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Abstract—In this paper, we develop a new transitive aligned
Weisfeiler-Lehman subtree kernel. This kernel not only overcomes
the shortcoming of ignoring correspondence information between
isomorphic substructures that arises in existing R-convolution
kernels, but also guarantees the transitivity between the corre-
spondence information that is not available for existing matching
kernels. Our kernel outperforms state-of-the-art graph kernels in
terms of classification accuracy on standard graph datasets.

I. INTRODUCTION

Graph kernels are powerful tools for structural analysis
on graphs [1]. The main advantage of using graph kernels
is that they characterize graphs in a high dimensional space
and thus better preserve graph structures. Most of the recently
introduced graph kernels are in fact instances of the generic R-
convolution kernel proposed by Haussler [2]. R-convolution is
a generic way for defining graph kernels based on comparing
all pairs of decomposed substructures. Specifically, any graph
decomposition can be used to define a kernel, e.g., the graph
kernels based on comparing all pairs of decomposed a) walks
[3], b) paths [4] and c) restricted subgraphs [5] or subtree
structures [6], [7], [8], [9]. One main drawback arising in
these R-convolution kernels is that they ignore the relative
locations of substructures. This occurs when an R-convolution
kernel adds an unit value to the kernel function by roughly
identifying a pair of isomorphic substructures. In other words,
the R-convolution kernels cannot establish reliable structural
correspondences between isomorphic substructures, i.e., the
kernel measure does not depend on the relationships between
substructures.

To overcome the drawback of ignoring structural corre-
spondence information arising in the R-convolution kernel,
Fröhlich et al. [10] introduce optimal assignment kernels. Here
each pair of structures is aligned before comparison. Neuhaus
and Bunke [11] propose an aligned random walk kernel where
the alignments obtained are based on graph edit-distance. Bai
et al. [12] develop an entropic matching kernel by aligning
vectorial vertex signatures computed through depth-based rep-
resentations [13]. This kernel can be seen as an aligned subtree
kernel that incorporates explicit structural correspondences
between subtrees. All these kernels address the drawback of
neglecting relative locations between substructures arising in
the R-convolution kernels. Unfortunately, these kernels cannot
guarantee the transitivity between the alignments. In other
words, given three vertices v, u and w, if v and u are aligned,
and u and w are aligned, these kernels cannot guarantee
that v and w are also aligned. On the other hand, Fröhlich
et al. [10] have demonstrated that the transitive alignment

step is necessary to guarantee the positive definiteness of
the alignment kernels. As a result, these alignment kernels
are not guaranteed to be positive definite. Furthermore, when
computing the kernel value between a pair input graphs, the R-
convolution kernels and the alignment kernels both ignore the
information from other graphs in the dataset. These drawbacks
limit the precision of the kernel-based similarity measure.

To address the shortcomings of existing graph kernels, we
introduce a new transitive aligned subtree kernel, based on
an improved transitive aligned Weisfeiler-Lehman method that
is developed through depth-based representation alignments.
Note that we choose to use the depth-based representation
due to its ability to characterize the graph structure [13], but
in theory any vectorial vertex signature could be employed.
We theoretically show that this kernel not only overcomes the
shortcoming of ignoring correspondence information between
isomorphic substructures that arises in existing R-convolution
kernels, but also guarantees the transitivity between the cor-
respondence information, i.e., we can guarantee the positive
definiteness for the resulting kernel. Furthermore, we show
that the computation of the kernel value encapsulates structural
information from the input pair of graphs as well as other
graphs in the dataset. Thus, the new transitive aligned subtree
kernel can reflect richer graph characteristics than existing
graph kernels. Experiments demonstrate that our kernel can
easily outperform state-of-the-art graph kernels in terms of
classification accuracy.

II. PRELIMINARY CONCEPTS

In this section, we will introduce a number of preliminary
notions that will be used in the remainder of the paper.

