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Thesis Summary

Autonomous software agents, the use of which has increased due to the recent
growth in computer power, have considerably improved electronic commerce processes
by facilitating automated trading actions between the market participants (sellers, brokers
and buyers). The rapidly changing market environments pose challenges to the per-
formance of such agents, which are generally developed for specific market settings.
To this end, this thesis is concerned with designing agents that can gradually adapt to
variable, dynamic and uncertain markets and that are able to reuse the acquired trading
skills in new markets.

This thesis proposes the use of reinforcement learning techniques to develop adapt-
ive trading agents and puts forward a novel software architecture based on the semi-
Markov decision process and on an innovative knowledge transfer framework. To eval-
uate my approach, the developed trading agents are tested in internationally well-known
market simulations and their behaviours when buying or/and selling in the retail and
wholesale markets are analysed. The proposed approach has been shown to improve
the adaptation of the trading agent in a specific market as well as to enable the portab-
ility of the its knowledge in new markets.

Keywords: SMDP, Agent Learning and Adaptation, Knowledge Transfer, Trading
Strategies, Design of Trading Agents
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Chapter 1

Introduction

Software agents are computer programs that autonomously use environment states as
inputs and output actions in order to meet their delegated goals (Russell and Norvig,
2009; Wooldridge, 2009). Their use in improving business processes has been increas-
ing, owing to the progress of information technologies (Dignum and Dignum, 2010;
Müller and Fischer, 2014) and to their attractive properties such as autonomy, reactivity,
proactivity and social ability that are instrumental in simplifying the implementation of
distributed and automated systems. A wide range of techniques and programming lan-
guages have been devised to support the development of robust software agents (Ferber,
1999; Girardi and Leite, 2013). Architectures of such agents are generally composed
of three types of components:

• sensors to identify the states of their environment. An environment that may
be observable or hidden, static or variable, deterministic or non-deterministic,
accessible or inaccessible and discrete or continuous (Russell and Norvig, 2009),

• a reasoning engine to aid the agent in deciding which actions to take in order to
achieve its goal and

• actuators to execute the agent’s selected actions in the environment.

This architectural setting is also widely adopted for building of software agents termed
trading agents that interact autonomously in diverse market systems - real or simulated.
In these systems, the agents are responsible of any relevant trading tasks or sub-tasks
such as buying, selling or searching for the most advantageous service providers (Sec-
tion 2.1 provides more details for trading agents).
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Despite the fact that the adaptation of trading agent’s sensors, reasoning component
and actuators is essential for its performance in variable and non-deterministic market
environments, only the adaptation of sensors using machine learning techniques has
attracted many researchers (LeBaron, 2006; He et al., 2006; Pardoe, 2011; Wellman,
2011). Nevertheless, researchers have shown an increased interest in developing adapt-
ive reasoning engines for trading agents acting in simplified market settings using flat
reinforcement learning. This kind of adaptation enables the agent to hone its strategies
to be as optimal as possible with respect to one decision problem, but it does not allow
the agent to generalise its learning through hierarchically related decision processes
(Raju et al., 2006; Nevmyvaka et al., 2006; Reddy and Veloso, 2011a; Mahvi and Ar-
dehali, 2011; Peters et al., 2013).

Furthermore, most current techniques that are used for the development of trading
agents’ reasoning are tailored to a specific market setting; this is the case for the fol-
lowing approaches: the Belief-Desire-Intention (BDI) framework (Fasli, 2001, 2003),
fuzzy logic (He et al., 2003, 2006), environment-specific and flat Markov decision
process (MDP) models (Reddy and Veloso, 2011b; Peters et al., 2013) or rule-based
routines (LeBaron, 2006; Benisch et al., 2009). Since an adaptive trading agent is de-
signed to solve an environment-specific task, it is not able to reuse the acquired trading
ability in new markets in order to minimise the time required by the learning. In ad-
dition to this, actuators are mainly used as the interface for action execution, with no
relevant studies being reported in the software agent community to support their adapt-
ation.

Against this background, this thesis is concerned with the development of a trading
agent that can continually adapt its reasoning engine as well as its sensors and actuators
to the market changes in order to maximize its overall profit and to reduce the training
effort required in new markets. Specifically, this thesis focuses on the development of
a reasoning engine that will enable the trading agent to acquire most of its behavioural
knowledge through continuous interactions with its environments as well as to reuse
the acquired trading skills in new markets without having to learn how to behave from
scratch. To achieve this I consider hierarchical reinforcement learning (HRL) and semi-
Markov decision processes (SMDP), which have been used in simplified settings to
build adaptive robots (Barto and Mahadevan, 2003a; Kober et al., 2013) and, recently,
portable agents that can reuse their reasoning engines in new settings (Taylor and Stone,
2009; Lazaric, 2012). This thesis proposes for the first time the use of hierarchical
reinforcement learning techniques to build a trading agent which is characterised by
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two core properties:

1. Continuous Adaptability: Using advanced learning techniques, such as hierarch-
ical reinforcement learning (Barto and Mahadevan, 2003a), the agent’s reasoning
can learn and adapt continually to changes occurring in its environments. The
SMDPs presented in this thesis have been used by the developed broker, As-
tonTAC to optimise diverse decision problems and to continually adapt to differ-
ent market settings (see Chapters 3-6).

2. Portability: Just like a human trader, AstonTAC is able to reuse its trading experi-
ence in different and new market domains using the proposed transfer framework
inspired by existing robotic approaches (Taylor and Stone, 2009; Lazaric, 2012)
that deal with knowledge transfer in reinforcement learning. The portability of
AstonTAC is presented and evaluated in Chapter 7.

The remaining of this chapter is organised as follows. Section 1.1 discusses the major
contributions of this thesis. In Section 1.2, the content of the thesis is outlined. A list
of publications arising from this thesis is presented in Section 1.3.

1.1 Research Contributions

This thesis has three main contributions: the design of an SMDP-based trading agent
architecture, the implementation and evaluation of an SMDP-based electricity trader as
well as a novel knowledge transfer framework to enable the portability of its trading
skills.

1.1.1 SMDP-based Trading Agent Architecture

As part of this contribution, a trading agent architecture associates HRL algorithms
with a common agent architecture to create a trading agent that can learn and adapt to
markets online, while at the same time being able to reuse its trading skills in markets
it has not previously encountered - the proposed architecture is introduced in Section
2.3. The market simulations used for evaluation and benchmarking purposes are envir-
onments that are assumed to be partly hidden, variable, non-deterministic, inaccessible
and continuous. This design approach has been used to implement AstonTAC, which
has been tested in a set of diverse trading environments. Different versions of AstonTAC
architecture are described Chapters 3-6.
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1.1.2 HRL-based Electricity Retailers

To illustrate the design approach put forward, novel SMDP-based architectures enable
the AstonTAC versions, acting as electricity retailers, to trade simultaneously in whole-
sale and retail markets. When purchasing electricity from the wholesale markets, the
AstonTAC aims to buy the electricity needed at low prices while keeping the imbalance
between the energy required and the energy bought low. The challenge of the simula-
tion environment considered, is that the clearing prices, demand and supply volume of
the electricity can be very volatile at short term, as renewable energy sources used are
mostly weather-dependent.

In view of this, a standard MDP is used for the first time to solve the short-term
electricity procurement problem from the retailer’s viewpoint. The design of the pro-
curement MDP has focused on relevant market features that remain invariant for a wide
range of wholesale market settings. This procurement MDP was evaluated in Power
Trading Agent Competitions (Power TAC), a multi-agent simulation environment that
supports the development and testing of electricity retailer agents (Ketter et al., 2015)
and offers a configurable retail and wholesale markets with real-life features and com-
plexity. During the Power TAC competition in 2012, AstonTAC_V1 was the only
broker that could minimise its procurement cost and energy imbalance. Chapter 3 de-
scribes the procurement MDP.

Since consumers are able to produce electricity in a smart grid market using solar
panels, for instance, the volume of electricity needed by the retailer can vary rapidly
at short-term so that the retailer will need to have the ability to buy and sell electrical
energy in the wholesale markets. To enable AstonTAC_V1 to buy its energy shortage
and sell its energy excess in the wholesale market, the procurement MDP is extended
into a procurement SMDP while maintaining the knowledge acquired by the procure-
ment MDP. In order to solve the SMDP, a hierarchical reinforcement learning (HRL)
approach called hierarchy of abstract machines (HAM) is applied, as it enables the use
of domain knowledge that reduces the learning time needed to solve the SMDP. This
work is encompassed within AstonTAC_V2. An evaluation of AstonTAC_V2 in Power
TAC shows that when trading for short-term procurement the new SMDP approach
outperforms the continuous double auctions (CDA) and the MDP trading techniques.
Chapter 4 provides details on the design, implementation and use of the procurement
SMDP.

Symmetrically to the procurement SMDP, considering the decision problem faced
by a retailer agent in a retail market, a semi-Markov decision process is proposed in
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Chapter 5 to optimise simultaneously the agent’s market share and profit rate. In order
to maximise its profit, the trading agent has two extreme alternatives: one alternative
consists of using a maximal profit margin with a minimal number of customers and
the other alternative is the use of a minimal profit margin with a maximal number of
customers. These extreme alternatives have motivated the creation of two behavioural
options for the agent in retail market: “customer-enticing” or “profit-oriented”. This
agent was named AstonTAC_V3. To evaluate the performance of the proposed ap-
proach, AstonTAC_V3 uses the SMDP reasoning engine to compete in Power TAC.
During the Power TAC competition in 2013, AstonTAC_V3 was able to keep its profit
and market share higher than the other retailers.

Finally, a novel SMDP framework is proposed in Chapter 6 to formalise all the de-
cision problems of the retailer in the retail and wholesale markets. The novel SMDP
framework optimises the retail and wholesale strategies, while also optimising the over-
all retailer’s strategy. This SMDP framework makes use of the MDP coarticulation ap-
proach of Rohanimanesh (2006) to enable the execution of concurrent actions. This
novel SMDP formalisation reuses the knowledge contained in the retail and procure-
ment SMDPs to speed up the learning. The resulting reasoning SMDP is solved with
different reinforcement learning techniques depending on the decision problem con-
sidered. Using the same SMDP to manage all its trading decisions in the wholesale and
retail markets, this version of our agent, AstonTAC_V4, has a better coordination of its
retail wholesale actions, which enables it to perform better than the top TAC retailers
when the level of interdependence between retail and wholesale market is high. This
means that the level of demand in retail market influences the wholesale prices and
reciprocally the supply level in the wholesale market influences the retail price.

1.1.3 Building of Portable Reasoning Structure

After designing, implementing and evaluating the SMDP-based agent architecture, a
novel knowledge transfer framework is put forward in order to enable an electricity re-
tailer to reuse its SMDP reasoning engine in new, different markets. This novel frame-
work extends existing knowledge transfer approaches by combining two knowledge
transfer approaches: agent-centric framework of Konidaris et al. (2012) and inter-task
mappings of Taylor et al. (2007); Taylor and Stone (2007). The proposed knowledge
transfer is considered to be agent-centric, as it uses the same core reasoning system of a
trading agent engine to act in different markets. At the same time, it also applies inter-
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task mapping techniques to enable the retailer to act in the newly-encountered markets.
The knowledge transfer framework is evaluated in the TAC environments and is shown
to truly enable trading skills transfer of AstonTAC_V5 to new markets (see Chapter 7
for further details).

1.2 Thesis Structure

The remainder of this thesis is composed of eight chapters and an appendix.
Chapter 2 introduces the concepts that are relevant for the understanding of this

work: agent architectures, semi-Markov decision processes with HRL and knowledge
transfer for reinforcement learning. It also contains a critical review of previous work
on development of trading agents.

Chapter 3 describes the formalisation of the short-term procurement problem as
an MDP which is solved using a Monte Carlo approach. A critical literature review
is presented at the beginning of the chapter. Subsequently, the MDP model and the
actual architecture of the retailer agent are described, followed by the evaluation of the
AstonTAC_V1’s performance in 2012 Power TAC.

Chapter 4 gives details on the extension of the procurement MDP framework presen-
ted in Chapter 3 to a procurement SMDP that enables AstonTAC_V2 to alternatively
buy and sell in wholesale markets for short-term electricity procurement. AstonTAC_V2
is evaluated in a series of controlled experiments.

Chapter 5 describes the SMDP framework that is proposed to optimise the retail
market strategy of an electricity retailer agent. First, existing studies that discuss the
development of retail strategies are reviewed. Then, the SMDP framework and the
implementation of AstonTAC_V3 are described. AstonTAC_V3 is evaluated in the
Power TAC 2013.

Chapter 6 describes the formalisation of the broker’s decision problem as a semi-
Markov decision problem. This generalised SMDP framework is built using the trading
skills acquired by retail and procurement SMDPs. An evaluation compares the per-
formance of AstonTAC_V4 with top TAC brokers.

Chapter 7 presents the proposed knowledge transfer framework and describes the
learning algorithm and some insights on how to technically build portable agents. The
developed agent, AstonTAC_V5, is tested in the TAC environments Power TAC and
TAC SCM.

Finally, Chapter 8 summarises the main contributions of this thesis and highlights
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the possible extensions of the thesis.
An appendix complements the thesis with additional information on the implement-

ation of AstonTAC sensors.

1.3 Publications from this Thesis

The work contained in this thesis has been very positively received by both the Agents
and Multiagent Systems and the Energy and Smart Grid communities. Parts of the work
presented in this thesis have been or will be published in the following papers:

1. Chapter 3 was originally published in Kuate et al. (2013):

Rodrigue T Kuate, Minghua He, Maria Chli, and Hai Wang. An intelligent broker
agent for energy trading: an MDP approach. In Proceedings of the Twenty-Third

International Joint Conference on Artificial Intelligence, pages 234–240, 2013

2. Chapter 5 has, in part, been published in Kuate et al. (2014):

Rodrigue T. Kuate, Maria Chli, and Hai Wang. Optimising market share and
profit margin: SMDP-based tariff pricing under the smart grid paradigm. In In-

novative Smart Grid Technologies Europe, 2014 5th IEEE/PES. IEEE, 2014.

3. Chapters 6 and 7, in part, appear in Kuate et al. (2015):

Rodrigue T. Kuate, Maria Chli, and Hai Wang. An efficient knowledge transfer
solution to a novel SMDP formalization of a broker decision problem. In Inter-

national Conference on Autonomous Agents and Multiagent Systems, 2015.
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Chapter 2

Background and Related Work

As this thesis is concerned with the application of HRL to design trading agents, this
chapter introduces and reviews the two areas relevant to this work: trading agents in
Section 2.1 and HRL in Section 2.2. Section 2.3 discusses the modelling of SMDPs for
the trading agents.

2.1 Trading Agents

Section 2.1.1 presents background knowledge on agent architecture, whereas studies on
trading agent architectures and learning are reviewed in Section 2.1.2. Section 2.1.3 in-
troduces the simulation environments considered in this thesis for evaluation purposes.

2.1.1 Software Agents Architecture

Several definitions of software agents can be found in the literature. A generally accep-
ted definition that will be used throughout this thesis is provided by Wooldridge (2009,
page 21):

“An agent is a computer system that is situated in some environment, and that

is capable of autonomous action in this environment in order to meet its delegated

objectives".
To achieve its objectives, the agent proceeds in three steps:

1. It uses its sensors to estimate the state of the environment which is defined by a
combination of relevant environment features.
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2. Knowing the state of the environment, the agent selects the appropriate action to
take using its reasoning system.

3. Finally, using its actuators or effectors, the agent executes the selected action
according to the environment rules or mechanisms.

These three components are essential parts of the agent architecture. Depending on
the impact of its three core components (sensors, actuators and reasoning engine), the
agent can exhibit these four key properties: autonomy, reactivity, pro-activeness and
social ability (Wooldridge and Jennings, 1995; Wooldridge, 2009).

• Autonomy: an autonomous agent is able to act on its environment without human
intervention by autonomously sensing the environment, deciding what to do, how
to do it and executing the action in order to achieve the delegated objectives.

• Reactivity: a reactive agent responds to the changes occurring in its environment
by taking the corresponding actions.

• Pro-activeness: a proactive agent creates new goals and takes initiatives in order
to meet the delegated objectives.

• Social ability: a social agent is able to communicate with other agents in order to
achieve its individual or the collective objectives.

These four properties are important characteristics of trading agents, as they are expec-
ted to trade autonomously without human intervention. To improve their performance,
trading agents need to be able to react to environment changes that are foreseen or
unforeseen at design time, while at the same time being able to pro-actively plan the
actions to take in order to realise their long-term goals. Furthermore, a trading agents
is expected to communicate with other traders in order to buy or sell their goods or
services.

In order to enable these four properties, four groups of agent architectures have been
explored (Russell and Norvig, 2009; Wooldridge and Jennings, 1995; Ferber, 1999;
Wooldridge, 2009; Girardi and Leite, 2013): reactive agent architecture, deliberative
agent architecture, hybrid agent architecture and learning agent architecture.

2.1.1.1 Reactive Agent Architecture

A reactive agent architecture enables the agent to react to its environment changes
by using provided rules that associate an action with each state of the environment.
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Many examples of reactive architectures have been presented in the literature: the sub-
sumption architecture of Brooks (1995), the Pengi architecture of Agre and Chapman
(1987), the situated automata approach of Kaelbling and Rosenschein (1990) as well
as the agent network architecture of Maes (1989). The main motivation for the adop-
tion of a reactive architecture is the fast reaction to environment changes which is a
very important feature when building trading agents that may need to react in real time.
However, this approach is not appropriate for building a proactive agent that does not
only use the current environment state, but also an additional source of knowledge in
order to plan their actions for achieving its long-term goals.

2.1.1.2 Deliberative Agent Architecture

A deliberative agent architecture is applied for agents that use logical reasoning to de-
cide their goals and achieve them. Contrary to reactive agents which essentially react to
their environment, the deliberative agents are proactive by using a knowledge database
to plan and execute their actions in attempting to achieve their goals. A deliberative
agent is assumed to have a complete knowledge of its world, which remains unchanged
during the execution of a plan, and to know the effect of its action that are always suc-
cessful. The building of deliberative agents that are able to manipulate logical formulae
to achieve their goals turns out to be very difficult, as the designer needs to always
identify the relevant symbolic representation that will support the agent reasoning. Rel-
evant symbolic representation can be difficult to define, even for common sense reason-
ing problem. Moreover, the use of this logical representation to act is time-consuming
and does not enable the agent to be efficient when acting under a time constraint. Very
few studies have been reported on the use of pure deliberative architectures for building
trading agents (Fasli, 2001, 2003).

2.1.1.3 Hybrid Agent Architecture

A hybrid agent architecture is applied for agents that are both reactive and deliber-
ative. To enable deductive, practical reasoning architecture to support real-time re-
action, many hybrid architectures have been studied to create reasoning systems that
are reactive and proactive. These architectures present two types of layered structures:
horizontal layering and vertical layering. In a horizontally layered architecture each
reasoning layer can fully carry out a reasoning process by using information from the
agent’s sensors and outputting one or more actions for the agent’s actuators, whereas
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in a vertically layered architecture no single layer fully carries out the reasoning, they
collaborate in handling the sensory input and suggesting an output action. A hybrid
architecture provides a more appropriate approach for designing trading agents that act
for short- and long-term goals. However, most trading agents use pre-programmed rules
to identify which actions to take and generally, no logical representation of the environ-
ment is provided to infer the logical actions to take. Therefore, most trading agents with
a hybrid architecture are more reactive than proactive, as described in Section 2.1.2.2.

2.1.1.4 Learning Agent Architecture

A learning agent architecture which characterises any architecture that is augmented
with a learning component to improve the adaptation of the agent. Augmenting the
agent architecture with learning capability enables the agent to adapt its behaviour to
unforeseen environment changes (Ferguson, 1992; Russell and Norvig, 2009). The
agent can be equipped with two types of learning capability (1) logic-based learning
which enables the agent to create new rules using a set of rules provided at design time
(Juba, 2013; Muggleton and Lin, 2013) or (2) machine learning techniques, which gen-
erally include regression models, classification models, decision trees models and rein-
forcement learning algorithms (Kazakov and Kudenko, 2001; Tan et al., 2011; Singh,
2011; Sniezynski, 2014).

The reactive, the deliberative as well as the hybrid agent architectures as presen-
ted above are based on predefined, preprogrammed logic and rules, which need to be
specified at design-time and do not enable the agent to learn and adapt to unforeseen
environment changes. As the trading agent’s environment can be variable and dynamic,
it is essential for its performance to be able to learn and adapt to its environment. As
reviewed in the next subsection, many trading agents have been equipped with learning
capability in order to adapt and to perform well in their environments.

2.1.2 Trading Agent Architecture

In electronic markets, trading agents are generally used as buyers or sellers that act in
electronic markets on behalf of their owners (Chen et al., 2012; Geanakoplos et al.,
2012). Seller agents enable their owners to optimise their sale strategy either through
improvement of their online advertisement strategy or through computing of competit-
ive prices for their services and goods. Analogously, buyer agents optimise their own-
ers’ purchase strategy given their preferences which can be defined by the prices or/and
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the quality of the offered products or services. This thesis uses electricity trading agents
(Rogers et al., 2012; Bach et al., 2012; Reddy, 2013; Amato et al., 2015) to illustrate
the proposed learning approach as outlined in Section 1.1.

In order to understand or predict behaviour of the complex markets such as the fin-
ancial market, new research disciplines have been created: agent-based computational
economics (Tesfatsion, 2002; Tesauro and Kephart, 2002; MacKie-Mason and Well-
man, 2006; Richiardi, 2012) and agent-based computational finance (Hommes, 2006;
Samanidou et al., 2007). In both scenarios, a trading agent makes use of its three core
components (sensors, reasoning engine and actuators) in order to act autonomously.

This thesis aims to design and evaluate a reasoning engine that enables trading
agents to perform well by taking appropriate real-time trading decisions in dynamic
and uncertain markets. In view of this, we use test environments that simulate dynamic
and uncertain markets and that impose to the agent the need to act quickly. AstonTAC
is developed and tested in well-known simulation environments of the Trading Agent
Competition (TAC) community, which is an international forum whose aim is to support
the development of intelligent agents through agent competitions. Since 2000, it has at-
tracted many research groups that evaluated the performance of their agents in compet-
itive environments such as TAC SCM, TAC Ad Auctions or Power TAC. AstonTAC was
placed in two different environments: TAC SCM and Power TAC. While Power TAC
simulates a smart grid electricity market which encompasses both a competitive electri-
city wholesale and a retail market under the smart grid paradigm (Ketter et al., 2015),
TAC SCM simulates a PC market (Arunachalam and Sadeh, 2005; MacKie-Mason and
Wellman, 2006). These two environments are characterised by common features that
have impacted the development of AstonTAC.

1. Two markets: Retail and wholesale. A trading agent acting in the two envir-
onments trades simultaneously in the retail and in wholesale markets, which are
interdependent markets, as the level of the retail demand influences the wholesale
prices and the level of wholesale supply influences the retail prices. Despite this
interdependence, the two markets present two different optimisation problems to
the trading agents, which aim to attract as many clients as possible and make as
much profit as possible in the retail market, while in the wholesale market, they
aim to buy the products needed on time for their customers and at lowest possible
price.

2. The structure of the retail markets: To act optimally, the trader needs to under-

25



stand the customer expectations and offer competitive prices in order to attract
customers and make profit. However, the retail market offers limited inform-
ation, therefore the agent cannot easily predict the customer expectations and
demand or the behaviour of competitor agents. Agent designers generally use di-
verse techniques for forecasting the retail behaviour based on the limited amount
of information. The trading agent uses the price as an essential tool to attract
customers and aims to maintain a good reputation among customers.

3. The structure of the wholesale markets: In the wholesale market, the trader agent
mainly acts as a buyer who needs to buy the required products in order to meet
the predicted retail demand. The agents compete with others traders to buy the
products offered by the suppliers at the lowest prices possible. In a manner ana-
logous to the retail market, the agent has limited access to the market information
needed to predict the market supply and the behaviour of other trading agents and
supplier agents.

4. Market dynamics: The agents face an environment with limited access to relevant
information. The market dynamic is created by the behaviour of the different
agents in the environment. The customer behaviours influence the demand level
in the retail market and sometimes their preferences to the offered products or
services, whereas wholesale trader behaviour influences the supply level. The
behaviours of other agents have an impact on the state of the markets as each
agent tries to control the environment using the offered prices.

Section 2.1.3.1 provides an overview of each evaluation environment: Power TAC and
TAC SCM.

2.1.2.1 Trading Agent Sensors

Designers of trading agents apply diverse machine learning techniques to improve the
performance of the agents’ sensors in determining the state of environment which is
commonly specified by the variables: projected market prices, demand and supply.
As the focus of this thesis is on the reasoning engine, this section mainly outlines
techniques that have been used for the implementation of the trading agents’ sensors
without providing cross-domain comparisons as the sensors are environment-specific
components.

In the Santa Fe Artificial Stock Market (SFASM) simulation that has been created
to investigate the dynamics of stock markets and to test trading strategies (Palmer et al.,
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1994; LeBaron, 2002), the trading agent applies time series models to estimate the state
of the market (LeBaron, 2001, 2006).

Considering the trading agent competition (TAC) environment, several simulation
environments have been developed to promote research on trading agents. In the TAC
Supply Chain Management (SCM) environment, which simulates the trading of per-
sonal computers, the trading agents use diverse approaches to estimate the state of the
environment (Wellman et al., 2005; MacKie-Mason and Wellman, 2006). Most of the
brokers employ the forecast of retail prices and retail demand as inputs for their de-
cision making; these forecasting techniques vary from simple average of previous ob-
servations to multi-linear regression approaches. A price average is used by He et al.
(2006) as input to fuzzy-based reasoning. The retail mean price is used by Ketter et al.
(2006) to determine the market state. The k-nearest neighbours algorithm is applied by
Kiekintveld et al. (2009) to forecast the retail prices, whereas in the wholesale market,
a linear regression is performed to predict suppliers’ future prices. A further technique,
the distribution tree is used by Benisch et al. (2009) to predict the retail prices. Par-
doe (2011) uses transfer learning to improve the performances of the linear regression
models used to predict the relevant environment variables such as prices, demand and
supply level in new TAC markets.

Similar to TAC SCM, trading agents in Power TAC (Ketter et al., 2015), which is
a simulation environment for electricity trading, make decisions based on their estim-
ation of the future prices, demand and supply quantities. Urieli and Stone (2014) use
linear regressions to predict future customers’ energy demand and energy procurement
cost which are used as inputs for deciding the agent’s tariff prices in the retail market.
In Reddy and Veloso (2011a,b), the retail price status and the structure of the agent
portfolio are used as inputs of the reasoning structure. Peters et al. (2013) propose to
use of feature selection and regularisation techniques (Petrik et al., 2010) to identify the
environment variables that are relevant for the trading agent’s decision making.

These studies on the sensory techniques perform well in the market setting con-
sidered by the authors. The sensors are generally designed in an environment-specific
manner, because there are interface components that are responsible for gathering the
market data into information that is usable by the agent’s reasoning. As this thesis fo-
cuses of the enhancement of the reasoning engine and not on the sensory component,
the full description of the AstonTAC’s sensors is provided in Appendix A.
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2.1.2.2 Trading Agent Reasoning Engine

A wide range of techniques have been proposed to design the reasoning engine: both
static and adaptive approaches. While static approaches design rule-based and non-
adaptive reasoning engine, adaptive approaches propose reasoning engine which can
adapt their behaviour to environments changes.

Static approaches Rule-based subroutines are used to map environment states to
possible market actions. In the SFASM environment, LeBaron (2001, 2006) designed
agents that use a rule-based reasoning engine to trade by mapping specified trading
rules to market states. Using game theoretical approaches (Binmore, 1990; Fudenberg
and Tirole, 1991; Binmore, 2007), the behaviour of the trading agent is codified by
game-theoretical rules that are predefined offline (Kiekintveld et al., 2004; Kiekintveld,
2008; Liefers et al., 2014).

When the agent designer does not know or has a limited knowledge of the rules
required for it to perform well, the building of a rule-based reasoning engine is difficult.
Moreover, in a dynamic environment as the financial market, rule-based agents, which
use trading strategies that are predefined and preprogrammed at design time, cannot
adapt to unforeseen market changes, whereas agents with adaptive reasoning can.

Adaptive Approaches In the TAC environment, trading agents use utility func-
tions to identity their trading prices as a function of historical market prices and the
levels of demand and supply (He et al., 2006; Pardoe, 2011; Urieli and Stone, 2014).
The drawback of this approach is that the utility functions are tailored to the agent’s en-
vironment and generally do not give any information on real trading strategy, as more
powerful mathematical models can be used to design utility functions for real-life trad-
ing (Heij et al., 2004; Waters and Waters, 2008; Wooldridge, 2010).

Many trading agents use evolutionary algorithms to identify the suitable trading
rules given a set of market simulations with predefined settings (LeBaron, 2001, 2006).
Evolutionary algorithms are also used as tools in trading markets to identify the op-
timal trading rules (Lohpetch and Corne, 2009; Wilson and Banzhaf, 2010; Hassan,
2010; Lohpetch et al., 2011; Esfahanipour and Mousavi, 2011). The main drawback
of evolutionary algorithms is the time required to find the suitable rules, which makes
these approaches inappropriate for trading agents that act with time constraints.
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Reinforcement Learning as an Adaptive Approach Reinforcement learning offers
a much more structured technique for enabling efficient agent adaptation (Sutton and
Barto, 1998). In simplified market settings, trading agents that use flat MDPs and the
reinforcement learning for decision making have been presented (Raju et al., 2006;
Reddy and Veloso, 2011b,a; Peters et al., 2013). Flat MDPs are not appropriate for
the type of markets considered, as the resulting reasoning MDPs can be very complex
and difficult to solve. This thesis remedies this limitation by applying SMDP and HRL
to model and solve complex decision making problems as faced by trading agents that
act in the environments considered. Furthermore, SMDP and HRL not only enable the
trading agents to adapt to variable and uncertain markets, but they also enable the agent
to reuse the knowledge acquired without having to learn from scratch. The background
knowledge on SMDP and HRL is provided in Section 2.2. Critical reviews of the
reasoning engine of trading agents are presented for each decision problem considered
in the thesis. First, Section 3.3 reviews work on decision making in wholesale market.
Then, in Section 5.3, the techniques used by trading agents to optimise the decision
making in retail markets are presented. Finally, Section 6.2 contrasts studies on decision
making for trading agents.

