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ABSTRACT
Passive infrared sensors have widespread use in many applica-
tions, including motion detectors for alarms, lighting systems
and hand dryers. Combinations of multiple PIR sensors have
also been used to count the number of humans passing through
doorways. In this paper, we demonstrate the potential of the
PIR sensor as a tool for occupancy estimation inside of a
monitored environment. Our approach shows how flexible
nonparametric machine learning algorithms extract useful in-
formation about the occupancy from a single PIR sensor. The
approach allows us to understand and make use of the motion
patterns generated by people within the monitored environ-
ment. The proposed counting system uses information about
those patterns to provide an accurate estimate of room occu-
pancy which can be updated every 30 seconds. The system
was successfully tested on data from more than 50 real office
meetings consisting of at most 14 room occupants.

INTRODUCTION
The increasing focus on designing human living environments
that are responsive to the people that inhabit them, raises the
demand for energy efficient and cost effective sensing devices
that are capable of counting the number of occupants in a
room. Existing systems for estimating the number of occu-
pants within a monitored room can be divided into two classes:
mechanisms that use a set of sensors which cover the whole
area of interest, and mechanisms that use simple sensors to
count individuals passing through all entry and exit locations.
Sensors that monitor the whole area of interest are typically
visible light and thermal cameras which are expensive and
suffer from low accuracy in crowded areas. Systems that track
movements at entry and exit locations using simple motion
sensors (e.g., passive infrared (PIR) sensors, break-beams, me-

chanical barriers, etc.) can be inaccurate due to their inability
to correctly identify the number of individuals passing through
these locations when that number becomes large. In addition,
such systems often require specific physical siting in the en-
vironment which usually entails costly specialist installation
([31], [18], [9]). These shortcomings raise the demand for
systems that can provide an accurate human occupancy count
in a closed environment, while being simple enough to install
by a non-expert, and that rely on low-cost data sensing devices
with low computational power. Simple, low-cost PIR sensors
can be readily obtained for less than $10 at time of press. PIR
sensors are already employed in commercial buildings for
various tasks related to human motion detection such as con-
trolling light switches [16] and triggering burglar alarms [22].
Systems using distributed networks of PIR sensors placed in
hallways and gateways of closed facilities to count the number
of people entering or exiting are well-studied ([20], [32], [34]).

By contrast to previous systems, we investigate the potential
of using a single low-cost PIR sensor for counting the number
of people inside of its field of view and propose a novel system
that relies on a single sensor to monitor a chosen room. We ex-
tract motion patterns from the raw sensor data with an infinite
hidden Markov model (iHMM) [3] and use those patterns to
infer the number of occupants using basic statistical regression
methods. This system is well-suited to the adaptive setting
on active deployment whereby the iHMM readily finds new
motion patterns in the signal as new data arrives.

We demonstrate the system configured to estimate an occu-
pancy count on various time windows ranging from 30 seconds
to 20 minutes. The result of these tests show that this approach
can accurately estimate room occupancy count to within ±1
for time windows of less than 2 minutes. We also explore the
challenges imposed by using a single PIR sensor in terms of
the monitored room size, maximum number of distinguishable
occupants, and the restrictions imposed by the sensor’s range
and view angle.



CHALLENGES OF HUMAN OCCUPANCY COUNTING
WITH SINGLE PIR SENSOR
The aim of this work is to obtain an accurate online estimate of
the number of occupants in an office meeting using data from
a single PIR sensor sitted inside of the room. The simplicity of
the sensor will necessarily create some specific challenges that
must be carefully considered when modeling the data. A PIR
sensor outputs the change in temperature of a passing body
compared to the background temperature of the field of view,
therefore we need to verify the sensitivity of our findings to
the choice of a monitored room in which each experiment is
performed. Since most infrared radiation is reflected from the
human body, occupants within the monitored environment can
be easily blocked from the field of view of a single sensor by
other occupants. In addition, because the digital output of the
sensor saturates at a maximum value, there is a limited range
motion that we can actually differentiate with this type of sen-
sor. For example, if two or more people are sufficiently active
and close to the sensor to generate more than the maximum
range of detectable motion, the sensor would be unable to
detect the motion patterns of the rest of the occupants. That is,
the occupants occlude each other not only by physically con-
straining the field of view of the sensor, but also by exceeding
the maximum range of motion that the PIR can measure.

We notice that more occupants would on average generate in-
creasing range of motion as long as we observe them for long
periods of time. Therefore, a simplistic approach to estimate
occupancy is to assume that occupancy count increases with
the increase of motion. However, within short observation
time windows (e.g. 30 seconds or less) it is likely that the tem-
porally local behavior of particular individuals will undermine
this assumption. Therefore we need to carefully handle such
temporally local behaviors to extract properties of the global
behavior of interest, whether a participant is in the room or
not.