A. Depth-based Representations of Vertices

In this subsection, we show how to compute the depth-
based representation around the vertices of a graph, as defined
by Bai et al. in [13]. For a sample graph G(V,E) and a vertex
v ∈ V , let a vertex set NK

v be

NK
v = {u ∈ V | SG(v, u) ≤ K}, (1)

where SG is the shortest path matrix of G and SG(v, u) is the
shortest path length between v and u. For the graph G(V,E),
the K-layer expansion subgraph GK

v (VK
v ; EK

v ) around v is
{

VK
v = {u ∈ NK

v };
EK
v = {u,w ∈ NK

v , (u,w) ∈ E}.
(2)

Note that, if K is equal to the longest shortest path length
Lmax from v to the remaining vertices, the K-layer expansion

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/78899624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


subgraph rooted at v is the global graph G(V,E) itself. If K >
Lmax, we use the global graph G as the K-layer expansion
subgraph, however we say that the K-expansion subgraph does
not exist. For G(V,E), the h-layer depth-based representation
around v ∈ V is

DBh
G(v) = [HS(G

1
v), · · · , HS(G

K
v ), · · · , HS(G

h
v )]

⊤, (3)

where (K ≤ h). HS(G
K
v ) is the Shannon entropy of GK

v

associated with the steady state random walk defined as

HS(G
K
v ) = −

∑

u∈VK
v

P (u) logP (u), (4)

where P (u) = DGK
v
(u, u)/

∑

w∈VK
v
DGK

v
(w,w) is the proba-

bility of the steady state random walk visiting u ∈ VK
v , and

DGK
v

is the diagonal degree matrix of GK
v .

The h-layer depth-based representation DBh
G(v) reflects

the entropy-based information content flow through the family
of K-layer expansion subgraphs rooted at v. It can be seen as
a vectorial coordinate of v in the depth principle space.

B. Vertex Labels from Depth-based Alignments

For a sample graph G(V,E), let {v1, . . . , v|V |} be the
vertex set V of G. Based on Eq.(3), we compute the h-layer
depth-based representations around the vertices of G. The h-
layer centroid representation of G is defined as the mean vector
of the h-layer depth-based representations of its vertices, i.e.,

Ch(G) = [DBh
G(v1) + · · ·+DBh

G(v|V |)]/|V |

= [
Σ

|V |
i=1HS(G

1
vi
)

|V |
, · · · ,

Σ
|V |
i=1HS(G

h
vi
)

|V |
]⊤. (5)

Since the h-layer centroid representation of G is computed
based on the h-layer depth-based representations around all
its vertices, the centroid representation encapsulates the depth
information of all vertices in terms of entropy measures. Thus,
it can be seen as a vectorial signature representing the global
structure of G.

Given a graph, we develop a centroid alignment method
by aligning the depth-based representations of its vertices to
a family of centroid representations of graphs as follows. Let
G = {G1, . . . , GN} be a set of N graphs under comparison.
Given a sample graph Gp(Vp, Ep) ∈ G, we commence by

computing the h-layer depth-based representation DBh
Gp

(vp;i)
for each vertex vp;i ∈ Vp, based on Eq.(3). Moreover, we
compute the family of h-layer centroid representations C =
{Ch(G1), . . . , C

h(GN )} for the graphs in G through the h-
layer depth-based representations, based on Eq.(5). For the
graph Gp ∈ G, we align its h-layer depth-based represen-
tations of vertices to the family of centroid representations
C. To this end, we compute the Euclidean distance between

DBh
Gp

(vp;i) and Ch(Gn) as the element Rh
Gp;C

(i, n) of the

affinity matrix Rh
Gp;C

, i.e.,

Rh
Gp;C(i, n) = ‖DBh

Gp
(vp;i)− Ch(Gn)‖2, (6)

where Ch(Gn) is the centroid representation of the n-th graph
Gn in G, and Rh

Gp;C
is a |Vp| × N matrix. Rh

Gp;C
(i, n)

represents the distance between the vertex vp;i of Gp and
the graph Gn in depth principle space. Furthermore, for the

affinity matrix Rh
Gp;C

, the rows index the vertices of Gp, and

the columns index the graphs of the graph set G.

