrel), and
topology (i.e. TIM Barrel), but in different homology classes
(i.e. Aldolase vs. Glycosidases). The CATH2 dataset is harder
to classify, since the proteins in the same topology class are
structurally similar. There are 712 and 190 test graphs in the
CATH1 and CATH2 datasets.

B. Experiments on Graph Classification

Experimental Setup: We compare the proposed entropic
signature with several state-of-the-art entropy-based graph
complexity measure. These include 1) the von-Neumann graph
entropy (VNGE) [7], 2) the Shannon graph entropy associated
with the steady state random walk (SGE) [15], 4) the Shannon
entropy associated with the information functionals, fV2 (FV2)
and fP2 (FP2) [2], 5) the von Neumann entropy associated
with the normalized Laplacian matrix [4], 6) the backtraceless
random walk kernel using the Ihara zeta function based cycles
(BRWK) [18], and 7) the graphlet count graph kernels with
graphlet of size 3 (GCGK) [19]. For the proposed method and
the entropy-based graph complexity methods, we calculate the
characterization values of graphs as features. We then evaluate

the performance of the signatures in a graph classification
task by performing 10-fold cross-validation using a Support
Vector Machine (SVM) with Sequential Minimal Optimization
(SMO) [20] and the Pearson VII Universal Kernel (PUK) [21].
For the BRWK and GCGK kernels, evaluate the classification
performance by performing 10-fold cross-validation using a C-
SVM associated with the kernel matrix. For any method, We
use nine folds for training and one fold for testing. We evaluate
the performance of our method and the alternative methods.
For each method, we repeat the experiments 10 times. We
report the average classification accuracies of each method in
Tables II. The runtime is measured under a Matlab R2011a
running on a 2.5GHz Intel 2-Core processor (i.e., i5-3210m).
Table III, on the other hand, shows the runtime evaluation for
each of method and dataset.

Results and Discussions: In terms of classification accuracy,
the proposed entropic signature easily outperforms the alterna-
tive entropy-based complexity measures, the BRWK kernel and
the GCGK kernel. Only the classification accuracy of the SGE
entropy on the MUTAG and CATH1 datasets is a marginally
better than that of the proposed method, but the proposed
method is still competitive with respect to the SGE entropy
measure on the MUTAG and CATH1 datasets. On the other
hand, the classification accuracy of the proposed method is
significantly greater than that of the SGE entropy measure on
the remaining datasets. These observations indicate that the
proposed entropic measure is more effective than the state-
of-the-art entropy-based complexity measures and the graph
kernels. The reason for this effectiveness is that both the two
elements of the proposed entropic signature rely on the average
mixing matrix of continuous-time quantum walks, which in
turn can reflect rich interior graph information. By contrast,
either the alternative entropy-based complexity measures or
the alternative graph kernels rely on the graph vertex degrees,
informational functionals, cycles and graphlet substructures,
which encapsulate structurally simple features. As a result, the
proposed method can reflect richer graph characteristics than
the alternative methods.

In terms of runtime, it is clear that the proposed method is
not the most efficient method. However, the proposed method
can still finish the computation in a polynomial time on all the
datasets. At the same time, the effectiveness of the proposed
method is better than any alternative entropy-based complexity
measure method. This indicates that the proposed method is
applicable on real-world datasets.

C. Stability Evaluation

In this subsection, we explore the relationship between
the graph edit distance and the proposed entropic signature.
The edit distance between two graphs Gp and Gq is the
minimum edit cost taken over all sequences of edit operations
that transform Gp into Gq . In our experiments, we establish



TABLE II. AVERAGE CLASSIFICATION ACCURACY (IN % ± STANDARD ERROR).

