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HIGHLIGHTS 
 
 

- New catalyst concept for N2O decomposition has been developed 

- Controlled acidic conditions allows the removal of undesirable Al-species 

- Controlled acidic conditions promotes a higher concentration of Fe-O-Al active ones 

- Conversion and stability are comparable to benchmark catalyst 

- Interpretation points out to a higher concentration of true active species 

 

  



 
 


 

Abstract 

A novel route to prepare highly active and stable N2O decomposition catalysts is 

presented, based on Fe-exchanged beta zeolite. The procedure consists of liquid phase 

Fe(III) exchange at low pH. By varying the pH systematically from 3.5 to 0, using nitric 

acid during each Fe(III)-exchange procedure, the degree of dealumination was controlled, 

verified by ICP and NMR. Dealumination changes the presence of neighbouring 

octahedral Al sites of the Fe sites, improving the performance for this reaction. The so-

obtained catalysts exhibit a remarkable enhancement in activity, for an optimal pH of 1. 

Further optimization by increasing the Fe content is possible. The optimal formulation 

showed good conversion levels, comparable to a benchmark Fe-ferrierite catalyst. The 

catalyst stability under tail gas conditions containing NO, O2 and H2O was excellent, 

without any appreciable activity decay during 70 h time on stream. Based on 

characterisation and data analysis from ICP, single pulse excitation NMR, MQ MAS 

NMR, N2 physisorption, TPR(H2) analysis and apparent activation energies, the 

improved catalytic performance is attributed to an increased concentration of active 

sites. Temperature programmed reduction experiments reveal significant changes in the 

Fe(III) reducibility pattern with the presence of two reduction peaks; tentatively 

attributed to the interaction of the Fe-oxo species with electron withdrawing 

extraframework AlO6 species, causing a delayed reduction. A low-temperature peak is 

attributed to Fe-species exchanged on zeolitic AlO4 sites, which are partially charged by 

the presence of the neighbouring extraframework AlO6 sites. Improved mass transport 

phenomena due to acid leaching is ruled out. The increased activity is rationalized by an 

active site model, whose concentration increases by selectively washing out the distorted 

extraframework AlO6 species under acidic (optimal) conditions, liberating active Fe 

species.  
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1. Introduction 

Fe-zeolites have drawn considerable attention for their use in the decomposition of N2O, 

a highly relevant process for the reduction of the greenhouse-gas industrial emissions. 

Low temperature N2O decomposition in the tail gas of nitric acid facilities (e.g. UHDE 

process) [1] has been an active research area in the last decades [2-4]. Besides N2O, the 

nitric acid plant exhaust lines contain gases such as O2, NOx and H2O that can hamper 

the intrinsic catalyst activity. Fe-containing ferrierite [5-10], ZSM-5 [3,11-18], beta 

zeolites [3,10,14,19-24] and TNU/IM-type zeolites [25] are the most active formulations. 

Fe-ferrierite appears to be the most active catalyst; the arrangement of Fe in the cavity 

of ferrierite produces a suitable interaction between two Fe cations. This results in a Fe-

to-Fe distance of about 7 to 7.5 Å, which is comparable to the length of the N2O molecule 

and the origin of the high turnover frequency of Fe-ferrierite; such an arrangement does 

not exist in beta or ZSM-5 [26,27]. This reaction has been reviewed recently in terms of 

mechanistic studies based on spectroscopic, kinetic and molecular simulations [28]. 

 For this application, Fe-zeolites can be prepared in a variety of ways. The 

most common routes are to introduce iron by post-synthetic liquid phase ion-exchange 

[3,5-10,15-16,18-24,26-27] also called 'wet ion-exchange route‟, chemical vapour 

deposition, also called „solid ion-exchange‟ [12,13,17,18,21], or by hydrothermal synthesis 

[11,14].  

Besides the preparation method, high-temperature treatments such as 

dehydroxylation and steaming, are key steps to enhance the intrinsic activity. Pérez-

Ramírez et al. demonstrated for isomorphously Fe-substituted ZSM-5 [11,14] and beta 

[14] that steaming is crucial for creating the active species, characterized as 

extraframework Fe [29], resulting in an excellent N2O-decomposition activity and 
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stability. After steaming, “ex-lattice” Fe-sites in combination with Al, of the 

hydrothermally synthesized Fe containing ZSM-5, also display an enhanced performance 

for the N2O mediated oxidation of benzene to phenol [30-32]. Application of a high-

temperature treatment or steaming also promoted the performance of solid ion-

exchanged Fe-ZSM-5 [17,33,34], giving rise to an increased N2O decomposition rate. 

Pirngruber et al. reported that high temperature and steaming generally enhances the 

intrinsic activity of various kinds of Fe-prepared ZMS-5 and ZSM-12 [12], including 

hydrothermal [12], liquid phase- [18] and solid ion-exchange [12,18] routes. 