RELATED WORK
Occupancy counting in an environment is a crucial task in
human sensing and as such it has been widely studied. Yet,
it is typically approached by employing either a occupancy
count sensor that covers the entire area of interest, or keeping a
tally of people entering and leaving at all entry and exit points.
While the first approach is generally more accurate, the higher
price and energy consumption of these systems makes them
prohibitive for many real-world applications.

1. Person-counting sensors that cover the entire area of interest
usually consist of high resolution video, stereo cameras and
thermal imaging devices. A tracking algorithm is used to
count human bodies from the image, for example by us-
ing supervised machine learning from dot-annotated images
[17], or using head-detection algorithms from stereo camera
images [29]. [6] used unsupervised machine learning to seg-
ment components of homogeneous motion before applying
Bayesian regression, and this approach shows promising
improvements for locating and counting people in crowded
places from video data. [31] proposed a real-time network
that does not depend upon object tracking, which makes
the scheme much less computationally prohibitive; the high

cost of the data acquisition device still remains an issue
though.

2. Considerable effort has been invested in trying to avoid the
need for expensive devices. Most progress in that direction
is obtained by systems that rely on counting at all entry
and exit locations of a closed environment ([11], [33]). For
example ([34], [32]) placed three PIR sensors in a hallway
to identify direction of movement and relative location of
people passing. [1] instead combined PIR sensors with
reed switch door sensors for occupancy counting with the
purpose of optimizing the energy consumption of an office
building. [30] presented a similar approach, but using only
PIR sensors at all entries and exits.

3. Alternative systems use multiple low-price sensors at differ-
ent locations which are tied through a probabilistic model
that combines information from the different outputs [13].
[8] used a probabilistic belief network to model occupancy
based on data from multiple PIR sensors (4 PIR sensors
per room) placed on the walls rather then entry/exit loca-
tions. This method assumes that the number of occupants is
constant over time and that the system can be trained on typ-
ical behaviors common for the monitored room. The belief
network is calibrated on historical data for the monitored
rooms and does not adapt after the training stage, which
makes the system highly dependent on the historical data
and sensitive to non-observed behavior. [15] used hidden
Markov models to quantify occupancy count from extracted
features of multiple types and locations of energy-efficient
sensors. This approach shows average accuracy of 80% in
open-plan buildings, where accuracy here is the number of
correctly estimated points divided by total number of points.

4. Assuming unlimited resources, perhaps the most accurate
occupancy count can be obtained from systems that make
use of both expensive sensors to monitor larger areas of a
building, multiple motion based sensors monitoring each en-
trance and exit, historical data of building occupancy, CO2
sensors and smoke detectors etc. ([21], [9]). In the sim-
plified case of single room monitoring, much research has
been directed towards systems with diverse sets of sensors
that are able to infer comprehensive human activity ([14],
[5]), but the focus of such systems is behavior modeling
rather then occupancy counting, and these systems therefore
have high complexity and cost.
In contrast, we suggest using a single PIR sensor and flexi-
ble probabilistic model to model simpler behavior that are
closely related to the number of attendees.

SYSTEM OVERVIEW
In this section we describe the key stages in our proposed
solution to occupancy estimation (Figure 1). The data acqui-
sition process and the statistical nature of the recorded PIR
output is discussed in detail in the Experimental setup. We
split the training data into different time windows of PIR out-
put to examine the duration of signal sufficient to accurately
estimate number of monitored people. Once data has been
partitioned to smaller time windows, all of the training data
is clustered using iHMM in order to extract physical behavior



Figure 1. Architecture of the proposed occupancy counting system.

of interest from the raw PIR signal. The behavior that biases
the occupancy estimation is filtered and we model the remain-
ing data using Laplace distribution. The estimated Laplace
parameters describe well how populated a meeting has been
and can be efficiently used in a regression model. Different re-
gression models are used for more and less occupied meetings
to maximize estimation accuracy.

Figure 2. Image of the data acquisition board consisting of a NUCLEO
F401-RE mbed microcontroller board with a single PIR sensor on a PCB
connected to the ADC port of the microcontroller through the Arduino
connector.