2.1.2.3 Trading Agent Actuators

Similar to the the sensors, actuators are generally designed for a specific environment,
however, far too little attention has been paid to the implementation of trading agents’
actuators, whereas the implementation of robots’ actuators has a large volume of pub-
lished studies (Khatib and Burdick, 1986; Hunter et al., 1991; Zinn et al., 2004). When
designing trading agents that need to continually adapt to environment changes, there
is a need to develop intelligent actuators that can optimise the execution of the selected
actions. Moreover, intelligent actuators can handle and adapt to environment-specific
changes that may affect the execution of the trader’s action, while the invariant trading
knowledge is managed by the reasoning component.
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Figure 2.1: Power TAC Overview from Ketter et al. (2015). This is an overview of
the Power TAC simulation environment that simulates an electricity wholesale market
with large electricity suppliers and a smart grid retail market with retail consumers and
producers. The electricity retailers that act as brokers compete in wholesale and retail
markets for buying and selling electrical energy. A distribution utility is responsible of
electricity balancing between supply and demand.

2.1.3 Trading Environments

2.1.3.1 Power TAC Environment

Power Trading Agent Competition platform Ketter et al. (2015) (Power TAC1) offers
an open and competitive environment that is as close as possible to the complexity of
real-life markets, encompassing both a competitive electricity wholesale and a retail
market under the smart grid paradigm (see Figure 2.1). While the wholesale market
mimics day-ahead energy markets such as Nord Pool in Scandinavia or FERC in North
America, the retail market simulates several types of real-life energy consumers and
tariffs. The broker agents offer diverse tariff contracts to the customers and provide
them the required energy each hour by buying the needed volume from the wholesale
market.

Wholesale Market The wholesale market, which is composed of generator compan-
ies (GenCos), energy brokers and transmission operators, called Independent Systems

1http://www.powertac.org; accessed 16-November-2015
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Operator (ISO), simulates a periodic double auction and day-ahead market where the
market is cleared each simulated hour. The market is cleared when there is an equi-
librium price between the bids and the asks placed to the market. Successful bids are
buy orders that have a limit price higher than the clearing price and successful asks are
sell orders that have limit price lower than the clearing price. The broker agent can buy
energy for future delivery between 1 and 24 hours ahead in the wholesale market. This
gives the broker a time horizon of 1 to 24 hours ahead to satisfy the hourly demand for
the contracted power consumers.

Retail Market The retail market provides several types of customers that can be
grouped in two classes: (1) small and elemental customers, such as households, small
and medium businesses, small energy producers and electric vehicles; and (2) large
customers, such as greenhouse complexes and manufacturing facilities. A Distribution
Utility owns the distribution network and ensures real time energy balancing between
supply and demand. Moreover, it charges the broker with a penalty, if it cannot balance
its electricity demand and supply. In the retail market, the agent can offer different
types of consumption and production tariffs with real world tariff features: periodic
payments, time-of-use tariffs, tiered rates, sign-up bonuses and early withdrawal fees,
as well as dynamic pricing. Power TAC customers select the energy tariffs that are the
most advantageous considering their energy requirements.

Retailer Agent Activities In the Power TAC environment, the retailer agent is ex-
posed to series of activities that can be executed during the game (this is illustrated in
Figure 2.2). The agent’s activities encompass the recording of environment data con-
tained in the public and private server messages and the sending of messages to the
game server. The server messages are the agent financial states (market position, cash
position and transactions), weather report and forecast, the balancing state between
retailer’s energy supply and demand as well as all tariff information (customer sub-
scription, cancellation and tariffs’ transaction). The agent needs to use this information
to adapt to the environment changes by optimising the tariff pricing in retail market.

At any time in the game, the agent can take actions in the two markets. In the
wholesale market, it can buy or/and sell electricity by submitting bids and asks to the
market. As feedback, it is informed by the game server about the clearing prices, the
order book and its successful orders. In the retail market, the trading agent deals with
managing a portfolio of electricity tariffs for the consumers by creating new or updating
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existing tariff contracts given the retail strategy that it follows: the broker can offer tariff
contracts for consumption, production, storage and balancing. The retail customers
select and sign to diverse tariffs according to their preferences and the reputation of the
trading agents. These activities have influenced the development of AstonTAC versions,
as AstonTAC_V1 presented in Chapter 3 and AstonTAC_V2 in Chapter 4 deal with the
optimisation of the wholesale activities, whereas AstonTAC_V3 described in Chapter 5
optimises the retail strategy. The wholesale and retail markets strategies are optimised
simultaneously by AstonTAC_V4, which is presented in Chapter 6.

Tournament Settings and AstonTAC Approach Each Power TAC game is initial-
ised with a setup game that lasts for 15 days (384 simulated hours or timeslots) and
procures initial simulation data, which is composed of customer energy consumption,
customer energy production, clearing prices and weather reports. A Game generally
runs for about 60 virtual days or 1440 simulated hours or timeslots - each simulated
hour lasts 5 seconds in the real world. At the end of the simulation, the broker with
the highest balance in the bank wins the game. Starting the game with an empty bank
account, the broker agent gets a bank credit by buying energy in the wholesale mar-
ket. It earns money by getting payment for the sold energy and spends it by paying
for the required energy or market fees (energy distribution fee, energy imbalance fee,
tariff publication fee, tariff revocation fee and the bank interest for the debt). During the
game, the bank always loans the broker money to purchase energy and charges interest.

The dynamism and uncertainty of the Power TAC environment is a result of the
definition of the implementation of the game server:

1. The number of agents and the type of agents competing in each game are variable.
As result, the behaviours of wholesale and retail markets depend on the agents
playing in a specific games. A basic way to develop a trading strategy is to
create a profile of the competing agents and use game-theoretical approach to
select a trading strategy as suggested by Vidal and Durfee (2003); Gmytrasiewicz
and Durfee (2000). However, there are two main limitations to this approach.
First, the game server does not offer enough information to confidently profile
the agents competing in a competition. This makes the creation of agent profiles
difficult to realise. Moreover, as adaptive agents adjust their behaviour during and
between the tournament games, game-theoretical approaches are difficult to apply
successfully. Additionally, as using a game-theoretical approaches to determine
each decision making is time consuming, it is not an efficient approach for Power
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Figure 2.2: Activities of the Retailer Agent from Ketter et al. (2015). This figure shows
the interactions between the retailer agent and the Power TAC simulation environment.
The simulation game sends at every time step diverse information to the retailer agent
about the weather state, the transaction in the wholesale and retail markets, as well as
its financial situation.
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TAC where real-time decision making is required (for instance the agent may be
required to make a wholesale market decision within 5 seconds).

2. The wholesale market trading as well as retail consumption and production are
influenced by the weather parameters which are variable and drawn from real
weather history of real location on the planet. This makes the energy production
and consumption behaviour of each game to be specific and influenced by the
real-world weather data of a specific location in the world. Therefore, the weather
makes the dynamic of the game to be different from game to game making the
prediction of the game dynamic difficult. The Appendix A explains the approach
used by AstonTAC to dynamically predict the consumption and production online
in each game.

3. The initialisation of customers type and number, which differ from game to game,
is also a source of uncertainty in the environment, particularly in the retail market.
Similar to real-world case, large customers prefer variable tariffs as they pay only
for what they consume, while elemental customers prefer fixed tariffs as they
cater for fixed and regular payments without risk of extremely high electricity
bill to pay. As elemental and large customers behaviours are different both in
the amount of energy they consume and their tariff preference, the trading agent
needs to adapt its tariff contracts and procurement strategy according to mix of
customers in each game.

These environment specifications have largely influenced the implementation of As-
tonTAC and strengthened the need for building the proposed SMDP architecture.

The Power TAC tournament is held every year and enables researchers around the
world to build and test their retailer agents in a competitive environment. During the
Power TAC tournament, the agent attends several competitions where it plays several
games with different number of agents (two, four or eight). At the end of each Power
TAC simulation, the retailer agent with the highest standard score (z-scores) of the
accumulated profits wins the game. The z-scores use the standard normal distribution
to show how well a player performs compared to all other players (Marx and Larsen,
2006).

2.1.3.2 TAC Supply Chain Management

While the Power TAC has been used to test the SMDP-based architecture of the trading
agent, TAC Supply Chain Management has been used to demonstrate the knowledge
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Figure 2.3: The scenario of the TAC Supply Chain Management from Collins et al.
(2006) . The retail agent has four main activities: (1) buying computer parts from the
suppliers, (2) assembling the computers, (3) selling the computers to the customers as
well as (4) scheduling their delivery.

transfer of the developed MDP modules.
TAC Supply Chain Management simulates a supply chain scenario in which six

broker agents compete in selling 16 types of personal computers (PC) in a retail mar-
ket, as well as in buying the computer components from suppliers and schedules PCs
production and delivery Arunachalam and Sadeh (2005); Collins et al. (2006). Sim-
ilar to the Power TAC, this game has a retail and a wholesale market as illustrated in
Figure 2.3. In the retail market, the trading agent competes in selling different types
of PCs by bidding on customers’ request for quotes (RFQs) . The PCs differ by their
components (CPUs, Motherboards, memory and disk drives), which are available in
different brands. To manufacture the PCs, the trading agent buy the components from
the wholesale market using RFQs.

Wholesale Procurement Using the RFQs, the trading agent sends at most five re-
quests to each supplier individually and specifies in the RFQ the product needed, the
quantity, the delivery date and the limit price. In turn, each supplier considers its fu-
ture delivery commitment and capacity in order to send an offer with the quantity of
the product that can be provided and its price. The trading agent can then accept or
reject the suppliers’ offers. The quantity of products needed by the trading agent in the
future is defined by its estimation of the future retail demand and current retail commit-
ments. Because of the late delivery penalty in the retail market, the retail agent strives
to buy the components on time from the wholesale market in order to avoid the penalty.
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Moreover, the agent does not only face the time constraint, it also has to buy when the
prices are low.

Retail Market In the retail market, the trading agents compete by bidding on the
customer RFQs while having to satisfy the customer orders on time given their produc-
tion capacity and scheduled deliveries. The customers’ RFQs are composed of the type
of the PC needed, the quantity and the due date. After receiving the brokers’ offers,
the customers select the most suitable offers and send orders back to the corresponding
broker.

Trading Agent Activities The trading agent needs to excel in retail market, wholesale
procurement and production scheduling in order to be successful in TAC SCM. The
game server provides to the broker market information such as minimum and maximum
prices of PCs and of the needed components. The bank account information and the
negotiation orders and offers are sent privately to each broker.

Game Settings The game lasts for 220 simulated days with each day representing
roughly 15 seconds in real time. At the end of the game the brokers with the highest
cash in the bank account wins the game.

2.2 Hierarchical Reinforcement Learning

This section introduces the (S)MDP formalisms that have been used to model behavi-
oural modules as well as the techniques used for learning trading strategies in Sections
2.2.1 - 2.2.3.

2.2.1 Introduction to Markov Decision Process

When modelling decision problems in dynamic and uncertain environments, MDPs
are the most effective and widely accepted approaches (see Bellman (1957); Witten
(1977); Whittle (1982); Ross (1983); Littman (1996)). The standard discrete-time MDP
with finite state and action spaces can be formally defined with the tuple ⟨S,A,P,R⟩ as
follows:

• S is the set of environment states. The state of the environment at time t is noted
st ϵS. In the standard MDP, the states of the environment are assumed to be fully
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observable. This means that the decision maker knows the exact state st of the
environment.

• A is the set of actions that can be taken by the agent. The action at time t is
noted at ϵA. The agent uses the action at to control the environment and achieve
its goals. At each run or episode, the agent takes a sequence of actions that
optimises the control of the environment. The sequence of actions for each run is
defined by the policy function:

π : S→ A.

The deterministic policy π associates to each state st the action at , so that:

at = π(st).

• P is the state transition distribution. It defines the probability P(st+1|st , at) of
transition from state st to state st+1 after the agent has taken the action at . The
transition to state st+1 depends only on the current state st and the taken action
at . P(st+1|st , at) does not depend on the previous actions and previous states.

• R is the reward function. The decision maker receives a positive or a negative
reward for being in a certain state of the environment. At each state st of the
environment, the agent receives the reward rt from the system after the action
at−1 is taken from state st−1. The reward function of the MDP is used to control
the aims of the agent training. While a positive reward encourages the decision
maker to take in the future the same decision in the same situation, a negative
reward discourages him or her to take the same decision in the same situation.
Consequently, the agent gradually takes more successful decisions in order to get
the maximum reward. The aim of the decision maker is to find the policy π that
maximises the return (cumulated rewards) R in the long run. At each time step t,
the cumulative discounted return Returnt is defined by:

Returnt = rt + γ
1rt+1 + γ

2rt+2 + · · ·+ γ
T rT , (2.1)

Returnt =
∞

∑
k=0

γ
krt+k, (2.2)
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• where γ is the discount factor, 0≤ γ ≤ 1 and T the final time step of an episode.
The end of an episode is the end of the decision process. In an infinite-horizon
decision process, T → ∞ and 0≤ γ < 1. γ specifies the relationship between the
future rewards and the current state-action pair (st−1 , at−1): if γ = 0, then Rt = rt ,
the action selection are driven by the immediate reward rt and the future rewards
are irrelevant for agent’s decisions. If γ = 1 for finite-horizon decision problem,
then all future rewards (delayed rewards) influence the selection of action at−1 at
state st−1.

Following π , at each state st , the agent selects the action π(st) = at . The expected
cumulative value of the future rewards V π(st) is the state-value function corresponding
to a deterministic policy π defined as follows:

V π(st) = E [Returnt |st ] . (2.3)

V π(st) = E

[
∞

∑
k=0

γ
krt+k|st

]
. (2.4)

The associated Bellman equation is defined as:

V π(st) = ∑
st+1

P(st+1|st , π(st)) [R(st+1|st , π(st))+ γV π(st+1)], (2.5)

where R(st+1|st , π(st)) is the expected reward with R(st+1|st , π(st))=E [rt+1|st , π(st)].
The optimal policy π∗(st) is any policy that maximises the value V π(st) at state st .

The maximal value of V π(st) is denoted V ∗(st):

V ∗(st) = max
π

V π(st). (2.6)

If all the parameters of the MDP ⟨S,A,P,R⟩ are known, π∗(st) and V ∗(st) can be
computed using dynamic programming techniques (Bellman, 1957; Watkins, 1989b;
Bertsekas et al., 1995; Bertsekas and Tsitsiklis, 1995). However, for the simulation en-
vironments considered in this thesis, the parameters P and R are not known and are to be
learned by agent through direct interactions with the environment using reinforcement
learning techniques. Considering the complexity of the evaluation test environment, as
presented in Section 2.1.3.1, it is difficult to obtain enough relevant data to calculate the
parameters P and R.
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Analogue to the state-value function V π(st), an action-value function Qπ(st ,at) can
be considered to model Markov problems where the Returnt does not only depend on
the on the state st , but also on the taken action at . Similarly, following equations can be
written:

Qπ(st , at) = E [Returnt |st , at ] , (2.7)

Qπ(st , at) = E

[
∞

∑
k=0

γ
krt+k|st , at

]
, (2.8)

Qπ(st , at) = ∑
st+1

P(st+1|st , at) [R(st+1|st , at)+ γQπ(st+1, at+1)], (2.9)

where R(st+1|st , at) is the expected reward with R(st+1|st , at) = E [rt+1|st , at ]. The
action-value function Qπ(st ,at) is more suitable for solving MDP through interactions
with the environment. The optimal action-value function Q∗(st , at) is defined as:

Q∗(st , at) = max
π

Qπ(st , at). (2.10)

The definition of Qπ(st ,at) is more meaningful for the application of diverse rein-
forcement learning techniques than for the formal definition of the MDP. The following
section will introduce reinforcement learning.

2.2.2 A Primer on Reinforcement Learning

Reinforcement learning is a computational framework for learning MDP through direct
interaction with the concerned environment. A reinforcement learning algorithm tries
to approximate π∗ by learning suitable mappings between environment states st ϵS and
the actions at ϵA given the observed rewards rt . Sutton and Barto (1998, page 3) defines
reinforcement learning as follows:

“Reinforcement learning is learning what to do – how to map situations to actions–

so as to maximize a numerical reward signal. The learner is not told which actions to

take, as in most forms of machine learning, but instead must discover which actions

yield the most reward by trying them. In the most interesting and challenging cases, ac-

tions may affect not only the immediate reward, but also the next situation and, through

that, all subsequent rewards. These two characteristics – trial-and-error search and

delayed reward – are the two most important distinguishing features of reinforcement
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learning.”
Reinforcement learning algorithms are characterised by the two fundamental prop-

erties: the trial-and-error search and the temporal assignment of the observed rewards
to the visited states and actions taken. Under the trial-and-error search approach, sev-
eral techniques have been proposed to enable the agent to adjust the trade-off between
exploring the possible (if not all) state-action mappings and exploiting suitable state-
action mappings. While the exploration enables the agent to find better policy, the ex-
ploitation supports the maximisation of expected rewards. The most common exploration-
exploitation approach is the ε-greedy action selection (Watkins, 1989b). At each state
s, an agent takes the action a with the highest expected return with respect to ε-greedy.
With a probability of ε , a random action is chosen and with the probability of 1−ε , the
action with the maximum expected value is selected. Generally, the value of ε varies
according to the number of training games. At the beginning of the training it has a high
value to encourage exploratory action selection and toward the end of the training, it
is decreased to enables more exploitation of successful policy. The ε-greedy approach
is generalised using the softmax action selection (Bridle, 1990) which uses a Gibbs, or
Boltzmann, distribution to select the next action with a probability:

P(a|st) =
exp(Q(st ,a)/τ)

∑
k
i=1 exp(Q(st ,ai)/τ)

, (2.11)

where k is the number of actions available in state st , Q(st ,a) is the expected cumulative
value of the future rewards when the action a is taken at state s, τ is called the temper-
ature and τ > 0. With a high value of τ , actions are selected more randomly, whereas,
with low value of τ the actions are selected greedily according to Q(st ,a).

The method of assigning observed rewards to experienced state-action pairs is the
core of reinforcement learning techniques, which specifies when to update the estimate
V π(st) of the state values. The update of V π(st) can be done after any action taken
by the agent, at the end of the of the episode or after a certain number of actions.
Most reinforcement learning techniques used to solve flat MDPs can be formalised
as a temporal difference (TD) learning method or with eligibility trace called TD(λ )
methods. λ is the trace-decay parameter (0≤ λ ≤ 1). With λ = 0, the values of V π(st)

are updated after each action at follows by a reward rt+1, whereas λ = 1, the update of
the estimation V π(st) of all visited state-action pairs happen at the end of the episode.
The following subsections will provide more details on the TD(0), TD(1) and TD(λ )
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2.2.2.1 TD(0)

The reinforcement learning algorithms TD(λ = 0), one-step Q-learning and one-step
State-Action-Reward-State-Action (SARSA) update the estimates of V π at each step
of the decision decision process. One-step Q-learning (Watkins, 1989b; Watkins and
Dayan, 1992) is an off-policy TD control algorithm, which updates its state-value func-
tions Q(st , at) as follows:

Q(st , at)← Q(st , at)+α

[
rt+1 + γ max

at+1
Q(st+1, at+1)−Q(st , at)

]
, (2.12)

where α is the learning rate, which defines how much the new observation rt+1 will
influence the existing estimate of Q(st , at).

Q-learning is an offline policy, because the algorithm is initialised with maximal
value of Q(st , at), which is provided offline. This assumes that the algorithm designer
has a good estimation of the state-rewards rt that are used to compute max

at+1
Q(st+1, at+1).

The SARSA algorithm (Rummery and Niranjan, 1994; Sutton, 1996), which was ini-
tially proposed as a modified Q-learning, is an online TD method, where the Q(st , at)

are to be learned online as follows:

Q(st , at)← Q(st , at)+α [rt+1 + γQ(st+1, at+1)−Q(st , at)] . (2.13)

Algorithm 1 presents the learning protocol of one-step SARSA as described in Sut-
ton and Barto (1998). At the beginning of the learning protocol the initial state and
action are defined given the exploration-exploitation approach (e.g., ε-greedy). At each
state st of an episode, the next action at is chosen and taken (Line 6) based on the
exploration-exploitation approach (e.g., ε-greedy). Then at state st+1, the reward rt+1

is observed and the estimation of the action-value function Q(st , at) is updated in Line
8 following Equation 2.13. This update is carried on for each visited st until the end of
the episode.

2.2.2.2 TD(1)

As a TD(1) method, Monte Carlo methods (Singh and Sutton, 1996; Barto and Duff,
1994) are appropriate to learn episodic MDP tasks, where the rewards are observed at
the end of the episode. Therefore, the update of state-action values has to happen at the
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Algorithm 1 One-Step SARSA as TD(0)

1: Initialise Q(st , at)

2: for each episode do
3: Initialise st

4: Choose at from st using policy derived from Q (e.g., ε-greedy)
5: for each step t of the episode do
6: Take action at and observe rt+1 and st+1

7: Choose at+1 from st+1 using policy derived from Q (e.g., ε-greedy)
8: Q(st , at)← Q(st , at)+α [rt+1 + γQ(st+1, at+1)−Q(st , at)]

9: st ← st+1

10: at ← at+1

11: end for
12: end for

end of the episode:

Q(st , at)← Average(rt). (2.14)

Sutton and Barto (1998) describes Monte Carlo methods leaning protocol as applied
in reinforcement learning. Based on this, Algorithm 2 describes a standard Monte
Carlo technique where the learning happens at the end of each episode. Before starting
with the learning, the Q-values and the behaviour policy π(s) are initialised. After
each completed episode, the experienced delayed reward R is used in Line 9 to update
the state-action values Q(st , at) of the visited state-action pairs (st , at) according to
equation 2.14. In Algorithm 2, the actions are selected greedily given the Q-values,
although a ε-greedy policy can also be used.

2.2.2.3 TD(0 < λ < 1)

If the learning does not happen after each action and nor at the end of the episode,
the TD methods can be implemented as n-step TD methods (Watkins, 1989b), which
assigns the observed rewards rt+n to the last nϵN visited state-action pairs (s, a) as
follows:

Q(st , at)← Q(st , at)+α

[
R(n)

t −Q(st , at)
]
, (2.15)

with R(n)
t = rt+1 + γrt+2 + γ2rt+3 + ...+ γn−1rt+n + γnQ(st+n, at+n).
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Algorithm 2 Monte Carlo Method as TD(1)
1: Initialise, for all sϵS, aϵA

2: Q(s, a)← arbitrary
3: π(s)← arbitrary
4: Returns(s,a)← empty list
5: for each episode generated using π(s) do
6: for each pair of (s,a) appearing in the episode do
7: R← return following the first occurrence of (s,a)
8: Append R to Returns(s,a)

9: Q(s, a)← average(Returns(a,s))
10: for each s in the episode do
11: π(s)← argmaxa Q(s,a)

12: end for
13: end for
14: end for

The drawback of the n-step TD approach is that it is computationally expensive for
large n. The TD(0 < λ < 1) remedies to this problem by using eligibility traces.

SARSA(λ ) (Rummery and Niranjan, 1994) and Q(λ ) (Watkins, 1989b; Sutton and
Barto, 1998) enable the agent to learn as with the n-step TD methods before the end
of the episode, using the eligibility traces, annotated as e(s,a) for state s and action a.
The eligibility traces associate with each state a value, called trace, which corresponds
to their contribution to the current reward. Proportionally to the eligibility traces, each
reward is distributed to the states that are visited during the learning period.

In this thesis different reinforcement learning algorithms are applied to solve the
different decision problems faced by the trading agent. In Chapters 3 and 4 a Monte
Carlo approach is adopted to optimise the wholesale procurement. SARSA(λ ) is ap-
plied in Chapter 5 to optimise the retail pricing, whereas an n-step TD approach is used
in Chapter 6 to learn an overall trading strategy.

2.2.3 Hierarchical Reinforcement Learning Algorithms

Using MDP, the actions are selected and executed completely during the same time
step; this does not enable the formalisation of a temporally extended agent’s action. The
SMDP, which is an extension of the MDP with a temporal abstraction (Jewell, 1963;
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Howard, 1971), is used to structure the agent activities as a hierarchy of high-level and
low-level MDPs.

In the field of artificial intelligence, Bertsekas and Tsitsiklis (1989); Dean and Lin
(1995); Lin (1997) have presented the early studies on decomposition of a complex
MDP in loosely coupled subproblems. Fikes et al. (1972); Korf (1985); Iba (1989)
show that search problems such as complex MDPs that are difficult to solve when us-
ing primitive operations, can be solved faster when searching in macro-operator space.
Based on this idea of macro-operator, complex MDP actions have been abstracted as a
hierarchy of abstract actions (Singh, 1992a,b) or of behaviours (Brooks, 1986; Huber
and Grupen, 1997), of skills (Thrun and Schwartz, 1995), of macro-actions (Sutton,
1995; McGovern et al., 1997), of options (Sutton et al., 1999a) or of abstract machines
(Parr and Russell, 1998).

This subsection will introduce the MAXQ value function decomposition of Diet-
terich (2000a), the HAM described by Parr (1998), and the option framework of Sutton
et al. (1999a).

2.2.3.1 MAXQ Value Function Decomposition

The MAX approach decomposes a complex task (M) into an hierarchy of subtasks Mi.
Each task is executed using the primitive actions or other subtasks. Let N denote the
number of time steps needed to execute an action a starting in state s and terminating
in state s′, Dietterich (2000a) includes the action duration in the expression of the MDP
transition probability: P(s′,N|s,a). Similar to MDP (see Section 2.2.1), the modified
Bellman equation of the value function for a fixed policy π is:

V π(s) = ∑
s′,N

P(s′, N|s, π(s))
[
R(s′, N|s, π(s))+ γ

NV π(s′)
]
. (2.16)

This equation is very similar to Equation 2.5 with the difference that the MAXQ ap-
proach integrates the action duration N in the value function and the action a is gen-
eralised with π(s), as several actions may be needed for the execution of the subtasks.
Dietterich (2000a, page 241) puts forward the following theorem for the decomposition
of the value functions:

“Given a task graph over tasks M0, . . . Mn and a hierarchical policy π , each subtask

Mi defines a semi-Markov decision process with states Si, actions Ai, probability trans-

ition function Pπ
i (s
′,N|s,a) and expected reward function R̄(s, a) = V π(a, s), where

V π(a, s) is the projected value function for child task Ma in state s. If a is a primit-
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ive action, V π(a, s) is defined as the expected immediate reward of executing a in s:

V π(a, s) = ∑s′ P(s′|s, a)R(s′|a, s) .”
A hierarchical policy π = {π0, · · · , πn}is a set of subtask policies so that each sub-

task Mi has a policy πi, which defines for each state s of Mi the primitive action to take
or the subroutine to execute. To explain the MAX decomposition, Equation 2.16 can
be extended with the index of the SMDP subtask i:

V π(i, s) = ∑
s′,N

Pπ
i (s
′, N|s, πi(s))

[
R(s′, N|s, πi(s))+ γ

NV π(i, s′)
]
. (2.17)

The following equation can be rewritten as:

V π(i, s)=

[
∑
s′,N

Pπ
i (s
′, N|s, πi(s))R(s′, N|s, πi(s))

]
+

[
∑
s′,N

Pπ
i (s
′, N|s, πi(s))γNV π(i, s′)

]
.

(2.18)
The first part represents the value function of a child task Ma starting at state s and
terminating at state s′ after N steps. Dietterich (2000a) notes the previous equation 2.18
as:

V π(i, s) =V π(πi(s), s)+ ∑
s′,N

Pπ
i (s
′, N|s, π(s))γNV π(i, s′), (2.19)

where V π(πi(s), s) is the projected value function for child task Ma.
If the task Ma is a one-step action, V π(πi(s), s) = ∑s′ P(s′|s, a)R(s′|a, s), whereas if

Ma is composite, V π(πi(s), s) = ∑
s′,N

Pπ
i (s
′, N|s, πi(s))+R(s′, N|s, πi(s)). This decom-

position of MAXQ enables to calculate the value function of SMDP tasks based on the
value function of subtasks.

2.2.3.2 Option Framework

In the option framework, the notion of action is replaced by the concept of options
(also called composite actions or abstract actions). According to Sutton et al. (1999a),
a temporally extended action called option ⟨πo,βo, Io⟩ is defined by:

• a policy πo : S×A → [0,1]. πo defines how the actions can be selected for all
the states in which the option is defined.
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• a termination condition βo : S+→ [0,1]. βo gives the probability of the option to
terminate in each state.

• an initiation set Io ⊆ S. At option is available in state st , if st ϵ I.

Given this, Sutton et al. (1999a, page 10) put forward the following theorem to define
an SMDP:

“For any MDP, and any set of options defined on that MDP, the decision process

that selects only among those options, executing each to termination, is an SMDP.”
The SMDP model could be formally presented as the tuple ⟨S,O,P,R⟩ with

• a finite set of states S

• a finite set of options O: Os is a set of options available for state s.

• transition probabilities P: probability (P(s′|s,o)) that the environment transitions
from one state sϵS to another s′ ϵS after taking the option oϵO.

• reward function R: Ro
s is the expected reward of the option o for state s. The

expected reward is calculated as follows:

Ro
s = E

{
rt+1 + γ

1rt+2 + · · ·+ γ
k−1rk+2 |ε(o, s, t)

}
, (2.20)

where ε(o, s, t) is the probability of taking o in state s at time t, k is the duration
of the option.

Similar to the MDP (see Section 2.2.1), the Bellman equation of the value function
V µ(s) for a fixed Markov policy µ : S×O→ [0,1] over the option o is defined as
follows:

V µ(s) = ∑
oϵOs

µ(s,o)

[
Ro

s +∑
s′

po
ss′V

µ(s′)

]
, (2.21)

where µ(s,o) is the probability distribution of selecting the option o according to µ

po
ss =

∞

∑
k=1

P(s′, k)γk is the state-prediction part of the model of o for state s. P(s′, k) is

the probability that the option o terminates in s′ after k steps. Consequently, the optimal
value function V ∗O(s) is defined as:

V ∗O(s) = max
oϵOs

[
Ro

s +∑
s′

po
ss′V

∗
O(s
′)

]
. (2.22)
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2.2.3.3 HAM

HAM simplifies the modelling of a complex MDP by using deterministic and stochastic
finite state machines to specify the set of actions that the agent can take in each envir-
onment state (Parr, 1998)]. These finite-state machines speed up the learning time of
the system by constraining the actions that can be taken at each state. A machine for
HAM is defined as the tuple ⟨µ,ζ ,δ ⟩, where µ is a finite set of machine states, ζ is the
initial machine state and δ is a stochastic transition function from current machine to
the next machine states. A HAM-induced MDP H ◦M is formally defined by the tuple
⟨Sh,Ah,Ph,Rh⟩ as follows for an MDP ⟨S,A,P,R⟩ and a HAM ⟨µ,ζ ,δ ⟩:

• Sh that is the state space is the cross-product of the states of HAM H with the
states of the MDP M.