Investigations of such treatments of other zeolite-based catalysts, such as Fe-

containing ferrierite and beta, are barely found. In an elegant study on beta and 

ferrierite, Kaucký et al. [10] observed an increased N2O conversion upon the formation of 

Al-Lewis sites neighbouring Fe-sites, as a result of dehydroxylation. For Fe-ferrierite the 

effect was more pronounced under pure N2O, but it almost disappeared when NO was co-

fed. Fe-beta zeolite behaved differently, showing the promoting effect in both pure N2O 

and NO-containing feed. An electronic effect causing a faster recombination of oxygen 

atoms was proposed. Recently, Wang et al. reported on the promoting effect of extra-

framework Al, added as AlCl3, on the structure of Fe/ZSM-35 [35,36]; it was suggested 

that the addition of extraframework Al species is beneficial for the formation and 

reduction of binuclear active Fe sites bound to the extra-framework Al species. 

In this work, a novel route to prepare Fe-based beta zeolite catalysts is presented, 

where the Al-speciation was tuned in order to verify if the presence of neighbouring 

extraframework AlO6 sites enhances the performance for this reaction. The fraction and 

type of AlO6 can be controlled by leaching using mineral acids in solution, according to 

well-established protocols for dealuminating zeolites [37,38]. The acid treatment was 

carried out during the liquid ion-exchange of Fe-cations by adjusting the pH 

systematically over a range from 3.5 to 0. The catalysts were tested in N2O 
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decomposition under tail gas conditions, accounting for the effect of H2O, O2 and NOx, to 

arrive at an optimal formulation for operation and stability. Physico-chemical 

characterizations allowed the interpretation of the observed performance and an active 

site model was proposed. 

 

2.  Experimental 

2.1.  Catalyst preparation   

The catalysts were prepared by wet ion-exchange, contacting the powdery zeolite beta 

(Zeolyst CP-814E, NH4-form) with a solution of ferric nitrate (Riedel-de-Haën) under 

continuous stirring at 353 K for 6 h. The pH was fixed for each exchange; for this a 

controlled amount of nitric acid (Merck) was added at the beginning of the exchange. The 

preparations range a pH from 0 to 3 with increments of 0.5. A reference experiment was 

carried out without the addition of nitric acid, where the final obtained pH was nearly 

~3.5 (sample denoted as Fe(4.5)BEA-3.5). This pH is produced by the slurry solution 

containing the zeolite and the Fe salt precursor. The ion-exchange was performed for 20 

h. The Fe target content was 0.5 wt.% and in some cases it was increased to 1 wt.% in an 

optimization study. The samples were dried overnight at 383 K and calcined at 823 K for 

4 h at a heating rate of 2 K.min–1. The sample code is suffixed with the exchange pH and 

prefixed with the obtained Fe-content; for simplicity the Fe-content is expressed as per 

mille (i.e. 10  wt.% Fe). A reference benchmark catalyst with 1 wt.% Fe (nominal 

composition) was prepared by ion-exchange with a Ferrierite zeolite (Tosoh HSZ-

720KOA, Si/Al = 9.2, K-FER). K–FER was exchanged twice (1.0 and 2.0 M NH4NO3 for 

24 h at 80 °C), washed thoroughly after each exchange and dried. Fe ion-exchange was 

applied afterwards, followed by drying and calcination according to the procedure 

described above. 
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2.2. Activity tests  

Activity tests were carried out in a six-flow reactor set-up using 50 mg of catalyst 

particles (125-250 m) [39]. The catalysts were tested in N2O/He (4.5 mbar N2O) at a 

total pressure of 3 bar absolute and a space time of W/FO(N2O) 900 kg·s·mol–1 (where W 

is the catalyst mass and FO(N2O) the molar flow of N2O in the feed). The reactor outlet 

was analyzed by gas chromatography. The chromatograph (Chrompack CP 9001) was 

equipped with a Poraplot Q column (for N2O and N2/O2 separation) and a Molsieve 5A 

column (for N2 and O2). Before reaction, the catalysts were pretreated in a flow of He at 

673 K for 1 h, and cooled down in the same gas to the starting reaction temperature. 

After 1 h on-stream steady state was considered to be reached, since the composition of 

the product flows were constant.  

The catalyst performance was also tested under nitric acid-based tail gas 

conditions with the following composition: 4.5 mbar N2O, 0.6 mbar NO, 15 mbar H2O and 

75 mbar O2, maintaining the same space time W/FO(N2O) of 900  kg·s·mol–1 at 3 bar of 

total pressure. Stability tests were carried out under these conditions at 723 K for 70 h 

time on stream. 

The first order rate constant per weight basis (  
   , mol.Pa-1.kg-1.min-1) and the 

apparent activation energies (Eapp, kJ.mol-1) were calculated assuming plug flow and first 

order kinetics in N2O [40-42], using the following relations:     
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Experimental turnover frequencies (TOF) were determined with this simplified 

equation: 
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In these relations x is the N2O conversion (-), F(N2O)o is the N2O molar feed flow 

(mol.min-1),  p(N2O)o is the N2O partial pressure (Pa), Wcat is the amount of catalyst (g), 

[Fe] is the Fe concentration (gFe/gcat) determined by ICP,   
   is the molar mass of Fe 

(g/mol), T is the temperature (K) and R is the universal constant (8.314 J.mol-1.K-1). The 

activation energy was determined from an Arrhenius plot.  