EXPERIMENTAL SETUP
Collection devices
In this study we attached a single PIR motion sensor (Pana-
sonic NaPiOn series AMN21111) on a PCB to an ARM mbed
NUCLEO F401-RE microcontroller board, powered through
a USB cable that connects it to a laptop. The PIR sensor is
an analog output sensor as opposed to digital output ones in
NaPiOn series. It is a standard type PIR, 14.5mm tall, lens

surface area 9.5mm and 9.8mm mounting hole. It has 5m de-
tection range, horizontal view of 82o and top (vertical) view of
100o and records approximately 30 single dimensional digital
measurements per second. The PIR is connected to the 12-bit
ADC embedded in ST Nucleo-F401-RE microcontroller as
shown in Figure 2. We use the mbed compiler to read the ana-
log values from the PIR. The mbed compiler uses a function
to convert analog values to digital in a range from 0.0 to 1.0
where 0.0 represents 0 volt while 1.0 represents Vdd. Analog
values between are represented by a floating-point number
between 0.0 and 1.0. The board is placed in the middle of the
room, adjacent to the wider wall in rectangular rooms, with
the sensor facing the room interior. The height at which the
sensor is positioned varies (between 0.70m and 1.00m). The
analog data generated by the sensor is sent to the ADC inside
the microcontroller that converts analog data to digital, which
is then transmitted to the laptop through the USB interface for
further processing.

Figure 3. Example of a monitored room with no occupants inside. The
board placed in a typical position in the middle of the room at 1m height.

Data collection
The data acquisition board is deployed in 7 different confer-
ence rooms (see Figure 3) in an office building, where the
rooms vary in dimensions, access to sunlight and maximum
occupant capacity. Data has been collected from randomly
chosen real meetings in the company and so there is variation
in the number of individuals and the nature of each meeting.
The monitored meetings involved white board sessions; seated
formal meetings; slide presentations; shared conference calls
etc. The board was carefully placed in the middle of the room,
in order to maximize the PIR sensor coverage. Upon the start
of each meeting sensor data was recorded where the first and
the last five minutes of the recorded PIR sensor data are re-
moved to account for the system installation and occupants
to settling in. Note that the start and the end of a meeting
can be automatically detected from the PIR output with great
accuracy. However, at the begining and at the end of a meeting
true number of occupants changes quicker than the system
fastest response time, making the labelling of the ground truth
inaccurate.

Sensor data description
The analog output of the PIR sensor is converted to real num-
bers in the range of 0.0 to 1.0 with 4 decimal place. The
temporal fluctuations in this signal reflect certain movements



Figure 4. Raw digital data recorded using the standard digital PIR sen-
sor for 10 seconds.

in the monitored environment (Figure 4). When there is a
lot of movement in the room, the PIR analog output reaches
the maximum value, which, in turn, is converted to 1.0 by
the ADC. The challenge we are addressing entails analyzing
these fluctuations to infer the number of people occupying the
monitored room. The PIR output for a typical 1 hour meeting
comprises a set of approximately 120,000 real numbers.

Figure 5 depicts the statistical distribution of the sensor data
from different meetings, which ignores the time ordering of
the data. The sharp peak in the distribution at the median
value, combined with the fat tails and the truncation at the
maximum ADC output 1.0 suggest that for longer durations
the PIR data is well described by a mixture of a truncated
Laplace distribution centred at the median value, and a Dirac
delta distribution centered at 1.

(a) 9 people (b) 2 people (c) 5 people

Figure 5. Histogram of raw PIR data from three different meetings with
varying number of occupants and approximately 1 hour duration.

LAPLACE MODELLING
We showed that the PIR output for long segments of differ-
ent meetings is well described with a mixture of a truncated
Laplace distribution and a Dirac delta distribution centred at
1.0. Ignoring the spike, it is then reasonable to model the data
from different meetings with different Laplace distributions,
x j ∼L (µ j,b j) where x j denotes the sensor data stream of
PIR measurements from meeting j collated into a single vector,
and (µ j,b j) are respectively the location and spread parameter
of the Laplace. We estimate µ1, . . . ,µJ and b1, . . . ,bJ using:

µ j = median(x j) ,b j =
1

N j
∑

i:xi∈x j

∣∣xi−µ j
∣∣

where J denotes the number of training meetings (in this study
J = 53) and N j denotes the number of PIR output points for

meeting j. In Figure 6 we plot each µ j and b j against the num-
ber of people that have been present at meeting j. While the
location parameters do not vary substantially across meetings,
we observe that meetings with higher occupancy are indeed
more likely to have larger spread, as expected. In addition, we
notice that the relationship between the count and the spread
parameter changes quite substantially for meetings with more
than about 8 occupants. Examination of the monitored rooms
shows that assuming normal seating patterns 8 occupants are
the most that can fit within the field of view of the standard PIR
type sensor without occupants occluding each other. We be-
lieve this is a limitation of the monitored environment and the
position of the PIR sensor, rather than our proposed counting
algorithm.

(a) Laplace spread

(b) Laplace location

Figure 6. Number of occupants for different meetings plotted against
the Laplace parameters.