• Ah that is the action space corresponds to the action states (or call states) that
changes only the machine component.

• Ph that is transition function corresponds to the combination of the transition
functions P and δ .

• Rh that is the reward function corresponds to the MDP reward function R.

The HAM-induced MDP is defined as follows in Parr (1998, page 98):
“For any MDP M and HAM H, there exists an SMDP, called H ◦M, the solution

of which defines an optimal choice function, choose(s,m), that maximizes the expected,

discounted sum of rewards received by an agent executing H in M”.
This thesis applies the three HRL approaches discussed above depending on the

SMDP tasks. Since domain knowledge can be included in the HAM algorithm in order
to speed up the SMDP learning, HAM is applied to learn the procurement SMDP in
Chapter 4. The MAXQ framework is used in Chapter 5 to model the hierarchical de-
cision making of the broker in the retail market, as it requires less domain knowledge.
The option framework is applied to model the overall strategy of the trading agent in
Chapter 6, as it offers a more robust formalism that has been adopted to express con-
currency and knowledge transfer in reinforcement learning.

2.3 SMDP Modelling for Trading Agents

When creating a trading agent, the aim is to design an agent that performs better than a
human agent by exploring the environment, competitor strategies and discovering new
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behaviours. Therefore, machine learning techniques are used to build adaptive sensors,
while basing the reasoning engine on HRL techniques and making use of intelligent
actuators.

The environments in which AstonTAC will be placed in are considered to be com-
plex as they are multi-agent, partially observable, stochastic and dynamic environ-
ments2. The AstonTAC architecture is therefore designed to deal with such environ-
mental settings; it integrates learning mechanisms in the three core components (sensor,
reasoning engine and actuators). While sensors and actuators are considered to be
environment-specific components, the reasoning engine is generalised to be reusable
in different market domains. The resulting architecture of AstonTAC is composed of
three layers (see Figure 2.4): an environment-specific layer, interpretation layer and the
reasoning layer. As the broker trades in different markets that follow different trading
and communication rules, the environment-specific layer enables the agent to sense the
specific market and to interact with it. The reasoning layer which remains the same in
all markets is the portable layer and enables to decide which actions to take in order
to fulfil the followed goals, whereas a interpretation layer maps the concepts between
the environment-specific layer and the reasoning layer. This AstonTAC architecture is
applied in Chapters 3-7 in order to build a portable and adaptive trading agents.

2.3.1 SMDP with Discrete Action and State Spaces

AstonTAC SMDP actions are discrete and not continuous (Toussaint and Storkey, 2006;
Konidaris and Barreto, 2009; Degris et al., 2012; Van Hasselt, 2012), because in the
real-life market mechanism, continuous actions are not realistic, as trading actions are
executed in a discrete manner. However, a continuous SMDP state space could be used
to model AstonTAC’s SMDP. To solve continuous state (S)MDP two techniques are
used:

1. Discretisation of the continuous MDP states

2. Function approximation with reinforcement learning (Irodova and Sloan, 2005;
Jong and Stone, 2007; Busoniu et al., 2010; Xu et al., 2014; Tamar et al., 2014).

On the one hand, the discretisation of continuous MDPs has the limitation that some
environment variables are poorly represented by discrete market states and the rein-
forcement can suffer of the curse of dimensionality, as the number of state-action pairs

2The properties of the markets considered in Section 2.1.2 are not specific to them as they are prop-
erties that recur in most types of markets.
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Figure 2.4: Overview of the AstonTAC Architecture. The AstonTAC architecture
is composed of three layers: (1) an environment-specific layer that is composed of
sensors and actuators, (2) an interpretation layer that ensures the mapping of informa-
tion between the environment-specific layer and the reasoning layer, which is modelled
as (3) the SMDP reasoning layer that remains invariant in all the environments the trad-
ing agent is placed in. The interpretation layer uses the state estimation component to
abstract the environment information in SMDP states, whereas the action interpreter is
used to convert the selected primitive actions into execution procedure that is appropri-
ate for the environment.
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can be very high. On the other hand, the use of function approximation is limited by
the dynamics of the reinforcement learning problem (Thrun and Schwartz, 1993; Melo
et al., 2008), so that a misuse of this technique may hinder the finding of an appropriate
trading strategy.

Melo et al. (2008) prove that the function approximation works well, when imme-
diate rewards are considered, and less so when delayed ones are considered, which
means that an action does not only influence the immediate rewards, but also the expec-
ted future rewards. In the case of problems with immediate rewards solely, the initial
function approximation may be different from the optimal functions to be approxim-
ated, whereas in the case of problems with delayed rewards, the initial function needs
to be very close to the ideal final function. Specifically for the trading agents considered
in this work, the agent’s actions have a high impact on the future rewards, which means
that if function approximations were used, the initial offline function must be very close
to an ideal local optimum, which is not possible as the rewards have to be discovered
by the agents.

Flat reinforcement learning is a commonly used approach to optimise trading de-
cisions in real electronic markets (Moody and Saffell, 2001; Nevmyvaka et al., 2006;
Moriyama et al., 2008; Corrêa et al., 2009; Bertoluzzo and Corazza, 2012). Most of the
MDPs applied in real-life markets are discretised MDPs, as the MDP actions specify
what to do and additional components are used to specify how to execute the action.
The MDP actions can be: “increase”, “decrease”, “maintain”, “buy” or “sell”, which
advise the trading agent about which action to take, but not how to take the actions. The
trading MDPs seem to be more applicable to real-life problems, if they consider essen-
tially high-level decision making without trying to specifically decide on how to execute
the low-level decision problems which can be solved using environment-specific mod-
els derived from econometric techniques (Heij et al., 2004; Waters and Waters, 2008;
Wooldridge, 2010). Additionally, real world approaches also assume a finite set of en-
vironment states (Nevmyvaka et al., 2006; Moriyama et al., 2008; Corrêa et al., 2009;
Bertoluzzo and Corazza, 2012).

Therefore, discrete SMDPs with a tabular version of reinforcement learning al-
gorithms such as SARSA(λ ), n-step MDP and Monte-Carlo models are more appro-
priate for the formalisation of trading decision problems. To avoid the curse of dimen-
sionality, the number of state components is kept small, as the designed SMDPs are
basically used for high-level decision making that tell the agent what to do, so that the
agent’s actuators decide how to accomplish the primitive actions selected by the reas-
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oning engine. Moreover, knowledge transfer is proposed to reduce the time needed to
train the hierarchy of MDPs.

2.3.2 Fully Observable SMDP

The second issue considered is the partial observability of some environment variables,
as some environment information is not available to trading agents. For instance, the
retail demand can be considered as hidden. One obvious solution will be to use a
Partially Observable MDP (POMDP), which is a generalisation of MDPs with the as-
sumption that the environment state is not fully observable (Sondik, 1971; Smallwood
and Sondik, 1973; Kaelbling et al., 1998; Doshi-Velez, 2009).

Using the POMDP, the decision maker may have to keep track of the entire his-
tory of observations and actions in order to act optimally. For POMDPs, memoryless
approaches learn a control policy by mapping the current observations to the actions
without estimating the hidden states (Singh et al., 1994a,b; Loch and Singh, 1998;
Littman, 1994; Singh et al., 1994a), whereas memory-based approaches learn a con-
trol policy while estimating the hidden environment states based on the past observa-
tions (Lin and Mitchell, 1993; McCallum, 1993, 1995; Meuleau et al., 1999; Doshi-
Velez, 2009; Liu et al., 2011). Since, the market state can be made of several market
state components, memoryless policy learning is more appropriate than memory-based
learning, which is more computationally expensive. However, a memoryless approach
without keeping history of any observation-action pairs will not allow credit assignment
to previous actions.

Modelling the trading decision problem using POMDPs can make the problem in-
tractable or more computationally expensive. In this work, it is assumed that it may
be important to treat the estimation of the environment state and the decision making
as two different problems. First, machine learning techniques are used to estimate the
market states that will be the MDP states. Then, the MDP states are assumed to be fully
observable; this enables to use fully observable SMDP to model the trading decision
problem.

2.3.3 Policy Search

The reinforcement learning techniques presented in Sections 2.2.1 and 2.2.2 use the
estimations of state-value or action-value functions (V π(st)orQπ(st , at)) to search for
the optimal policy (π∗(st)orπ∗(st , at)). However, it is also possible to search for the

51



optimal policy without calculating of V π(st) or Qπ(st , at) by using the state, action
and rewards as inputs with the aim being to find actions that maximise the observed
rewards. The probability of taking action at in state st under stochastic policy π , given
the vector of policy parameters θ :

πθ (st , at) = Pr[at |st , θt ],

where Pr is the probability density function of the action at given st and the vector of
policy parameters θ . The learning consists of identifying the set of policy parameters
θ that maximise the expected return (Ng and Jordan, 2000; Peshkin, 2002).

Compared to value-based approaches, policy-based approaches enable a better and
direct integration of expert knowledge to the policy search either when initialising or
updating the policy parameters θ . This enables the policy-based methods to generally
converge better. Additionally, the search for the optimal policy is done by directly trying
the different policy parametrisations without computing V π(st) or Qπ(st ,at), which
reduces the search complexity and make policy-based techniques more effective for
MDPs with high-dimensionality or continuous action spaces (Kober and Peters, 2012).

The first limit of the policy search approaches is a direct consequence of their ad-
vantages: because policy-based techniques are generally bootstrapped by the expert
knowledge and existing sample policies, they generally converge to local optimum and
are generally better applicable for MDPs, whose policies are easier to represent (Sutton
et al., 1999b). Therefore, the policy-based reinforcement learning has been successfully
applied to problems that require the executions of a single action such as ball-in-the-
cup game (Kober and Peters, 2009), hitting a baseball (Peters and Schaal, 2008) or
pan-cake flipping (Kormushev et al., 2010). Moreover, policy-based approaches are
unexplored for complex decision problems that require several actions such as the de-
cision problems faced by the trading agents. Furthermore, hierarchical MDPs have not
yet been addressed by policy search approaches (Deisenroth et al., 2013). As the re-
search presented in this thesis modelled the complex trading problems as an SMDP,
policy search approaches, which rely much on the expert knowledge and are not yet
explored for hierarchical decision problems, are not appropriate for this work.

2.3.4 Multi-Objective Reinforcement Learning (MORL)

In general, trading agents can face decision problems with competing or conflicting out-
comes. For instance, when selling products in an open and competitive retail market, a
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retail agent has to optimise its retail prices so that it can simultaneously sell to as many
customers as possible whilst making profits. The challenge here is that the customers
are generally attracted by low prices and the agent can only make more profit by in-

creasing the retail price, if it is assumed that the total product cost remains unchanged.
Another example is the optimisation of short-time procurement, where the agent must
optimise the procurement cost while achieving these two objectives: (1) to buy when
the procurement prices are low and (2) to meet the procurement deadlines. In order to
meet the procurement deadlines, the agent may choose to just purchase the goods at any
prices, however by doing so it may have to buy at very high prices. Analogously, when
targeting only low prices, the agent may not meet the retail demand on time, because
procurement at low prices may not be possible.

The presented problems can be modelled as multi-objective MDP (MOMDP) and
solved with multi-objective reinforcement learning (MORL) approaches (Karlsson, 1997;
Gábor et al., 1998; Vamplew et al., 2011). Although, MORL is still at an initial stage, it
is becoming an active research area as presented recently by Roijers et al. (2013); Wang
(2014); Liu et al. (2015). In contrast to the standard MDPs, MOMDPs consider more
than one objective with individual rewards.

When solving MOMDP, the learning objective is either to learn a single policy
that best satisfies all the objectives or learn multiple preference-driven policies that are
optimal given the preference set between the objectives. To achieve the search for a
single policy, the objectives reward signals are aggregated in the form of linear or non-
linear scalar (Natarajan and Tadepalli, 2005; Mannor and Shimkin, 2004). A simple
scalarisation approach is a weighted-sum of the objective rewards. At each time t, the
aggregated rewards r_aggt of the observed rewards rit of objective i can be calculated
as follows:

r_aggt =
d

∑
i=1

wi rit , (2.23)

where wi is the weight assigned to the reward signals ri. When applying linear scal-
arisation to multiple policy approach, the values of wi can vary according to the states
considered. To specify the preferences of the objectives, multiple-policy MORLs make
use of several techniques among which the scalarisation (Lizotte et al., 2012; Barrett
and Narayanan, 2008) and the population-based approaches (Van Moffaert et al., 2013).

While single-policy approaches are more suitable for online policy search than mul-
tiple policy ones, which are more computationally expensive and required offline turn-
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ing of the preferences parameters. Moreover, as multi-policy approaches rely more
on expert knowledge than single policy approach, they are more appropriate when the
characteristics of the MOMDP are well known, otherwise the parameters tuning process
can be time consuming.

The single policy approach is used in this thesis to solve the MOMDPs because the
aim of the research is to enable the agent to continually learn online. Moreover, the
objective rewards can be converted to monetary values, which eases the linear scalar-
isation of the objectives rewards using as a weighted sum as presented in equation 2.23.
In Chapters 3 and 4, the linearisation approach is used to simultaneously optimise the
wholesale procurement time and cost. Analogously, a single policy approach is applied
in Chapter 5 to learn a policy that simultaneous facilitates a high number of customers
and a high profit.

2.3.5 Markov Property

In reinforcement learning, an environment has the Markov property, if the transition to
the next state st+1 ϵS of the environment only depends on the current state st ϵS and the
current action at ϵA:

P(st+1|s0, a0, · · · st , at) = P(st+1|s, at).

It is the responsibility of the model designer to define the states of S so that each state
contains enough relevant information to enable the prediction of the next state without
considering previously visited states. However, this may be difficult to achieve for
some environment. Therefore, Sutton and Barto (1998) advised to still consider states
that do not fully satisfy Markov property to be an approximation of the Markov state
as reinforcement learning techniques can still be successfully applied. Given this, in
this thesis it is assumed that the environment defined by the MDP states abstraction are
Markovian or approximation of Markov states.

2.3.6 Learning to Execute MDP Actions Concurrently

Many artificial intelligence techniques can be used to deterministically select and ex-
ecute concurrent actions: logic-based and automated planning approaches. Consider-
ing logic-based approach, a declarative language is proposed by Gelfond and Lifschitz
(1992) to logically represent actions and their effects. Baral and Gelfond (1997) later

54



expand this declarative language to describe concurrent actions. Reiter (1996) proposes
a formalisation of concurrent actions building on previous work of Pinto (1994) on situ-
ation calculus. The language of situation calculus is used by De Giacomo et al. (2009,
2000) to describe programming languages that enable concurrent actions execution by
an autonomous agent.

Many works on automated planning and scheduling support generation of concur-
rent plans and actions using planning. Knoblock (1994); Boutilier and Brafman (2001)
use partial-order planner to generate plans than can be executed in parallel. Planning
of concurrent execution of MDP actions has been studied by Younes and Simmons
(2004); Mausam and Weld (2005); Little and Thiebaux (2006); Aberdeen and Buffet
(2007); Mausam and Weld (2008). To optimise simultaneously multiple MDP tasks,
Singh et al. (1998) define a cross-product MDP (called composite MDP) whose state
space is the cross product of individual MDPs state and action spaces. If the simul-
taneous tasks have different time step duration, these approaches are not applicable, as
they assume that all concurrent actions start and end at the same time. Moreover, as the
planning algorithms require the parameters of the concurrent MDPs to be known.

As logic-based and automated planning approaches do not consider online learn-
ing and adaptation to concurrent actions, only learning approaches are considered for
this work. Rohanimanesh and Mahadevan (2001, 2002) propose a novel SMDP-based
framework to model and learn with concurrent actions3. Their framework uses the
formalism of the option framework (see Section 2.2.3) and models concurrent actions
that have different durations and that do not terminate at the same time. Each option
that is executed by multiple parallel actions or options is called a multi-option −→o ϵO.
Similar to equation 2.21 the associated Bellman equation of the value function is:

V µ(s) = ∑
−→o ϵOs

µ(s,−→o )

[
R
−→o
s +∑

s′
p
−→o
ss′V

µ(s′)

]
, (2.24)

where R
−→o
s is the expected reward when −→o is completely executed after a duration of k.

Three termination modes can be defined for β−→o . With the termination event any

(Tany mode), −→o terminates according to β−→o , if any of the parallel actions (or options)
terminate, whereas with termination event all (Tall mode), −→o terminates when all the
parallel actions (or options) terminate. A third scheme, Tcontinue is later defined in Ro-
hanimanesh (2006). Tcontinue is an extension of Tany that enables to continue the execu-

3This framework has been extended to enable planning of concurrent decision making (Rohanim-
anesh and Mahadevan, 2005; Rohanimanesh, 2006).
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tion of running actions (or options) after −→o terminates.
When modelling the execution of AstonTAC’s concurrent actions, the Tany mode is

followed to conserve the semi-Markov property of the SMDP environment. Tall is not
appropriate for designing trading agent actions, as it requires the agent not to take any
further actions until all actions terminate, which could lead to a under-performance of
the trader in a competitive market. A Tcontinue mode seems to be a more appropriate
approach, as it enables the trading agents to continue with successfully policy, how-
ever the action selection by the SMDP is not semi-Markov. The action selection by
the SMDP is deterministically influenced by an external subroutine in order to enable
successful options that are being executed to continue.

2.3.7 Transfer Learning

The core idea of transfer learning is to boost the learning in new domain after the
agent has been trained in a similar domain. For instance, transfer learning will enable
a robot to lean how to navigate better in room B after it has been trained to navigate
in room A. In this work, transfer learning is used to speed up the learning process
in a personal computer market, after the trading agent has been trained to trade in an
electricity market and vice versa.

Supervised learning algorithms are generally developed with the assumption that
historical and future data have the same distribution and are from the same domain
(Bishop, 2006). However, in reality, future data may not have an identical distribution
and domain (Raina et al., 2006; Dai et al., 2007; Raykar et al., 2008). Pan and Yang
(2010) review transfer learning approaches for machine learning. When designing a
trading agent architecture, these approaches are applied to improve the performance of
the agent’s sensors in different markets (Pardoe, 2011).

Compared to machine learning transfer, reinforcement learning transfer, which is a
well-developed research field, is still at an initial stage. Research on transfer learning
can be grouped based on the level of similarity between the tasks considered (Taylor
and Stone, 2009; Lazaric, 2012). When the set of MDP actions and the set of MDP state
components are considered to be same, multi-task learning approaches are considered
for enabling the knowledge transfer (Snel and Whiteson, 2014; Mehta et al., 2008a;
Lazaric et al., 2008; Bernstein, 1999; Lazaric, 2008). If the set of actions and the
set of state components are totally different, inter-task mapping approaches are more
appropriate for the learning transfer (Torrey et al., 2006; Taylor et al., 2007; Taylor and
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Stone, 2007; Torrey et al., 2005). However, if the set of actions and the state components
are only partly identical, the learning transfer use task-invariant state features to enable
transfer (Konidaris et al., 2012; Ravindran and Barto, 2003; Soni and Singh, 2006;
Konidaris and Barto, 2007; Banerjee and Stone, 2007; Croonenborghs et al., 2008).

As the knowledge transfer problem considered in this thesis addresses transfer between
domains with different action and state sets, inter-task mappings seems to be more
appropriate. However, with an increasing number of tasks, the number of mappings
required can increase exponentially making a general optimisation of the transfer prob-
lem difficult to realise. For a generalisation of the transfer problem, approaches such as
the agent-centric approach of Konidaris et al. (2012) seems to be more suitable. This
work combines these two approaches (inter-task mapping and agent-centric) to propose
a new knowledge-transfer approach that is more appropriate for trading agents and that
enables their reasoning systems to be portable across markets.

2.4 Summary of the Chapter

This chapter has introduced and critically reviewed the concepts and techniques that are
key to this thesis: trading agents, HRL and SMDP. Many approaches that discuss the
designing of agent architecture show that the agent acts using three components: the
sensors, the reasoning component and the actuators. A large number of trading agent
architectures have been proposed in the recent years to develop agents that adapt to a
specific market by using adaptive sensors and rule-based reasoning systems. However,
no previous study has investigated the use of SMDP and HRL to design cross-domain
reasoning systems for trading agents. The next chapter presents the implementation of
an MDP-based reasoning system that aims to optimise short-term procurement prob-
lems in wholesale markets.
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Chapter 3

Optimising the Wholesale Bidding
Strategy for Short-Term Procurement

The previous chapter presents the relevant background knowledge and reviews the work
related to the focus of this thesis while justifying the techniques used to design the reas-
oning engine of the trading agent. This chapter describes the first version of AstonTAC
called AstonTAC_V1, that utilises an MDP-based reasoning engine to optimise its bid-
ding strategy in electricity wholesale markets.

In general, in order to cover short-term, middle-term and long-term retail demand,
electricity retailers can make use of different provision sources, which are self-production,
production contracts with end-consumers, pool-based markets and bilateral contract
markets (Conejo et al., 2005a). While self-production and bilateral contract markets
are used to cover middle-term and long-term retail demand, end-consumers’ produc-
tion and pool-based markets are suitable for short-term procurement. The procurement
strategy proposed in this chapter is designed to support a retailer buying for short-term
electricity procurement in pool-based markets such as the Power TAC wholesale mar-
kets which are introduced in Section 2.1.2 and described in Section 3.2.

3.1 Introduction

Large-scale integration of sustainable electricity through renewable sources, such as
wind and solar power, implies important changes in the deregulated and decentralised
electricity markets (Jónsson et al., 2010; Zugno et al., 2013). This forces the key market
participants such as generator companies (GenCos), electricity retailers and consumers
to adapt in order to remain viable. This particularly affects electricity retailers as they
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buy most of the energy they need from wholesale markets, in order to satisfy the de-
mand of the contracted customers in the retail markets. They have the difficult task of
optimising their trading strategy in order to balance demand and supply while keep-
ing their costs low (Kirschen, 2003; Zare et al., 2011). Since storing electricity may
be very expensive, developing techniques which allow to successfully maintain a low
electricity balance is paramount to the retailers and everyone else involved, to ensure
the efficiency of the electricity market. The minimisation of the procurement cost and
real-time electricity imbalance relies on the ability of the retailers to optimally man-
age the short-term procurement. Since both electricity generation and consumption
heavily depend on the weather, alongside other uncertain parameters, effective optim-
isation of short-term procurement is challenging to realise. The increased influence of
weather-dependent, renewable electricity sources creates a very dynamic and variable
wholesale environment in which a human retailer cannot optimally make trading de-
cisions for real-time and short-term electricity procurement without the support of an
automated decision tool.

To counter this difficulty, a framework is designed to support automated decision-
making for wholesale markets. The focus of this chapter is on the optimisation of the
short-term procurement strategy. Given the market state, the optimisation model put
forward enables a retailer to buy at low prices and keep the imbalance between the
electricity purchased and needed low. The decision-making framework takes as inputs
market information such as demand and clearing price forecasts to determine the suit-
able volume of electricity to buy in order to satisfy the demand. At the core of the pro-
posed approach is an MDP that enables the optimisation of the bidding strategy, based
on the underlying assumption that the wholesale market environment that is defined by
the MDP state space is Markovian. The state space considered for this work is described
in Section 3.4. A reinforcement learning technique, called the Monte Carlo approach
and introduced in Section 2.2.2, is used to solve the proposed MDP model. While the
reasons for using a discrete MDP and the reinforcement learning to solve this decision
problem are presented Sections 2.1.2 and 2.3, the adoption of a Monte Carlo approach
is justified by the nature of the decision problem as described in Section 3.2 - the agent
observes the relevant rewards only at the end of the decision process composed of 24
decision steps.

This chapter mainly details the development and evaluation of AstonTAC_V1 in
the 2012 Power TAC. An evaluation and analysis of the 2012 Power TAC finals show
that AstonTAC_V1 is the only agent that can buy energy at low price in the wholesale
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Figure 3.1: Trading Process for the Hours-Ahead in Power TAC. At each simulated
hour of the game, the next 24 hours ahead are open for wholesale trading. To acquire
enough energy for a specific hour, the retailer agent has 24 bidding periods to buy the
energy required for the retail market. The 24 periods available represent the duration of
a procurement episode. As an illustration, at time t, the retailer may buy electricity for
time t +2, which belongs to an episode that started at t−22 and is due to end at t +2
when the electrical power needs to be delivered in the retail market.

market and keep energy imbalance low. The remainder of the chapter is organised as
follows. In Section 3.2 a brief overview of Power TAC wholesale market is presented.
Section 3.3 presents related work. In Section 3.4 the architecture of AstonTAC_V1 is
described. The evaluation in the Power TAC 2012 is discussed in Section 3.6. Finally,
Section 3.7 summarises the chapter.

3.2 Wholesale Market in Power TAC

As introduced in Section 2.1.3.1, the evaluation environment utilised, Power TAC, has
a wholesale market that mimics energy markets such as Nord Pool in Scandinavia or
FERC in North America. The wholesale market is modelled as an hours-ahead market,
where the market is cleared every hour following a uniform pricing process. In an
hours-ahead market, contracts are made between seller and buyer for the delivery of
power within hours. The Power TAC simulation makes use of real-life data such as the
wholesale market clearing prices as well as information on the weather to bootstrap the
market changes.

Figure 3.1 presents the sequence of trading decisions that a retailer agent has to
make every hour in order to trade for the next 24 hours. Each simulated hour of the
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game, the retailer can make 24 trading decisions for the 24 hours ahead. Each hour
represents the end of a procurement episode, when the electricity should be delivered
to the retail market. Since the retailer agent may buy the electricity that needs to be
delivered at a specific hour up to 24 hours ahead, each procurement episode is composed
of 24 decision steps that are available to the retailer agent to satisfy the retail demand
of that hour.

Furthermore, the Power TAC server provides two types of information to each re-
tailer agent: public and private information. The public information is available to all
the retailer agents. During each time slot, each retailer agent receives market clear-
ing prices and the cleared volume, current weather and the forecast for the next 24
simulated hours. The private information is available only to the retailer in question.
This includes successful bids and asks in the wholesale market, the cash position, and
electricity distribution and imbalance.

3.3 Related Work

A large number of recent publications in the field of developing agents to act in energy
markets focus on formulating suitable bidding strategies for wholesale markets. The
majority of these studies observes the bidding strategy from the GenCos’ point of view
(Tellidou and Bakirtzis, 2006; Bach et al., 2012), while the energy procurement decision
problem as faced by the retailers has not attracted as much attention.

Considering the generators’ viewpoint, game-theoretic approaches as well as lin-
ear and non-linear programming models have been proposed to optimise their bidding
strategies. A linear programming model is used in Morales et al. (2010) to optimise the
short-term bidding strategy for a wind power producer. A stochastic linear program-
ming model is introduced by De Ladurantaye et al. (2007) to maximise the profits of
price-taker producers. Particle-swarm optimisation models are proposed by Yucekaya
et al. (2009); Boonchuay and Ongsakul (2011) to maximise the profit of GenCos. Sup-
ply function models that GenCos can apply to develop an optimal bidding strategy are
discussed in Gao and Sheble (2010); Bompard et al. (2010). In Song et al. (2000); Ga-
jjar et al. (2003), MDPs are used to optimise the profit expected by a supplier over a
planning horizon. Contrary to the energy generators that have a certain control on the
volume of energy they produce, the retailers have less control over the aggregated retail
demand. Moreover, GenCos can either be price-makers or price-takers, while retailers
are generally price-takers that cannot influence the future wholesale prices. These dif-
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ferences make the optimisation models of GenCos less relevant for the retailer decision
problem considered in this work. Furthermore, the MDP presented in Song et al. (2000)
assumes to have complete information about the competing agents. However, similar to
real-life trading regulation, the Power TAC environment considers any successful bids
and asks as private information.

Other studies focus on the consumers’ perspective, studying strategies large con-
sumers may adopt to deal with electricity procurement when trading in pool markets
and bilateral contract market settings (Conejo et al., 2005a; Carrión et al., 2007; Zare
et al., 2010, 2011). In contrast to electricity retailers, large consumers have consid-
erably more control on planning their long-term, mid-term and short-term electricity
requirements. Using game theoretical analysis, Philpott and Pettersen (2006) studied
conditions under which buyers should bid for their short-term electricity demand in
a Norwegian pool market. However, due to their reliance on the assumption of only
having market participants with rational and constant behaviours, the game-theoretical
approaches are not suitable or realistic to use when optimising decision making se-
quences that are dependent on the time ahead, the forecast electricity prices and de-
mand. In reality, the behaviour of wholesale market participants is not constant and is
heavily influenced by the market state.

Regarding research work on models for retailer bidding strategies, a stochastic lin-
ear programming model has been proposed in Fleten and Pettersen (2005) to construct
linear bidding curves for a retailer to use in determining the price and volume of the
bids to submit to the Nord Pool day-ahead market. The authors concluded that there is
a trade-off between buying at low prices and reducing the imbalance and acknowledged
that their model does not support the multi-period aspect of the retailer’s bidding prob-
lem.

Based on the CDA algorithm of Tesauro and Bredin (2002), Urieli and Stone (2014)
design a bidding strategy for smart-grid retailers. Since the clearing prices are assumed
not to be predictable in CDA markets (Tesauro and Bredin, 2002; He et al., 2003; Cliff,
2005; Vytelingum et al., 2008), the bidding strategy of Urieli and Stone (2014) de-
termines the best limit price for a buy order. However, in the environment considered
by Urieli and Stone (2014) as well as in real life, the clearing price of the electricity
wholesale pool market is evidently predictable (Conejo et al., 2005b; Garcia et al.,
2005; Liu and Shi, 2013; Kristiansen, 2014). Furthermore, the success of the approach
proposed in Urieli and Stone (2014) can be attributed to the static clearing price pattern
of the considered wholesale market settings. The approach proposed in this chapter is
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designed to be applicable in dynamic market environments which are characterised by
uncertain clearing price and demand patterns.

In a similar setting, the Spanish day-ahead market, Herranz et al. (2012) proposed
a genetic algorithm (GA) to minimise the retailer’s procurement cost by deciding the
right amount of electricity volume to buy given the computed clearing prices. The
GA presented in Herranz et al. (2012) assumes the forecast demand to be invariant for
a fixed number of days ahead. In a dynamic market setting, the GA of Herranz et al.
(2012) needs to be run at each decision step for each daily bid. Since this process is very
time-consuming, such a GA-based bidding strategy is not suitable for very short-term
(hour-ahead) procurement.