 

2.3. Characterization 

Elemental analysis (Si, Al and Fe) of the dissolved catalysts was obtained by ICP-OES 

(Perkin-Elmer Optima 3000DV). Temperature-programmed reduction with H2 was 

carried out in a Micromeritics TPD/TPR 2900 apparatus, using a high purity mixture of 

10 vol.% H2/Ar. The samples were pretreated in He at 423 K for 1 h. After cooling down, 

they were flushed with the reduction mixture at room temperature until the baseline got 

stabilized, and the temperature program was started at a ramping rate of 10 K.min-1. 

After passing through a cold trap (isopropanol/liquid nitrogen) to retain the produced 

water, the gas from the reactor outlet was monitored by a TCD detector.  

Nitrogen physisorption analyses (77 K) were carried out in a Micromeritics ASAP 

2420. The samples were degassed in vacuum at 623 K for 10 h. The BET area (SBET) was 

calculated using the standard method [43]. The single point pore volume (VT) was 

estimated from the amount of gas adsorbed at a relative pressure of ~0.98 in the 

desorption branch. The micropore volume (VMICRO) and surface area (SMICRO) were 

calculated from the t-plot method; the mesoporous surface area (SMESO) is calculated as: 

SMESO = SBET – SMICRO.  

The XRD pattern of the as-received BEA zeolite was recorded in a Bruker-Nonius 

D-5005 diffractometer equipped with a graphite monochromator, over a range of 2θ angle 

from 5 to 50°. The crystalline phase was identified using the Joint Committee on Powder 

Diffraction Standards (JCPDS) file no. 48-0074 for beta zeolite, as given in Fig. S-1.  
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Quantitative, high-resolution Single Pulse Excitation (SPE) 27Al MAS NMR 

spectra were measured on a Varian 600 MHz spectrometer using 1.6 mm PENCIL 

design probe, resonant for 27Al at 156.337 MHz. Spectra were acquired under magic 

angle spinning at 32 kHz. Special care was taken in order to obtain quantitative spectra 

from quadrupolar nuclei: using short pulses (3 s) at a low rf field strength (8.3 kHz) and 

a recycle delay well outside 5 times T1 (<20 ms) ensured this. A small contribution from 

an Al background signal present in the MAS rotors was corrected for, and signal 

intensities were scaled for sample weights. The amounts of the different Al species can 

be determined by integrating the spectra between the regions of AlO6 [-50, 10 ppm], AlO5 

[10-30 ppm] and AlO4 [30-100] ppm. The 27Al chemical shift was referenced to Al(NO3)3. 

The 27Al MQ MAS NMR experiments were performed on a Chemagnetics 600 

MHz NMR spectrometer at a magnetic field strength of 14.1 T with an aluminium 

Larmor frequency of 156.34 MHz. Further details about these measurements can be 

found in van Eck et al. [44]. 

 

3. Results  

A series of catalysts were prepared aiming at an iron content of 0.5 wt.%. Elemental 

analysis proves that except for the catalyst prepared at pH = 0, the achieved Fe content 

was close to the target value, with a slight decrease for samples prepared at decreasing 

pH (Table 1). The catalyst prepared at pH = 0 contained hardly any Fe (0.01 wt.%).  

The Si/Al ratio as determined from ICP was examined to gain a better 

understanding of the pH effect during the exchange (Table 1). The Si/Al for the as-

received zeolite was 11, close to the commercial specifications (12.5). The Si/Al ratio 

remains constant after the ion-exchange for samples prepared at pH = 2 and higher. 

Below this pH, the Si/Al ratio increases due to dealumination under these harsher acidic 
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conditions [37,38], ranging from 13 to 24. A step increase is found for pH = 0 with a Si/Al 

ratio of 93.  

Verifying if the zeolite exchange capacity may be modified by dealumination is 

crucial for the data interpretation. The zeolite exchange capacity can be estimated for 

the observed Si/Al ratios, assuming a theoretical exchange ratio of Al/Fe = 3, since one Al 

atom provides one exchange site and Ferric ions were employed. This is indeed global 

since the Al framework sites will not be so close together to achieve this; only for 

extraframework Al this does apply reasonably. Assuming that the Fe species are 

hydroxylated, less Al exchange sites are required and the exchange capacity would be 

higher. The maximum Fe exchange capacities were calculated in this way (Al:Fe=3:1) 

and compiled in Table 1 (given as Femax). The values in parenthesis (6th column) are the 

achieved exchange (%), relative to the maximum Femax loading capacity. In general, the 

increase of the Si/Al ratio does not limit the exchange capacity for the applied 0.5 wt.% 

target Fe concentration. In most cases, the theoretical maximum Fe-loading ranges 

between 1.2 to 2.7 wt.%, and the achieved exchange levels vary between 15 and 31%. The 

limiting case was observed for the pH = 0 where a maximum loading of 0.3 wt.% can be 

exchanged. The low Fe amount achieved in that sample (0.01 wt.%) is attributed to a 

competition between aqueous H+ and Fe3+ for exchange on the residual Brønsted sites. 

Such a competition also exists for the other catalysts since the observed Fe loading was 

always slightly lower than the target 0.5 wt.%. Thus, the Fe loading was generally close 

to the target value with a slight decrease with lowering pH, except for pH = 0 where the 

Fe loading was significantly hindered due to extensive dealumination (implying reduced 

exchange sites) and especially to the H+ exchange competition. Note that the Fe loading 

(0.01 wt.%) is lower than that of the starting zeolite (0.02 wt.%), which implies a 

„negative‟ exchange as shown in Table 1. The negative value is an artefact as 
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consequence of the leaching of Fe impurities contained in the starting native zeolite beta 

at pH = 0.  