Given the affinity matrix Rh
Gp;C

, if Rh
Gp;C

(i, n̂) is the

smallest element in the ith row, we say that the h-layer
depth-based representation of vp;i is aligned to the centroid
representation of Gn̂. In other words, for the graphs in G,
Gn̂ ∈ C is the closest graph to the vertex vp;i ∈ Vp in the
depth principle space. Thus, we assign vp;i a vertex label as
LDB(vp;i) = n̂, i.e.,

Lh
DB(vp;i) = arg min

n∈{1,2,...,N}
Rh

Gp;C(i, n). (7)

Note that, in some instances, the smallest in the ith row may
not be unique, i.e, vp;i ∈ Vp is aligned to more than one
centroid in C. In this case, we randomly select one element.
This guarantees that each vertex is aligned to at most one
centroid representation. In other words, we assign each vertex
an unique label based on the centroid alignment method.

C. Depth-based Vertex Alignments

The centroid depth-based alignment method provides a way
of identifying correspondence information between a pair of
vertices. Let G = {G1, . . . , Gn̂, . . . , GN} be a set of N graphs
under comparisons. For a pair of graphs Gp(Vp, Ep) and

Gq(Vq, Eq) from G, if Rh
Gp;C

(i, n̂) and Rh
Gq;C

(j, n̂) are both

the smallest elements in rows i and j of their affinity matrices
Rh

Gp;C
and Rh

Gq ;C
respectively, we say that the vertex vp;i and

the vertex vq;j are aligned (i.e., we establish a correspondence

between vp;i and vq;j if Lh
DB(vp;i) = Lh

DB(vq;j)). Since the
h-layer depth-based representations of vp;i and vq;i are both

aligned to the centroid representation Ch(Gn̂), the h-layer
depth-based representations of vp;i and vq;i are close to each
other in the depth principle space. In other words, if two
vertices are assigned the same vertex label Lh

DB based on the
centroid depth-based alignment and Eq.(7), we say that the
vertices are aligned.

III. THE NEW WEISFEILER-LEHMAN KERNEL

In this section, we introduce an improved Weisfeiler-
Lehman method, based on the vertex labels computed through
the centroid depth-based alignment. This in turn allows us
to overcome the lack of correspondence information of the
standard Weisfeiler-Lehman method. Moreover, we define a
novel transitive aligned subtree kernel based on the new
method. Finally, we indicate the relationship between the new
kernel and state-of-the-art kernels, explaining the effectiveness
of the new transitive aligned kernel.

A. Transitive Aligned Weisfeiler-Lehman Method

The original (1-dimensional) Weisfeiler-Lehman algorithm
is a standard technique that is used to test whether two graphs
are isomorphic [14]. Let G(V,E) be a sample graph and
N (v) = {u|(v, u) ∈ E} of v ∈ V denote the neighbourhood
vertices of v. At each iteration m where m > 1, this algorithm
strengthens the existing label Lm−1(v) of a vertex v ∈ V as
a new label Lm(v) by taking the union of both the existing
vertex label and its existing neighbouring vertex labels, i.e.,

Lm(v) =
⋃

u∈N (v)