As stated in Section 2.2, MDP and reinforcement learning are appropriate when
dealing with decision making in dynamic and uncertain trading environments. Section
2.3 justifies the design choices made when designing the MDP model and implementing
the learning algorithm. This chapter puts forward a standard MDP framework to max-
imise a retailer’s bidding profit and to reduce the cost of imbalance for short-term elec-
tricity procurement (assuming variable demand and supply volume as well as prices).
To increase the bidding profit, immediate price rewards are used, whereas the reduction
of the imbalance cost relies on the imbalance rewards which are only observed at the
end of the trading episode. As the initial target is to balance the energy needed, the pro-
posed reinforcement learning algorithm learns at the end of the trading episode, when
the balancing reward is observed. One of the robust reinforcement learning techniques
that enables learning to happen at the end of the episode is the Monte Carlo, which is
introduced in Section 2.2.2.

3.4 Proposed Wholesale Architecture

Given the complexity, and the dynamic and uncertain nature of the Power TAC envir-
onment, AstonTAC_V1 is built to adapt to environmental changes and to act autonom-
ously during the simulation. For every time slot, AstonTAC_V1 employs MDP models
to determine the bids (price, volume and time slot) submitted to the wholesale mar-
ket. In order to calculate the volume to buy, AstonTAC_V1 needs to know the energy
consumption of the contracted customers and the energy production of the contracted
customers. In the Power TAC environment, some customers are able to produce elec-
trical energy using renewable energy sources and to sell their energy production to the
trading agent. Thus, the net customer demand is the difference between the energy con-

63



�������

���	
�
	�	


��

������	��

����

��������	
���	�	�

��������

����	
�

�
�
	�

����	�

��
��

�	����

����	
��������
���

��	�
�����
��	�

�
	�����


������	
���	
���

	����������	


������	
���	
���

�
���������

�
	�����


������	
���	
���

������������

�
	�����


����	���������


Figure 3.2: Wholesale Architecture of AstonTAC_V1 using the wholesale MDP. Fol-
lowing the illustration in Figure 2.4, this view of the ActonTAC’s architecture is com-
posed of three main components: the State Estimator, the MDP Reasoning Component
and the Action Interpreter. The State Estimator uses the environment information to
determine the market states which are the inputs of the MDP component. The MDP
Reasoning Component determines the volume of electricity to buy. Using the provided
electricity volume, the action interpreter submits a buy order (bid) to the wholesale
market.
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sumed and the energy produced. In order to set a bidding price to buy energy and the
time slot for delivery, it is vital to predict the clearing price, so that the agent attempts
to buy the energy when the clearing price is low. Figure 3.2 illustrates the architecture
of AstonTAC_V1’s architecture for procurement from the wholesale market. As intro-
duced in Section 2.3, this architecture is composed of three key components: an MDP
Reasoning Component, a State Estimator for translating the environment state to useful
input, and an Action Interpreter to execute the action that the reasoning component has
generated.

3.4.1 AstonTAC_V1 MDP Model

The aim of the MDP Reasoning Component is to aid the agent in buying energy in a
way that can reduce the buying and the imbalance cost. This can be achieved only by
optimising the buy orders that the trading agent sends to the wholesale market. In order
to optimise a buy order, the following parameters need to be considered:

• delivery time: the trader agent needs to satisfy the contracted consumers on a set
time in the future which is the delivery time. This time is known.

• the clearing price which is not known, but can be predicted as discussed in Sec-
tion 3.3.

• the volume of electricity needed, which is the volume of electricity that a retailer
agent still needs to buy. This volume is the difference between the retail demand
and the the volume of electricity already acquired.

• The volume of electricity to buy every hour. This final parameter is the objective
of the optimisation model. Thus, optimising the buy orders means optimising the
volume of electricity to buy in each of the 24 hours ahead. Upon receiving the
predicted energy price for each time slot and the remaining energy to buy in the
wholesale market, the AstonTAC_V1 MDP decides the electricity volume of the
bids to place for each of the hours ahead.

The parameters of the AstonTAC_V1 MDP are defined by the states, actions, state
transition probabilities and reward function (see Section 2.2.1 for MDP formalism).
Details on these parameters are given below.
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3.4.1.1 State Space (S)

The state space (S) is composed of the three state components, which are the remaining
time until the end of the episode (either days, or hours depending on whether operating
in a day-ahead or hours-ahead market), the procurement imbalance between acquired
energy and the level of demand, and the projected clearing price:

Time Ahead Depending on the market rules, pool markets have different numbers of
bidding periods per day. Considering the specific case of Power TAC, the wholesale
market is an hours-ahead market with 24 periods open for trading. At every simulated
hour, the agent can buy energy for the next 24 hours. This means that the agent has 24
decision steps to ensure the balancing of the retail demand (see Figure 3.1). A definition
of the set of time ahead states can be defined as S_a= {sufficient, critical, very critical}
with:

s_a =


sufficient if16 < ta≤ 24

critical if8 < ta≤ 16

very critical if0 < ta≤ 8,

where s_aϵS_a, ta is the number of bidding periods ahead. The selection of the hours-
ahead to consider for the definition of the states of the remaining time is dependent on
the bidding problem considered. This state definition can be appropriate for a market
that is regulated similarly to the Power TAC environment.

Procurement Imbalance This state component codifies the volume of the electricity
that needs to be bought or sold. This state information is calculated as a ratio y between
the volume of the imbalance it and the volume of the demand dt at time t:

yt = it/dt , (3.1)

in which it is defined as:

it = xt−dt , (3.2)

where xt is the volume of electricity acquired to be delivered within the time ahead
considered. it represents the current shortage (it < 0) volume of electricity that a retailer
needs to buy, to meet the retail demand. For example, three states can be considered to
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define a set of imbalance S_i = {shortage, balanced, surplus}with:

s_i =


shortage if yt <−0.05

balanced if −0.05≤ yt ≤ 0

surplus if 0.05 < yt ,

where s_iϵS_i, an imbalance of up to 5% either way is allowed. As a total balancing
of supply and demand is impossible, the modeller should consider a certain imbalance
margin.

Projected Clearing Price The projected clearing prices can be classified in a set of
predefined states. A simple classification can be low, middle and high price states. Let
P_min be the minimum clearing price ever experienced, P_max the maximum clearing
price ever experienced and pa the predicted clearing price for the hour ahead ta using
the Clearing Price Predictor. The set of price states S_p = {low, middle, high} can be
defined as follows:

s_p =


low i f P_min≤ pa < 2P_min+P_max

3

middle i f 2P_min+P_max
3 ≤ pa≤ 2P_max+P_min

3

high i f 2P_max+P_min
3 < pa≤ P_max,

with s_pϵS_p.
The state variables s_aϵS_a, s_iϵS_i and s_pϵS_p are calculated based on the in-

formation provided by the simulation environment, Power TAC as described in Section
2.1.3.1. s_a is defined based on the simulation time defined by the game server. s_i

is predicted by the State Estimator components: customer energy consumption pre-
dictor and customer energy production predictor. The predictions are done based on
the retail consumption and production data provided during each game by the game
server. Appendix A describes the prediction approach used to dynamically forecast the
energy consumption and production. Analogue to s_i, environment data provided by
the game server are used to predict the price state s_p using the same Markov approach
implemented by the clearing price predictor.

The definitions of s_aϵS_a, s_iϵS_i and s_pϵS_p presented in this section are for
illustration purposes. Section 3.5 will present more details on the actual settings used
in implementing this work. While defining and fine tuning the state space for this
problem, we studied the diverse set of techniques that have been suggested in past to
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improve MDP state space definitions (Giunchiglia and Walsh, 1992; Givan et al., 2003;
Li et al., 2006; Peters et al., 2013). The size of a state space naturally affects the training
time: a large state space for Power TAC does not only require long training time, but
also training settings that facilitate the exploration of most of the MDP states.

3.4.1.2 Action Space (A)

The agent’s action is a bid that is placed in the wholesale market. The bid is a combin-
ation of the bidding price and the bidding volume for a time slot in the game. For each
time slot, the agent decides the bid to place for the future 24 time slots that are avail-
able for trading in the wholesale market. Bid prices are the predicted clearing prices
provided by the Clearing Price Predictor. The energy volume of the bids are decided
by the MDP. The bid energy volume is represented as the ratio of the remaining energy
needed that should be ordered. For example, the agent’s actions could be defined ac-
cording to the percentage of electricity volume to buy given the states of the projected
clearing price. For instance, if the states of projected clearing price are high, middle
and low, the corresponding possible actions can be defined as 0%, 50% and 100% with
so that:

a =


100% forsp = low

50% forsp = middle

0% forsp = high,

where aϵA. This example only shows how to specify the actions needed and not how
the agent will select the actions. For instance, if sa = verycritical and sp = high, the
agent may learn to execute a = 100% and not 0%, in order to balance its retail demand.

As presented in Section 3.2, the trading agents can place 24 buy orders in every
trading time slots. Each order requires an action selection from the MDP component,
which takes the state components s_a, s_i and s_p as inputs and outputs the action a.
Based on the selected a, the exact order volume is calculated, then associated with the
predicted order price and submitted to the market to buy electrical energy for a specific
delivery time. Although the same MDP is used for all decision making, each trading
decision is taken independently. The MDP has been built with state and action spaces
that support any of the 24 hourly trading decisions.
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3.4.1.3 Reward Function (R)

Concretely, the trading agent needs to buy more of the needed energy when the prices
are low and less of it when the prices are high while meeting the target electricity
volume for the delivery time. To realise this multi-objective optimisation, different
type of rewards are assigned to each objective. The agent receives two types of reward:
an immediate reward r_buy for buying at a low price and a delayed reward r_bal for
the energy balancing after 24 decision steps.

The immediate reward is given to the agent according to the bid setting: bidding
price and bidding volume. For example, if the predicted clearing price is high, the agent
will receive a positive reward for buying a low volume of energy and negative reward
for buying a high volume. The value of the delayed reward is based on the imbalance
ratio at the end of the 24 steps. Formally the reward function R_buy for r_buy can be
defined as follows:

R_buy : S_p×A→ R,

as the mapping function that associates to each pair of price state and action combina-
tion a reward r_buyϵR.

The simulation environment informs the agent each hour about the value of the
energy imbalance. In order to guarantee a low energy supply and demand imbalance,
the highest positive reward is received when the imbalance is the lowest (i.e., between
to 0% and 5%). Formally, the reward function R_bal for r_bal can be defined:

R_bal : s_iT+1→ R,

as the mapping function that associates to each imbalance state after the end of the
episode t = T , a reward r_bal ϵR. The calculation of the state and action value function
is presented in Section 3.4.1.5. More details on the reward function are presented in
Section 3.5.

3.4.1.4 Transition Probability (P)

P(s′|s,a) is the probability that the AstonTAC_V1 MDP transitions from one state sϵS

to another s′ ϵS after taking the action aϵA.
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3.4.1.5 Optimal Value and Policy

AstonTAC_V1 MDP is a combination of a state-action rewards MDP (Littman, 1996;
Singh, 1993) and a finite horizon MDP (Watkins, 1989a; Li and Littman, 2005). The
overall strategy is the sequence of the decisions that can be made in order to maximise
the total rewards. This overall strategy is denoted by the policy function π where π :
S→ A. Following the policy π , at each state s of a run, the agent takes the decision and
transitions the system with a probability of P(s′|s,a) to the next state s′ as follows. Let
nd be the total number of states to visit in the run.

• At state s0 and time t = 0, take action a0.

• Go to s1, with a transition probability of P(s1|s0,a0).

• At state s1 and time t = 1, take action a1.

• Go to si, at time t = i with a transition probability of P(si|si−1,ai−1), where 2 6

i≤ nd and iϵN.

Let Vπ(s) denote the cumulative expected reward function that starts from state s = s0

at time t = 0 and uses a policy π(s). The best policy π(s) at state s is therefore the
one that has the maximal value of Vπ(s). The maximal value of Vπ(s) is denoted by
V ∗(s). The AstonTAC_V1 MDP is defined as follows given π(s) and 0 ≤ t ≤ T − 1
with T = 24. Section 2.2.1 introduces the computation of π∗ and V ∗. As the model
parameters (reward function, expected total pay-off and transition probabilities) are not
available and have to be learned, AstonTAC_V1 solves the procurement MDP using the
Monte Carlo Methods introduced in Section 2.2.2.

As introduced in Section 2.2.1, the aim is to maximise the expected return Returnt

which is defined with two types of rewards: the immediate price rewards r_buy and the
delayed balancing rewards r_bal. For the 24 decision steps, the agent observes r_buy

after every buy action and r_bal is observed only at the end of the episode. Based on
the equation 2.1, the return can be formulated as follows:

Returnt = r_buyt + γ
1r_buyt+1 + γ

2r_buyt+2 + · · ·+ γ
T−tr_buyT + r_balT+1, (3.3)
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where T = 24 and t < 22. The equation can be written as follows:

Returnt =

(
T−t

∑
k=0

γ
kr_buyt+k

)
+ r_balT+1. (3.4)

The resulting value function V π(st) is defined as follows:

V π(st) = wbuyE

[
T−t

∑
k=0

γ
kr_buyt+k|st

]
+wbalE [r_balT+1|st ] , (3.5)

where wbuy and wbal are the weights assigned to the expected returns of the immedi-
ate rewards and delayed rewards. The weights are used to adjust the learning preference
of the agent for immediate buy rewards or delayed reward. With γ = 0, the value func-
tion V π(st) depends only on the expected immediate reward r_buyt+1|st and not on the
future immediate rewards:

V π(st) = wbuyE [r_buyt+1|st ]+wbalE [r_balT |st ] (3.6)

Due to the volatility of the trading prices, γ = 0 seems more efficient for learning
as the agent does not need to consider the future price rewards, but only the immediate
rewards prices. Moreover, the immediate reward is independent of previously taken
actions, it only depends on the current action. The following equations can be written:

V π(st) = wbuyV _buy(st)+wbalR_bal(st), (3.7)

where V _buy is the expected rewards for the immediate rewards and R_bal(st) is
the average of the r_balT observed each time st has been visited. Similarly, for the
reinforcement learning, an action value Qπ(st , at) can be defined as follows:

Qπ(st , at) = wbuyQ_buy(s, at)+wbalR_bal(st), (3.8)

Algorithm 3 details the implementation of the reinforcement learning technique.
At the beginning of the training, the expected reward of each state-action is initialised
with zero (Line 1). In each game, a backup list with length T = 24 is used to record
the visited state-action pairs. For each step of the game, the agent makes 24 trading
decisions for the 24 hours ahead using the expected reward R(s, a) (Lines 6-9). R(s, a)

is the sum of the immediate reward r_buy and the expected reward R_bal of the energy
balance. R_bal is an average of the delayed reward r_bal observed at the end of the
episode (Line 14).
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Algorithm 3 Learning of a Suitable Trading Strategy with Monte-Carlo approach

1: Initialise: wbuy, wbal , Q_buy(st) and R_bal(st)

2: for each simulation do
3: Backup(s,a)← empty backup lists with length T

4: for each bidding step t of the simulation do
5: for each time ahead do
6: Choose a primitive action a for s

7: using Qπ(s, a) and the ε-greedy policy
8: Take action a in state s

9: Add (s, a) to the corresponding Backup(s,a)

10: observe rt+1 and st+1

11: update immediat reward expectation
12: Q_buy(st , at)← Q_buy(st , at)+α [r_buyt+1−Q_buy(st , at)] .

13: end for
14: if Final bidding step then
15: Observe the delayed reward r_bal

16: for each (s, a) in Backup(s,a) do
17: Update R_bal(s,a) with r_bal

18: R_bal(s,a)← (23/24)R_bal(s,a)+ r_bal/24
19: end for
20: Backup(s,a)← an empty backup list
21: end if
22: end for
23: end for

In Line 18, the update of R_bal is presented as follows:

R_bal(s,a)← (23/24)R_bal(s,a)+ r_bal/24.

This update can be rewritten as R_bal(s,a)←R_bal(s,a)+(1/24) [r_bal−R_bal(s,a)],
where 1/24 is the learning rate. The agent learns from on-line experience and decides
by comparing the average of experienced returns at each state. During the simulation,
AstonTAC_V1 uses the pay-off average to decide about the optimal action to take in-
stead of computing the transition probabilities and the expected reward values. The
learning occurs at the end of each episode (24 simulated hours) after the delayed re-
ward for the energy balancing is defined. At the beginning of the training, the initial
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policy that will be evaluated follows the immediate reward setting: buy the maximum
of the needed energy, if the predicted clearing price of the time slot is the lowest and
lowest energy volume, if the price is predicted to be the highest.

3.4.2 State Estimator

The State Estimator determines the values of the MDP state components: time ahead,
corresponding procurement imbalance and the projected prices. Therefore, it has a
Clearing Price Predictor; a customer energy consumption, a customer Energy Produc-
tion Predictor, and a customer energy demand manager. The Clearing Price Predictor
forecasts the clearing prices of the wholesale market. The Customer Energy Produc-
tion Predictor forecasts the energy consumption of the contracted customers and the
Customer Energy Consumption Predictor forecasts the energy production of the con-
tracted customers. The predictors use the Power TAC Server information (both public
and private information described in Section A). The customer energy consumption and
production predictors are used by the Customer Energy Demand Manager to determine
the volume of the net energy demand to buy each hour (the procurement imbalance).
Details on the forecasting models used by the State Estimator components are described
in Appendix A.

3.5 Implementation of the Wholesale MDP

3.5.1 MDP Design

The design of the wholesale MDP for the 2012 Power TAC games was mainly influ-
enced by the structure of the environment as presented in Section 2.1.3.1. Because the
game settings were configured to express various dynamics during the tournament (see
Section 2.1.3.1), the wholesale MDP is designed using invariant environment features
in order to be applicable across all the games.

3.5.1.1 MDP States

As introduced in Section 3.4.1.1, the MDP states are defined by the state variables: time
ahead, procurement imbalance and projected clearing price. For this specific competi-
tion the time ahead was defined by 24 states with each state representing a time ahead.
This means the agent is learning a specific trading behaviour for each hour ahead.
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Given the level of imbalance targeted, the number of states defining imbalance can
be specified accordingly. For Power TAC 2012, 25 imbalance states were defined with
24 states specifying the shortage and one state the surplus. The 24 surplus states were
defined as follows: the imbalance ratio yt belongs to state n if (n−1)/24≤ |yt |< n/24
with 1 < n≤ 24. The 25th state is defined with yt > 0.

The clearing price states are composed of 24 states, where the best price belongs to
the state 1 and the worst price to state 24. The states were defined around state centroids,
which are the prices observed during the previous market clearings. To identify to
which state the predicted price belongs, it is associated with the state of closest price
centroid.

3.5.1.2 MDP Actions

As introduced in Section 3.4.1.1, the AstonTAC_V1 was set to use 24 actions which
define the percentage of electricity volume to buy. The actions were multiples of 4%
moving from 0%, 4%, 8%, 12% until 96%. This approach enables the agent to learn
when to buy low volume or high volume of electricity given the market state. As de-
scribed in Section 3.4.1.2, a smaller number of states can also be considered; this has
the advantage that the learning time is reduced, but the actions are not precise enough.

3.5.1.3 MDP Rewards

The weighting of the rewards were set as follows w_bal = 1.67 and w_price= 1, which
were applied to the reward per unit of electricity (KwH in Power TAC). The weights
were defined based on the objective preference: the balancing of the energy was given
a higher priority than making immediate profit price.

The AstonTAC_V1’s MDP was trained before and during the tournament. Before
the tournament, the agent was trained in the Power TAC environment with dummy
agents using a ε = 0.1. During the tournament ε was reduced to 0.01.

3.6 Evaluation in 2012 Power TAC

The evaluation is composed of two parts: the results from the 2012 Power TAC and an
analysis of the tournament games.
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Agent
Name

Size 1 Size 2 Size 3 Accumulated
Profits

Z-score

Crocodile
Agent

1.26E+10 6.31E+10 2.74E+10 1.03E+11 7.348

Aston
TAC_V1

3.11E+06 9.58E+07 5.00E+07 1.49E+08 -1.217

Soton
Power

1.03E+07 6.68E+07 6.22E+07 1.39E+08 -1.215

MinerTA 2.33E+07 6.48E+07 1.83E+07 1.06E+08 -1.217

Mertacor -5.11E+05 -1.13E+07 4.98E+06 -6.79E+06 -1.227

LARGE
power

-4.16E+07 -5.25E+07 1.01E+07 -8.40E+07 -1.238

UTest 1.55E+06 -6.67E+07 -4.68E+07 -1.12E+08 -1.235

Table 3.1: Results of the Power TAC Tournament. This table shows the results from the
2012 Power TAC by presenting the profit accumulated by each broker in different game
sizes: Size 1 for seven-player games, Size 2 for four-player games and Size 3 for two-
player games. According to the amount of cash accumulated during the competition
(accumulated profits ), the first version of AstonTAC is second after CrocodileAgent,
whereas it is third considering the Z-score.

3.6.1 Competition Results

The 2012 Power TAC finals Power TAC Community (2013) consisted of 184 games
with three individual competitions: 63 games with two players, 105 games with four
players and 16 games with seven players.1 The teams participating to this competition
were:

• CrocodileAgent team from the University of Zagreb,

• Mertacor team from the Aristotle University of Thessaloniki,

• Utest team from the University of Texas at Austin,

• MinerTA team from the University of Texas at El Paso,

• SotonPower team from the University of Southampton,

• LARGEpower team from the Erasmus University Rotterdam.
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Agent
Name

Energy
Demand

Energy
Bought

Imbalance
(%)

Buy Price Average
Cash

(a)
Aston

TAC_V1
78478.84 79821.74 10.40 34.25 3.63E+06

SotonPower 6810.82 14212.93 128.86 27.17 1.06E+06

(b)
Aston

TAC_V1
85492.29 84661.96 10.43 33.98 3.66E+06

MinerTA 1025.30 1662.22 80.10 26.99 3.43E+05

Table 3.2: Results of Two-Player Games with (a) SotonPower and (b) MinerTA.
This table compares the performance of the first version of AstonTAC termed As-
tonTAC_V1 when playing against top TAC brokers (SotonPower and MinerTA) in two-
player games. The data in column “Energy Demand” are the average energy demand (in
MWh) of the broker agent in all the two-player games. In column “Energy Bought”, the
average energy volume (in MWh) bought by the broker from the wholesale market is
represented. The average hourly supply demand imbalance ratio (in %) is presented in
“Imbalance”. AstonTAC_V1 outperforms SotonPower (3.2(a)) and MinerTA (3.2(b))
by winning most of the games, having the highest average cash in game and by having
the best average of hourly imbalance in each game.

The winner of the competition is the player with the highest z-score of all games.
Table 3.1 shows the results of the competition. This table presents the accumulated
profit for each broker in seven-player (annotated Size 1), four-player (annotated Size
2) and two-player (annotated Size 3) games. Considering the total of the accumu-
lated profits, AstonTAC_V1 is second after CrocodileAgent. According to the z-score,
AstonTAC_V1 is third with a score of −1.217 after CrocodileAgent (with a score of
7.348) and SotonPower (with a score of −1.215). Although CrocodileAgent achieved
the highest score, its success seems to have taken advantage of the weaknesses of the
Power TAC server and uses an unrealistic trading strategy. For instance, when the Cro-
codileAgent offered tariffs with very high rates, it still attracted a lot of customers for a
long period in the game.

In fact, among all the games played with SotonPower, AstonTAC_V1 outperforms
SotonPower in 63% of the games (27 out of 43) and outperforms MinerTA in 60%
of the games (28 out of 47). Moreover, AstonTAC_V1 won all two-player games
against SotonPower or MinerTA (Ketter et al., 2013). Table 3.2 compares the per-
formance of AstonTAC_V1 with SotonPower (3.2(a)) and MinerTA (3.2(b)) in two-

1Further details of the Power TAC are described in Section 2.1.3.1.
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Agent
Name

Energy
Demand

Energy
Bought

Imbalance
(%)

Buy Price No. of
Games

Aston
TAC_V1

29009.72 34731.37 21.52 29.22 67

Mertacor 40530.53 40350.92 18.16 51.84 69

LARGE
power

22094.77 23434.50 35.21 37.99 71

MinerTA 3477.17 4356.54 75.08 17.44 74

SotonPower 9934.13 17683.05 146.29 19.26 68

Crocodile
Agent

25099.90 63609.87 425.70 32.46 68

Table 3.3: Brokers’ Performance in the wholesale market. This table shows the results
of the wholesale performance of AstonTAC_V1 in wholesale market. AstonTAC_V1
is the only agent that can buy high amount of energy at low prices while keeping the
imbalance low.

player games.“Energy Demand” represents the average energy demand (in MWh) of
the broker agent in all the two-player games. This is the sum of the net energy usage
for all customer consumption. “Energy Bought” represents the average energy volume
(in MWh) the agent bought from the wholesale market. “Imbalance” shows the average
hourly supply demand imbalance ratio (in %). The hourly imbalance ratio is computed
by dividing the absolute hourly imbalance for each broker by the hourly customer en-
ergy consumption. “Buy Price” is the average price (in EURO/MWh) of the successful
bids of the broker agent. “Average Cash” represents the average profit (in EURO) the
broker has at the end of the game. According to Table 3.2, AstonTAC_V1 has a bigger
market share than its opponents: an average of 92.01% in the games against Soton-
Power and 98.81% in the games against MinerTA. These two-player games demon-
strate that although AstonTAC_V1 has more than 92% of the market share, it is able
to keep the energy imbalance lower than 10.5%. SotonPower and MinerTA are able to
buy energy at lower price in the wholesale market but are not able to control the market
or to keep the energy imbalance lower than 80%.
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3.6.2 Competition Game Analysis

To further investigate the performance of AstonTAC_V1 in the wholesale market, this
section analysed the games of the Power TAC finals by mainly focusing on the per-
formance of AstonTAC_V1 in terms of the bidding in wholesale market and balan-
cing supply and demand. Table 3.3 shows the brokers’ performance in all successful
games.2 Mertacor did well in keeping the energy imbalance low. MinerTA and So-
tonPower managed to buy at low prices. AstonTAC_V1 performs well; both in energy
balance and in buying at low price. As shown in Table 3.3, AstonTAC_V1 is the only
agent that can buy energy at low price in the wholesale market and keep energy im-
balance low. The fact that using the MDP, AstonTAC_V1 has an energy imbalance of
21.52% indirectly shows that the techniques used by AstonTAC_V1 for energy produc-
tion and consumption provide acceptable prediction values (these forecast techniques
are described in Appendix A).

In order to evaluate AstonTAC_V1 MDP and the clearing price prediction, the
wholesale market performance of several agents is analysed in an arbitrarily chosen
game (game 418) and the result is shown in Figure 3.3. Figure 3.3(a) shows the aver-
age clearing price in each hour ahead, Figures 3.3(b) and 3.3(c) illustrate the average
volume of energy bought by each broker.

According to Figure 3.3(a), the average energy clearing prices are the highest at time
slots two and twenty-four hours ahead. The lowest clearing prices are observed at time
slots one, and between three and eleven hours ahead. Figures 3.3(b) and 3.3(c) show
that Mertacor, CrocodileAgent and LARGEpower do not adapt their bidding behaviour
to the market clearing price. In contrast, AstonTAC_V1, SotonPower and MinerTA
try to adapt their bidding behaviour to the clearing price. Thus, agents that are not
adapting to the wholesale market may end up buying energy at high price and adaptive
agents can manage to buy less energy at high price. This is the case for AstonTAC_V1
and MinerTA which buy less energy volume at time two and twenty-four hours ahead.
Although SotonPower adapts its bidding behaviour to the market, it ends up buying
more energy twenty-four hours ahead when the energy is high. Using the MDP to
balance the retail market, AstonTAC_V1 is able to buy less energy at high price and
buy a constant volume of energy otherwise. The fact that AstonTAC_V1 buys less
energy at time two and twenty-four hours ahead, demonstrates that the price prediction
provides a reliable clearing price prediction.

2A successful game is a game that lasts over 1320 time slots which is the minimum duration of a
game.
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Figure 3.3: Wholesale Market Performance in Game 418. This figure shows the per-
formance of AstonTAC_V1 in an arbitrary selected game. 3.3(a) shows the average
clearing price in each hour ahead, 3.3(b) and 3.3(c) illustrate the average volume of
energy bought by each broker. In this game, the wholesale prices were influenced by
the volume of the energy bought by the brokers. AstonTAC_V1 is able to adapt to the
market changes and buys most of the electricity needed when the prices are low and
less when the prices are high.
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3.7 Summary of the Chapter

This chapter details the design, implementation and evaluation of a novel MDP frame-
work that is used to buy electricity at low prices in the wholesale market while keep-
ing the imbalance between the retail demand and wholesale supply low. The analysis
of the 2012 Power TAC tournament shows that AstonTAC_V1 is the only agent that
can buy energy at low price in the wholesale market and keep energy imbalance low.
AstonTAC_V1 MDP is designed independently from the Power TAC simulation en-
vironment. Moreover, the AstonTAC_V1 MDP provides a concrete bidding approach
for the future energy market where the energy demand will be more satisfied by re-
newable energy sources. The increased adoption of renewable energy sources as an
alternative source of electricity makes the need for automation of short-term electricity
procurement more relevant than before. The real-world electricity markets generally
address the problem of electricity imbalance by using energy storage facilities (spin-
ning reserves). Real-world retailers also make used of diverse tariff contracts such as
long-term and middle-term contracts to balance their electricity demand. Additionally,
the imbalance level for the retailer agent depends on the proportion of electricity pro-
duced by the renewable source. The Power TAC 2012 did not offer a storage feature in
the simulation. Moreover, Power TAC purely simulates a smart grid market which is
not yet fully implemented in the real world.

The reinforcement learning approach proposed successfully enables the trading
agent to learn how to buy more electricity when the price is low and to meet the en-
ergy needed. Although this chapter presents a successful MDP framework that deals
with short-term buying, it does not considering the fact that the retailers may want to
sell their energy surplus in the wholesale. As the retailers also buy electricity from con-
sumers, it is possible that they have more energy generated from the retail market than
projected. In order to improve the optimisation of the wholesale strategy, it is there-
fore important to extend the MDP model so that the retailer agents can monetise their
electricity surplus. The next chapter describes a novel SMDP-based framework that a
retailer agent can use to buy and sell in wholesale markets while keeping the electricity
imbalance low.
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Chapter 4

Optimising Bids and Asks in
Electricity Pool Markets

The approach presented in the previous chapter laid out the initial steps in handling
the trade-off between maximising the wholesale profit and minimising the balancing
cost in a dynamic and uncertain wholesale market. The work presented in this chapter
significantly improves on the results of Chapter 3 by enabling, for the first time, a
retailer agent (AstonTAC_V2) to decide on the right volume of energy to bid and ask
for in the wholesale market using a novel SMDP framework.