Figure S-1 contains the XRD patterns of the catalyst series, for samples down to 

pH=1. All the patterns are very similar, with reflections of a well-defined beta zeolite 

structure. Therefore, the leaching conditions up to the (optimal) pH=1 does not alter the 

zeolite structure. The variation in the d-spacing is an instrumental issue due to the 

sample holder. Fig. S-1 also includes an optimized material, denoted Fe(7.1)BEA-1, as 

discussed later, that keeps the beta zeolite structure as well. 

Solid-state 27Al MAS NMR was applied to investigate the state of the Al 

coordination. Figure 1 shows the single pulse excitation (SPE) 1D spectra of the relevant 

catalysts. The spectra display an intense resonance at ca. 60 ppm due to tetrahedrally 

coordinated Al (AlO4), characteristic of zeolite framework Al species [45] (sketched in 

Fig. 2-a); and a second broad resonance ascribed to octahedrally coordinated Al (AlO6) in 

the region around 0 ppm [45]. In the octahedral region, two contributions are visible 

with a sharp resonance centred at -1 ppm, overlapping with a broad contribution ranging 

from ~ -40 to 10 ppm. It has been proposed [46-48] that the sharp octahedral peak is 

ascribed to framework connected octahedral Al (Fig. 2-b), while the broader resonance is 

related to Al that has lost the connection to the framework oxygen (Fig. 2-c), though part 

of that distorted octahedral Al can be reconverted into framework AlO4 [47]. The 

asymmetry of the main resonance at around 50 ppm indicates the presence of penta-

coordinated Al (AlO5) as well [45,46]. Fig. S-2 shows the MAS NMR spectra of the as-

received and calcined beta zeolites. The as-received sample spectrum is mainly composed 

of AlO4 (>97%) while the calcined sample also contains substantial amount of AlO5 (7%) 

and AlO6 (29%). This comparison demonstrates that the calcination process causes the 

development of AlO5 and AlO6.  
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Figure 3 compiles the relative composition after quantitative analysis of the 

spectra from Figure 1 and Fig. S-2, normalized to the intensity of the as-received beta 

zeolite. The narrow AlO4 resonance seems to increase from the sample A Fe(4.5)BEA-3.5 

up to C Fe(4.2)BEA-2 and then the intensity is reduced at D Fe(4.2)BEA-1.5 and E 

Fe(4.0)BEA-1. The total amount of Al observed by NMR (per gram of sample) decreases 

at low pH (samples D and E, Fig. 3) due to the dealumination, which is consistent with 

the observed Si/Al determined by ICP - for the sake of clarity the Si/Al values are 

included in Fig. 3 (bottom). The broad AlO6, and AlO5, decrease monotonicallly, 

indicating that under the acid conditions these species are preferentially washed out. 

Sample F (Fig. 1 and 3) is made for optimization doubling the Fe loading, which will be 

discussed later in terms of performance. Its NMR features follow the trend discussed for 

the 0.5 wt.% series: a reduced total resonant Al (due to dealumination mainly) and lower 

fraction of AlO6 and AlO5 due to selective leaching. A difference is the lower intensity of 

the framework connected AlO6 species, compared to the equal pH counterpart, cf. 

samples E and F (Fig. 1). This reduction in intensity can be associated to the 

preferential interaction with Fe, which is in this case double than for sample E. The 

major observations by SPE NMR are that AlO5 and AlO6 are selectively washed out from 

the structure upon decreasing pH to 2; at pH < 2, AlO4 is also leached out. In general, 

the remaining AlO6 becomes preferentially well-defined framework connected octahedral 

Al (sharp resonance at 1 ppm), that appears to interact with Fe – this is seen when 

doubling the Fe loading (cf. SPE patterns for samples E and F, Fig. 1). A second major 

point is the agreement of the ICP results with the observed total resonant Al signal. 

27Al MQ NMR experiments were carried out to evaluate the status of the AlO4 in 

more detail. Figure 4 shows the MQ spectra for two representative catalysts, 

Fe(5.2)BEA-2.5 and Fe(7.1)BEA-1, prepared at pH = 2.5 and 1. No significant 

distinctions were found at the tetrahedral species; both show two types of framework 



 
 


 

tetrahedral Al, consistent with Kentgens and co-workers [47]. The lack of AlO6 

speciation for the Fe(7.1)BEA-1 sample in the MQ spectra is noteworthy (Fig. 4-b). This 

might be related to: 1) the differences in the material‟s hydration that is known to lead to 

a dispersion in its chemical shift, 2) to the quadrupole interaction, which broadens its 

line width in the hydrated state [49], 3) as this material contains double Fe loading (vide 

infra) the paramagnetic effect of Fe may suppress the Al signal, hence part of the Al 

might not be visible in the MQ NMR spectrum as a result of the paramagnetic nature of 

the iron species [31,33]. In fact Al can be partly exchanged with Fe(III) species according 

to the reversibility model demonstrated by Kentgens et al. [47] that will enhance this 

effect.  