{Lm−1(v),Lm−1(u)}, (8)



where the existing label Lm−1(v) of v is computed at last
iteration m − 1. When m = 1, the existing label of v is its
original vertex label written as L0(v). Furthermore, note that
at each iteration m the strengthened label of v corresponds
to a subtree of height m rooted at v. It can be shown
that, for a pair of graphs Gp(Vp, Ep) and Gq(Vq, Eq), if the
strengthened labels of vp ∈ Vp and vq ∈ Vq at m iteration
are identical, then the corresponding subtrees rooted at vp
and vq are isomorphic. Thus, the original Weisfeiler-Lehman
method provides a way of defining a subtree kernel for graphs
by counting the number of isomorphic subtree pairs, i.e.,
the number of identical strengthened vertex labels. Examples
include the fast Weisfeiler-Lehman subtree kernel developed
by Shervashidze et al. [7]. Unfortunately, like the existing
R-convolution kernels, this kernel cannot establish reliable
correspondence information between the isomorphic subtrees.
Because the original Weisfeiler-Lehman method cannot iden-
tify the correspondences between pairwise vertices of the
subtrees. To overcome this drawback, we propose a new im-
proved transitive aligned Weisfeiler-Lehman method through
the centroid depth-based alignment. Algorithm 1 shows the
pseudo code of the new method.

Algorithm 1: Transitive aligned Weisfeiler-Lehman method

1) Initialization: Input a set of N graphs G = {G1, . . . , GN}. Set m=0.
Compute the h-layer depth-based and centroid representations for
vertices and graphs, respectively. For a graph G(V,E), assign each
vertex v ∈ V an initial label

L
(m,h)
WL

(v) = L
(0,h)
WL

(v) = {L0(v),L
h
DB(v)}, (9)

where L0 is the original vertex label of v, LDB(v) is the vertex label
defined by Eq.(7) through centroid depth-based alignments, and
Lh
DB

(v) is an integer between 1 and N .
2) Updating: Set m=m+1. For v, assign it a new label list as

L
(m,h)
WL

(v) =
⋃

u∈N (v)

{L
(m−1,h)
WL

(v),L
(m−1,h)
WL

(u)}, (10)

where L
(m−1,h)
WL

(u) is arranged in ascending order.
3) Repeat steps 2 to 3 until m achieves a pre-specified value.

The transitive aligned Weisfeiler-Lehman method essen-
tially follows the definition of its original version. The main
difference lies in the fact that we associate each original vertex
label L0(v) with an extra vertex label LDB(v) defined by
Eq.(7). In other words, the improved method encapsulates
the correspondence information identified by the centroid
depth-based alignment into the process of strengthening vertex
labels. More specifically, we make the following observations.
1) First, like the original Weisfeiler-Lehman method, each

strengthened vertex label L
(m,h)
WL (v) corresponds to a subtree

of height m rooted at v. For a pair of vertices v and u, if
their strengthened vertex labels are equivalent, the subtrees
rooted at v and u are isomorphic. 2) Second, unlike the orig-
inal Weisfeiler-Lehman method, which is unable to establish
reliable structural correspondences between the identified iso-
morphic subtrees, the new method encapsulates the locational
correspondence between the rooted vertices of the isomorphic
subtrees. In fact, if two subtrees identified by the new method
are isomorphic, their vertex labels assigned by Eq.(7) are the
same, i.e., the root vertices are aligned. In other words, the
isomorphic subtrees identified by the new method can be seen

as isomorphic subtrees rooted at aligned vertices. Thus, the
new Weisfeiler-Lehman method overcomes the shortcoming
of ignoring locational correspondence information. 3) Third,
the correspondences between vertices identified by the new
method are transitive, i.e., for three vertices vp ∈ Vp, vq ∈ Vq

and vr ∈ Vr of three graphs Gp(Vp, Ep), Gq(Vq, Eq) and
Gr(Vr, Er) in graph set G, if vp and vq are both aligned to

the centroid representation Ch(Gn̂) of the n̂-th graph Gn̂ ∈ G

(i.e., vp and vq are aligned), and vr and vq are both aligned

to Ch(Gn̂) (i.e., vr and vq are aligned), then vp and vr are

also aligned since they are also both aligned to Ch(Gn̂). This
property follows from Eq.(7) and Algorithm 1.

The new improved Weisfeiler-Lehman method provides an
elegant way of defining a transitive aligned subtree kernel,
that not only identifies pairs of isomorphic subtrees but also
establishes locational correspondences between them.

