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ABSTRACT

Fibre lasers have been shown to manifest a laminar-to-turbulent transition when increasing its pump power.
In order to study the dynamical complexity of this transition we use advanced statistical tools of time-series
analysis. We apply ordinal analysis and the horizontal visibility graph to the experimentally measured laser
output intensity. This reveal the presence of temporal correlations during the transition from the laminar to the
turbulent lasing regimes. Both methods allow us to unveil coherent structures with well defined time-scales and
strong correlations both, in the timing of the laser pulses and in their peak intensities.
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1. INTRODUCTION

Typical fibre laser features nonlinear interactions of millions of longitudinal cavity modes in regimes far from
thermal equilibrium. Therefore, resulting dynamics is rather complex [1-7], apart from the situations when
multitude of modes are phase-locked forming coherent pulses effectively leading to reduced number of important
degrees of freedom. In general, wave dynamics in fibre lasers is very complex and observed equilibrium is,
typically, only statistical, as in other wave turbulence systems [7]. Though the underlying physical effect,
nonlinear four-wave mixing, is purely deterministic, it has been realized that a dynamical description of such
complex dynamics is not fully adequate approach and wave turbulence or kinetic theory techniques should be
used. Entropy based analysis is appropriated in complex kinetic systems to study the dynamical complexity of
light generation in fiber lasers. The role of temperature is played here by optical noise that occurs in the gain
medium or by the effective non-linear noise due to four-wave-mixing induced mode dephasing.

Recently, the analogy between hydrodynamic transition to turbulence and change of operational regimes
in fibre lasers has been studied both experimentally and theoretically [7,8]. A transition from highly ordered
lasing regime to more irregular lasing, characterized by extreme, apparently random intensity fluctuations was
reported. Such transition, being a relevant example of a phase transition in a one dimensional physical system,
was shown to be accompanied by the occurrence of coherent spatio-temporal structures [7].

In this work we characterize the complex dynamics to find underlying correlations and/or specific time-scales
in the easily measurable intensity fluctuations of laser radiation [8]. In order to investigate this issue we use two
nonlinear analysis tools: ordinal analysis [9] and the horizontal visibility graph [10]. Both methods have been
widely used to analyze the observed output signals of complex systems, being able to provide new information,
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not available with other methods, such as identification of frequent and/or missing patterns in the data, the
classification of different behaviors, the characterization of deterministic and stochastic events, etc. [1118]. Here
we show that they both provide consistent information, allowing to clearly identify the presence of long-range
temporal correlations in the experimentally measured laser output intensity.

2. THE EXPERIMENTS

We measure an output temporal intensity dynamics of a quasi-CW Raman fiber laser formed of 1 km of normal
dispersion fiber placed between two fiber Bragg gratings acting as cavity mirrors [7]. State of the art experimental
capabilities allowed us to register long time traces with total number of intensity data points of 50 million. Taking
into account the discretisation time of 12.5 ps, the intensity dynamics over 625 s could be captured. In order
to be able to compare among time-series recorded at different pump power, each time-series is normalized to
have zero-mean and unit variance. Depending on power, the generation regime can be considered as laminar or
turbulent as was described in ref. [7]. The transition occurs at pump power 0.9 W (see [7] for details). Despite
the radically different coherence properties of radiation in these two regimes, the output intensity, I(t), looks
similar and irregular at all powers, as seen in Fig. 1, with typical intensity probability distribution function
(pdf) of intensity values, p(I(t)), shown on Fig. 1.

3. THE TIME-SERIES ANALYSIS

From experimentally measured intensity dynamics, I(t), we generate two new data sets. In order to consider
only the extreme inten- sity fluctuations, we select an adequate threshold and filter out the intensity peaks
whose height is below the threshold, keeping a sequence of intensity peak heights, Imax,i, which are above the
threshold, as shown in Fig. 1. Naturally, the precise definition of extreme fluctuations depends on the system
under investigation. In hydrodynamics, when the height of a wave is larger by a factor of 3 than average, this
wave is considered extreme, but in optics, fluctuations of much higher amplitudes compared to the average can
often be observed. Here, because each time series is normalized to zero mean and unit variance, the thresholds
used are in units of the standard deviation, σ: with threshold 0, the peaks considered are only those above the
mean value; with threshold 1, the peaks are only those above σ.
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Figure 1. Number of events (peaks) versus pump power of the laser. There is a clear change in tendency at P=0.9W
which is captured for thresholds larger than σ.

The number of the peaks found in intensity dynamics measured at different pump power level is shown on
Fig. 1 depending on the threshold value. We note that, if the threshold is low, the number of peaks decreases
with the pump power, but if the threshold is high, the number of peaks increases with the pump power until
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0.9 W, where it is maximum, then, with further increase of the pump power, the number of peaks diminishes.
The transition between two different generation regimes laminar and turbulent regime could be easily detected
at 0.9 W. This transition will be characterized by means of additional parameters. In the following we fix the
threshold equal to 2, i.e., we analyze only the intensity peaks that are above σ. The robustness of the results
with respect to the choice of the threshold is also shown (see figure 2). As each local intensity peak has also a
time instant Ti at which it occurs, we generate in parallel another data set: a sequence of time intervals between
local intensity peaks, ∆ti.
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Figure 2. Stochastic dynamics of a quasi-cw Raman fiber laser: intensity time series measured at pump power 0.9 W
(the dots indicate the peak values above a threshold, indicated with a dashed line, and the inset displays a detail)

We use two methods of time-series analysis to investigate the complexity of the dynamics and to uncover
hidden temporal correlations. These methods ar known as ordinal analysis and horizontal visibility graph (HVG),
which are represented schematically in Fig. 1. Ordinal analysis [9] transforms a time series {xi} (where {xi}
can be either the sequence of peak heights, Imax,i, or the sequence of time intervals between peaks, {∆ti}) into
a sequence of symbols (referred to as ordinal patterns, OPs), by considering the order relation among D values
of the time-series. There are 2 different ordinary patterns of length 2: pattern 01 if xi < xi+1 and pattern 10
if xi > xi+1. If D = 3, there are 6 possible patterns: xi < xi+1 < xi+2 gives 012, xi+2 < xi+1 < xi gives 210,
etc. The number of possible patterns of the given length D is D!. This way, a sequence of patterns could be
generated from the sequence of the peak heights or from the sequence of time intervals between the peaks.