4.1 Introduction

Due to the privatisation and decentralisation of the electricity provision system in many
countries, electricity markets have undergone several restructuring processes in order
to improve the market efficiency. Given the fact that the storage of electricity is very
expensive, one of the key indicators of the electricity market efficiency is the imbalance
between the energy demand and energy supply. The electricity retailers’ main aim is to
satisfy the retail demand, which varies with time, while, at the same time, minimising
their spend in wholesale markets. Since the increased uncertainty that characterises
renewable electricity sources augments the volatility of the energy supply, demand and
prices, it makes the retailers’ aim difficult to achieve.

In view of this, the trading decision problem faced by the retailers is formulated
using a discrete stochastic optimisation technique, the SMDP. Given the market clearing
price and the time remaining to satisfy the end-consumers’ needs, the SMDP framework
developed enables the retailers to maximise their profit when buying and selling in a
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Figure 4.1: MDP Hierarchy of the SMDP. The SMDP model is composed of three
MDPs: Trading_MDP, Bid_MDP and Ask_MDP. The Trading_MDP decides the
strategy that the retailer should follow: to buy or to sell electricity. The Bid_MDP sup-
ports the procurement by defining the parameters of the bids to place in the market. The
Ask_MDP defines the parameters of the asks. All three MDPs use the same market state
to decide which action to take. The Trading_MDP can select between three actions.
Acquire_Energy and Reduce_Surplus which are both composite actions, and Do Noth-
ing which is a basic action. In order to execute the composite action Acquire_Energy,
the Bid_MDP is used. The Bid_MDP selects the volume to buy given the market state.
The execution of the composite action Reduce_Surplus is supported by the Ask_MDP
which selects the appropriate volume of energy to sell.

wholesale electricity pool market. Using reinforcement learning to solve the SMDP, a
retailer agent learns how to sell at high prices and to buy at low prices while keeping
the imbalance between expected demand and supply low. To evaluate the proposed
SMDP framework, it has been incorporated within a retailer agent, which operates in
an open multi-agent simulation environment, the Power TAC. A thorough evaluation of
AstonTAC_V2 against other Power TAC agents shows that it consistently maintains the
lowest electricity imbalance while achieving the highest profit when tested in a variety
of market set-ups, even those with extremely volatile prices and supply.

The remainder of the chapter is organised as follows. Section 4.2 describes in detail
the proposed SMDP framework. The evaluation of the SMDP framework is in Section
4.3. Finally, Section 4.4 presents the summary of the chapter.

82



4.2 Proposed Procurement SMDP

As in the previous chapter, this chapter’s focus is on a market in which a high pen-
etration of renewable energy sources causes the electricity consumption, production
and clearing prices to be volatile. In order to trade optimally in the wholesale market,
the retailers have to strike the right balance between maximising their trading profit
and minimising their supply and demand imbalance costs. Using the proposed SMDP
model, the automated retailer agent is able to simultaneously optimise the bids and asks
in order to reduce the imbalance cost for hours-ahead and days-ahead procurements.
Figure 4.1 presents the hierarchy of the SMDP. At the higher level, the Trading_MDP

supports the selection of the trading strategy to follow. It may select between the trad-
ing strategies: sell, buy or no order. The sell and buy strategies are supported by the
MDPs, Bid_MDP that decides about the bid volume and Ask_MDP that decides about
the ask volume. All the MDPs in the hierarchy consider the same market state as MDP
inputs. SMDP is solved through direct interactions with the Power TAC using the HRL
approach called HAM.

The main motivation for utilising the HAM algorithm is the flexibility offered by
its implementation, as it enables the designer to add expert knowledge to the learning
algorithm in order to reduce the time needed for learning. The AstonTAC HRL is
enhanced with hand-coded rules that enables the agents to reconsider when to buy, sell
or just wait without extra learning. The agent essentially learns how to buy and how to
sell as well as when to start buying or selling.

Following the architecture presented in Section 2.3, a simplified view of the As-
tonTAC_V2’s architecture that uses the proposed wholesale SMDP to trade in the Power
TAC wholesale market is illustrated in Figure 4.2. The Sensor component enables the
AstonTAC_V2 to map the market information into the market state components de-
scribed in Section 4.2.1. Based on the provided market state, the SMDP Decision En-
gine selects the next action which is either do nothing or the volume of electricity to
buy or to sell. The selection of action during the training phase is executed as presen-
ted in Section 4.2.4. After defining the volume of electricity, AstonTAC_V2 uses the
Actuator component to place the order in the market. During the training simulations,
AstonTAC_V2 uses its Sensor component to interpret the rewards from the market in-
formation. Using the rewards, the update of the reward expectation is done as described
in Section 4.2.4. The following section provides more details on the approach put for-
ward.
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Figure 4.2: AstonTAC_V2’s Architecture using the procurement SMDP. Based on the
illustration in Figure 2.4, this simplified view of the agent’s architecture is composed
of three components: 1) the Sensor component which is able to harvest at each step
of the simulation, the market information and translate it into market states, 2) the
SMDP Decision Engine which uses the market state to define the appropriate volume
of energy to order for a specific hour ahead, and 3) the Actuator component, which
places orders in the market using information about the order volume provided by the
SMDP Decision Engine. The SMDP Decision Engine learns the value of an action after
it was taken using feedback from the environment, interpreted by the Sensor component
as rewards.
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This section describes the abstraction of the bidding problem as a semi-Markov
decision problem. An SMDP is defined by the tuple ⟨S,A,P,R⟩, where S is the set
of environment states, A is the set of basic or composite actions, P is the transition
probability from one state to another and R is the reward function. Section 2.2 provides
more details on the formalism of MDP and SMDP. The optimisation of the bidding
strategy using the SMDP model implies the optimisation of the three MDPs of the
hierarchy. The state components considered by the three MDPs are described in Section
4.2.1. The MDPs’ actions are described in Section 4.2.2. Section 4.2.3 presents the
reward functions of the MDPs.

4.2.1 State Space

All MDPs of the procurement SMDP use the same state space S as described in Chapter
3, Section 3.4.1.1. Although the definition of the state components is initially influenced
by the Power TAC environment, the state space can easily be adapted for any specific
pool market.

4.2.2 Composite Actions and Primitive Actions

While the state space is the same for the three MDPs, they use different action spaces.
These action spaces are represented in Figure 4.1. The Trading_MDP has one basic
action Do_Nothing that executes no buy or sell order and is appropriate when the en-
ergy acquired and the demand are balanced, and two composite actions Acquire_Energy

and Reduce_Surplus. The composite actions Acquire_Energy and Reduce_Surplus use
the MDPs Bid_MDP and Ask_MDP, respectively, to optimise the orders that will be
placed in the market in order to realise the composite actions. As their respective names
suggest, Bid_MDP supports the selection of buy orders while Ask_MDP supports the
selection of sell orders. In more detail, an order is composed of the parameters deliv-
ery time, limit/order price and electricity volume. Since it is assumed that the delivery
time and the limit price are known, the Bid_MDP and Ask_MDP define the appropri-
ate volume of electricity of the order to place. The appropriate volume is defined as
a percentage of the imbalance it (as explained in Section 3.4.1.2). For example, the
Bid_MDP can have five actions, to buy electricity amounting to 25%, 50%, 75% or
100% of it .
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4.2.3 Reward Functions

The reward functions define the goal of the optimisation process. The aim of the op-
timisation process is to optimise the volume in the bids and asks and to balance the
electricity. Therefore, reward signals are defined to support these different goals.

4.2.3.1 Optimising the Bids

A retailer can make profit by buying most of the electricity at prices that are lower than
the average clearing price of the wholesale market. Let p̄ be the average clearing price
of the 24 observed clearing prices and pb be the clearing price of the buy order, the
procurement profit is calculated as follows:

r_buy = p̄− pb. (4.1)

This is an immediate reward that is observed at each state of the market after a bid has
been submitted and cleared. r_buy is applicable to both the Bid_MDP and Trading_MDP.

4.2.3.2 Optimising the Asks

Considering ps to be the clearing price after a cleared sell order, the sell reward is
defined as follows:

r_sell = ps− p̄. (4.2)

This reward is immediately observable, after the sell action is taken. Similarly to r_buy,
the reward r_sell is applicable to both the Ask_MDP and Trading_MDP

4.2.3.3 Minimising the Imbalance Cost

At the end of each bidding period, market information required to compute the balan-
cing reward r_bal is available. This information is:

• yT , the ratio of the imbalance (see Equation 3.1) at the end of the bidding process.
T is the number of time steps of the trading episode. In Power TAC, T = 24.

• f , the imbalance fee to pay per electricity unit.
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• pb_so the buy price of the system operator1 in case of surplus.

• ps_so, the sell price of the system operator2 in case of shortage.

Using this information, r_bal can be calculated according to relevance given to each
parameter: more details have been provided.

r_bal = m(yT , f , pb_so, ps_so, p̄), (4.3)

where m is a function that maps the parameters available to the r_bal. For instance, in
the Power TAC, r_bal is computed as follows:

r_bal =


(1+ |yT |) [(p̄− pb_so)− f ] i f Shortage

0 i f Balanced

(1+ |yT |) [(ps_so− p̄)− f ] i f Surplus.

With this reward setting, an electricity shortage is advantageous for a retailer, if p̄ >

(pb+ f ), whereas having an electricity surplus is suitable when ps_so > (p̄+ f ). To
avoid such a situation and encourage retailers to balance their electricity, the market
regulators should aim to set pb_so and ps_so accordingly. Therefore, optimising the
imbalance implies minimising the retailers’ imbalance costs. The delayed reward is
applicable to all the MDPs, since they are all responsible for the imbalance. The next
section describes the reinforcement learning techniques proposed to solve the hierarchy
of MDPs.

4.2.4 Hierarchical Reinforcement Learning

Section 2.2.3 has presented the three main HRL techniques and briefly justified their
application in this thesis. HAM is used here to learn the procurement SMDP, because it
enables to speed up the learning by making use of the domain knowledge available. In
Figure 4.3, the domain knowledge is represented by the conditions set on some of the
arrows.

1Since storing excess energy is not possible for retailers due to the associated cost, the system operator
buys any surplus back at a (usually dissuading) price computed by the system as a function of previously
observed prices.

2Symmetrically to the surplus case, the system operator is able to provide energy to fulfil the contract
in case of shortage at the retailers’ side, for a price calculated based on observed prices.
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Figure 4.3: HAM Model. In the choice state, the HAM uses the Trading_MDP to
select the next state. The next state could either be a call state or an action state. A call
state executes a composite action. The call states Acquire_Energy and Reduce_Surplus
use the MDPs Bid_MDP and Ask_MDP to place orders in the market. The action state
Do_Nothing executes no action. The level of imbalance it is used to decide when to
invoke the choice state.
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4.2.4.1 HAM Model

Figure 4.3 illustrates the transitions between the states of the HAM. Several approaches
could be used to illustrate the states of the HAM (Parr, 1998; Andre and Russell, 2001;
Cuayahuitl, 2009). In Figure 4.3, the representation of Andre and Russell (2001), which
is more descriptive, is adopted. HAM defines five types of machine states: start, choice,
call, action and stop state.

Start State This starts the execution of the current state at the beginning of each run
at te = 0 with te, the time step of the episode.

Choice State At this state, the agent non-deterministically selects the next state by
using the SMDP framework to decide which call state or action state to select. The
choice state uses an ε − greedy policy to select the next state. This policy is used to
manage the trade-off between exploration and exploitation in reinforcement learning.
A random state is chosen with a probability of ε and the state with the maximum value
of expected rewards is selected with probability 1− ε . It is always possible to move
from the action state back to the choice state.

Call States These execute composite actions in the current environment state. The
call states are represented by the composite actions Acquire_Energy and Reduce_Surplus.
While the Acquire_Energy uses the Ask_MDP to decide on the primitive ask actions,
the Reduce_Surplus uses the Bid_MDP for the primitive bid actions.

Action States These execute actions (primitive actions) in the current environment
state. In Figure 4.3, the state Do_Nothing is an action state.

Stop State This state halts the execution of the HAM. The HAM execution ends with
the end of bidding periods ahead when te = T .

The choice and stop states are reachable from all action and call states. In the HAM
presented in Figure 4.3, the conditions used by the call and action states to transition
back to the choice state are prior knowledge or partial description of the environment
provided by the designer. This reduces time required by the learning process to find
the optimal policy. Each action state has information about the state of the imbalance
it . To simplify the understanding of the Figure 4.3, it is assumed that i = 0 is balanced.
However, an imbalance interval could be assumed to be balanced (−0.05≤ i≤ 0.05).
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Algorithm 4 Learning of a Suitable Trading Strategy

1: Initialise: wbuy, Q_buy(st), wsell , Q_sell(st), wbal and R_bal(st)

2: for all Simulations do
3: Backup(s,a)← empty backup lists with length T

4: for each bidding step t of the simulation do
5: for each time step ahead do
6: Read HAM state, H

7: if H ̸= start state then
8: call Update-Expected-Reward-Value(H, MDP)
9: end if

10: if H ̸= stopstate then
11: a← Call Select-Primitive-Action(H, MDP)
12: end if
13: Take action a in state s

14: Add (s, a) to Backup(s,a)

15: end for
16: end for
17: end for

4.2.4.2 HRL Algorithm

In general, the HRL algorithm is similar to the HAM Q-Learning algorithm (Parr and
Russell, 1998; Parr, 1998) and the Hierarchical Semi-Markov Q-Learning algorithm
(Dietterich, 2000a,b). The key difference is that the proposed approach uses a Monte-
Carlo method as discussed in Chapter 3.

Monte Carlo HRL (MC-HRL) Algorithm 4 presents the MC-HRL algorithm for
learning a suitable bidding strategy.

Similar to Algorithm 3, at the beginning of the HAM training the weights wbuy and
wsell , as well as the state-value functions Q_buy(st), Q_sell(st) and R_bal(st) are ini-
tialised. The parameters wbuy, Q_buy(st) and R_bal(st) have been presented in Chapter
3. wsell is the weight assigned to expected immediate profit Q_sell(st) of a sell ac-
tion. In Line 3, the backup list Backup(s,a) that is initialised enables to record the
visited the pairs (s, a) independently of the MDP used (Ask_MDP or Bid_MDP ) for
decision making. Several simulations can be used to train the system until convergence
to a good trading policy. The key steps in the learning algorithm are the update of the
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Algorithm 5 Update-Expected-Reward-Value(H, j)
1: if H ̸= stopstate then
2: Observe the price reward rt

3: Update Q_ j(st , at) with rt

4: Q_ j(st , at)← Q_ j(st , at)+α
[
r jt+1−Q_ j(st , at)

]
5: end if
6: if H = stopstate then
7: Observe the delayed reward r_bal

8: for each (s, a) in Backup(s,a) do
9: Update R_bal(st) with r_bal

10: R_bal(s,a)← (23/24)R_bal(s,a)+ r_bal/24
11: end for
12: Backup(s,a)← an empty backup list
13: end if

expected rewards value using the immediate rewards and the delayed rewards (Line
8), and the selection of the actions (Line 11). The update function, Update-Expected-

Reward-Value(H, MDP), which is called with the HAM state and the MDP(Ask_MDP

or Bid_MDP ) being executed, is the policy evaluation step and is described in Al-
gorithm 5. Algorithm 6 describes the action selection algorithm, Select-Primitive-

Action(H, MDP), which is the policy improvement step initialised with the HAM and
the MDP. While the policy evaluation is concerned with the update of the expected re-
wards value, the policy improvement is concerned with the selection of a suitable action
at each step.

Policy Evaluation Algorithm 5 describes the update of the expected reward using the
observed rewards. For each of MDP j (Ask_MDP or Bid_MDP ) of the MDP hierarchy
(see Figure 4.1), the action-value function is calculated as in Equation 3.8:

Qπ
sum_ j(st , at) = w jQ_ j(st , at)+wbalR_bal(st), (4.4)
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with st ϵS j and at ϵA j, where S j is the state of MDP j and A j the action space of MDP
j. The state-value Qπ

h (st , a j) of the Trading_MDP is expressed as follows:

Qπ
h (st , ah) =

w jQ_ j(st , at)+wbalR_bal(st) if ah is call state

wbalR_bal(st) if ah is action state
, (4.5)

where st ϵS , with S = ∪S j, ah ϵAh, with Ah the set of call (Acquire_Energy, Re-

duce_Surplus) and action (Do_Nothing) states available to the Trading_MDP.

Policy Improvement Algorithm 6 describes Select-Primitive-Action(H) that selects
the next primitive action depending on the current HAM state. If the HAM state is the
start state, it is initialised with the choice state and Select-Primitive-Action(choice state)

is called (Line 1-4). If the HAM state is the choice state, the next state is selected with
the Trading_MDP using the ε-greedy method with respect to Qπ

h (st , ah) where j is the
Trading_MDP (Line 5-14). If the selected state is an action state, the corresponding
action is selected as the basic action. Select-Primitive-Action(call state) is called, if
the selected state is a call state. If the HAM state is a call state, the primitive action is
selected using Bid_MDP or Ask_MDP and following the ε-greedy policy with respect
to Qπ

h (st , ah) where j is the Bid_MDP or the Ask_MDP (Line 15-19).
The proposed SMDP-HRL-based approach is evaluated in different Power TAC set-

tings. The evaluation is done in two steps: first AstonTAC_V2 learns the parameters of
the SMDP through interactions with the Power TAC wholesale market using the HRL
technique presented, then the performance of the SMDP bidding strategy is compared
with other bidding strategies in the same environment.

4.3 Evaluation of AstonTAC_V2

To illustrate the performance of the SMDP approach, AstonTAC_V2 was developed
and then tested in the Power TAC wholesale market. The evaluation methodology
consists of comparing the wholesale market performance of AstonTAC_V2 to other
Power TAC retailer agents in a series of controlled experiments. To do this, the retailer
agents’ trading profit and hourly imbalance volume are compared in four market scen-
arios. Each market scenario is specified by the volatility level of the retail demand and
the wholesale market clearing prices. While the variation of the hourly retail demand
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Algorithm 6 Select-Primitive-Action(H, j)
1: if H = start state then
2: H← choicestate

3: return Select-Primitive-Action(H)
4: end if
5: if H = choicestate then
6: Choose the next state H from st

7: using Qπ
h (st , ah) and the ε-greedy policy

8: if H = call state then
9: return Select-Primitive-Action(H)

10: end if
11: if H = actionstate then
12: return primitive action ah for st

13: end if
14: end if
15: if H = call state then
16: Choose a primitive action at for st

17: using Qπ
j (st , at) and the ε-greedy policy

18: return at

19: end if

mainly affects the ability of the retailer agents to balance their energy, the variation of
the hourly wholesale market prices affects their ability to maximise their bidding profit.
The first market scenario considers a stable market, which is characterised from a re-
tailer’s viewpoint by a stable retail demand and wholesale clearing prices. The second
scenario evaluates the performance of the agents when the demand is volatile and the
clearing price stable. In the third scenario a stable demand and a volatile clearing price
is used. The fourth market scenario evaluates the performance of the agents in a volat-
ile market by making both the demand and the clearing price volatile. Figures 4.4a and
4.4b illustrate the behaviour of the environment for Scenario 1. Figures 4.4a and 4.5b
illustrate Scenario 2, Figures 4.5a and 4.4b illustrate Scenario 3 and Figures 4.5a and
4.5b illustrate Scenario 4.
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4.3.1 Implementation of HAM

The HAM is implemented as presented in Algorithm 4 Section 4.2. The training of the
individual MDPs Ask_MDP and Bid_MDP are implemented following the HRL-MC
explained in algorithms 5 and 6. Similar to AstonTAC_V1, AstonTAC_V2 was trained
first in series of controlled experiments with decreasing value of ε . The algorithm
hyperparameters used to implement individual MDPs Ask_MDP and Bid_MDP are
the same as used for AstonTAC_V1 in Chapter 3. Moreover, the weighting of the re-
wards remain the same as in the experiments with AstonTAC_V1 (presented in Section
3.5.1.3): w_bal = 1.67 and w_price = 1.

4.3.2 Environment Settings

This section describes the environment settings of Power TAC. AstonTAC_V2 has been
compared to two established retailer agents that use the bidding strategies presented in
Section 4.1. The first agent considered is TacTex, the winner of the Power TAC 2013
that relies on a CDA approach to trade in the wholesale market (Urieli and Stone, 2014).
The second agent is AstonTAC_V1. For clarity, TacTex is termed CDA Retailer and
AstonTAC_V1 is the MDP Retailer.

As described in Section 3.2, the Power TAC environment provides a simulated en-
vironment that is very close to a real-life power market (Ketter et al., 2015). The Power
TAC game server offers the ability to configure the agents (customers, big buyers and
suppliers) that are present in the environment. The scenarios considered in this evalu-
ation result from four different configurations of the game server. The retailer agent is
configured to be a price taker - this is the default setting of the simulation environment
(Ketter et al., 2015). Since the volume of energy traded by the retailer in the wholesale
market is not high enough to make a significant impact on the clearing prices, the re-
tailer agent has to adapt their bidding strategy to the wholesale market clearing prices
in order to optimise its profit.

Before evaluating the performance of AstonTAC_V2 in the different scenarios, the
SMDP Decision Engine is trained according to the MC-HRL presented in Section 4.2.4.
Each hour represents the end of an episode when the retail demand should be satisfied.
The delayed reward, which is available at the end of each episode, is therefore available
each hour. A Power TAC game lasts approximately 1500 simulated hours (the end of the
game is randomised). Since the retailer agent can take 24 actions each simulated hour, it
uses approximately 36000 actions to learn the expected return of the immediate rewards

94



(r_sell and r_buy) in one game. In each game, AstonTAC_V2 observes approximately
1500 delayed rewards (r_bal). To train AstonTAC_V2, a total of 200 games was enough
to observe a convergence of the retailer policy to a suitable policy.

4.3.2.1 Scenario 1: Stable Market

This scenario encompasses a stable market environment where the aggregated energy
needed by the retail and the wholesale clearing prices are not volatile. In this case, less
than 10% of the volume of electricity produced in the environment is from renewable
energy sources. This is the default setting of Power TAC 2014 and 2013. The stable
environment setting is mainly characterised by two market aspects from the retailers’
viewpoint: a less variable retail demand and a less variable wholesale clearing price.
Figures 4.4a and 4.4b show the two aspects. In Figure 4.4a, the average clearing prices
for the 24 hours ahead are illustrated. This shows that in a stable market, where retailers
are price takers, the clearing price is higher when the time remaining for the delivery
is short. Figure 4.4b shows the aggregated retail demand which follows a non-volatile
demand pattern. Weekly, daily and intra-daily patterns can be observed in such a stable
retail market.

4.3.2.2 Scenario 2: Volatile Electricity Demand

In this scenario, the clearing prices are less variable and the number of end-customers
that can partly produce their required energy in the retail market is increased. These
customers produce approximately 50% of the energy needed in the retail market. This
makes the aggregated demand estimation of the retailer more volatile. The aggregated
electricity demand estimated by the retailer is very volatile when the percentage of elec-
tricity from renewable sources is high. Figure 4.5b shows the aggregated demand for
power that AstonTAC_V2 faces during a certain period of the simulation. This scenario
is a realistic and very relevant one for the future modernised electricity grid. In order to
support the production of electricity from the demand side, a retailer needs to provide
production tariffs that can help the end-consumers to easily re-inject their electricity
surplus in the electricity grid and to use the electricity grid in case of an electricity
shortage. Enabling production by end-consumers is one of the key motivations of the
smart grid.
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(a) Average Market Clearing Price for 24 Hours Ahead When the Wholesale Supply is Stable. This figure shows
the average clearing price for each of the 24 hours ahead when the electricity supply in the wholesale market is
stable. The error bars report the standard deviations. The lower the time remaining (time ahead) for electricity
delivery, the higher the clearing price could be.

0 50 100 150 200 250 300 350
0

2

4

6

8

10

x 10
4

Simulated Hours

R
et

ai
l D

em
an

d 
(k

W
h)

 

 

Aggregated Retail Demand
24-Hour Moving Average

(b) Stable Retail Demand. This figure shows the average of hourly retail demand for more than ten days in an
arbitrarily selected game. The daily and intra-daily patterns of the average aggregated retail demand are stable.
The curve of the 24-hour moving average shows that the weekly pattern of retail demand is stable.

Figure 4.4: Stable Market Clearing Price and Retail Demand. Figures 4.4a and 4.4b
illustrate the behaviour of the environment for Scenario 1.
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(a) Average Market Clearing Price for 24 Hours Ahead When the Wholesale Supply is Volatile. This figure
illustrates the average clearing price when the volume of electricity supplied by the wholesale market is volatile.
The standard deviations are illustrated by the error bars. The wholesale market prices are variable depending
on the volume of electricity supplied, which is influenced by the weather situation.
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(b) Volatile Retail Demand. This figure shows the retail demand in a volatile environment for more than ten days
in an arbitrarily selected game. The aggregated retail demand and the 24-hour Moving average are variable.
There is no weekly, daily or intra-daily pattern that is stable. The variable retail demand is largely influenced
by the retail electricity production which is dependent on the weather state.

Figure 4.5: Volatile Market Clearing Price and Retail Demand. Figures 4.5a and 4.5b
illustrate Scenario 4.
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Figure 4.6: Autocorrelation Function for Market Clearing Price with 95% of confidence
interval. As all the autocorrelations (with the exception of lag 0) are near-zero, it can
be concluded that the wholesale data in Scenario 3 are random.

4.3.2.3 Scenario 3: Volatile Clearing Prices

In this scenario, the retail demand is not volatile and the number of wholesale suppli-
ers that use wind farms for the electricity production is increased. Here 50% of the
electricity provided by the GenCos is from renewable energy sources. A volatile elec-
tricity supplied by the GenCos implies volatile wholesale market clearing prices. Figure
4.5a illustrates the clearing price pattern in this scenario for a random game with more
than 1500 clearing processes. To measure the stability of the wholesale market data,
Figure 4.6 shows the autocorrelation plot for market clearing prices generated using
the sample autocorrelation function “autocorr” of MATLAB 2011 which computes the
sample autocorrelation function of a univariate, stochastic time series with 95% confid-
ence. In the presented figure, all autocorrelations fall within the 95% confidence limits,
with the exception of lag 0, whose lag is always 1. Therefore, for 26769 observed clear-
ing prices in a game of scenario 3, the sample autocorrelation function shows that the
data are random.

4.3.2.4 Scenario 4: Volatile Market

Figures 4.5a and 4.5b illustrate the market behaviour in Scenario 4. Figure 4.5a shows
the average clearing prices for each of the hours ahead. Figure 4.5b shows the aggreg-
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ated retail demand for AstonTAC_V2 during a period of an arbitrarily selected game.

4.3.3 Results

Scenario

1

Scenario

2

Scenario

3

Scenario

4

Aston

TAC_V2

7.73

(±0.5)

9.25

(±0.9)

10.97

(±1.0)

11.53

(±1.1)

MDP

Retailer

10.11

(±0.7)

12.41

(±1.1)

14.91

(±1.2)

15.59

(±1.2)

CDA

Retailer

10.16

(±0.6)

Not

Applicable

18.49

(±1.8)

18.57

(±2.5)

Table 4.1: Retailers’ Imbalance. This table presents the average of the electricity im-
balance in percentage for each retailer. The numbers in brackets represent the standard
deviations of the arithmetic means in percentage. AstonTAC_V2 performs well across
the four scenarios by having the lowest imbalance. The imbalance of the CDA retailer
is the highest in each of the four scenarios. MDP approaches utilised by MDP retailer
and AstonTAC_V2 achieve a lower imbalance in volatile electricity markets than the
CDA approach of the CDA retailer.

Tables 4.1 and 4.2 present the results of the evaluation. While Table 4.1 presents
the imbalance ratio yT (in percentage) at the end of each bidding episode, Table 4.2
represents the percentage of the ratio between average hourly profit rt (as described
in Section 4.2.4) and the average of wholesale market clearing prices p̄ made by the
retailers.

4.3.3.1 Imbalance Level

Scenario 1 When the aggregated demand is stable (renewable sources supply less
than 10% of retail consumption), there are no major changes in the procurement volume
planned for each hour by the retailer agent. In this case all three approaches perform
well and the imbalance between supply and demand is low for all retailer agents. As-
tonTAC_V2 has the lowest imbalance, 7.73% (Table 4.1), whereas the MDP Retailer
has an imbalance of 10.11% and the CDA Retailer 10.16%. The advantage of As-
tonTAC_V2 is that it is the only agent to simultaneously optimise the bids and asks
in order to balance its retail demand. The two other agents optimise only the buying
process and not the selling of energy surplus.
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Scenario 2 With a volatile demand, the retailer risk of paying a high imbalance fee
increases. The CDA retailer avoids to take this risk in the Power TAC environment by
not providing tariffs that support energy production by end-consumers. The imbalance
ratio has increased for AstonTAC_V2 and the MDP Retailer, in comparison to Scenario
1. The MDP retailer which supports the end-consumers’ production cannot sell the
energy surplus when the aggregated demand is volatile. This justifies the increase of
its imbalance to 12.41%. AstonTAC_V2 can better balance its energy in such situation
with an imbalance of 9.25%.

Scenario 3 The volatility of the wholesale market prices affect the imbalance of the
retailers that want to make hourly price profit. It is more probable in this setting that
the orders placed by the retailers may not be cleared. This forces the retailers to buy
at high prices or to risk the imbalance of the retail demand. In this case the imbalance
experienced by the CDA broker is high 18.49%. AstonTAC_V2 has a better balance
of energy with 10.97% imbalance. The advantage of MDP and SMDP approaches is
that they empower the agents to learn when to buy at high prices in order to satisfy the
demand.

Scenario 4 In this scenario, optimising the balancing of the energy needed is difficult,
since the retail demand and the wholesale clearing prices are volatile. AstonTAC_V2
achieves the best performance with an imbalance of 11.53%. The MDP Retailer with
an imbalance of 15.59% performs better than the CDA Retailer that has an imbalance of
18.57%. For the CDA Retailer, there is no difference between Scenario 3 and Scenario
4, since it chooses not to offer any production tariffs in the retail market.