B. The Transitive Aligned Subtree Kernel

Let G = {G1, . . . , Gp, . . . , Gq, . . . , GN} be a set of N
graphs under comparisons. For each graph in G, We compute
the h-layer depth-based representations of its vertices. Simi-
larly, we compute the set of h-layer centroid representations
for the graphs in G. Let Gp(Vp, Ep) and Gq(Vq, Eq) be a
pair of graphs from G. Based on Eq.(7) and Algorithm 1, we

compute the strengthened labels L
(m,h)
WL (vp) and L

(m,h)
WL (vq)

for vertices vp ∈ Vp and vq ∈ Vq . The transitive aligned

Weisfeiler-Lehman subtree kernel k
(M,H)
TAWL is defined as

k
(M,H)
TAWL(Gp, Gq) =

M
∑

m=0

H
∑

h=1

∑

vp∈Vp

∑

vq∈Vq

δ{L
(m,h)
WL (vp),L

(m,h)
WL (vq)}, (11)

where δ is the Dirac kernel, i.e., it is 1 if the arguments
are equal and 0 otherwise. H is the maximum value of
the parameter h for depth-based and centroid representa-
tions. M is the maximum value of the parameter m for
the transitive aligned Weisfeiler-Lehman method. Furthermore,

L
(m,h)
WL (vp) = L

(m,h)
WL (vq) indicates that the subtrees corre-

sponding to L
(m,h)
WL (vp) and L

(m,h)
WL (vq) are isomorphic, and

the subtree rooted vertices vp and vq are aligned. The transitive

aligned Weisfeiler-Lehman subtree kernel k
(M,H)
TAWL is positive

definite. This is because k
(M,H)
TAWL counts the number of aligned

isomorphic subtree pairs identified by the transitive aligned

Weisfeiler-Lehman method, i.e., k
(M,H)
TAWL can be seen as a

kind of R-convolution kernel that counts pairs of isomorphic
substructures. ✷

C. Advantages of the Transitive Aligned Subtree Kernel

The proposed kernel has a number of important properties
that are not available to other kernels such as the depth-
based matching kernel [15] and the original Weisfeiler-Lehman
subtree kernel [16]. To demonstrate the properties of the new
kernel, we re-define our kernel in a manner that make its
advantages and effectiveness clear.

Let G = {G1, . . . , Gp, . . . , Gq, . . . , GN} be the set of N
graphs under comparison, and let Rh

Gp;C
and Rh

Gq;C
denote

the affinity matrices for Gp(Vp, Eq) and Gq(Vq, Eq) computed



TABLE I. GRAPH DATASETS.

Datasets BAR31 GatorBait COIL5 PPIs CATH2

Max# nodes 220 545 241 218 568

Min# nodes 41 239 72 3 143

Mean# nodes 95.42 348.70 144.90 109.63 308.03

#graphs 300 100 360 219 190

#classes 15 30 5 5 2

according to Eq.(6). We say that two verteices vp;i of Gp

and vq;j of Gq are aligned to the same h-layer centroid

representation if Rh
Gp;C

(i, n) and Rh
Gq;C

(j, n) are the smallest

elements in the n-th columns of Rh
Gp;C

(i, n) and Rh
Gq;C

(j, n),
respectively.

Let M
(h)
Gp;Gq

denote the binary matrix recording the

correspondences between the vertices of Gp and Gq , i.e.,

M
(h)
Gp;Gq

(i, j) = 1 if vp;i ∈ Vp and vq;j ∈ Vq are

matched. Note that, for any pair of vertices vp;i ∈ Vp

and vq;j ∈ Vq, if their strengthened labels computed from

Algorithm 1 are identical then M
(h)
Gp;Gq

(i, j) = 1. Moreover, if

L
(m,h)
WL (vp;i) and L

(m,h)
WL (vq;j) are identical, the strengthened

labels Lm(vp;i) and Lm(vq;j) computed from Eq.(8) (i.e.,
the original Weisfeiler-Lehman method) are also identical. In
essence, the new transitive aligned Weisfeiler-Lehman method
can be seen as the original method associated with the aligned
labels from the centroid depth-based alignments.