The effect of the paramagnetic nature of Fe leads to the question whether all 

distorted non-framework Al disappears upon leaching, or becomes partly invisible due to 

interaction with the added Fe. In order to answer to this question, the spectra of a 

control sample were compared to those of Fe(4.0)BEA-1 (Fig. 5). The control sample is 

the native zeolite that was treated at pH =1 without any Fe(III)-exchange, and calcined. 

Hence it has undergone a similar treatment as Fe(4.0)BEA-1 except for the Fe addition 

step, so the effect of Fe can be directly compared. The spectra of both materials are very 

similar, formed by AlO4, AlO5 and AlO6. Comparison indicates that the intensity of the 

AlO4 and framework connected AlO6 are reduced, indicating that these are Al centers of 

preferential interaction with Fe. The distorted non-framework Al content is low for both 

materials, as compared to the calcined counterpart (Fig. S-2), but importantly it is nearly 

equal for both samples. Hence Fe does not interact with these domains. It is then 

concluded that the acid leaching gives rise to the preferential removal of non-framework 

Al and the added Fe interacts/exchanges preferentially with AlO4 and framework-

connected AlO6. 
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The catalysts were tested in the N2O decomposition. Figure 6 shows the N2O 

conversion as a function of the reaction temperature ranging between 500 and 900 K. 

For all the catalysts, N2O was decomposed stoichiometrically into nitrogen and oxygen. 

The light-off temperature was observed around 650 K, while the conversion increased at 

different rates for the different catalysts. The parent zeolite (BEA, in Fig. 6) was also 

active in the reaction, attributed to the presence of Fe impurities from the zeolite 

manufacturing process [50,51], which was ~224 ppm (Table 1). When compared to the 

reference catalyst, i.e. Fe(4.5)BEA-3.5, the catalysts‟ performance increased significantly 

with decreasing pH during exchange. This can be expressed as an increased conversion 

at isothermal conditions, or as a lowering of the reaction temperature at isoconversion. 

The latter is illustrated in Figure 7, where the temperature to accomplish 60% N2O 

conversion (T60) is plotted as a function of the catalysts‟ exchange pH. A reduction of ca 

70 K was found in the series, between the reference and the optimal Fe(4.0)BEA-1. The 

poor performance of Fe(0.1)BEA-0 is consistent with the low Fe loading (0.01 wt.%, a 

lower residual Fe content due to leaching, as discussed above). Thus the optimal 

exchange pH was found to be 1.  

An additional optimization step was carried out by preparing a catalyst at pH of 

1, aiming at an Fe loading of 1 wt.%. Experimentally 0.71 wt.% was found, consistent 

with the same trend in the 0.5 wt.%-series, since the loading is nearly double that of the 

Fe(4.0)BEA-1 (0.4 wt.%). This Fe(7.1)BEA-1 catalyst exhibited a significant improved 

performance with a reduction of the T60 down to 709 K, which is nearly 100 K lower than 

the reference catalyst (Figs. 6 and 7). A prepared benchmark Fe-ferrierite catalyst, 

Fe(9.5)FER, containing ca. 1% Fe, tested under identical reaction conditions, is the most 

active, but the activity of the optimal Fe(7.1)BEA-1 is close to it (Figure 6). The 

comparison in Fig. 7 indicates that its T60 is only 19 °C higher than the ferrierite based 

catalyst.  
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This optimal Fe(7.1)BEA-1 catalyst was further evaluated under nitric acid tail 

gas conditions, which involves O2, NO and H2O, in addition to N2O (Fig. 8, top). Clearly, 

the combined effect of the tail gas components (NO + H2O + O2) has no significant impact 

on the catalyst performance compared with pure N2O/He. This behaviour can be 

explained by former investigations of the individual components effect [7,11,52]. It was 

demonstrated that NO has a promoting effect, by enhancing the removal of deposited 

oxygen species [53]; water negatively affects the activity by hydroxylation of the active 

sites  some mechanistic insights have been demonstrated for water, such as blocking 

binuclear Fe sites [54], or modification of the apparent activation energy and pre-

exponential factor [55]). O2 has no or little influence. The overall effect of the tail gas 

components, compared to pure N2O/He, has been in general positive (Fe-ZSM-5) [11,52] 

or neutral (Fe-ferrierite) [7] to the performance. This study reveals that beta behaves 

slightly positive under tail gas conditions (Fig. 8, top).  

The catalyst stability evaluated at 723 K using the complete tail gas mixture (Fig. 

8, bottom) indicated no apparent activity loss after 70 h. Hence the presented catalyst 

preparation route yields a competitive Fe-based beta zeolite catalyst for N2O 

decomposition in terms of overall performance, with comparable conversion levels as a 

state-of-the-art reference catalyst (Fe-ferrierite) and good stability under industrially 

relevant conditions. 