4.3.3.2 Profit Level

Scenario 1 When the electricity generation from renewable sources is less than 10%
of the overall wholesale electricity supplied, then the wholesale market clearing prices
are less volatile. In this case, the retailer agents as price takers can make more profit by
buying during the bidding periods with the lowest clearing price. These bidding periods
with the lowest price are the same across the set of simulations. In such a setting,
the CDA Retailer that tries to buy all the energy needed at the lowest price made the
most profit (9.53%). Since the clearing prices for the bidding periods ahead are not
variable, buying all the energy needed at the lowest price is the best approach. The
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Scenario

1

Scenario

2

Scenario

3

Scenario

4

Aston

TAC_V2

9.46

(±1.8)

8.03

(±0.23)

5.10

(±2.3)

4.40

(±2.5)

MDP

Retailer

9.43

(±2.4)

6.57

(±0.26)

3.83

(±2.6)

3.27

(±2.8)

CDA

Retailer

9.53

(±2.3)

Not

Applicable

2.07

(±1.3)

2.03

(±1.2)

Table 4.2: Retailers’ Profit. This table presents the average of trading profit made
by each retailer in percentage. The standard deviations are provided in brackets. As-
tonTAC_V2 has a high profit margin in all environment settings and the highest average
profit in volatile markets. In the stable environment setting (Scenario 1), the CDA re-
tailer performs well. The MDP approach performs well in all environment settings.

MDP Retailer and AstonTAC_V2 can also perform well in this case with respectively
9.43% and 9.46% profit margin.

Scenario 2 The volatile retail demand also affects the price profit made by the retail-
ers, since the volume of energy needed can change at any time, the retailers may be
forced to buy when the clearing prices are high in order to reduce the imbalance cost.
In this case, AstonTAC_V2 performs better with an hourly profit of 8.03% compared
to the MDP retailer that has an hourly profit of 6.57%.

Scenario 3 In this setting, the CDA Retailer approach does not perform well. The
hourly price profit is the lowest, at 2.07%. Since the CDA approach does not predict
the clearing prices of the bidding periods ahead, its ability to make hourly price profit
is reduced, whereas the MDP and SMDP approach can perform better with a profit of
5.10% for AstonTAC_V2 and 3.83% for MDP Retailer.

Scenario 4 The profit margins of the retailer agents are generally lower in this scen-
ario. For the CDA Retailer, a profit margin of 2.03% remains as low as in Scenario
3. AstonTAC_V2 has the highest profit margin of 4.40% in a volatile market. The
MDP Retailer that only buys the energy needed and does not sell the surplus has a
profit margin of 3.27% higher than CDA Retailer’s profit margin and lower than the
AstonTAC_V2’s profit margin.
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This section has evaluated the retailer AstonTAC_V2 in four different market set-
tings. In a stable market, the SMDP-approach performs as well as the other approaches
in optimising the trading strategy. When the market is volatile, AstonTAC_V2 outper-
forms the MDP Retailer that does not consider the selling of the surplus, as well as
outperforms the CDA Retailer that does not use the clearing price forecast. As key
findings for optimising the short-term procurement in a pool market, the following can
be concluded:

1. To bid optimally, the retailer needs good forecasting techniques to predict the
clearing prices for the future hours. This enables the retailer to better optimise
the volume of energy to order in order to reduce the imbalance risk.

2. Retailers should make use of their ability to sell energy in the wholesale market
in order to sell the energy excess and keep supply and demand balanced.

3. In volatile and uncertain environments, SMDP and HAM are appropriate to op-
timise simultaneously buying and selling in wholesale markets, as well as balan-
cing retail demand and supply.

4.4 Summary of the Chapter

This chapter proposes a trading strategy that electricity retailers can use to support
short-term procurement when the electricity demand, supply and prices are variable.
The strategy principally enables the retailers to simultaneously optimise the trading
profit and the balancing cost in different market environments. This optimisation prob-
lem is modelled as an SMDP solved through interactions with a simulation environment
using the proposed reinforcement learning algorithm MC-HRL. MC-HRL is based on
the HAMs that supports the implementation of hierarchy of MDPs and the integration
of prior expert knowledge in the HRL. A comparison with other retailers that util-
ise MDP and CDA approaches for short-term procurement has demonstrated that the
SMDP agent is effective in maintaining the lowest electricity imbalance, while achiev-
ing the highest margin of the trading profit in a wide range of smart grid market set-ups.
The results presented testify to the ability of the presented automated retailer agent to
successfully participate in a realistic power trading market and yield profits, outper-
forming competitors. The next chapter presents the retail SMDP framework, which is
used to optimise the retail strategy.
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Chapter 5

Optimising Retail Market Share and
Profit Margin

The two previous chapters present (S)MDP frameworks for optimising the wholesale
strategy of a retailer agent. Despite the success of these frameworks, the overall max-
imisation of the agent’s profit also requires an optimisation of the retail strategy. This
chapter describes a novel SMDP-based framework that enables the trading agent, As-
tonTAC_V3, to simultaneously optimise its retail market share and profit margin when
trading in a smart grid retail market. These optimisation objectives are motivated by
the fact that it is essential for a retailer to make profit in the market without comprom-
ising its market share (Wangenheim and Bayón, 2004; Cheema, 2008; Lambrecht et al.,
2012).

5.1 Introduction

Governments around the world are increasingly turning to sustainable energy sources
in order to meet the rising demand in energy while avoiding to exacerbate the global
warming problem (Rummery and Niranjan, 2014). As a result, the increased propor-
tion of renewable production in the energy mix requires substantial changes to the tech-
nologies applied in electricity wholesale and retail markets to control the electricity
distribution. This introduces challenges relating to achieving a good balance between
demand and supply, since both electricity generation and consumption heavily depend
on the weather alongside other uncertain parameters. While smart grid technologies
support both electricity and information flow in the new modernised electricity grid,
the dependence of the system on a multitude of uncertain attributes makes both short-
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and long-term planning especially difficult for all stakeholders involved. Very few ap-
proaches have been proposed that can enable policy makers and market participants to
better understand the end-consumer response to retailer strategies such as tariff pricing
in a competitive retail market and most are at a primitive stage (Rautiainen et al., 2013).

Against this background, a retailer agent is developed to deal with the uncertain-
ity and the changes imposed by multi-agent retail markets, such as the ones within the
Power TAC simulations (Power TAC is introduced in Section 2.1.2). The performance
of an electricity retailer is largely dependent on the strategy adopted for pricing of the
offered electricity tariffs. The tariff-pricing strategy considers market information as
its input, in order to learn the tariff price that is most suitable for the current market.
A suitable tariff is at the same time priced to be profitable to the retailer and attractive
to the largest possible proportion of the consumers. The focus of this chapter is on a
pricing algorithm that empowers an electricity retailer to simultaneously maximise its
profit level and market share. This is achieved by using a mechanism that senses the
market state to obtain information about the suitability of the current prices and adapt-
ing the tariff price to market state accordingly. The purpose of the proposed mechanism
is to maximise the expected return of the selected tariff prices over a time horizon.

At the core of the pricing framework is an SMDP framework. The SMDP is an ex-
tension of an MDP with abstract actions (see Section 2.2). The advantage of the SMDP
and reinforcement learning is that it enables the retailer agent to adapt to the strategy
changes of game opponents using the environment states. The main contribution of
this work is the implementation of an SMDP decision framework aiding an electricity
retailer to define the tariff prices it offers, in order to maximise its profit and market
share. During the Power TAC competition in 2013, the agent performed stably and
successfully. Moreover, it was the only agent able to perform well in all retail market
settings.

The remainder of this chapter is organised as follows. Section 5.2 presents a brief
overview of Power TAC environment. Section 5.3 describes related work. In Section
5.4, the SMDP pricing framework is described. Section 5.5 evaluates the retail strategy
of AstonTAC_V3. Finally, Section 5.6 concludes the chapter.

5.2 Retail Market Simulation

In the Power TAC environments, the retail market provides several types of customers
that could be grouped in two classes: (1) small and elemental customers, such as owners
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of electric vehicles; and (2) large customers, such as manufacturing facilities. Some of
the customers are able to generate part of the electricity that they consume using solar or
wind energy sources. The customer behaviour in Power TAC reflects real-life scenarios.
While the customers generally try to minimise the cost of their energy bill, they do not
always: (1) evaluate newly published tariffs, (2) evaluate all the available tariffs in the
market before deciding which tariff to select, (3) select the most suitable tariff, or (4)
have the same risk estimation for a tariff contract. These behaviours are influenced by
the customer types and customer classes. Additionally, the Power TAC environment
enables the design of tariffs with real-world tariff features (e.g., periodic payments,
tiered rates, sign-up bonuses, dynamic pricing). Further information on the Power TAC
environment is provided in Section 2.1.3.1.

5.3 Related Work

As the retail market can be modelled as a series of non-cooperative games with mul-
tiple players, the game theoretical approaches provide tools to calculate the optimal
behaviour (Dutta, 1999; Binmore, 2007; Fudenberg and Tirole, 1991). However, these
approaches make the assumption that the opponents have static strategies. This as-
sumption is not realistic in real life scenarios and in the Power TAC tournament. In
Power TAC, two reasons make it difficult to apply game-theoretical approaches. First,
the consumers do not always act rationally when taking decisions on electricity tariffs.
Second, most of the retailers competing in TAC adapt their trading strategy to the spe-
cific market situation (see Section 2.1.1). Thus, the behaviour of market participants is
too variable to be captured by game theoretical analysis (Shoham and Leyton-Brown,
2008).

Within the TAC communities, several studies that attempt to create trading agents
have been reported. However, reports on trading agents that act as electricity retail-
ers are scarce. The first designs of electricity retailers using MDP and reinforcement
learning were presented recently (Reddy and Veloso, 2011b; Peters et al., 2013). They
used very simplified, non-realistic settings that include only fixed tariffs and a fixed
customer load. Reddy and Veloso (2011b) suggested an environment-specific MDP
model that can enable decision making only in the retail market environment presen-
ted. Environment-specific MDPs cannot be deployed in markets with different settings
where the agent may need a whole new set of variables to estimate the state of the
environment and a fresh action set. To address this limitation, (Peters et al., 2013) pro-

105



posed to use feature selection to identify in each environment the relevant sets of state
components and actions to use as MDP parameters. The drawback of this approach is
that for each new market setting the MDP model needs to be designed and solved from
scratch. Moreover, the approach presented by Peters et al. (2013) cannot be used to
model MDPs for volatile environments, as the relevant environment features that are
identified for the MDP can change over time. The model put forward in this thesis
focuses on applying environment-invariant features to model the MDP. The adaptation
of the trading agent in each environment is supported by the environment-specific com-
ponents sensors and actuators (see Chapters 6 and 7).

Peters et al. (2013); Reddy and Veloso (2011b) considered discrete and specified
tariff price changes as resulting actions. This is a common approach when learning a
retail strategy (Han et al., 2008). This design approach restrains the adaptation of the
retailer agent to market situations, as the price can only be increased or decreased by
a fixed margin or to a predefined maximum or minimum price. Thus, the trader agent
is not able to offer prices that are adaptable to the market situation. To remedy this,
the agent’s actuators interpret the MDP actions according to the market situation (see
Section 5.4.4).

A more recent approach is evaluated in the Power TAC environment by Urieli and
Stone (2014) and proposes a utility optimisation algorithm to decide on the tariff prices.
This algorithm optimises the future energy-selling pricing and the future total energy
demand given the prediction of the energy-procurement costs. However, in many Power
TAC game settings with more than three retailer agents in the same market, this al-
gorithm maximises the market share but generally fails to do the same for the profit
level (see Section 5.5).

5.4 SMDP Pricing Framework

The aim of the pricing framework is to support the retailers’ decision making by de-
termining a tariff price that will simultaneously maximise the number of contracted
customers and profit margin. The SMDP methodology enables the modelling of such
decision process. Figure 5.1 presents the hierarchy of the SMDP framework. Using this
framework at each time step, the decision maker first uses the top-level decision model
(SMDP) and information it holds on the current market state to decide which strategy to
follow: customer-enticing or profit-oriented pricing. After the selection of the strategy,
an MDP is used to decide on the concrete actions to take. Three actions are available
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to decide on the price setting: increase, decrease or maintain the current price. Discrete
prices are deliberately not used as primitive actions. The interpretation of the primitive
actions can be tailored to specific market requirements. For example, a fixed amount
can be added to the price every time that the primitive action is Increase_Price. The
action Maintain_Price is used to continue exploiting the current price. The modelling
of the MDPs and the primitive actions can easily be adapted to the type of electricity
tariff considered. The non-deterministic selection of an abstract action is motivated by
the rewards resulting from the execution of the primitive actions of each one of the
smaller MDPs. The SMDP mechanism is explained in more detail in Section 5.4.1 and
5.4.2 below, while the specifics of its solution and implementation are given in 5.4.3
and 5.4.4, respectively.

5.4.1 Higher Level Decision Making

Using this framework, given the market state, the decision maker can adjust the tariff
price while choosing to follow a customer-enticing or profit-oriented policy. Formally,
at each step of the simulation, the retailer selects an abstract action to follow using the
SMDP (see Figure 5.1). After the completion of the abstract action, the environment
transitions from the current state to the next state. The SMDP model can be formally
presented as the tuple ⟨S,O,P,R⟩ (see Section 2.2 for an introduction to SMDP and
HRL):

• Finite set of states (S): the state components are defined by the number of retailers
in the market, the market share and the profit level. While the market share
enables the retailer agent to indirectly sense the customers’ tariff preferences, the
profit level enables it to sense the state of its profit margin. Moreover, the defined
state components also enable the indirect sensing of the strategies of the market
competitors.

• Finite set of abstract actions, also called options (O): there are two options: a
customer-enticing option and a profit-oriented option. The agent uses the option
ot ϵO to stochastically control the environment and achieves its goals. The agent
takes a sequence of options that maximises the control of the environment. The
sequence of options for each simulation is defined by the policy function:

π
o : S→ O.
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• Transition probabilities (P): The probability P(st+1|st , ot) of transition from state
st ϵS to state st+1 ϵS after the agent has taken the option ot ϵO.

• Reward function (R): At each state st ϵS of the environment, the agent receives
the reward ro

t from the system after the abstract action ot−1 ϵO is taken from state
st−1 ϵS. The aim of the decision maker is to find the policy πo that maximises the
return (cumulated rewards) R in the long run. At each time step t, the cumulative
discounted reward Rt is defined by:

Rt = ro
t + γ

1ro
t+1 + γ

2ro
t+2 + · · ·+ γ

T ro
T , (5.1)

where γ is the discount factor, 0 ≤ γ ≤ 1 and T the final time step. In infinite-
horizon decision process, T → ∞ and 0≤ γ < 1.

The expected cumulative value of the future rewards V πo
(st) is the value function cor-

responding to a deterministic policy πo defined as follows:

V πo
(st) = E [Rt |st , ot ] . (5.2)

5.4.2 Lower Level Decision Making

The MDPs used for the lower level of decision making are similar to one another. They
mainly differ in the setting of their reward functions. The MDPs are defined as follows:

• Finite set of states (S): the state of the environment considered for the lower level
decision making is the same as for the SMDP.

• Finite set of primitive actions (Aa): MDP actions are increase, decrease and main-

tain the current price.

• Transition probabilities (Pa): Probability (Pa(s′|s,a) ) that the environment trans-
itions from one state sϵS to another s′ ϵS after taking action aϵA. The transition to
state s′ ϵS depends only on the current state s′ ϵS and the taken action a. Pa(s′|s,a)
does not depend on the previous actions and previous states.

• Reward function (Ra): The reward is defined by the profit margin and the fluc-
tuation in the number of customers. At initialisation of the customer-enticing
policy, the primitive action decrease_price carries higher rewards. Analogously,
the profit-oriented policy assigns a higher reward to the primitive action Increase_Price
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at initialisation. The higher the reward, the more motivated the decision maker
will be to prioritise a specific primitive action for the the selected abstract action.
The MDPs are solved through direct interactions with environment. This enables
the retailer agent to learn the individual R of each of its primitive actions in the
environment. Let r be the reward observed when executing a lower-level MDP.
As the purpose of the learning is to simultaneously optimise the profit and the
number of customers, the reward r is an aggregation of the shaped profit reward
rp and shaped customer reward rc, calculated as follows:

r = wprp +wcrc, (5.3)

where wp is the weight assigned to rp and wc is the weight of rc.

Given the set of rewards {r1, r2 · · ·rN} observed when executing a lower-level MDP for
N steps, the higher-level reward ro is calculated as the sum of r :

ro =
N

∑
j=1

r j. (5.4)

5.4.3 Solving the SMDP

To efficiently solve the retail SMDP, the agent needs to learn about the outcome of
their actions during the game and not only at the end of the game. This is particularly
important because the duration of a decision episode is the length of the whole game, as
the agent needs to attract customers and make profit throughout the game. Algorithm 7
implements the HRL algorithm for the SMDP is illustrated in Figure 5.1 and described
in Sections 5.4.1 and 5.4.2. As presented in Chapter 2, an appropriate learning approach
for the retail decision problem is a TD approach augmented with the eligibility traces
-annotated as e(s,a).

Contrary to the wholesale optimisation described in Chapter 4, where the HAM
approach facilitates the reduction of the learning time through the use of the expert
knowledge, there was no relevant expert knowledge available for the optimisation of
the retail strategy. It is not really obvious when to select a profit-enticing or customer-
oriented strategy, nor it is clear when to drop or increase the retail price. Because of
this knowledge gap, HAM was not the suitable HRL for this problem. A more suitable
HRL approach that can be used to solve this problem is the MAXQ approach.

Furthermore, given the complexity of the retail market, it is important to assign
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Algorithm 7 Hierarchical Learning of retail strategy
1: Initialise:
2: Q(s,a)← 0, Q(stop,o)← 0
3: totalReward← 0
4: for all Simulations do
5: Initialise the eligibility traces
6: for each time step do
7: if subMDP i is not terminated then
8: observe r for the pair (s, a) in state s′

9: choose a′ from s′ using ε-greedy policy
10: δ ← r + γQ(s′,a′)−Q(s,a)

11: e(s,a) ← 1
12: for all (si, ai) do
13: Q(si,ai)← Q(si,ai)+αδe(si,ai)

14: e(si,ai)← γλe(si,ai)

15: end for
16: totalReward← totalReward + r

17: take action a′,
18: s← s′; a← a′

19: else if subMDP i is terminated then
20: observe totalReward from the excution of i in state s′top

21: choose o′ from s′top using ε-greedy policy
22: δ ← totalReward + γQ(s′top,o

′)−Q(stop,o)

23: e(stop,o) ← 1
24: for all (stop, o) do
25: Q(stop,o)← Q(stop,o)+αδe(stop,o)

26: e(stop,o)← γλe(stop,o)

27: end for
28: take option o′ and start the corresponding subMDP i

29: s← s′top; o← o′

30: totalReward← 0
31: end if
32: end for
33: end for
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observed rewards appropriately to all actions taken in the past. A robust way of solving
this credit assignment problem is the use eligibility trace, which is more convenient
with SARSA than with Q-Learning approach. 1 Thus, the robust and simple HRL
approach for retail market optimisation is the MAXQ approach, used with SARSA(λ ).

As introduced in Section 2.2.2, two main reasons have motivated the use of SARSA
(λ ) in this work. First, because Watkin’s Q(λ ) requires e(s,a) to be set to zero every
time there is an exploratory action, the learning with Q(λ ) is slower than the learning
with SARSA (λ ), which does not have this requirement. Second, as an off-policy
TD control algorithm, Q(λ ) requires to start the learning with an estimation policy,
which is not only difficult to define appropriately, but also not relevant for the decision
problem considered in this chapter. As an on-policy method, SARSA (λ ) provides a
more suitable learning mechanism, which is also used by Peters et al. (2013) to solve
retail MDPs. Algorithm 7 presents the proposed learning algorithm inspired by the
MAXQ value decomposition and using SARSA(λ ) to learn each MDP in the hierarchy.

At the beginning of the training (Lines 1-3), the learning parameters are initialised.
As required for the SARSA(λ ), in Line 5, the eligibility trace e(s, a) is initialised at
the beginning of each episode, which is represented by a game. For each time step,
the agent uses the SMDP to decide which action to take. Action selections with the
lower-level MDPs are described from Line 7 to Line 18, which implement the tabular
SARSA(λ ) as introduced in Section 2.2.2 and described in Sutton and Barto (1998).
Lines 19-31 describe the implementation of SARSA(λ ) for the higher-level MDP. In
this algorithm, ro is termed totalreward, as it is the sum of lower-level reward r.

5.4.4 Implementation of an SMDP-based Retailer Agent

AstonTAC_V3’s architecture, as illustrated, in Figure 5.2 is essentially composed of
three key components: the SMDP Framework, the State Estimator and the Action In-
terpreter. The State Estimator determines the current environment state, which forms
the input to the SMDP reasoning engine. The Action Interpreter aims to interpret the
SMDP outputs (decrease_price, increase_price and maintain_price) into concrete price
values according to market state.

1see Section 2.2.2 for more information on the eligibility trace.
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Figure 5.2: Retail view of AstonTAC_V3’s Architecture using the retail SMDP. Similar
to the AstonTAC’s architecture presented in Section 2.4, the retail view is composed of
the three core components: the SMDP Framework, the State Estimator and the Action
Interpreter. The SMDP Framework is the reasoning engine of AstonTAC_V3. It uses
the environment states provided by the State Estimator as inputs to select the action
that need to be taken. The Action Interpreter is responsible for executing the action in
a environment-specific manner.

5.4.4.1 State Estimator

The State Estimator determines the state of the market share and profit level based on
the information in the environment. The market share mt is computed as follows:

mt =
st

n
, (5.5)

where st is the number of subscriptions to the agent’s tariffs at time t and n is the total
number of customers in the market. The profit level plevelt is defined to be the ratio
between the hourly profit pt and the expected hourly profit p̄.

plevelt =
pt

p̄
, (5.6)

where p̄ is the average of the hourly profit in a similar game. In this research, p̄ is spe-
cified by the designer given the observed retail market features, which are the number
of agents in market and the profiles of the competitor agents. At the beginning of each
game, a look up table is used to identify the value p̄ to consider for the started game.

The hourly profit pt is considered to be the hourly difference between the amount of
cash received from the energy consumers and the cost of energy supplied. In case of
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losses, pt is negative. The profit levels are classified in predefined intervals to form the
profit level state. In the experiments, there are three profit level states: high, average

and low. The market share is represented with 10 states where each state is represented
by 10%, 20%, . . ., 100% of the market share.

5.4.4.2 Action Interpreter

The outputs of lower level MDP are environment-invariant actions, which tell the trader
agent what to do, but not how to execute the actions. For each actions, the agent is
provided with a set of activities that could be executed according to the state of the
market. In the experiments, AstonTAC_V3 increases or decreases the tariff price using
environment-specific steps:

• Step 1: After selecting the action a, the Action Interpreter defines the new tariff
prices ρ by using an environment-specific function χ which depends on the pub-
lished retail market prices ρm, the agent’s profit level plevelt and market share mt

so that:
ρ = χ(ρm, plevelt , mt , a).

In the Power TAC environment, ρ was represented by the look-up table, which
maps the market price interval of ρm, the agent’s profit level plevelt and market
share mt and the selected action a to a new tariff price. However, for real-world
studies, more appropriate techniques are used to determine the new price given
the selected action a (Nevmyvaka et al., 2006; Moriyama et al., 2008; Bertoluzzo
and Corazza, 2012).

• Step 2: After determining ρ , the Action Interpreter chooses between publishing
new tariff contracts or modifying the existing tariff contracts. Since customers in
Power TAC never evaluate all the tariffs at the same time but a subset of the tariffs
that are available in the market, it is important to consider the number of tariffs
that are published by the other retailer agents. If the number of tariffs published
by other traders is high (> 20), AstonTAC_V3 publishes a new tariff, and if this
number is low, it updates existing tariff prices.

Although the action to take is specified by the SMDP reasoning component, the execu-
tion has to consider the specific-environment requirements.
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5.4.5 Implementation of the HRL algorithm

The HRL is implemented following Algorithm 7. In the Power TAC environment, the
agent can publish or update a tariff contract every six hours. However, in the simulation
environment, six hours are not enough for the estimation of the effect a tariff change.
Therefore, the retail decisions were considered every 24 hours. The learning rate α is
set to 0.042 for a learning window of 24 decision steps (α = 1/24).

The discount factor γ is set to 0.99 to enable each agent action to have a long-term
impact on its success. Moreover, in the Power TAC, the customers behave according to
the reputation of the brokers. As the number of daily number decisions is approximately
63 given the duration of the game, the setting λ = 55/63 = 0.87 makes sure than the
agent actions influence its behaviour for a long period.

The training of the agent with these settings was done before and during the Power
TAC tournament. Before the tournament, the agents is trained in controlled experiments
with profiled competition agents with ε > 0.009, whereas during the tournament with
ε < 0.005, the agents learns with tournament agents. The weights wp and wc needed to
calculate r were set as follows: wp = 0.9 and wc = 0.1.

5.5 Evaluation

This section discusses the evaluation of the SMDP Framework that is used by As-
tonTAC_V3 to trade in an electricity retail market. The performance of AstonTAC_V3
is compared to other electricity retailer agents. The evaluation consists of two parts.
(1) The results and analysis of 2013 Power TAC final, which demonstrate the ability
of AstonTAC_V3 to use the SMDP Framework to take suitable pricing decisions. (2)
The analysis of two games in the actual competition to showcase the ability of As-
tonTAC_V3 to use the primitive actions to control the maximisation of the profit and
customer numbers.

5.5.1 PowerTAC 2013 Final

The 2013 Power TAC finals consisted of 60 games with three individual competitions:
21 games with two players, 35 games with four players and 4 games with seven players.
The teams participating to the competition were:

• cwiBroker team from Centrum Wiskunde & Informatica, Amsterdam,
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• MLLBroker team from the University of Freiburg,

• CrocodileAgent team from the University of Zagreb,

• Mertacor team from the Aristotle University of Thessaloniki,

• TacTex team from the University of Texas at Austin,

• INAORBroker02 team from the National Institute of Astrophysics, Optics and
Electronics, Mexico.

The agents competed in different game settings. In order to evaluate AstonTAC_V3’s
strategy in the retail market, the performance of the three best agents (in addition to As-
tonTAC_V3) are compared in the retail market for each game size. Table 5.1 presents
the results of the retailers’ performance in each game size. These tables compare the
cash and energy transfers between customers and retailers based on the published tar-
iffs. Thus, these tables present the performance of the retailers in providing competitive
tariffs and in making profit. The retailers are classified in each game size according to
their ability to receive a high amount of cash for the transferred volume of energy.

The analysis shows that although AstonTAC_V3 did not have the lowest sell price, it
could constantly transfer a high volume of energy to the customers. This suggests that
AstonTAC_V3 could handle profit and market share maximisation very well. While
the profit maximisation is demonstrated by a high sell price and a high percentage of
the average cash transferred, the maximisation of the market share is demonstrated
by a high percentage of the average volume of energy transferred to the customers.
This is particularly the case in 4-player games, where AstonTAC_V3 had the highest
average sell price and 33.63% of the energy transferred to customers, whereas TacTex
had 41.20% of the energy sold with the lowest average sell price. Consequently, there
is just a slight difference between their tariff returns: 37.81% for TacTex and 37.11%
for AstonTAC_V3. Compared to the other competing retailer agents, this approach
maximises the tariff price and the volume of energy transferred to the retail market.

5.5.2 Competition Game Analysis

To evaluate how well AstonTAC_V3 can use primitive actions to control the environ-
ment so that it could obtain and maintain a high profit while continuing to attract more
customers, two arbitrarily selected games are analysed: one 4-player game (Game 136)
and one 7-player game (Game 110). While Game 136 presents the retailer behaviour in
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Table 5.1: Power TAC Final Results of AstonTAC_V3, Retail Market. Column “Energy
Sold” represents the average energy volume (in kWh) transferred to the customers. In
column “Returns”, the average amount of cash (in EUR) transferred from customers
to retailers. “Energy Sold (%)” normalises the values in column “Sold Energy”. Sim-
ilarly, “Returns (%)” normalises the values in “Returns”. The column “Sell Price” is
the corresponding average unit price (EUR/kWh). In a wide range of retail markets,
AstonTAC_V3 is able to constantly transfer a high volume of energy to the customers
and receives a high amount of cash using the same SMDP Framework.
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Figure 5.3: Game with Four Retailers (Game 136). Using the primitive actions, As-
tonTAC_V3 was successful in changing its tariff prices in order to maximise the number
of customers and the accumulated profit. In this game with cwiBroker, AstonTAC_V3
has the highest number of customers and the highest profit.
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a game where the opponents are less competitive, Game 110 presents AstonTAC_V3’s
behaviour in a challenging environment. The focus is on the analysis of those retailers
that were able to play the game until the end.2 For each game, the evaluation results
show the hourly values of the average sell price, the hourly number of customers sub-
scribed to each retailer’s tariffs, and the hourly accumulated profit, which is represented
by the amount of cash in the retailer account.

5.5.2.1 Game 136

Figure 5.3 shows the data pertaining to the agents AstonTAC_V3, cwiBroker and MLL-
Broker in Game 136. In this game, AstonTAC_V3 adapts its tariff prices until time
slot 193. Due to the increasing number of customers and hourly accumulated profit,
AstonTAC_V3 made few changes to the tariff thereafter. The agent cwiBroker gener-
ally appears to wait for other agents to publish their first tariffs and adapts its prices
accordingly. This justifies the fact that AstonTAC_V3 has the largest number of cus-
tomers at the beginning of the game. While MLLBroker and cwiBroker increased their
prices after the first tariff publications, leading to a decrease in the number of customer
subscriptions, AstonTAC_V3 decreased its prices in order to respond to the market
changes. Since the motivation of the customers to evaluate the electricity tariffs avail-
able in the market decreases with the increasing number of tariffs, the constant changes
in cwiBroker’s and MLLbroker’s tariff price cause the customers to evaluate their tariffs
less often.