Let us define the correspondence matrix C
(m,h)
Gp;Gq

∈

{0, 1}|Vp|×|Vq|, where C
(m,h)
Gp;Gq

(i, j) = 1 if M
(h)
Gp;Gq

(i, j) = 1
and Lm(vp;i) = Lm(uq;j), 0 otherwise. In other words,
this matrix not only records the correspondence information
between vertices but also reflects the equivalence between the
vertex strengthened labels computed from the new transitive

aligned method. With the matrix C
(m,h)
Gp;Gq

to hand, the transitive

aligned Weisfeiler-Lehman subtree kernel can be re-defined as

k
(M,H)
TAWL(Gp, Gq) =

M
∑

m=0

H
∑

h=1

∑

vp∈Vp

∑

vq∈Vq

C
(m,h)
Gp;Gq

. (12)

As a result, k
(M,H)
TAWL(Gp, Gq) can be seen as a matching

kernel that counts the number of aligned vertex pairs between

Gp and Gq over the M correspondence matrices C
(m,h)
Gp;Gq

based

on the h-layer depth-based and centroid representations. In
other words, compared to the existing depth-based matching
kernel [15] and the original Weisfeiler-Lehman subtree
kernel [16], the proposed kernel has the following advantages:

1) unlike the depth-based matching kernel, which identifies
the vertex correspondences by directly aligning the h-layer
depth-based representations between vertices, the proposed
kernel identifies the vertex correspondences by evaluating
whether the depth-based representations of vertices are
aligned to the same h-layer centroid representation. Thus, the
new kernel can guarantee the transitivity between pairs of
aligned vertices, and is thus positive definite. By contrast, the
depth-based matching kernel cannot guarantee the alignment
transitivity and the positive definiteness of the similarity
measure;

2) unlike the Weisfeiler-Lehman subtree kernel, which
roughly counts pairs of isomorphic subtrees identified by the
original Weisfeiler-Lehman method, for the proposed kernel
only a pair of isomorphic subtrees rooted at aligned vertices
will contribute the kernel value. In other words, our kernel
establishes the locational correspondence information between
isomorphic subtrees. This in turn allows us to overcome the
shortcoming of ignoring correspondence information between
substructures that arises in the original Weisfeiler-Lehman
subtree kernel and other R-convolution kernels [2], [17], [6],
[18];

3) while most existing graph kernels [19], [4], [17], [6],
[5], [18] only capture graph characteristics for each pair of
graphs under comparison, the computation of the proposed
kernel incorporates the information of all graphs under
comparison. This is because the transitive aligned Weisfeiler-
Lehman method associates the alignment between the h-layer
depth-based representations of the vertices and the family of
centroid representations of all graphs Gn ∈ G. In this sense,
our kernel can be seen as an instance of a transductive kernel.

The above observations indicate the advantages of the new
transitive aligned Weisfeiler-Lehman subtree kernel, and thus
explain the effectiveness of the new kernel.

D. Discussion and Related Work

The new transitive aligned subtree kernel k
(M,H)
TAWL is related

to the depth-based representation defined in [13]. However,
there is a significant difference. The depth-based representa-
tion in [13] is rooted at the centroid vertex that is selected
by evaluating the variance of shortest path lengths between
vertices, and the resulting representation is used as a kind
of embedding vector for a graph. Embedding graphs onto a
vectorial space inevitably approximates the structural correla-
tions in a low dimensional space, and thus leads to information

loss. By contrast, the transitive aligned subtree kernel k
(M,H)
TAWL

is computed through both h-layer depth-based and centroid

representations. Moreover, the kernel computation of k
(M,H)
TAWL

can represents graphs in a high dimensional kernel space and
thus better preserves structural information.