Temperature programmed reduction (TPR) experiments provide evidence on the 

interaction between Fe and Al species in the optimal catalysts. The TPR profiles of the 

optimal catalysts (Fig. 9, patterns b and c) contain two reduction peaks, centred at 629 

and 725 K, which are typically ascribed to Fe exchanged species [6,16]; no FeOx was 

observed. For comparison the Fe(5.2)BEA-2.5 catalyst, with a low level of dealumination, 

has a small contribution of inactive FeOx, visible at 900 K (Fig. 9, pattern a).   
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The TPR interpretation is based on the NMR findings, that showed the 

preferential interaction between Fe and framework AlO4 and with framework connected 

AlO6 (Fig. 5). The low-temperature TPR peaks in Fig. 9 are attributed to Fe-oxo species 

formed by at least two Fe sites (dinuclear oxygen bridged iron sites are often proposed) 

on the AlO4 sites, which are found to be responsible of the high turnover rate for N2O 

decomposition [26,54-56]. The position of the first reduction peak at 629 K is ~55 K lower 

than the main reduction in the Fe(5.2)BEA-2.5. This shift to lower temperatures can be 

attributed to an electronic effect due to the electron withdrawing capacity of AlO6 that 

makes the AlO4 sites positively charged, leading to an easier reduction of the Fe(III) 

species. The reduction at 725 K, which is 40 K shifted to higher temperatures, is ascribed 

to Fe species exchanged/adsorbed on the electron withdrawing AlO6 species that are 

negatively charged, that impede their reduction. Note that the reference catalyst, 

Fe(5.2)BEA-2.5, displays shoulders at 629 and 725 K that can be interpreted to the 

presence of such Fe-species in interaction with framework connected AlO6. 

4. Discussion 

The increasing performance of the catalyst series in N2O decomposition can be discussed 

in various terms, such as metal loading and speciation; the latter may involve new 

species, and this can be detected by the apparent activation energy, or an increase of the 

active/selective species during the preparation method. The increase of the 

active/selective species are generally more difficult to demonstrate and normally require 

a multi-technique approach and theoretical tools.  

Zhang et al. [28] rationalized the effect of the pH during the metal ion exchange; 

the effect has been typically studied by the consequences of the different types of metal 

species on the performance. The effect of the Al speciation of zeolite beta structures, in 

combination with metal species, has been barely investigated [57]. 
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The above results clearly indicate that decreasing exchange pH, the performance 

was enhanced significantly. Such an effect cannot be explained by differences in the Fe 

loading, since the catalyst series, entries 2-6 (Table 1), has nearly the same Fe loading. 

Thus a clear pH-related effect takes place. The Si/Al ratio and NMR characterization 

indicated that dealumination occurs. For the optimal catalyst, pH=1 (Fe(7.1)BEA-1), 

dealumination occurs but it is not excessive (Si/Al increased by a factor 2.6) while AlO6 

species with some kind of framework connection (resonance at 1 ppm, Fig. 1) become 

cleaned from other surrounding unconnected, distorted extraframework AlO6 species. 

Hence the presence of isolated, framework connected AlO6 could be essential for the 

observed increased activity.  

Figure 9-e shows a model representing the electronic effect induced on the Fe 

sites. The electron density is partially displaced to the electron withdrawing AlO6 sites, 

that are negatively charged. This affects the interaction with the Fe species. The sites in 

interaction with the positively charged AlO4 are reduced easier (peak at 629 K), while 

those Fe sites interacting with the negatively charged framework connected AlO6 are 

polarized and more difficult to be reduced (peak at 725 K, and higher temperature broad 

contribution). These results are consistent with Arnoldy and Moulijn [58] who showed 

that the reducibility of Co-ions of CoAl2O4 is strongly decreased by the presence of AlO 

species. This is attributed to an increased polarization of the Co-O bonds, decreasing 

their reducibility.  

Wang et al. [35,36], claimed binuclear Fe sites stabilized by extra-framework Al in 

Fe/ZSM-35 to have superior performance. This seems to be in line with a previous study 

[7], where the effect of the zeolite matrix to host Fe for N2O decomposition was 

investigated; it was concluded that the most reducible Fe species, detected by H2-TPR, 

dominated the N2O decomposition performance. Three effects were further investigated 
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to shed light on the improved performance: mass transport limitations, the energetics 

and number/concentration of active species. 

One possible effect is that the dealumination removes extraframework species, 

making the available exchanged Fe species more accessible to the reactants. Texture 

analysis of the optimal catalysts (Table 2) reveals a significant increase of the 

mesoporous surface area, of about 26%, while the BET surface area barely increases 

(2%). The micropore volume is slightly reduced and converted into mesoporosity. Thus, 

this increased mesoporous surface area can also have an influence on the performance.  

A lower apparent activation energy could be indicative of possible mass transport 

limitations. The similar apparent activation energies do not indicate mass transport 

limitations for the reference material, Fe(4.5)BEA-3.5, nor for the pH treated 

counterparts (Table 3). The obtained values are high, in the order of magnitude for 

reported Fe-containing zeolites [42,56]. Under internal diffusion control, the apparent 

activation energies would be much lower, in the order of half of the true activation 

energy, and zero when external mass transfer occurs [39]. Therefore, since there are no 

mass transfer related limitations, the higher activity indicates an increase in the amount 

of active sites. This is confirmed by the experimental TOF values (Table 3), where a clear 

trend can be seen. It increases from 0.10 min-1 up to a maximum of 0.74 min-1 at the 

optimal pH=1 in line with the observed conversion curves. When the Fe concentration is 

doubled at this pH, the TOF is reduced by 30%. Thus not all the extra added Fe are 

active and perhaps even blocking part of the active Fe species. Thus, the combination of 

apparent activation energy and TOF calculations prove that a higher quantity of active 

species are present. It is noteworthy that the optimal catalyst has a TOF value that is 

nearly double that of the benchmark Fe-FER.  