Regression component
The small amount of regression data coupled with the sin-
gle predictor variables make the generalized linear models
(GLMs) an appropriate parsimonious choice for modeling the
dependence between the Laplace spread parameter and the
occupancy count. We will treat low occupancy meetings with
fewer than 8 occupants separately from the ones with 8 or
more occupants, where for most practical purposes we need an
unsupervised way of switching between those two regressions.
The easier, but less accurate approach would be stratifying
at a hard value of b 0.09, however later when we introduce
a behaviour extraction stage, we will be able to tackle the
swithing more efficiently. Multiple types of GLM regressions
were compared in terms of mean absolute error; the best fit
for meetings with up to 7 occupants is obtained with a linear
model with Gaussian outputs; for the second strata of high
occupancy meetings a log-linear model with Poisson outputs
as for high occupancy meetings the number of occupants in-
creases exponentially with the spread parameter.



The mean absolute error for the low occupancy strata (less than
8 individuals) is less than ±1. This suggests that with Laplace
parameters estimated from the PIR data from an observed
meeting, we can identify the number of occupants to within±1
individual. For the high occupancy strata the count prediction
accuracy is reduced, but some relationship can be captured
with mean absolute error of the log-linear model less than
±1.25 individuals.

While there exist much more complex regression models
which could be used (e.g. support vector regression, kernel re-
gression, Gaussian process regression or convolutional neural
networks), they require substantial amounts of memory, com-
putational power and training data. Furthermore, with such
complex models, the model is hard to interpret. Specifically,
these models often have large numbers of parameters and it is
extremely difficult to predict from an analysis of the trained
model what the effect on the occupancy count prediction will
be when varying any one of these parameters. For example,
support vector regression requires that all support vectors are
held in memory, and requires quadratic programming to train
the regression model [25]. Similarly, while convolutional
neural networks have been used to solve difficult regression
problems to high prediction accuracy ([4], [12], [23]), these
require vast amounts of training data and computational power
which makes them generally out of reach of low power em-
bedded microcontroller systems.

By comparison, GLMs, because they lead to convex opti-
mization problems in parameter training, can be trained using
simple gradient descent algorithms.

Time window duration
The Laplace spread parameters for each meeting were esti-
mated from all of the PIR data for that meeting, most often
approximately an hour. Therefore, to make a prediction for
the occupancy count, we have to wait the whole duration of
the meeting. To be practical, the system needs to be able to
work for much shorter time windows.

We next investigate this by fitting a Laplace distribution to
shorter time segments of the raw sensor data. Instead of esti-
mating parameters from the data for the whole meeting, we
estimate the same Laplace parameters for every 2 minutes time
windows, that is we partition each meeting in multiple smaller,
non-overlapping time windows. The problem we will face is
that shorter time segments of PIR data are more conflated with
short-term individual behavior which is not representative of
the current number of occupants. Figure 7 shows estimates of
the spread parameters evaluated every consecutive 2 minutes
of a meeting with 9 occupants present for the entire duration.

Ideally, the Laplace parameters would be almost constant
across all time windows, indicating that data recorded from the
same meeting is summarized with the same parameter values.
The varying spread of the raw data from the same meeting is
explained by the varying movements of the occupants in that
duration. This variation will be due to temporally local and/or
individual behaviors which depend upon the precise nature
of the meeting and the habits of the occupants, the effect of
which diminishes over longer time windows.

We address this problem of the Laplace parameters varying
during the meeting by clustering the training data into groups
of similar motion patterns and then matching the motion struc-
ture discovered onto patterns of human behavior we expect to
observe. To have a sufficiently flexible grouping of behavior,
and to allow the number of behaviors to grow as more data be-
comes available, we model these groupings using the infinite
hidden Markov model (iHMM) [3]. In this way, instead of
using all the PIR data we focus the analysis only on the clus-
ters that are most universally likely to describe the occupancy
count. This approach substantially reduces the variation in
spread parameters over the duration of the meeting, for shorter
time windows (Figure 7).

(a) 2 minutes windows

(b) 30 seconds windows

Figure 7. Laplace spread parameters for different time windows of a
meeting with 9 occupants. The red line shows the spread parameter
estimated from all the raw PIR sensor data, whereas the blue line shows
the spread parameter estimated from only points in the selected small
motion behavior.