5.5.2.2 Game 110

Figure 5.4 shows the results for a 7-player game, Game 110. In this game, AstonTAC_V3
publishes tariffs with lower prices. cwiBroker responds to this and adapts its prices
shortly afterwards. This enables cwiBroker to increase its customer subscriptions. Tax-
Tex gradually drops the prices to respond to cwiBroker’s price level. Although TacTax,
cwiBroker and CrocodileAgent have similar average tariff prices, customers appear
locked in to TacTex’s tariffs. In this game, AstonTAC_V3 tries to get the targeted mar-
ket share and a positive increasing profit. In contrast, TacTex targets a big market share,
but its profit is lower than that of AstonTAC_V3 and cwiBroker. Overall, as is appar-
ent in the aggregate results shown in Table 5.1, AstonTAC_V3 thrives in competitive

2The analysis therefore does not present the results for Mertacor and INAOBroker02. Mertacor could
play only for approximatively 300 time slots in each game. Very few customers signed up to INA-
OBroker02’s tariffs.

119



0 200 400 600 800 1000 1200 1400
0

1

2

3

4

5x 10
4 Number of Customers

Time (Simulated Hours)

0 200 400 600 800 1000 1200 1400
-2

-1

0

1

2

x 10
5 Accumulated Profit (EUR)

Time  (Simulated Hours)

Figure 5.4: Game with Seven Retailers (Game 110). In this game, AstonTAC_V3
attempts to obtain the targeted market share and a positive increasing profit. TacTex
seems to target a big market share, but its profit is lower than that of AstonTAC_V3 and
cwiBroker.
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multiple player environments, accumulating the highest (or nearly highest) volume of
returns.

The evaluation of this framework shows that the SMDP-based retailer proposed,
AstonTAC_V3, simultaneously optimises its market share and its profit level. The high
values market shares represent the readiness of customers to select the tariff contracts
provided by AstonTAC_V3. Additionally, AstonTAC_V3 keeps the tariff price as high
as possible to maximise its profit. Compared to other retailer agents such as TacTex
(presented in Section 5.3), AstonTAC_V3 performs better in diverse competitive smart
grid market simulations.

5.6 Summary of the Chapter

This chapter describes a selling strategy that a retailer can use to simultaneously max-
imise its profit margin and its market share. This optimisation problem is modelled as
an SMDP, which enables the retailer agent to change the retail price based on the mar-
ket state which is determined by the state of the number of trading agents in the market,
the state of the market share and the state of the retail profit. The SMDP is solved by
interacting with the simulation environment using the HRL framework of Dietterich
(2000a) and SARSA(λ ) as learning algorithm.

A comparison with other retailer agents has demonstrated that my SMDP agent is
effective in attracting as many customers as possible while maximising its profits in di-
verse retail market settings. The success of AstonTAC_V3 in the retail market is attrib-
uted to the fact it can change its retail price as to maintain a high number of customers
while makes sure that the profit level remains positive and if possible increasing.

The (S)MDP frameworks described in Chapter 5 (optimisation of the retail strategy),
3 (optimisation a wholesale buying strategy) and 4 (optimisation of a wholesale trad-
ing) optimise individually the retail and the wholesale strategies of the retailer agents.
These separate optimisations of the two strategies neglect their interdependence. This
disconnected optimisation approach does not allow for the exploration of alternative
wholesale strategy based on the agent’s retail situation. The next chapter proposes
an optimisation framework that supports the simultaneous optimisation of retail and
wholesale strategies.
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Chapter 6

Novel SMDP Formalisation of a
Trader’s Decision Problem

Chapters 3, 4 and 5 focus on independently optimising the wholesale and retail strategies.
The aim of this chapter is to model all trading agent activities using the MDPs described
in the previous Chapters 3, 4 and 5. Furthermore, the described MDPs are based on
common environment features which facilitate the transfer of knowledge as formalised
in Chapter 7.

While an agent’s aim is to minimise the procurement cost by buying the target
product quantity on time and at low prices in the wholesale market, in the retail mar-
ket its aim is to maximise its market share and retail revenue. Many studies separately
optimise the wholesale and the retail strategies (He et al., 2006; Benisch et al., 2009)
and consider the global optimisation of the trading strategy as intractable (Kiekintveld
et al., 2004; Urieli and Stone, 2014). Therefore, each of these strategies is optimised
separately and their interdependence is generally ignored, with resulting trading agents
not aiming for a globally optimal retail and wholesale strategy. This chapter describes
a novel formalisation of the trading problem as faced by a trader agent that essentially
purchases the product needed from wholesale trader and sells the final products to cus-
tomers in the retail market. The proposed SMDP framework is used by AstonTAC_V4
to simultaneously optimise its overall strategy as well as the market-specific strategies.

6.1 Introduction

Agent-based simulation is largely used to study the behaviour of complex systems
such as market environments. To this end, the TAC community offers a number of
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multi-agent simulation environments to promote the development of autonomous trad-
ing agents. Among the TAC environments provided, many support the development of
retailer agents that make profit by buying in a wholesale market and selling in a retail
market. While a broker’s aim is to minimise the procurement cost by buying the tar-
get product quantity on time and at low prices in the wholesale market, in the retail
market its aim is to maximise its market share and retail revenue. Studies on broker
agent development have optimised the wholesale and retail strategies individually (He
et al., 2006; Benisch et al., 2009), while considering global optimisation of the broker
activities as insoluble. Against this background, an approach is proposed to globally
optimise its strategy while optimising each activity. It designs individual optimisation
modules to model each decision faced by the retailer agent and it defines a structure of
an hierarchy of sequential and parallel decision units, where each decision unit is mod-
elled as an MDP-based decision support entity. The whole optimisation of all trading
decisions is modelled as a hierarchy of (S)MDPs.

Using the SMDP, which enables the decomposition of a complex MDP in a hier-
archy of smaller MDPs, a trading agent can simultaneously optimise the overall strategy,
and the retail and procurement strategies. Furthermore, SMDP approaches reduce the
computational resources required to solve the original complex MDPs that may be very
computationally expensive to solve. This SMDP is learned using the option framework
(Sutton et al., 1999a; Barto et al., 2013), which is a well-established HRL technique
(Barto and Mahadevan, 2003b). An extension of the option framework as presented in
Rohanimanesh and Mahadevan (2001) enables us to model the parallel tasks executed
by the trading agent.

The main contribution of this chapter is an SMDP formalisation of the broker’s
decision problem which enables the simultaneous optimisation of its main goal (to
maximise profit) and sub-goals such as minimising procurement costs and maximising
retail returns. An evaluation and analysis of a systematic range of controlled experi-
ments show that the SMDP approach enables the new broker termed AstonTAC_V4 to
outperform the selected brokers (AstonTAC_V3 and TacTex).

The remainder of this chapter is organised as follows. First, the related work is
discussed in Section 6.2. The formalisation of the broker’s decision problem is de-
scribed in Sections 6.3. Section 6.4 presents technical details on the implementation
of an SMDP-based broker. Section 6.5 contains a thorough evaluation of the SMDP
approach. Finally, Section 6.6 concludes this chapter.
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6.2 Related Work

Architectures of broker agents are driven by the actions that agents need to execute in
the environment. Generally, the architecture of a trading agent has two key components:
one to manage a retail market and one to manage the wholesale market (He et al., 2006;
Pardoe and Stone, 2006; Benisch et al., 2009). Managing the retail market consists
of identifying the retail prices that could be accepted by most of the customers and
of forecasting the short- and long-term retail demand. Knowing the projected retail
demand, the broker can better plan its procurement in the wholesale market.

In Power TAC, an SMDP approach is proposed to simultaneously optimise the mar-
ket share and the broker’s profit on the retail side (Kuate et al., 2014). MDPs have been
proposed to optimise the wholesale strategy (Buffett and Scott, 2004; Kuate et al., 2013;
Urieli and Stone, 2014). Combinations of heuristic techniques and game theoretical ap-
proaches are used to separately optimise retail and wholesale decisions (Kiekintveld
et al., 2004; Wellman et al., 2005). In order to be successful, the brokers generally
apply diverse machine learning techniques to predict retail and wholesale prices, and
forecast the demand and supply quantities (see Chapter 2).

Simultaneously optimising wholesale and retail market strategies has been con-
sidered to be intractable in TAC environments because of the complexity of the en-
vironments (Kiekintveld et al., 2004; Urieli and Stone, 2014). In this work, SMDP and
HRL are applied to simultaneously optimise the retail and wholesale strategies. SMDP
methodology enables us to decompose the complex decision problem of the broker in
sub-problems. Furthermore, the SMDP approach enables the development of portable
trading agents that can reuse the MDP-modules in new and different simulation envir-
onments. Using HRL to model broker’s reasoning as an hierarchy of MDP modules
reduces the computation and facilitates the transfer of trading knowledge and skills
(Barto et al., 2013).

HRL frameworks (Sutton et al., 1999a; Parr, 1998; Dietterich, 2000a) have been
used in the past to solve hierarchies of MDPs, SMDPs (Howard, 1971). The option
framework of Sutton et al. (1999a) is used in this work, because it provides more
suitable formalisms to abstract the decision problems faced by a trader agent. An
SMDP model inspired by the work on coarticulation framework (Rohanimanesh and
Mahadevan, 2001; Rohanimanesh, 2006) is applied to simultaneously optimise the re-
tail and wholesale strategies. HAM is appropriate when expert knowledge and external
component needs to be integrated in the learning system whereas the MAXQ is more
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Figure 6.1: Actual SMDP Hierarchy of a Proposed Broker. Notation M j
i, stands for the

MDP task that optimises the decision problem j of the hierarchy, in simulation envir-
onment i. This figure extends the retail SMDP illustrated in Figure 5.1 with wholesale
MDPs.

appropriate for simplified and straightforward SMDP problem where some option or
action selection can be made deterministically. The option framework is a generalisa-
tion of the HAM and MAXQ approach which offers a broader set of theoretical tools
to manipulate complex SMDPs as the one considered in this research. None of the
two techniques HAM (Parr, 1998) or MAXQ (Dietterich, 2000a,b) offer mathematical
fundamentals that backup the use of parallel options. Moreover, the option framework
can be applied to justify the use of different reinforcement learning techniques to solve
the standard MDPs of the SMDP. The SMDP presented in this chapter is learned by
using two different RL techniques to solve the standard MDPs of the SMDP hierarchy.
Further information on the implementation of option framework is provided in Section
6.4.2.

6.3 SMDP Formalisation

In order to perform well, the trading agent needs to optimise all its decision mak-
ing problems both at a global and an individual level. Each decision problem can be
modeled as an (S)MDP so that a hierarchy of (S)MDPs can be structured as illustrated
in Figure 6.1. The high-level SMDP is used to decide the overall strategy of the broker.
Depending on the option/strategy it selects, MDPs for retail or wholesale markets sup-
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port the optimisation of market-specific strategies. While the retail MDP uses the retail
price to simultaneously maximise the agent’s market share and retail profit, the whole-
sale MDP uses the order parameters to minimise the procurement cost. This abstraction
of the broker’s decision problem is applicable to a wide range of decision problems as
faced by the type of trading agent specified in Chapter 2.

In the (S)MDP hierarchy, each (S)MDP addresses a specific optimisation problem.
Consider M j

i , the MDP task for optimising the decision problem j of the hierarchy,
in simulation environment i. Specifically, the overall SMDP, Mover

i , decides the hier-
archical, concurrent option to follow: customer-enticing (ce) or profit-oriented (po)
option. Based on the selected option, the wholesale MDP, Mwhol

i , decides the quantity
of product to buy, given the projected wholesale price. Concurrently, based on the same
option information, the retail MDP Mret

i decides the retail price that can simultaneously
increase the profit and the market share. Each of the standard MDPs (Mwhol

i and Mret
i )

can stochastically select many primitive actions before the option of Mover
i that is being

executed terminates. The options of Mover
i are defined by the tuple ⟨I,µ,β ⟩ (Precup,

2000):

• an initiation set I ⊆ Sover
i ,

• a policy over SMDP options µ : Sover
i ×Oover

i → [0, 1],

• a termination condition β : Sover
i → [0,1].

The option ⟨I,µ,β ⟩ is available in state s, if sϵ I . I denotes the set of states sϵSover
i in

which the option can be initiated. I and β are provided by the SMDP designer in order
to facilitate the learning. As the options of Mover

i trigger concurrent MDP tasks (Mover
i

and Mret
i ), they are the so-called multi-options.

The any-termination condition (see Section 2.3.6) is applied for the Mover
i multi-

options, as it is convenient to implement and preserves the Markov (or semi-Markov)
property of the model. Using the any-termination mode, the selected multi-option ter-
minates when one of the parallel options terminates; all other concurrent options are
interrupted. Moreover, the concurrent options of the hierarchical multi-options are ex-
ecuted independently without competing for shared resources. This is the case in the
formalisation since the concurrent options are applied in different markets (retail and
wholesale), as there is no shared state component between the retail and wholesale
MDPs.
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6.4 Implementation of AstonTAC_V4

To illustrate the implementation of the SMDP approach, this section describes the ar-
chitecture of the broker (Section 6.4.1) and the implementation of this HRL method
(Section 6.4.2).

6.4.1 AstonTAC_V4’s Architecture

Based on the AstonTAC architecture described in Section 2.1.2, the architecture of As-
tonTAC_V4 is composed of a reasoning, mapping and environment-specific compon-
ents. The reasoning component (SMDP Component) uses the hierarchy of (S)MDPs
to decide how to act. The mapping components (State Estimator, Action Interpreter)
enable information mapping between the reasoning component and the environment-
specific components (market sensor and actuator) which, in turn, enables the trading
agent to act on and sense a specific environment i (Figure 6.2).

6.4.1.1 SMDP Component

The SMDP Component is the decision making engine of the trading agent. It uses the
market states provided by the State Estimator as inputs in order to select the next prim-
itive action, which is then executed by the Action Interpreter. The SMDP Component
uses the reward signals provided by the market sensor to learn which action to select
according to the market state. As presented in Figure 6.1, this component uses Mover

c ,
Mwhol

c and Mret
c modules to make trading decisions.

Mover
c Module It has a set Oover

c of two multi-options
−−→
oover

c ϵOover
c (a customer-enticing

option and a profit-oriented option) that defines the overall strategy. Its state space Sover
c

is determined by three state components: number of retailers in the market, market
share and profit level. Let Nret−→o be the number of time steps that was needed in the retail

market during the execution
−−→
oover

c and Nwhol−→o the number of time steps in the wholesale

market. At time t∗over, the aggregated reward rover−→o of Mover
c when the option

−−→
oover

c is
terminated is:

rover−→o = wwhol

Nret−→o

∑
b=0

rwhol
c,b +wRet

Nwhol−→o

∑
d=0

rret
c,d , (6.1)

where rwhol
c,b and rret

c,d represent the rewards received at each time step in each market,
wwhol or wret is the weight that the model designer will attribute to wholesale or retail
reward. The definitive influence of the options on the wholesale and retail MDPs is
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Figure 6.2: AstonTAC_V4’s Architecture using the generalised SMDP. Following the
architecture illustrated in Figure 2.4, the SMDP component, which is at the core of the
AstonTAC_V4’s architecture, specifies the behaviour of the agent. The State Estim-
ator determines the environment states, which are the inputs to the SMDP component.
The Action Interpreter interprets the SMDP outputs into environment-specific actions,
which are executed by the actuators.
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learned by the broker. However, the definition of the reward function is used to influence
the initial behavior of the agent:

1. When the option “customer-enticing” is selected, an additional reward is given for
selecting the action “decrease” (retail MDP) and for purchasing all the products
needed on time (procurement MDP).

2. When “profit-oriented” is followed, an additional reward is given for selecting
“increase” (retail MDP) and for buying at lower prices (procurement MDP)

Mwhol
c Module Its action determines the quantity of product to buy given the projec-

ted price. Its state space Swhol
c is composed of three state components: remaining time

until the product is due in the retail market, current procurement imbalance between
acquired quantity and needed, and projected wholesale price for a day or an hour in the
future. The set of actions Awhol

c is defined by a set of percentages. For instance, the set
of actions may be to purchase 25%, 50%, 75% or 100% of the remaining quantity of the
needed products. The reward values rwhol

c of Mwhol
c are generic in order to capture the

reward signals of the different environments. The calculation of the rewards is specified
in the mapping layer. The reward depends on the price of the procured product, stor-
age cost, factory cost, late-delivery penalties and cost of the imbalance between retail
supply-demand. Depending on the environment the agent is acting in, the weights of
these reward components may vary. Chapter 3 details the implementation of a stand-
ard wholesale MDP such as Mwhol

c . Since AstonTAC_V4 is modelled to be reused in
TAC SCM environment described in Section 2.1.3.2, its wholesale optimisation is in-
fluenced by the environment specification of TAC SMC. As the TAC SCM offers only
the ability to buy PC components from the wholesale markets and does not enable the
wholesale selling, a sell-MDP was not defined for AstonTAC_V4. Chapter 7 describes
the knowledge transfer framework needed to reuse AstonTAC_V4 in TAC SCM.

Mret
c Module It uses the same state components as Mover

c module to form the state
space Mret

c . Its set of actions Aret
c are increase, decrease or maintain the current retail

prices. In Peters et al. (2013), the authors discuss modelling of MDPs for retail electri-
city trading; they use an environment-specific approach with discrete price changes as
MDP actions which are not reusable in new target markets. Generalised MDP actions
such as ours are more appropriate to adapt to new markets. The design, implementation
and evaluation of a standard retail MDP such as Mret

c is discussed in Chapter 5.
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6.4.1.2 Mapping Components

State Estimator Component The State Estimator is responsible for identifying the
market states needed by the SMDP framework. To do this, it makes use of specific
market information provided by the Market Sensor and the parameter provider by the
Domain Knowledge Base. Its role is to map environment information into MDP states
and reward signals that can be interpreted by the market MDPs Mwhol

c and Mret
c mod-

ules of the reasoning component. Its maps the market information according to the
domain knowledge to a discrete market state. The State Estimator does not store data.
It processes the data received and send it to the SMDP framework.

Action Interpreter Component The Action Interpreter is responsible for mapping
the primitive actions selected by the SMDP framework into environment-specific ac-
tions that are executed by the agent’s actuators.

6.4.1.3 Environment-Specific Components

Market Sensor The market sensor acts as a filter that selects the information needed
by the broker. It provides the SMDP components with the reward signal; and the State
Estimator with the relevant market information

Actuators The Action Interpreter is responsible for communication with the specific
market according to the communication protocols. Each market follows a set of rules
and mechanisms that the agent needs to follow when acting in the environment. For
instance, the market rules a retailer agent has to follow when dealing with personal
computer trading are different from the ones follow when trading electricity commodity.

Domain Knowledge Base The domain knowledge base provides the state estimate
and the actuator environment-specific knowledge that can improve their calculations.
This component contains information such as maximum or average market price, as
well as parameter needed for the forecasting models.

6.4.2 Hierarchical Reinforcement Learning

N-step TD methods are applied to learn Mover
c (Section 2.2.2 provides more details on

the n-step TD method). Monte Carlo (MC) methods, which have been shown in Chapter
3 to be appropriate for learning this model of the wholesale market MDP, is used to
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Algorithm 8 Hierarchical Learning of a Suitable Trading Strategy
1: for all Simulations do
2: for any time step of the wholesale or retail MDP do
3: Call βCheck

4: if β == true then
5: Call OverallMDP-RL
6: end if
7: if β == f alse then
8: Call StandardMDP-RL
9: end if

10: end for
11: end for

solve Mwhol
c . Mret

c is solved using SARSA(λ ) as presented in Section 5.4.3. An ε-
greedy policy was applied for action selection. To balance exploration and exploitation,
ε varies according to the number of training games. The implementations of n-step TD
methods, MC methods and SARSA(λ ) are introduced in Section 2.2.2.

To implement the HRL algorithm, the MDPs Mwhol
c and Mret

c are assumed to be
Markov, whereas the multi-options−→o (a customer-enticing option and a profit-oriented

option) are semi-Markov. As the any-termination scheme is used, the termination con-
dition of an option −→o is governed by the termination condition of each of the lower-
level MDPs. Each lower-level MDP considers individual duration of its time step and
executes their actions at individual time interval. Algorithm 8 summarises the imple-
mentation of the hierarchy of (S)MDPs presented in Figure 6.1. Having a sequence
of games to be played, the learning of the MDP architecture is carried out in each
game (Line 2). For any time step of Mwhol

c or Mret
c , the learning performs the following

operations: evaluate the termination condition (Line 3); according to the termination
condition, it runs Mover

c module using OverallMDP_RL or call StandardMDPs_RL to
execute the actions Mwhol

c or/and Mret
c depending on the state of their time step.

6.4.2.1 Termination Condition β -Check

The termination condition is evaluated for each of the MDPs Mwhol
c and Mret

c . For
instance, the level of retail profit or market share can be used to specify the termination
condition of the retail MDP, whereas the level of imbalance between supply and demand
can be considered to determine the termination of the procurement strategy. In Line 4,
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β -Check is called to determine, if one of the termination conditions has occurred. If the
termination condition has occurred, the option terminates. OverallMDP_RL is used to
stochastically select the next options.

6.4.2.2 Learning the Overall Strategy with OverallMDP_RL

The execution of the OverallMDP_RL updates the accumulated rewards of Mover
c . Us-

ing rover−→o and given a h-step TD method (with a backup length of h), the update of the
expected h-step return for each visited state-action pairs (sover

c ,
−−→
oover

c ) at time step tover

is calculated as follows:

R(sover
c ,
−−→
oover

c )← h−1
(
(h−1)R(sover

c ,
−−→
oover

c )+ rover−→o

)
. (6.2)

After updating the expected returns of the visited state-action pairs (sover
c ,
−−→
oover

c ), Over-

allMDP_RL selects the next multi-option −→o using Mover
c and call StandardMDPs_RL

for the selection of the next primitive actions in each market.

6.4.2.3 Learning of the Market MDPs with StandardMDPs_RL

For the Mwhol
c or Mret

c Module, StandardMDPs_RL executes the update of the expected
cumulative future discounted reward and the selection of market-specific primitive ac-
tions. In the retail market, using the tabular SARSA(λ ) as described in Sutton and Barto
(1998), the action values Q(sret

c ,aret
c ) are updated for all pairs (sret

c , aret
c ) as follows:

Q(sret
c ,aret

c )← Q(sret
c ,aret

c )+αδe(sret
c ,aret

c ), (6.3)

where α is step-size parameter or the learning rate, e(sret
c ,aret

c ) is the eligibility trace
and δ the TD error (Sutton and Barto, 1998). For the experimentation, the values of
α, δ , and e are set as presented in Section 5.4.4.

In the wholesale market, the MC method is used. The end of an episode is to the due
time of the required product for the retail market. The parametrisation of Mret

c follows
the description made in Sections 3.4 and 3.5.

6.5 Evaluation

The performance of AstonTAC_V4, is compared with the performance of the top TAC-
brokers, AstonTAC_V3 and TacTex in the Power TAC environment. Urieli and Stone
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(2014) describes the implementation of TacTex, which applies a utility optimisation
algorithm to specify the retail strategy and applies the CDA algorithm of Tesauro and
Bredin (2002) to trade in the wholesale market. This section compares the overall per-
formance as well as the retail performance and wholesale performance of the three
agents AstonTAC_V4, AstonTAC_V3 and TaxTex. AstonTAC_V3 is essentially con-
sidered here to evaluate the retail approach of AstonTAC_V4.

6.5.1 Experiment Setup

A test broker termed AstonTAC_V4 that is implemented as described Section 6.4 is
trained with 800 training games in the same environment as AstonTAC and TacTex.
100 test games were used to compare their performances in three scenarios. The imple-
mentation of AstonTAC_V4 SMDP follows the description given in Section 6.4.2. As
in previous contribution chapters, the training starts with exploratory games using high
values of 0.09 < ε < 0.15 and the test games are played with 0.01 < ε < 0.04. The
learning parameters for the wholesale and retail MDPs stay the same as presented in
the previous Chapters 3 and 5, which have SMDP based on the common environment
features in order to facilitate the knowledge transfer presented in Chapter 7.

By changing the wholesale market settings, the energy demand of the retailer agent
influences the wholesale clearing process. In this case the retail demand is used to
influence the wholesale prices, which in turn influence the retail prices:

• In scenario 1, the retailer agents are price takers, i.e. their retail demand will have
no impact on the wholesale prices. Therefore, for scenario 1, the interdependence
between wholesale and retail markets is 0%.

• In scenario 2, the broker orders can partly influence the wholesale clearing pro-
cess: the market interdependence is 50%.

• In scenario 3, the brokers are set to be price makers. This means that the brokers
fully influence the wholesale prices through their orders (100% interdependence).

6.5.2 Results

The results presented in Tables 6.1 and 6.2 show that AstonTAC_V4 outperforms As-
tonTAC_V3 and TacTex across the scenarios. Considering the average total cash re-
ceived by each agent, the more the markets are interdependent, the better is the As-
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tonTAC_V4 performance and the worse the performance of AstonTAC_V3 and Tac-
Tex. In the wholesale market, using Mwhol

c , AstonTAC_V4 outperforms TacTex in op-
timising the order price and the energy imbalance by having the lowest average order
price and lowest energy imbalance. The imbalance is the difference between the en-
ergy purchased by the broker and the broker’s retail demand. In the retail market,
AstonTAC_V4 outperforms AstonTAC_V3 and TacTex in optimising the retail price
by having a higher average retail price and a higher average revenue. AstonTAC_V3
and TacTex do well in optimising the market share; however, by selling the energy at
a lower price, they have a lower average revenue in the retail market. These results
show that the SMDP approach outperforms well-performing brokers that optimise each
sub-problem individually. This approach performs well irrespective of the level of in-
terdependence between the two markets.
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6.6 Summary of the Chapter

This chapter addresses the broker’s decision-making problem by proposing a novel
formalisation of it as an SMDP. This enables the broker to simultaneously optimise
its retail and wholesale strategies without compromising its global strategy. SMDP
described is composed of three MDPs: and overall strategyMDP, a retail MDP and
a procurement MDP. The SMDP described in this chapter is a based on the MDPs
presented in previous Chapters 3, 4, 5 which use the common environment features
to model the MDPs. As it will be presented in Chapter 7, the use of the MDPs with
common features facilitates the transfer of knowledge.

An evaluation and analysis of the formalisation show that the broker outperforms the
top TAC-broker. Despite the success of the SMDP approach in reducing the complexity
of the broker’s decision problem, solving the resulting SMDP still turns out to be a
relatively intense computation task. To further reduce the computational effort required
to acquire an efficient solution, a novel knowledge transfer framework is proposed in
Chapter 7.
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Chapter 7

Transfer of Trading Skills

Chapter 6 describes the formalisation of the broker’s problem as an SMDP and presents
the design of the broker architecture which is composed of three components: the
SMDP reasoning component, the mapping components and the environment-specific
components. This chapter puts forward a knowledge transfer framework that enables
AstonTAC_V51 to reuse the SMDP reasoning component in new market. Enabling the
trading agent to transfer trading skill speeds up its SMDP learning and boosts its initial
performance in new markets.

7.1 Introduction

In a manner analogous to human brokers that use the same type of reasoning (aided by
decision support systems) to trade and adapt to different markets, the aim is to build
brokers possessing an invariant reasoning component that is able to profitably trade and
adapt to individual market using market-specific sensors, actuators and mapping com-
ponents. This ability to transfer knowledge has been recently explored in robotics for
simplistic environment settings. This chapter extends the existing work to create a new
knowledge transfer framework that is applied to a complex trading environment. The
transfer of trading skills yields two key advantages: it reduces the learning necessary
when entering a new market and boosts the initial performance of the agents. Moreover,
in similar markets the agent may perform well without extra training.

The proposed skill transfer framework is driven by the design of a hierarchical reas-
oning structure for the agent, which is based on market-independent features as presen-

1AstonTAC_V5 is an implementation of AstonTAC_V4 (see Chapter 6) that transferred the trading
knowledge from Power TAC markets to TAC SCM markets.
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ted in Chapter 6. The proposed transfer framework has been thoroughly evaluated in
two well-established multi-agent simulation environments within the Trading Agent
Competition (TAC) community. Analysis of controlled experiments shows that As-
tonTAC_V5, the portable version of AstonTAC, is able to perform well in a wide range
of environments by re-using knowledge acquired in previously experienced settings.
The remainder of the chapter is organised as follows. First, the research background
is briefly presented in Section 7.2. Then, the skill transfer approach is described in
Section 7.3. Subsequently, the proposed approach is evaluated in Section 7.4. Finally,
Section 7.5 concludes the chapter.

7.2 Related Work

In general, the purpose of transfer learning (TL) is to reuse knowledge acquired from
learned source tasks in order to facilitate the learning of a new target task. This is
particularly useful when the target task is complex, or difficult/impractical to use for
training and the learning is time-consuming. TL is applied in machine learning for
classification, regression, clustering (Pan and Yang, 2010) and for reinforcement learn-
ing (Lazaric, 2012). This study focuses on transfer in reinforcement learning.

In this work, Mi =⟨Si,Ai,Pi,Ri⟩ denotes the MDP task in a simulation environment
iϵN. The task domain, Di =⟨Si,Ai⟩, is defined by the state and action spaces of Mi. At
the beginning of the learning Ti =⟨Pi,Ri⟩ is defined as the task objectives of Mi and at
the end of the learning it represents the task skills.

Most of the studies that have been conducted in reinforcement learning in order to
enable knowledge transfer can be grouped based on the differences allowed between
the MDP tasks Mi (Taylor and Stone, 2009; Lazaric, 2012). Many studies have been
reported on transfer learning between two tasks (Ms as source tasks and Mt as target
task) that have the same domain D =⟨S,A⟩ (state components or variables and set of
actions remain invariant for the two tasks) and different task objectives Ti (Sherstov
and Stone, 2005; Asadi and Huber, 2007; Mahadevan and Maggioni, 2007; Ferrante
et al., 2008; Lazaric, 2008), whereas other studies have been reported on multi-task
learning of different task-specific objectives Ti in the same domain D (Wilson et al.,
2007; Lazaric, 2008; Mehta et al., 2008a; Lazaric et al., 2010; Frommberger and Wolter,
2010; Snel and Whiteson, 2014). When the task domains are different, two approaches
are used in the literature to enable transfer: domain-invariant features (Konidaris and
Barto, 2007; Banerjee and Stone, 2007; Sharma et al., 2007; Croonenborghs et al.,

139



2008; Konidaris et al., 2012) or inter-task mappings (Torrey et al., 2006; Taylor et al.,
2007; Taylor and Stone, 2007).

Inter-task mappings have been proposed to support information transfer through
hand-coded mappings between a source and a target task that are related but have dif-
ferent states and actions (Torrey et al., 2006; Taylor et al., 2007; Taylor and Stone,
2007). However, inter-task mapping approaches are not suited for dealing with trans-
fer across multiple tasks, as they do not cater for merging knowledge from potentially
numerous source tasks before transferring the knowledge to the target task.