The oxygen removal is in a kinetic sense the rate determining step, so if oxygen 

removal is easier, then one would see that in an energy effect. As this is not the case, the 
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interpretation points at the increase of active sites. TPR experiments indicate easily 

reducible species, but strictly speaking in H2-TPR the hydrogen must be dissociated, so 

this may not resemble the ease of oxygen removal, key for N2O decomposition. 

Nevertheless, having more active sites also reduction with H2 may occur earlier and the  

reduced sites may accelerate the dissociation and further reduction. Indirectly, TPR 

shows a correlation between the species reduced at low temperature and the N2O 

decomposition activity in the series. Therefore it seems that the enhanced activity is 

related to a higher concentration of the active Fe sites. The fact that the apparent 

activation energy of N2O decomposition is not changed, in combination with the 

interpretation above of the TPR profiles, point out that the activity of the reference 

catalyst originates from species that reduce at 629 K (a shoulder at the leading edge in 

its TPR pattern), thus only a small fraction of the Fe loading.  

The overall interpretation of this study with beta zeolite is that the acidic 

conditions during Fe exchange help to change the Al speciation, cleaning the sample 

from non-framework connected AlO6, and inducing an interaction between Fe and the 

framework connected AlO6 and AlO4, a key configuration relevant for the activity 

improvement. The schematic model of the active sites is represented in Fig. 9-e. Such 

sites may already be inactively present in the reference catalyst but the removal of the 

undesirable AlO6, liberates these, thereby increasing the concentration of active sites, in 

line with the increasing reduction peak at 629 K, representing the most active site. This 

is further elaborated in Fig. 9 that combines the TPR profiles with our assignment of the 

Fe sites. The reference catalyst contains mostly Fe-species exchanged at pristine 

framework AlO4 (sites represented in Fig. 9-d). In the optimal catalyst (Fig. 9-b), these 

species may also be present but the majority are Fe-species exchanged at AlO4  and in 

interaction with framework-connected AlO6 (both sites are represented in Fig. 9-e).  
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In terms of the stability, the optimal catalyst in the complete tail gas mixture 

behave superbly without any apparent activity decay in the 70 h test. A former study by 

Pieterse et al. [3] reported also about the good stability of Fe-beta prepared by wet-ion 

exchange in a conventional manner, albeit exhibiting a lower activity in combination 

with a higher Fe loading. 

 

5. Conclusions 

The performance of Fe-based zeolite beta catalysts, for N2O decomposition, can be 

improved through the preparation method, by Fe(III) exchange at controlled and low pH 

conditions. A systematic study for the studied beta zeolite (CP814E) shows that a pH of 1 

was optimal for the N2O decomposition reaction, with a significant activity increase. At 

those conditions, Fe(III) exchange is not competing with H+ and the zeolite 

dealumination is not too extensive, leaving enough Al(III) sites available for exchange 

with a preferential speciation. Further optimization by increasing the Fe loading at the 

optimal pH led to a very active catalyst, comparable to the benchmark Fe-Ferrierite, and 

it is stable under tail-gas conditions without any appreciable activity decay for 70 h.  

Characterisation studies show dealumination with the predominance of AlO4, 

well-defined framework-connected AlO6 species, and the nearly complete removal of AlO5 

and non-connected distorted extraframework AlO6. TPR indicates changes in the Fe(III) 

reducibility pattern due to an electronic interaction promoted by framework connected 

AlO6 species. Effects of mass transport (limitations) and energetics were ruled out as 

being playing a role. The combination of apparent activation energy, TPR and TOF 

values, show that in the optimal catalyst a higher quantity of active species are present. 

The improvement in performance was then interpreted by an increased number of active 

species, which become more abundant when removing the distorted extraframework 

AlO6.  
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Table 1. Catalyst codes, exchange conditions and elemental analyses (ICP).  

Entry Catalyst code pH (–) a Si/Al (mol) Femax (wt. %) b FeICP (wt. %) c,d 

      

1 BEA as-received e 11.0 2.55 0.0224 (0) 

2 Fe(4.5)BEA-3.5 3.5 10.3 2.71 0.45 (16) 

3 Fe(5.2)BEA-2.5 2.5 10.5 2.66 0.52 (18) 

4 Fe(4.2)BEA-2 2.0 10.9 2.58 0.42 (15) 

5 Fe(4.2)BEA-1.5 1.5 13.0 2.19 0.42 (18) 

6 Fe(4.0)BEA-1 1.0 24.0 1.23 0.40 (31) 

7 Fe(0.1)BEA-0 0.0 93.0 0.33 0.01 (-4) 

8 Fe(7.1)BEA-1 1.0 28.1 1.06 0.71 (63) 

9 Fe(9.5)FER  - 9.4 2.94 0.95 (32)f 

10 BEA-1 g 1.0 22.5 1.31 0.0205 (~0) 

      

a. Applied pH during Fe exchange. 
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b. Maximum Fe loading as wt.% assuming 3Al/Fe for the observed Si/Al ratio. 

c. Target Fe loading: 0.5 wt.% Fe, except for entry 8, which was 1 wt.%. 

d. In parenthesis, Fe exchange (%) = [ Fesample – FeBEA ] / Femax  100, where FeBEA corresponds to 

the Fe loading for the parent zeolite beta, given in entry 1. 

e. Thermally treated at 823 K. 

f. Calculated based on an Fe content in raw FER of 0.010 wt.% 

g. As-received zeolite treated at pH = 1 and calcined (thus, identical process than Fe(4.0)BEA-1 

without Fe addition). 