EXTRACTING BEHAVIOR FROM PIR DATA

The infinite hidden Markov model (iHMM)
The hidden Markov model (HMM) is a widely used probabilis-
tic model for segmentation of time series data and has been
successfully used to model behavioral patterns of sequential
data from different sources ([27], [2], [7], [10]). Typically,
some K number of different temporal patterns is assumed a
priori and we learn a clustering of the data into K groups in-
corporating some measure of similarity between points and
the time dynamics of the data. The nature of the clustering is
highly dependent on the choice of K. The time dynamics of
the data is modelled by the Markov assumption for the discrete
hidden states, one state per cluster, the HMM assumes the ob-
served data is independent given the hidden states. However,
major constraint of the HMM is that we do not know K in



advance and further we should assume that K will change as
the nature of the meetings, the occupants and the occupancy
count changes. That is, we will assume that the number of
behavioral patterns will approach infinity as the data grows
to infinity, but will be some finite unknown K+ for any finite
subset of the data. These are the modeling assumptions of the
iHMM [3]. The iHMM adapts its complexity to the structure
in the data making it a natural choice for the segmentation of
streaming data. In Figure 8 we show the clustering produced
with iHMM of 15 seconds PIR signal, where different colors
denote different clusters. The iHMM has been trained on all
of the training data which exceeds 53 hours rather than just on
the 15 seconds that are displayed.

Figure 8. Clustering output of the iHMM applied to 15 seconds PIR
data. Different colors denote different clusters (states); the number of
the clusters has not be specified a priori, but learned from the data.

Assuming T is the number of PIR recordings from all meet-
ings let us denote the raw sensor data with x1, . . . ,xT . Every
observed recording t ∈ {1, . . . ,T} is associated with a hidden
variable zt indicating the cluster (state) of that observation
and every state k ∈ {1, . . . ,K+} is modeled with a Laplace
distribution L (µ,bk) with fixed location parameter µ and
cluster specific spread bk. Conveniently, the Laplace distri-
bution with fixed location has a conjugate prior. Further we
observed similar location parameter values across different
meetings. Transitions between states are governed by Markov
dynamics parameterized by the transition matrix π , where
πi j = p(zt = k |zt−1 = i ) for t > 1 and the vector π0 denotes
the initial state probabilities for t = 1. Given the model param-
eters, the joint distribution over hidden states and the observa-
tions can be written as:

p(z,x |π,b ) =
T

∏
t=1

p(zt |zt−1 ) p(xt |zt ) (1)

To complete the Bayesian description of the iHMM we need
to specify the priors over the random variables in the model.
The conjugate choice for prior over the spread parameters
bk is the inverse-gamma distribution, bk ∼ InvGamma(ν0,χ0)
and to obtain flexible non-fixed transition matrix we place
a hierarchical Dirichlet process (HDP) [26] prior over π ,
(HDP(α,γ,G0)). The hierarchical Dirichlet process (HDP) is
set of coupled Dirichlet processes that can capture the more
complex structure of an HMM transition matrix. The full
Bayesian construction of the iHMM is often referred to as the
HDP-HMM.

The Dirichlet process is a stochastic process most commonly
used to construct infinite mixture models. It is parameter-
ized by a positive concentration parameter α > 0 and by its
expectation G0 which is a function. While in finite mixture
models, we typically assume that the observed data groups
into some finite K number of clusters, in infinite mixture mod-
els we assume that as more data is observed from the same
population more clusters arise. In infinite mixture models, we
learn the number of clusters K+ from the data and instead we
parametrize the strength of belief in the prior structure through
α .

In a similar way that Dirichlet processes can be used to infer
the number of clusters in non time-ordered data the HDP
allows us to infer the number of states in time series clustering.
It is parameterized by a global concentration parameter γ

that controls the rate at which new clusters are generated on
observing more data. For a given amount of observed data, a
large γ value leads to more clusters than a small value of γ .
The local concentration parameter α controls how likely we
are to observe repeating sequences of existing clusters. The
expectation function G0 is the prior distribution for the cluster
parameters b. The transition matrix π is modeled with an HDP
characterized by the transition probability:

p(zt = k |zt−1 = i )∝

{
N−t

k,i +
αM−t

k
∑k Mk+γ

for an existing state k
αγ

∑k Mk+γ
for a new state

(2)
where N−t

k,i counts the number of transitions between state i
and k have previously occurred, excluding observation t, and
Mk counts how many times state k has been chosen with a new
transition.

Matching motion patterns to behavior
By fitting an infinite HMM to the raw PIR data, we aim to
cluster together segments of the time series that are similar.
In this way, observations that are grouped into the same clus-
ter are more likely to describe the same physical pattern of
movement. Note that typical human behaviors (e.g. walking,
sitting down, standing up) are complex and so are composed
of many different types of motion. Without making restrictive
assumptions about the movement described by the recorded
PIR signal, we are more likely to cluster together similar types
of motion rather than composite human behaviors. At the same
time obtaining the structure of the observed motion patterns is
key to understanding how the different human behaviors are
formed and in what way those behaviors differ based on the
sequence of movements that form them. For our problem of
occupancy counting, mapping sequences of motion patterns
into composite behaviors is not the focus of the problem. How-
ever, HMMs have already proven useful for the more difficult
problem of tracking the activity of monitored individuals in
different problem domains ([19], [27]).