Datasets MUTAG NCI1 NCI109 ENZYMES PPIs CATH1 CATH2
EC 85.63± .35 66.05± .46 66.32± .47 27.67± .37 77.91± .42 98.74± .11 77.89± .41

VNGE 85.63± .34 62.15± .53 62.05± .51 25.50± .36 72.09± .43 98.59± .11 75.78± .42
SGE 87.76± .35 61.84± .50 62.05± .51 23.16± .35 67.44± .42 98.87± .11 76.31± .42
FV2 84.57± .32 62.04± .49 62.15± .49 24.17± .37 70.93± .46 96.91± .11 76.31± .40
FP2 85.63± .32 62.37± .49 62.37± .49 23.33± .37 70.93± .46 96.91± .11 76.31± .40
VNE 85.63± .34 63.18± .49 62.95± .51 25.00± .36 63.95± .43 98.45± .11 76.84± .42

BRWK 77.50± .75 60.34± .17 59.89± .15 20.56± .45 −− −− −−
GCGK 82.04± .39 63.72± .12 62.33± .13 24.87± .22 46.61± .47 98.49± .12 73.68± 1.09

TABLE III. RUNTIME COMPARISONS

Datasets MUTAG NCI1 NCI109 ENZYMES PPIs CATH1 CATH2
EC 1” 10” 10” 2” 3” 1′46” 54”

VNGE 1” 1” 1” 1” 1” 1” 1”
SGE 1” 1” 1” 1” 1” 1” 1”
FV2 1” 4” 4” 1” 1” 8” 3”
FP2 1” 4” 4” 1” 1” 8” 3”
VNE 1” 6” 6” 1” 1” 16” 8”

BRWK 1” 6′49” 6′49” 13” > 1day > 1day > 1day
GCGK 1” 5” 5” 2” 4” 2” 8”

a new graph by deleting a fraction of vertices from a seed
graph. The evaluation employs two seed graphs each having
400 vertices. For each of the seed graph, we randomly delete
a predetermined fraction of vertices to simulate the effects of
noise. We apply the edit operation on the seed graph 35 times,
and generate 35 edit operated graphs as the noise corrupted
counterparts. Given the seed graph, we delete 4 vertices (i.e.,
1% vertices) each time, respectively. Recall that the proposed
entropic signature of a graph consists of two elements. One
is the Jensen-Shannon divergence between the graph vertices,
the other one is the average Shannon entropy of the graph
vertices. To evaluate the effect of structural perturbations on
the proposed entropic signature, we investigate how these two
components vary under the edit operations. Fig.1 and Fig.2
shows the fluctuations of the signature elements for increasing
amounts of structural noise. In each plot, the x-axis denotes the
fraction of vertices deleted, and the y-axis denotes the value
of the value of the entropic signature components.

We observe that there is an approximately linear relation-
ship between both the entropic characteristics elements and
the fraction of the deleted vertices. Moreover, we observe that
when less than 10% of vertices are deleted the fluctuations are
relatively small and the value of the signature is stable. How-
ever, when around 20% of vertices are deleted the fluctuations
become moderate. These indicate that the proposed entropic
signature measure is robust even when the seed graph struc-
ture undergoes relatively large perturbations. Furthermore, the
proposed method also possesses a good ability to distinguish
graphs under controlled amounts of structural errors.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel entropic signa-
ture for graphs, based on the average mixing matrix from
continuous-time quantum walks. More specifically, we have
associated a probability distribution with each vertex of a
graph using the average mixing matrix. The resulting entropic
signature is computed by concatenating the average Shannon
entropy of these probability distributions with their Jensen-
Shannon divergence. The new entropic measure encapsulates
the rich structural information of graphs, and thus has a good
ability of discriminating different graph structures. We have

empirically demonstrated the effectiveness of the proposed
entropic measure on several standard graph-based datasets
abstracted from bioinformatics databases.

In the future work, we will extend our analysis in a
number of ways. First, in our previous work [15], [12] we
have developed a family of graph kernels using both the
classical and quantum Jensen-Shannon divergence associated
with classical and quantum walks. It would be interesting
to use the average mixing matrix to develop a new Jensen-
Shannon graph kernel. Second, in our previous work [22], we
have developed a novel framework for computing depth-based
complexity traces of graphs associated with entropy measures.
It would be interesting to develop a new complexity trace
method for graphs using the average mixing matrix.
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