 

 

 

Table 2. Texture parameters of relevant catalysts derived from N2 physisorption at 77 K. 

Material 
VT  

(cm3/g) 

VMICRO 
a 

(cm3/g) 

SBET 

(m2/g) 

SMICRO 

(m2/g) 

SMESO 

(m2/g) 

BEA 0.972 0.177 (0.795) 585 365 220 

Fe(7.1)BEA-1 0.995 0.154 (0.841) 595 320 275 

a. Value in parenthesis is the external pore volume as: VT – VMICRO 

 

 

 

 

Table 3. Apparent activation energies (Eapp) and TOFs (at 730 K) for direct N2O decomposition.   

Entry Catalyst Eapp (kJ.mol-1) TOF (10-1 min-1)  

1 Fe(4.5)BEA-3.5 191  6 1.0 

2 Fe(5.2)BEA-2.5 205  8 2.4 

3 Fe(4.2)BEA-2 216  14 3.8 

4 Fe(4.2)BEA-1.5 211  4 5.9 

5 Fe(4.0)BEA-1 214  4  7.4 

6 Fe(7.1)BEA-1 220  11 5.0 

7 Fe(9.5)FER 164  6 3.8 
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Figure 1. Quantitative, high-resolution 27Al MAS NMR spectra: 

a) Fe(4.5)BEA-3.5; b) Fe(5.2)BEA-2.5; c) Fe(4.2)BEA-2; d) Fe(4.2)BEA-1.5; e) Fe(4.0)BEA-1; f) 

Fe(7.1)BEA-1. 
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Figure 2.  Proposed Al species present in the beta zeolites, in the hydrated forms: 

a) framework AlO4, b) framework connected AlO6 with at least one connected 

oxygen atom, represented as [Al(OH)2(OT)(H2O)3], c) extraframework AlO6, defined 

as [Al(OH)3(H2O)3] via water, though polynuclear species  denoted as AlnOH2n+ are 

also possible. 

 

 

 

 

 

 

 

Figure 3. Aluminum speciation derived from 27Al MAS NMR spectra given as 

percentage with respect to the reference sample, the as-received NH4-form beta 

zeolite. Codes: Ref) As-received NH4-form beta zeolite; cal) calcined beta; A) 

Fe(4.5)BEA-3.5; B) Fe(5.2)BEA-2.5; C) Fe(4.2)BEA-2; D) Fe(4.2)BEA-1.5; E) 

Fe(4.0)BEA-1; F) Fe(7.1)BEA-1. The Si/Al ratio determined by ICP has been added 

for the sake of clarity. Spectra for the as-received beta (denoted as 'ref‟) and 

calcined (A) can be found in Fig. S-2, in the Supporting Information. 
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Figure 4.  27Al MQ MAS NMR for the catalysts: a) Fe(5.2)BEA-2.5; b) Fe(7.1)BEA-1. 
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Figure 5. Quantitative, high-resolution 27Al MAS NMR normalized spectra: a) Fe(4.0)BEA-1 

and b) BEA-1. The inset represents the Al speciation percentage in comparison with the as-

received BEA (denoted as „Ref‟; spectrum can be found in Fig. S-2). 

 

 

 

 

 

 

 

 
 

Figure 6. Performance of the Fe-BEA catalysts prepared by wet ion exchange at various pH. 

Catalyst codes can be found in Table 1. Reaction conditions:  4.5 mbar N2O in He at 3 bara total 

pressure and W/Fo(N2O) of ca. 900 kg·s·mol–1.  
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Figure 7. Temperature (K) for 60% N2O conversion (T60) for the studied catalysts, derived from 

Fig. 6.  

 

 

 
Figure 8. Top) N2O conversion for the Fe(7.1)BEA-1 catalyst for a N2O/He mixture: 4.5 mbar 

N2O in He at 3 bara total pressure and W/Fo(N2O) of ca. 900 kg·s·mol–1 and with the addition of 

tail gas components: 0.6 mbar NO, 15 mbar H2O and 75 mbar O2, maintaining the same space 

time. Bottom) N2O conversion at 723 K as a function of time on stream (TOS) for the same 

catalyst under tail gas conditions: 4.5 mbar N2O, 0.6 mbar NO, 15 mbar H2O and 75 mbar O2 in 

He at 3 bara total pressure and W/Fo(N2O) of ca. 900 kg·s·mol–1. 
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Figure 9. Suggested Fe-sites assignments based on NMR results. Right) Temperature-

programmed reduction profiles for: a) Fe(5.2)BEA-2.5; b) Fe(4.0)BEA-1 and c) Fe(7.1)-BEA-1; 

Left) plausible Fe-sites: d) Fe-species exchanged in pristine framework AlO4 and e) Fe-species 

exchanged on AlO4 that are in interaction with framework-connected AlO6. The colour in the 

TPR profiles indicate qualitatively the proportion of each site, the sites are defined on the left 

side (d and e). 
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