Contrary to inter-task mappings, an agent-centric approach based on task-invariant
features has been proposed (Konidaris and Barto, 2007; Konidaris et al., 2012). It
modelled an MDP task Mi as the tuple ⟨Si,Ai,Pi,Ri,D⟩ where D is the space of features
shared across all related tasks and called the agent-space. The agent-space approach
enables the knowledge transfer across related tasks that are reward-linked. Related
tasks are reward-linked, if their reward functions individually allocate rewards the same
way. Furthermore, this approach assumes that tasks must have the same set of actions
for the skills transfer to be possible through the portable options.

This chapter is essentially concerned with knowledge transfer across MDP tasks
with different domains Di and different objectives Ti. On this instance, a trading agent
is able to transfer trading knowledge between electricity and PC markets. In this case,
explicit mappings between tasks are needed to support knowledge transfer across tasks.
By using explicit mappings, the agent-centric approach is extended to enable transfer
knowledge and skill transfer across related tasks that may not be reward-linked or have
the same set of actions. The key idea of the proposed approach is the use of an invariant
abstract task representation Mc that is common to all tasks Mi. During the learning, all
the source tasks Ms are mapped to Mc and learning happens at the level of Mc. In new
environments, to support the knowledge transfer, target tasks Mt are also mapped to Mc.
This enables the agent to transfer previously acquired knowledge to a new market and
subsequently hone its trading skills to the characteristics of that specific market.

7.3 Knowledge Transfer Framework

The knowledge transfer framework can be split in two phases: a transfer phase and
learning phase. During the transfer phase, the portable trading skills are transferred to
improve the initial agent performance. The learning phase enables the trading agent to
improve the portable trading skills in order to adapt better to a new environment.
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7.3.1 Transfer Phase

A common abstract MDP task M j
c = ⟨S j

c,A
j
c,P

j
k ,R

j
k⟩ which is characterised by an in-

variant domain Dc = ⟨Sc,Ac⟩ and the portable skills Tk =⟨Pk,Rk⟩ is defined in order
to enable skills transfer. When starting to solve the task M j

i in a new environment i,

a mapping h j
i is provided by the designer and is used to map the task domain Di to

the common domain Dc. Mapping h j
i is defined by the tuple ⟨ f j

i ,g
j
i ,z

j
i ⟩ of surjective

functions so that:

• f j
i : S j

i → S j
c maps the state space (or state components) of M j

i to that (or those)
of M j

c .

• g j
i : A j

i → A j
c maps the action space of M j

i to the action space of M j
c .

• z j
i : y j

i → y j
c maps the reward intervals defined by y j

i of M j
i to common reward

intervals defined by y j
c of M j

c . Function y j
i maps each reward r j

i in the range of
the reward function R j

i to a unique interval [a, b] = {xϵR|a≤ x≤ b}.

Mapping h j
i makes it possible for the different MDP domains D j

i, =⟨S
j
i ,A

j
i ⟩ to seem

the same to the agent. Within the knowledge transfer framework an MDP task M j
i

are defined as composed of task domain Di and task objectives Ti. When solving a new
MDP task M j

i , which has a task-specific domain and task-specific objectives, the former
is mapped to the invariant domain Dc to enable transfer of the portable task skills,
while the latter are still to be solved. This results in a new reduced task model M j

i′ =

⟨S j
c,A

j
c,P

j
i ,R

j
i ⟩ that has an invariant task domain Dc⟨Sc,Ac⟩ and task-specific objectives

Ti⟨Pi,Ri⟩. When entering a new simulation environment i, h j
i is used to transform the

specific task M j
i in a reduced model M j

i′ ⟨S
j
c,A

j
c,P

j
i ,R

j
i ⟩ with a common domain Dc

⟨Sc,Ac⟩ and task-specific objectives Ti⟨Pi,Ri⟩.

7.3.2 Learning Phase

Having defined M j
i′ for each task, transferred knowledge T j

k =⟨P j
k ,R

j
k⟩ is provided to

the agent at the beginning of the training in environment i. The aim is to improve the
transferred skills T j

k to solve M j
i′ . Let L j be the learning algorithm used to solve M j

i′:

L j : T j
k → T j

i . (7.1)

In each new environment, T j
k is initially used and subsequently improved to approxim-

ate the skill required for achieving the task objectives T j
i . Consider Ω the space of all
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tasks M j
i . Ω is the space of all tasks that the trading agent has experienced in the past

and is about to experience in the current environment; it does not refer to tasks to be
solved further in the future. The aim of the approach is to get a T j

k to be as close as
possible to all T j

i of all M j
i in Ω. Formally, at each step of the decision making, the aim

of the training algorithm L j is to minimise the difference between T j
k (portable skills)

and T j
i (task-specific skills).

The state-value function V π or action-value function Qπ and policy π are the trans-
ferred knowledge, as the abstract task parameters ⟨S j

c,,A
j
c,P

j
k ,R

j
k⟩ are the transferred

knowledge.
In this work, it is assumed that the broker designer provides hi, j and Ω so that the

transfer of skill is still beneficial for the execution of a new task. The transfer is not
beneficial, if the agent performs worse with transfer than without transfer. Moreover,
as the agent aims to continually learn, the learning of new tasks should continually
improve the acquired skill. In general, the acquired skills should not deteriorate with
new tasks, otherwise continuous learning across different tasks may not be really pos-
sible. Under-performing because of transfer and deterioration of the acquired skills is
called in this thesis negative transfer. In this work, it is assumed that the broker de-
signer provides hi, j and Ω so that a negative transfer is avoided. Negative transfer has
not been hindering information transfer in the experiments presented, and thus has not
been extensively studied as part of this work.

The proposed approach makes it possible for a trading agent to use previously ac-
quired trading skills to perform well across a wide range of new settings with little or
no environment-specific training. Such a portable broker has some initial trading know-
ledge that will guide its actions while learning to adapt to a new environment’s specific
characteristics.

7.4 Evaluation

The evaluation of the transfer approach proposed in this chapter consists of evaluation
of the novel SMDP formalisation described in Chapter 6. The SMDP components are
reused in a new environment by applying the mapping presented in Section 7.3. In
this evaluation, we transfer the Q-table from the Power TAC environment to TAC SCM
environment. The simulation environments used are outlined in Section 7.4.1. Section
7.4.2 presents the experiment setup and Section 7.4.3 analyses the results.
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7.4.1 Simulation Environments

Two challenging TAC environments TAC SCM (Collins et al., 2006) and Power TAC
(Ketter et al., 2015) are used in order to evaluate the performance of the SMDP ap-
proach. Section 2.1.3.1 describes TAC SCM and Power TAC in more detail.

7.4.2 Experiment Setup

The SMDP presented in Chapter 6, is built and tested within the Power TAC environ-
ment. Fundamentally, the SMDP is designed in a generic manner to be adaptable to
wide range of markets including TAC SCM. Similar to the Power TAC, the SCM TAC
has retail and wholesale markets. Analogously to Power TAC, in the retail markets,
the brokers need to optimise the retail profit by setting competitive and profitable PC
prices. Similarly, in the wholesale market, the broker needs to buy the PC components
on time to satisfy the retail market and try buy when the prices are lower. TAC SCM
game server offers different set of data to the agents. As presented in Figure 6.2, the
state estimator enables the agent to translate at run-time the environment signals si ϵS j

i

in common state sc ϵS j
c. Similarly, actions ac ϵA j

c selected by the M j
c (MDPs presented

in Chapter 6) are translated by the action interpreter into environment specific actions
ai ϵA j

i . While the state estimator implements the state space mapping f j
i , the action

interpreter implements the action mapping g j
i and the reward mapping z j

i is defined off-
line by the modeller. Chapters 3, 4 and 5 describe how the environment-specific signal
can be mapped to shaped rewards in the Power TAC.

Two series of controlled experiments were run to evaluate the performance of this
knowledge transfer approach. In each test environment a baseline broker was defined
to facilitate cross-environment comparison of test brokers in different scenarios. The
baseline brokers are implemented as presented in Section 6.4 and have 50 initial training
games in the environment in which they are situated. For the test brokers, 100 of the
games were used for training and 20 as test for all experiments. To evaluate the transfer
approach, two groups of controlled experiments are run: one to evaluate the overall
performance of the knowledge transfer approach and one to evaluate the knowledge
transfer ability of each MDP in the reasoning layer.
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7.4.3 Experiment Results

Overall Performance Table 7.1 shows the results of the knowledge transfer by com-
paring the performance of AstonTAC_V5 to the baseline agent. The comparison is
based on the metrics used in previous transfer learning work (Taylor and Stone, 2009;
Lazaric, 2012). The column Training-SCM-Power refers to training in TAC SCM then
in Power TAC and Training-Power-SCM to training in the inverse order. The know-
ledge transfer enables the broker to increase its performance with less training in the
target environment. As expected, when training and testing happen in the same envir-
onment, the broker performs better than when the source and target environments differ.
However, if the broker receives training in both environments, it outperforms the broker
that is tested and trained in the same environment. This presents a strong incentive for
broker agents to transfer knowledge across simulation environments.

Performance of each MDP module Table 7.2 shows the performance of each MDP
module by comparing the performance of AstonTAC_V5 to the baseline agent. Using
the baseline broker to initialise AstonTAC_V5, each MDP module is trained individu-
ally and measured the jumpstart in the target environments. These results show that a
transfer of the high-level skills (Mover

c ) is more advantageous than the transfer of lower
level (Mwhol

c and Mret
c ) as the highest jumpstarts are obtained when training only Mover

c .
Finally, transferring the Mret

c skills is slightly more beneficial than the transfer of Mwhol
c

skills. This is probably due to the fact that the retail profit is generally higher than the
procurement profit.
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Test in TAC SCM Test in Power TAC

Mover
c Mwhol

c Mret
c Mover

c Mwhol
c Mret

c

Training in TAC
SCM

118.8% 113.6% 115.7% 114.4% 106.9% 107.6%

Training in Power
TAC

117.6% 108.1% 108.2% 120.0% 115.2% 119.1%

Table 7.2: Jumpstart Performance of each MDP Module. This table presents the jump-
start performance of the test brokers when only one MDP of the brokers’ reasoning
component is trained at a time. The overall jumpstart performance of the test brokers is
compared to performance of the defined baseline broker.
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Figure 7.1: Learning Curves for AstonTAC_V5. This figure shows the learning curves
of the broker agents in Power TAC. It compares the performance of the agent with and
without transfer over 300 games.

Advantage of the Transfer Figure 7.1 shows the average total cash gained by the
broker over 300 short Power TAC games (1080 time steps). The curve annotated with

transfer illustrates the performance in Power TAC of a test broker agent when trained
in TAC SCM with 100 games and placed in Power TAC for further training. The curve
termed without transfer shows the performance of the same test broker when trained in
Power TAC without transfer. The performance of the broker with knowledge transfer is
better to its performance when no transfer is considered, throughout with the difference
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in performance being more significant the less games the agent has experienced.

7.5 Summary of the Chapter

This chapter proposes an efficient agent-centric knowledge transfer approach, which
enables information transfer between MDP tasks with different state spaces, different
action spaces, different reward functions and different state transition models. This pro-
posed transfer learning approach enables SMDP traders to reuse the acquired trading
skills in new and different markets. Basically, the knowledge transfer technique enables
agent designers to reuse (if not the whole reasoning SMDP) relevant MDPs of the reas-
oning engine, when building new trading agents. The current approach relies on the
designer to provide cross-domain mappings between the environment-specific MDPs
and the invariant MDPs.

An evaluation and analysis of the formalisation show that AstonTAC_V5 can out-
perform the top TAC-brokers. Moreover, the results of the evaluation show that this
knowledge transfer approach truly enables the agent to transfer trading skills to new
markets. The evaluation was based on two challenging and realistic TAC environments
with configurable settings. In the future, the proposed AstonTAC_V5 can be tested
in other environments, in order to further evaluate the performance of the knowledge
transfer approach. Moreover, there is a need for theoretical analysis of possible negative
transfers that may occur when selecting source tasks or specifying mapping functions.
The next chapter discusses the research directions that can be followed to realise the
theoretical analysis in order to provide more insights on predicting and avoiding negat-
ive transfers.
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Chapter 8

Conclusion and Future Perspectives

As automated trading applications are increasingly used in businesses, it is important to
develop robust agents that can continually learn and adapt their behaviours to markets.
To achieve this, software agent design needs to consider frequent environment changes
that may or may not be foreseen at design time and to enable portability of the learned
skills in new environments. This implies that similarly to a human trader, the trading
agent should have the ability to continually integrate new information in its decision
making process, without having to learn the trading skills from scratch and at the same
time has the ability to take suitable trading decisions in new markets without need for
specific initial training.

To achieve this, this thesis proposes an agent architecture that supports continuous
learning and adaptation to market changes and to new markets. Therefore, the focus
has been on designing, implementing and evaluating an adaptive, scalable and portable
reasoning structure for trading agents using a HRL and SMDPs. These techniques have,
in the past, been extensively used to model and solve decision making problems in ro-
botics and have heretofore not been applied to solve trading agents’ decision problems.
This latter problem type has generally been dealt with in the past using rule-based
approaches and only recently using techniques such as flat MDPs and reinforcement
learning. Since SMDP and HRL techniques enable modelling and learning of hierarch-
ical and parallel tasks, as well as providing skills transfer when facing new tasks, this
thesis demonstrates that these techniques offer the fundamental direction for modelling
a new generation of trading agents that will strive for lifelong learning and adaptation.
Using these techniques, this thesis puts forward a number of SMDP models and HRL
frameworks to address the key decision problems faced by a trading agent when buy-
ing and selling in retail and wholesale markets. This concluding chapter summarises
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the thesis by consolidating the research contributions in Section 8.1, and suggests key
research directions for future work in Section 8.2.

8.1 Summary of the Research Contributions

The main contribution of the thesis is the use of SMDP formalisms to design the reason-
ing engine of trading agents which trade in a multi-agent market environment. In order
to illustrate the development of adaptive, scalable and portable SMDP reasoning struc-
ture, Chapter 2 proposes an overall architecture of trading agents based on an SMDP
formalism and discusses the motivation of the reinforcement learning techniques em-
ployed in this work. The new architecture presents a certain number of advantages for
the trading agent such as autonomy, reactivity, pro-activeness, adaptation, scalability
and portability.

The second main contribution is the design of several (S)MDP-based reasoning
engines that have been implemented for AstonTAC when acting in Power TAC envir-
onment:

• In Chapter 3, a novel MDP-based framework is put forward to enable an electri-
city trading agent to minimise its short-term procurement cost and the imbalance
between the aggregated retail demand and electricity bought. When buying elec-
tricity to cover short-term needs in a smart grid market with a high penetration
of renewable electricity sources, the main challenges faced by a retailer are the
volatile retail demand, wholesale supply and prices, which are influenced by the
behaviour of market participants and the weather state. To address this challenge,
the decision problem is modelled as an MDP and uses a Monte Carlo approach to
learn the optimal policy. This procurement MDP has been used by AstonTAC to
compete in TAC tournaments with great success. An analysis of the tournament
results shows that AstonTAC is able to minimise its procurement cost and im-
balance by adapting its trading behaviour to wholesale market prices fluctuations
for the next 24 hours. This approach works well, if the retailer has a constant
number of customers in its portfolio and therefore having a low prediction error
of the retail demand. However, if this is not the case, in the considered simulation
environment, the retail demand becomes difficult to predict when the number of
contracted customers is constantly variable and therefore causing the retailers to
sometimes have high electricity excess.
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• To remedy the electricity excess problem, this thesis also proposes an SMDP-
based framework that extends the previous procurement MDP with the ability to
sell electricity surplus in the wholesale market (this contribution is described in
Chapter 4). To learn the procurement SMDP, the HAM approach was used, as it
enables to incorporate explicitly domain knowledge in the SMDP model in order
to speed up the learning process. This new HAM-based procurement approach
is evaluated in a series of controlled experiments and is shown to improve the
retailer performance in very volatile conditions. Compared to other retailers,
AstonTAC had the lowest procurement cost and imbalance level in all market
scenarios and did particularly well in market with very volatile retail demand and
wholesale prices.

• In Chapter 5, a novel retail SMDP framework is proposed to address the agent’s
decision making problem optimising simultaneously its market share and profit.
The key challenges when developing a retail strategy are the consideration of
the diversified behaviours of the market participants (customers and other retail
traders) and the trade-off existing between making profit and maintaining a high
market share. The behaviours of the market participants are automatically con-
sidered in the defined Markov state of the SMDP, whereas the multi-optimisation
problem is dealt with by defining a reward function that considers the level of
profit and the impact on the number of customers. The learning of the SMDP is
achieved with the MAXQ approach and SARSA(λ ) is used to learn the individual
MDPs of the hierarchy. An evaluation of AstonTAC in the Power TAC tourna-
ment 2013 shows that it can maintain a positive profit level and high number of
customers in different environment settings.

• In Chapter 6, an SMDP framework is put forward to optimise the whole retailer’s
decision problem by simultaneously optimising the wholesale and retail strategies
of the trading broker. While designing this SMDP, the core challenges were the
modelling and learning of concurrent decision processes. The option framework
is used to model the trader’s SMDP, which can continually be expanded to sup-
port optimisation of lower level decision problem. An analysis of the controlled
experiments results shows that using the SMDP-based retailer, AstonTAC, per-
forms better that other traders by continually improving its overall profit while
optimising simultaneously retail and wholesale strategies.

The third contribution is the modelling of a novel knowledge transfer framework that
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enables the trading agent to reuse the acquired skills in new markets without having
to learn afresh how to trade. The knowledge transfer approach put forward combines
two transfer approaches (inter-task mappings and agent-centric) to define an agent’s
reasoning that can be reused for decision making in new and different environments.
An evaluation of the transfer framework shows that AstonTAC can use the same core
reasoning system to act in electricity and personal computer markets.

8.2 Future Work

A number of possible research avenues can be followed in order to enhance the work
presented in this thesis. This thesis can directly be improved based on the following
extensions:

• Analysis of the non-stationary property of the Power TAC. As presented in Chapter
2, Power TAC provides configurable key features to create a dynamic, variable
and uncertain trading environment. In order to more deeply assert the ability of
the agent to continually learn in a dynamic environment, it is relevant to evaluate
the non-stationary property of the environment considered.

• Influence of weather. The weather has a major influence on the behaviour of
Power TAC environment. It can be interesting to know how far the cyclic beha-
viour of the weather can be exploited to improve the optimisation of the agent
trading strategy.

• The environment-specific MDPs presented in Chapters 3, 4 and 5 have been
defined in an ad-hoc manner. Additional experiments may be required to provide
more guidelines on the modelling of the trading MDPs and the tuning of learning
parameters (α, γ or λ ).

In future work, the focus should be on enabling the trading agent to fully adapt and
evolve without human intervention by automatically designing the new MDPs needed,
specifying the mapping rules (h j

i , the tuple ⟨ f j
i ,g

j
i ,z

j
i ⟩ as defined in Chapter 7 ) required

in the new environment, while being able to avoid negative transfer. Moreover, the
multi-agent learning techniques can be applied to improve the learning of a single agent.

The design of a flat MDP is generally a human task, which consists of identifying
the relevant environment variables which will make up the state components as well
as identifying the actions required and the reward functions. Although, it is not trivial
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to imagine the automation of such design process, many studies have been carried out
in order to enable automated discovery of SMDP options. These studies can be exten-
ded to enable the discovery of lower level MDP structures (Jonsson and Barto, 2001;
Mcgovern, 2002; Hengst, 2002; Mehta et al., 2008b; Busoniu et al., 2008; Luo et al.,
2008; Konidaris and Barreto, 2009).

Learning of mapping rules h j
i is difficult, but this could also be inspired by the same

discovery techniques that are suggested for enabling automated design of the MDP.
The challenge here is that the real-life market environments are more complex than the
environment considered in the presented studies. One of the questions that was not
fully answered is how to specify the mapping rules for h j

i so that a negative transfer
can be avoided. Some previous works provide an initial answer to this question, as the
function h j

i is a transformation function, which transforms M j
i to the abstract M j

c (see
Chapter 7). Given this, existing studies have addressed the formal mapping between
MDPs. Ng et al. (1999) investigated the policy invariance under transformation of the
reward function. The SMDP homomorphism approach of Ravindran (2003, 2004) is
used by Soni and Singh (2006); Rajendran and Huber (2009) to enable transfer of skills.
I believe that the ideas of these two approaches can be combined in order to specify a
transformation that would always eliminate the negative transfer between M j

i and M j
c .

Furthermore, multi-agent learning can enable agents to have a better understating of the
environment so that less successful agents can learn how to trade from more effective
agents (Zhang, 2011).

Overall this research is an innovative and promising work that has proposed a design
approach to develop adaptive and portable agent reasoning that can be trained in one
market and still performs well when deployed in a new and different market.
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Appendix A

AstonTAC Sensors

The focus of this section is on the description of the sensors that AstonTAC used in
Power TAC, as innovative approaches have been put forward. The sensors used by
AstonTAC in TAC SCM are similar to the sensors described in He et al. (2006).

A.1 Sensing the Markets
To act effectively in the Power TAC environment, environment-specific sensors are de-
veloped to support agent reasoning. To make decisions in the retail and in the wholesale
market, the broker uses the prediction of future prices, demand and supply as inputs. In
order to purchase enough energy and satisfy the contracted customers every simulated
hour, the broker agent needs to forecast the hourly energy demand and production of
the contracted customers. Similarly, to buy the energy at very low price, it needs to
forecast the energy price in the wholesale market.

When designing forecasting models in Power TAC, environment-specific challenges
need to be considered.

• Historical data may not be available before the game starts: As described in Sec-
tion 2.1.3.1, for the Power TAC each game is initialised with a different seed so
that the environment settings such as the number of customers, their preferences
and their energy consumption vary from game to game. The broker receives the
initial environment data information at the beginning of game, which implies that
the broker should be able to generate its prediction models at the beginning of
each game.

• Variable retail energy demand and production: Each customer in the environment
exhibits a particular consumption or production pattern, so that it is difficult to
generalise their behaviour in a model with the same model parameters. To address
this, a specific model is used to predict the behaviour of each customer. The
resulting retail demand is an aggregation of the demand of contracted customers.

• Behaviour of the brokers: Depending on the strategy of other competitors and on
the game setting, the energy prices in wholesale market may be very variable.
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• Influence of the weather: Real weather data are used to influence the energy
demand, supply and the wholesale market price. The weather is also one of the
elements that can increase prediction errors of the forecasting models. Without
an accurate prediction of the weather, the energy demand may be surprisingly
very high or low. Weather prediction information is offered by the Power TAC
game server.

• Real time acting and reacting: the energy broker has only 5 seconds to take the
hourly decisions in retail and wholesale market.

In Power TAC, environment-specific forecasting models need to be adaptive as the en-
vironment is variable and historical data may not be available. The prediction models
developed in this thesis work well by learning online and adapting to the environment
changes in order to improve its accuracy.

A.2 Forecasting with Non-Homogeneous Hidden Markov
Model

A.2.1 HMMs for Electricity Market Prediction
The idea is to improve the prediction of target variables by predicting their latent states
first, then using state-specific models to forecast their values. This section will intro-
duce the Non Homogeneous Hidden Markov Models (NHHMMs) used for forecasting
of energy consumption, electricity production and of wholesale prices.

HMMs are probabilistic models that are used to study sequential data. The homo-
geneous HMM considers a first order Markov chain where the conditional probability
for the next observation depends only on the current observation. The joint distribution
for a sequence of N states from the set Z of random variables is noted as follows in a
homogeneous Markov model (Bishop, 2006):

p(z1, · · · , zN) =
N

∏
n=2

p(zn|z1, · · · , zn−1) = p(z1)
N

∏
n=2

p(zn|zn−1), (A.1)

where {z1, · · · , zN}ϵZ.
The conditional distribution for the state zn is therefore: p(zn|z1 , · · · , zn−1)= p(zn|zn−1).

A basic homogeneous HMM framework is defined with four elements.

1. Hidden variables: HMM considers that there are some hidden random variables
that influence observed variables. {z1, · · · , z j}ϵZ, jϵN denotes the subset of hid-
den variables or latent variables. In this thesis, HMM is considered to have a
finite number of known hidden variables or states.

2. Observed variables: These are variables that are observed and that should be
predicted. {x1 , · · · , x j}ϵX , jϵN denotes the subset of observed random variables.
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Figure A.1: Graphical Structure of the HMM Model. This is a graphical representa-
tion of the HMM model with latent states (z1, ...,zt) and observed variables (x1, ...,x j).
The random variables are represented here using the nodes. The arrows represent the
dependencies. The values of the observed variables are conditioned by the state of the
latent variables. There is only one arrow that goes to a latent state. The transition to
next latent state depends on the current latent state. The value of an observed variable
is only conditioned by the current hidden state. tϵN represents the time.

The proposed models use discrete observed random variables. Figure A.1 de-
scribes the corresponding graphical structural forms of the HMM. It specifies the
conditional interdependencies between the random variables. The values of the
observed variables are conditioned by the states of the latent variables. In order
to compute the probable values of the observations, one needs to predict the state
of the latent variables. The joint distribution of this HMM model is therefore
(Bishop, 2006):

p(x1, · · · , xN ,z1, ...,zN) = p(z1)p(x1|z1)
N

∏
t=2

p(zt |zt−1)p(xt |zt).

The transition probabilities p(zt |zt−1) between the latent states and the emission
probabilities p(zt |zt−1)p(xt |zt) are considered to be time-independent.

3. Transition matrix: is the matrix of transition probabilities. The transition prob-
ability is the probability of transition from a latent variable zt at time t to another
zt+1 at time t+1. Ti j = p(zt+1 = j|zt = i) denotes the probability of moving from
hidden state zt = i at time t to state zt+1 = j at time t + 1. The transition matrix
satisfies 0≤ Ti j ≤ 1 with ∑

j
Ti j = 1.

4. Emission matrix: is the matrix of emission probabilities. The emission probabil-
ity is the probability of having an observable variable knowing the hidden state.
E jk = p(xt = k|zt = j) denotes the emission probability of the observed variable xt
from the latent state zt . The emission matrix satisfies 0≤E jk ≤ 1 with ∑

k
E jk = 1.
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The proposed HMMs are considered to be non-homogeneous, because the transition
probability between two states is time dependent. This means that it is possible to have
two energy consumption states i and j so that:

p(zt = j|zt−1 = i) ̸= p(zt+τ = j|zt−1+τ = i), (A.2)

where τ > 0 is a timespan. Technically, the transition between two consumption states
differs depending on the time of the day or of the year. The transitions between en-
ergy consumption directly depend on the time of the day, the values of the weather
parameters and on the consumer behaviour.

To predict the energy consumption and prices in the Power TAC environment, the
autoregressive HMM (ARHMM) is used. The ARHMM is widely used for prediction of
time series: speech recognition (Ephraim and Roberts, 2005), econometrics (Hamilton,
1989), meteorology (Zwiers and Von Storch, 1990; Parlange and Katz, 2000) and re-
cently for wind energy forecast (Ailliot and Monbet, 2012). Furthermore, as it was
possible to make use of the weather parameters to improve the forecast of energy pro-
duction, the input-output HMM (IOHMM) is also applied (Bengio and Frasconi, 1995,
1996; Bishop, 2006).

A.2.2 Implementation with Matlab
At the beginning of each game, the historical data from the set-up game are used to de-
termine the hidden states of the customer energy consumption, production and clearing
prices. A Matlab implementation of the Expectation Maximisation algorithm is used
to determine the hidden states from the observed variables and the implementation of
regression models to build the auto-regressive models of each hidden state. Moreover,
to determine the number of states of each target variables, this thesis uses an imple-
mentation of the variational Bayesian mixture (Hoffman et al., 2013; Bishop, 2006;
Attias, 1999) provided by Beal (2003). Finally a Java API 1 was used to interact with
MATLAB.

A.2.3 Evaluation during the Power TAC 2012
To provide some details about the performance of the prediction techniques in the
PowerTAC environment, this section analyses an arbitrary chosen game with two brokers
by observing the performance of the prediction one hour ahead over several days.

Figure A.2 shows the performance of the NHHMM for the forecast of the energy
consumption in KWh for a customer with Customer ID: 513 during the game 562
between time slots 1131 and 1298. The standard deviation of the prediction is 501.24
with a mean value of 5027.46 of the observations. For the same period of the game,
the performance of the IOHMM is analysed for the energy production as illustrated in
Figure A.3. In general, the standard deviation of the NHHMM predictions is 10% of

1matlabcontrol-4.1.0.jar: https://code.google.com/p/matlabcontrol/
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Figure A.2: Prediction of the Energy Consumption in Game 562 for the Customer-ID
513. The ARHMM works well for prediction, in the Power TAC using the dynamically
generated models at the beginning of the game.
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Figure A.3: Prediction of the Energy Production in Game 562 for the Customer-ID
525. Using the set-up data, the prediction of retail production with IOHMM works
well enough in the Power TAC environment to enable the retailer’s reasoning engine to
function effectively.
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the mean value of the observations. This poor prediction result is due to the fact that the
models were generated online using the limited data provided by the setup game. How-
ever, these online models were able to support the agent decision making as presented
in the thesis. The next section will brief outline robust prediction techniques that are
used in the real world.

A.3 Forecasting Techniques in Real World
This section reviews briefly the forecasting techniques used in the real world for pre-
dicting energy prices, demand or supply. A vast number of techniques have been pro-
posed to deal with energy trading, energy demand forecast and price forecast in real
life. The techniques used for energy demand and price forecasting can be classified in
two trends: times series models and machine learning. The commonly used time series
models include Autoregressive Integrated Moving Average (ARIMA) (Contreras et al.,
2003; Conejo et al., 2005b; Cancelo et al., 2008), Generalised Autoregressive Con-
ditional Heteroskedasticity (GARCH) (Garcia et al., 2005; Zheng et al., 2005), struc-
tural time series models (Harvey and Koopman, 1993) and multiple regression models
(Ramanathan et al., 1997). The machine learning techniques include Artificial Neural
Networks (ANN) (Gao et al., 2000; Yao et al., 2000; Zhang and Luh, 2005; Mandal
et al., 2005) and Wavelet transform (Yao et al., 2000; Conejo et al., 2005b; Nguyen
and Nabney, 2010). AR-HMM and IOHMM provide a more robust and faster way for
generating prediction models at run time. The HMMs enable to automatically consider
the intra-weekly and intra-daily behaviour of the energy demand and price.
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