We describe the collection of motion patterns that describe
small movements as ’small motion behavior’. In order to
separate parts of the PIR output describing this small motion
behavior, to filter out more larger movements, we examine the
PIR recordings from an empty room. More precisely, we ex-
amine which clusters occur for empty rooms once the iHMM



is fitted to whole of the data. Then we identify segments of the
PIR signal, from occupied rooms, that are grouped together un-
der clusters found in non-occupied rooms. The iHMM groups
together motions that are temporally similar, so larger move-
ments would be clustered in separate groups and we can easily
filter them out. Large temporally local fluctuations in the PIR
output reflect some temporally local human behavior and will
bias the occupancy count estimate (unless more information
is available about the nature of these behaviors). In Figure 8
the blue and green clusters are motions describing the ’small
motion behavior’ and the data belonging to the red cluster
is filtered out. Note that red cluster groups both data with
bigger and smaller PIR output, as points are clustered with
respect to their common spread and time dynamics rather than
absolute value. By focusing only on specific clusters, we are
comparing Laplace parameters estimated from comparable
(similar) sequences of PIR data which will make our estimates
of those parameters less variable and more robust to reduc-
ing the occupancy count estimate time window (c.f. Figure
7). In the collected training data approximately 70% of all of
the training data groups into small motion behavior and the
remaining 30% of the PIR output is filtered out.

Filtering out undesired motion behaviors and reducing the
observation time windows will also help us exploit a more
accurate switching mechanism between the two regression
models for more and less occupied enviroment when needed.
One efficient way we suggest for that switching would be to
specify an interval of uncertainty for b; estimated b falling
inside of that interval would imply uncertainty about which
regression model to use. Whenever values for b estimated
from the latest PIR output are from the uncertainty region,
we do not choose a regression model but we proceed by esti-
mating another b from the next window. We repeat that step
if needed and based the first value of estimated b and also
obtained sequence of values b so far, we choose with higher
certainty the appropriate regression model to output the occu-
pancy count. Using this mechanism can cause certain delays
in the estimation output, but delays rarely exceed 2, 3 times
of the aimed time window duration(for example delay of 1
minute and 30 seconds instead of the assumed 30 seconds
windows for estimation).

SYSTEM EVALUATION
In this staged-the-wild study we recorded PIR sensor data
from 53 real-life meetings, 37 of those had up to 7 participants,
the remaining 16 had more than 7, and the 2 most occupied
meetings had 23 and 29 occupants, all with different meeting
durations. The two most occupied meetings are excluded from
the analysis as for the size of the monitored rooms and the
viewing angle of the PIR sensor, data recorded from such
over-populated meeting rooms is not meaningful. Indeed, the
maximum seating space in the biggest of the monitored rooms
is 14 people and typically exceeding this capacity leads to
severely limiting the field of view of the PIR sensor which
causes severe sensor occlusion and irretrievably biased sensor
output.

We recorded simply the PIR sensor output and the true number
of occupants for each meeting, so the study has been highly

Table 1. Percentage of time windows across all meetings (with less than
8 people) where the predicted number of occupants is within ±1 of the
true number of occupants. In the square brackets is the percentage of
time windows where the predicted number of occupants is within ±2 of
the true number of occupants.

Raw data Small motion behavior
30 seconds 63% [93%] 80% [96%]
1 minute 80% [93%] 83% [97%]
2 minutes 82% [96%] 85% [99%]
20 minutes 89% [97%] 92% [97%]

Table 2. Percentage of time windows across all meetings (with at least
8 people) where the predicted number of occupants is within ±1 of the
true number of occupants. In the square brackets is the percentage of
time windows where the predicted number of occupants is within ±2 of
the true number of occupants.

Raw data Small motion behavior
5 minutes 68% [79%] 59% [86%]
20 minutes 79% [84%] 71% [84%]

non-invasive. The data from each meeting is split in small
observation windows in order to track how the accuracy of the
occupancy count system changes with the count estimation
time window. Note that if we wish to receive an estimate of the
current room occupancy every 30 seconds, naturally the accu-
racy of that estimate would be lower than an estimate obtained
every 2 minutes or every 20 minutes. For numerous applica-
tions an occupancy count estimation updated only every 20
minutes would not be of great value so there is an inherent
trade-off between accuracy and count estimate time window.
We investigated time windows of 20 minutes, 2 minutes, 1
minute and 30 seconds. Additional investigation showed that
processing windows longer than 20 minutes does not appear
to provide a substantial increase in occupancy count estima-
tion. We still treat low and high occupancy count meetings
differently in the analysis due to the different statistical nature
of the data in these different occupancy strata.