Note that the depth-based matching kernel [15], the en-
tropic matching kernel [12] and the Jensen-Shannon matching
kernel [20] are also related to the depth-based representation
developed in [13]. Furthermore, like the new transitive aligned

subtree kernel k
(M,H)
TAWL, these matching kernels attempt to

preserve graph structures by kernelizing the depth-based repre-
sentation and locating the correspondence information between

substructures. However, unlike the proposed kernel k
(M,H)
TAWL,

all these kernels identify the correspondences between vertices



TABLE II. CLASSIFICATION ACCURACY (IN % ± STANDARD ERROR).

Datasets BAR31 GatorBait COIL5 PPIs CATH2

TAWL 70.53± .70 18.30 ± .93 75.30 ± .36 88.85 ± .43 85.57 ± .77

ASK 73.10 ± .67 7.50± .74 53.67± .64 80.14± .73 78.52± .67

WLSK 58.53± .53 10.10± .61 33.16± 1.01 88.09± .41 67.36± .63

ISK 62.80± .47 11.40± .52 38.30± .56 79.47± .32 67.55± .67

SPGK 55.73± .44 9.00± 75 69.66± .52 59.04± .44 81.89± .63

GCGK 23.40± .60 8.40± .83 66.41± .53 46.61± .47 73.68± 1.09

TABLE III. RUNTIME FOR COMPUTING THE KERNEL MATRICES.

Datasets BAR31 GatorBait COIL5 PPIs CATH2

TAWL 11
′
12” 5

′
16” 8

′
12” 2

′
56” 5

′
57”

ASK 8
′
40” 14

′
50” 30

′
9” 4

′
45” 44

′
10”

WLSK 30” 33” 1
′
5” 20” 53”

ISK 3
′
50” 6

′
59” 9

′
55” 2

′
40” 6

′
51”

SPGK 11” 2
′
25” 31” 22” 4

′
13”

GCGK 1” 3” 4” 4” 8”

by directly aligning their vectorial representations, e.g., the h-
layer entropic representations for the entropic matching kernel
and the h-layer Jensen-Shannon representations for the Jensen-
Shannon matching kernel. Thus, like the depth-based matching
kernel, these matching kernels also cannot guarantee the tran-

sitivity between pairs of aligned vertices. By contrast, k
(M,H)
TAWL

ensures the transitivity of the correspondence information,
since it relies on the centroid depth-based alignment. As a

result, the proposed subtree kernel k
(M,H)
TAWL can capture more

precise information for graphs than the alternative matching
kernels.

Furthermore, the fast depth-based subgraph kernels in [21]
are also related to the depth-based representations. However,
unlike the proposed kernel, these subgraph kernels are in-
stances of the R-convolution kernels, and thus they also suffer
from the drawback of ignoring the correspondences between
substructures. Finally, note that, unlike the aforementioned
alignment kernels in Section I, our new kernel can guaran-
tee the transitive alignment between substructures, and thus
guarantee the positive definiteness.

E. Computational Complexity

For a set of N graphs each of which has X vertices, com-
puting the transitive aligned Weisfeiler-Lehman subtree kernel

k
(M,H)
TAWL has time complexity O(HNX3 +MX2). In fact, the

computation of the expansion subgraphs relies on the shortest
path computation, which in turn has time complexity O(X3).
Given an expansion subgraph, computing the required Shannon
entropy has time complexity O(X2). Thus, computing the h-
layer depth-based representations around the X vertices of
each of the N graphs has time complexity O(HNX3) (H
is the largest value of h). Computing the N centroid represen-
tations for the N graphs has time complexity O(HXN). Fur-
thermore, computing the transitive aligned Weisfeiler-Lehman
method over M iterations has time complexity O(MX2) (M
is the largest value of m), since it needs to visit the X2 entries
of the adjacency matrix of each graph. Identifying the identical
strengthened labels between X2 pairs of vertices also has time
complexity O(MX2). As a result, the total time complexity

for k
(M,H)
TAWL is O(HNX3 + MX2). This indicates that our

kernel can be computed in polynomial time.