Fewer than 8 occupants
In the case of a small numbers of occupants, a linear Gaussian
regression model performed best in terms of mean absolute
prediction error (MAE) and is used to predict the human oc-
cupancy count from the spread parameter alone (Figure 9).
For shorter estimation time windows, the relationship between
occupancy count and PIR data spread becomes unclear, the
effect of which is clear from the numerical prediction accuracy
estimates for predictions within ±1 and ±2 (Table 1) of the
true occupancy count.

After the raw data is clustered with the Laplace iHMM and
the clusters describing the saddle behavior are separated, we
estimate spread parameters only from the data representing
these behaviors. Following the same recipe, Gaussian linear
regression is used to predict occupancy count from the “sta-
bilized” Laplace spreads for different count estimation time
windows (Figure 10 and second column of Table 1). The re-
sulting overall increase in prediction accuracy confirms the
positive effect of iHMM behavior clustering.



(a) 20 minutes (b) 2 minutes

(c) 1 minute (d) 30 seconds

Figure 9. Box plots of Laplace spread parameters estimated from raw PIR data for different meetings with up to 7 occupants, over different estimation
time window durations. Top and bottom edges of each blue box are 25th and 75th percentiles respectively, the middle red line is the median, red pluses
denote outliers.

At least 8 occupants
For larger numbers of occupants which occlude each other, a
Poisson log-linear regression model is found to provide the
most accurate predictions (Figure 11). The predictive power
of the Laplace parameters reduces significantly in this high
occupancy strata due to the reasons discussed above and the
error of this approach for windows smaller than 5 minutes is
substantial. In addition, the benefits of behavior extraction
stage are diminishing and regression on both Laplace parame-
ters evaluated for both the raw data and “stabilized” Laplace
parameters performs almost equally in terms of mean absolute
error (MAE). The estimation accuracy within ±1 person and
within ±2 can be found in Table 2.

COMPUTATIONAL EFFICIENCY
Practical applications of Bayesian probabilistic models such
as the iHMM have been few largely due to the complex and
computationally demanding inference algorithms involved for
learning the parameters of such models. As a bayesian non-
parametric probabilistic model for time series data, the iHMM
is no exception and careful consideration is needed to choose
fitting procedures which are tractable for implementation in
low-power embedded microcontroller hardware. Eventually,
the algorithms developed in this paper will be deployed in
a resource constrained embedded system in which a micro-
processor will take the data from the PIR sensor and run the
algorithms to make occupancy prediction in a smart room
context. The microprocessor must make the prediction in real-
time at the end of every observation window, and therefore the
algorithms must be optimized for performance. In this study
we compare several different iHMM inference algorithms: the

Table 3. Mean absolute error (MAE, interquartile range in brackets)
as a measure of occupancy count prediction accuracy using “stabilized”
Laplace parameters from PIR data only for small motion behavior clus-
ters. Each column corresponds to iHMM clustering performed using
a different inference algorithm. Last row shows speed comparison in
terms of iterations to convergence.

Beam sampler Gibbs sampler Iterative MAP
30 sec. 0.95(0.7) 0.98(0.8) 0.99(0.8)
1 min. 0.87(0.7) 0.89(0.8) 0.91(0.7)
2 min. 0.79(0.6) 0.81(0.7) 0.84(0.7)
20 min. 0.64(0.6) 0.72(0.6) 0.70(0.7)

Iterations 125 100 6

beam sampler [28], direct assignments Gibbs sampler [26] and
iterative maximum a posteriori (MAP) inference [24] (Table
3). Note that we are less interested in the quality of fit of the
iHMM to the raw PIR sensor data than the prediction error
of the regression component of the system using estimates
of the “stabilized” Laplace parameters obtained using that
iHMM, where the parameters have been estimated using dif-
ferent iHMM inference algorithms. This is because ultimately
we care about accurate human occupancy counting rather than
learning the iHMM per se. We report the iterations that each
inference algorithm required to convergence where an iteration
consist of a full sweep through the training data and the model
parameters. Computational price of a single iteration across
algorithms is not equivalent, but for the chosen application is
comparable.

Theoretically, both beam and Gibbs sampler inference algo-
rithms are guaranteed to converge on the optimal iHMM fit
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Figure 10. Box plots of the “stabilized” spread parameters estimated only from the saddle behavior clusters across all meetings with at most 7 occupants.

eventually. However, the stochastic nature of both samplers
makes them highly computationally demanding and they can
easily take two orders of magnitude more iterations to con-
verge than iterative MAP. At convergence both stochastic al-
gorithms will generally outperform iterative MAP in terms
of iHMM parameter estimate accuracy, but we observe that
the improvement due to better iHMM parameter estimates
does not translate into sufficiently improved occupancy count
to justify such large increase in computational effort over it-
erative MAP. Indeed, iterative MAP is simple enough that
it can be used where computational resources are at a pre-
mium, as would be the case for our experimental setup using
a microcontroller board.

DISCUSSION AND FUTURE WORK
Type of the PIR sensor
In addition to the standard type PIR sensor, we also use a
slight motion type PIR (Panasonic NaPiOn AMN 22112 series)
in the same experiments in order to validate the developed
models for different PIR. The standard sensor shows to be
more promising then the slight motion detector mostly due
to the larger field of view. The slight motion sensor does
not cover all of the monitored room with only 2m range and
occupants seated in particular areas of the monitored room
cannot be seen by the sensor. The accuracy of the occupancy
count system would benefit from exploring additional types
of PIR sensors with more sensitivity, range and wider field of
view. Further, installing a second PIR sensor on the opposite
side of the room and analyzing the output of the two jointly
may help to address both the problem of mutual occlusion of
the sensor by the occupants, and the problem of limited field
of view.

Position of the sensor
The data acquisition board was placed on a table positioned
approximately in the middle of the room next to the wall. The
table was part of the chosen office room furniture and as a
result its height varied slightly in the different meeting rooms.
The results did not seem to be influenced by the exact height
of the table, but placing the sensor on one particular side of
the room led to occupants occluding each other during more
populated meetings (typically with 8 or more people). This
problem can be easily addressed by testing different positions
of the PIR sensor; a promising start would be the ceiling of the
room. This would make the installation of the system more
challenging, but it is likely to lead to a consistent improve-
ment of accuracy due to the clear unobstructed view of all
the occupants that the sensor will be afforded in this physical
configuration. In addition, PIR sensors installed on the ceiling
are likely to increase the maximum distinguishable occupancy
count. The accuracy of the system and its invariance to sensor
location and position can additionally be improved with more
training data accounting for different physical configuration
scenarios.

Behavior modeling
In the current implementation, the key assumption made is
that small movement patterns will describe better the num-
ber of people in a room, as they are less intentional and are
independent of the nature of the meetings. We expect this
assumption to hold in most human counting scenarios and no
additional information about the nature of the meeting has
been incorporated. In effect, we have sacrificed some of the
predictive accuracy to obtain a generally applicable human
occupancy counting system. Where additional information
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Figure 11. Box plots of the spread parameters over all meetings with number of occupants varying between 8 and 14.

is available about the behavior of the monitored occupants,
incorporating this information into our probabilistic model
will most likely improve the accuracy of the system and may
even help us address other problems different from that of
occupancy counting. For example, if we assume that we are
monitoring conference meetings with duration of 1 hour start-
ing on the hour, we would immediately know that occupancy
changes occur only once every hour and we can use the whole
hour PIR data to improve our predictions.

Limitations
The low dimensionality of the PIR sensor, makes the system
sensitive to occupants occluding each other from the view of
the sensor. Even with optimized positioning, there is a fairly
limited amount of occupants that we can expect to monitor
with single PIR. To monitor larger spaces, we would need to
place multiple PIR sensors at the different parts of the room, so
that all of the area is inside of the field of view of at least one
PIR sensor. With few simple updates, the suggested method
can be used to process data from multiple PIR sensors. The
single PIR measurements would be replaced with multivariate
ones having measurements from different sensors in each di-
mension. We would also add more predictors in the regression
stage to incorporate the information gained from the different
PIR sensors. If we want to deploy the system in hallways, cafe-
terias or other office facilities, substantial additional training
and calibration would be needed. The behaviour extraction
stage simply groups together similar motion behaviours, so we
believe it is highly adaptable to different scenarios. However
the assumption of which behaviours are most correlated to the
occupacy count can change with the nature of the monitored
activity and should be carefully re-considered for follow-up
applications.

CONCLUSION
The purpose of this study was to demonstrate the potential
of using a single passive infrared (PIR) sensor for more com-
plex tasks than motion detection. We demonstrate how such a
simple sensor combined with “intelligent” machine learning
models can be utilised to solve the more complex problem
of counting occupants in a room. While the accuracy of the
proposed system does not yet reach the current state of the art
obtainable with stereo cameras and computationally demand-
ing image processing algorithms (or multisensor devices), our
approach shows the ability to count the number of room oc-
cupants to within ±1 individual while substantially reducing
the hardware costs, computational power and the need for
specialist installation. Applications where accuracy is not crit-
ical, for instance, optimizing energy usage in buildings, can
benefit from this cost-effective and easy to deploy approach.
To our knowledge, the system discussed in this report is the
first attempt at designing a human occupancy counting system
using a single, low-cost PIR sensor.
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