IV. EXPERIMENTAL RESULTS

A. Evaluation on Graph Classification

We evaluate our kernels on standard graph datasets, includ-
ing BAR31, COIL5, GatorBait, PPIs and CATH2. We choose
these datasets as they represents standard yet challenging
benchmarks for testing graph classification. A summary of
the characteristics of these datasets is shown in Table I. More
details can be found in [21].

Experimental Setup: We evaluate the performance of the
transitive aligned Weisfeiler-Lehman subtree kernel (TAWL)
on graph classification problems. We compare our kernel
with several alternative state-of-the-art graph kernels. These
graph kernels include 1) the fast depth-based subgraph kernels
(ISK) [21], 2) the aligned subtree kernel (ASK) [12], 3)
the Weisfeiler-Lehman subtree kernel (WLSK) [7], 4) the
shortest path graph kernel (SPGK) [4], 5) the graphlet count
graph kernel with graphlet of size 4 (GCGK) [22]. For the
TAWL kernel, we set M = 3 (this is because subtrees of
depth greater than 3 are often too descriptive, resulting in the
identification of a very small number of isomorphic subtrees)
and H = 30 (this reflects the fact that the length of the
shortest paths in the datasets considered is seldom above 30).
The parameters for other kernels are individually optimized
on each dataset. The classification performance of each kernel
is evaluated using 10-fold cross-validation and a C-Support
Vector Machine (C-SVM). In particular, we make use of the
LIBSVM library [23]. For each fold, we choose the parameters
of each kernel as well as the C parameter of the C-SVM
by cross-validation on the training data. For each kernel and
dataset, we repeat the whole experiment 10 times and we
compute the average classification accuracy and standard error.
The average classification accuracy (± standard error) and the
runtime for each kernel are shown in Table II and Table III,
respectively. The runtime is measured under Matlab R2011a
running on a 2.5GHz Intel 2-Core processor.

Results and Discussions: In terms of classification accuracy,
the TAWL kernel outperforms all alternative kernels, with the
exception of the ASK kernel on the BAR31 dataset. However,
the accuracy of the ASK kernel is only marginally higher than
that of the TAWL kernel. On the other hand, the TAWL kernel
significantly outperforms the ASK kernel on the PPIs, COIL



and CATH2 datasets. The reasons for the effectiveness are
threefold. First, unlike the ISK, WLSK, SPGK and GCGK
kernels, which ignore correspondence information between
substructures, the TAWL kernel establishes reliable locational
correspondences between subtrees. Second, compared to the
ASK kernel, which also establishes correspondence infor-
mation between substructures, only the TAWL kernel can
guarantee the transitivity between pairs of aligned substruc-
tures. Third, unlike all alternative kernels, which only take
into account the structural characteristics of the pair of input
graphs, our kernel also encapsulates the information from other
graphs. In this sense, our kernel can be seen as an instance of
transductive learning [24], where all the graphs available (both
from the traning and test sets) are used to compute the graph
centroids. Note, however, that we do not observe the class
labels of the test graphs during the training. Finally, note that,
compared to the WLSK kernel associated with the original
Weisfeiler-Lehman method, the performance of our kernel is
significantly improved. This demonstrates the effectiveness of
the new method. In terms of the runtime, our kernel is not the
fastest one, however its performance is comparable to that of
some of the kernels considered in our experiments.

V. CONCLUSIONS

In this paper we have developed a transitive aligned
Weisfeiler-Lehman subtree kernel. We have theoretically
shown its advantages when compared against a set of widely
used kernels. An extensive set of experiments demonstrated
the effectiveness of the new kernel.
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