Once the sequence of patterns is deffined, we calculate the probability to find the given pattern in the data
set, pi. The entropy computed from their probabilities, pi, of occurrence in the time series, SPE = pilog(pi),
known as permutation entropy, has been shown to be an appropriated measure of the complexity of a time-
series [9, 12, 13]. When there are no serial correlations in the time-series {xi}, then all the patterns are equally
probable and SPE = logD!. On the contrary, when there are serial correlations, then the OPs are not all equally
probable, and the permutation entropy will be SPE < logD!. In the following we refer to the normalized entropy,
SPE/logD!, as PE entropy. Thus, with an appropriate choice of pattern length D, the OP probabilities and the
PE entropy will capture the existence of underlying correlations in the time series.

To verify the presence of correlations independently, we also apply the HVG method [10] that converts a
time series, {xi}, into a graph by considering each data point, xi, as a node. Any two nodes are connected by
a link (or edge) if horizontal visibility exists between them: xi and xj are connected if it is possible to trace
a horizontal line linking xi and xj not intersecting intermediate data; mathematically, this means that xi and
xj are connected if: xi, xj > xn for all i < n < j. This graph representation of the time series {xi} takes into
account both, the order and the values of the data points. Time series with different dynamics are mapped into
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graphs that exhibit distinct topological structures [14]. The topology of a graph is characterized by the degree
distribution, p(k), that is the probability that a node has k links. Thus, the entropy of the degree distribution,
SHVG = pklog(pk) (in the following, referred to as HVG entropy), is another measure of the complexity of the
time series {xi} [18]. An appropriate normalization of the HVG entropy is that of the Gaussian white noise, which
rapidly converges to stable values for increasing time series lengths (percentage variations for times series with
N = 105 and N = 5 × 105 data points are 104 and 105 ; in contrasts, the normalization through log(N) results
in decreasing entropy values as N increases [18]). Thus, in the following, the HVG entropy is normalized to the
entropy of Gaussian white noise. The HVG method also allows to analyze different time-scales by constructing
the graph not from all the raw data points, but from lagged data: {xi, xi+τ , xi+2τ , ...}.

The two analysis methods used transform the time series {xi} into a sequence of integer numbers, {ki} (in
the OP case, kiε[1, D!] is the pattern label: if 01, ki = 1; if 10, ki = 2, etc.; in the HVG case, kiε[1, N1] is the
degree of xi, with N being the number of data points in the time series), they have important differences: while
the OP method requires the pre-definition of the length of the pattern D, and does not take into account the
values of the data points, the horizontal visibility graph method does not require to pre-define an analysis length,
and considers both, the order relation and the actual values of the data points.

Figure 3 displays the probabilities of the six patterns of length 3 calculated from the sequence of intensity
peaks (a) and from the sequence of the time intervals (b), respectively. The error bars are computed with
a binomial test, and indicate a confidence level of 95%; the gray region indicates probability values that are
consistent with a uniform distribution (i.e., consistent with no serial correlations in the data) [19]: it indicates
probabilities in the interval p± 3σ, where p = 1/D! and σ =

√
(p(1p)/N) with D! being the number of possible

patterns and N being the number of ordinal patterns.
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Figure 3. Probabilities of ordinal patterns of length D=3 vs pump power calculated from the sequence of (a) intensity
peaks and (b) time intervals between consecutive peaks. The error bars are computed with a binomial test and the gray
lines indicate probability values consistent with the uniform distribution.

It can be observed that the variation of the probabilities with the pump power captures the transition between
two dynamical regimes: below the transition the OPs are equally probable, while during the transition from lam-
inar to turbulent regime their probabilities are different from equiprobability. It can also be noticed that, during
the transition, the patterns 012 and 210 become more probable (less probable) when the OPs are calculated from
the Imax,i sequence (from the {∆Ti} sequence). We also note that the patterns calculated from the intensity
peaks capture more determinism than those computed from the time intervals [notice the difference in the vertical
scales of Figs. 2(a) and 2(b)]. This indicates that the timing of the high intensity peaks is more random than
their peak values.
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The PE-entropy, Fig. 3(a), quantifies this effect by decreasing sharply at the transition power. A similar
behavior is observed when computing the HVG-entropy, Fig. 3(b). In both cases, the entropy values computed
from surrogate (shuffle) data are also indicated, and one can observe that, as expected, the transition is not
detected in the shuffle data.

In Fig. 4(a) the PE-entropy was computed from D = 3 OPs; similar plots were obtained with Dε[26]. Larger
D values were not considered due to the finite length of the dataset: while the raw intensity time series contains
50 million data points, the number of high intensity peaks (above 2σ), as shown in Fig. 1, is about 105, depending
on the pump power.
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Figure 4. (a) Permutation entropy and HVG entropy vs the pump power. Calculations are performed with D 14 3 OPs.
(b) PDF entropy calculated from the distribution of intensity values.

The probabilities of patterns 012 and 210 provide a measure of the persistence of the time-series, i.e., the
probability that the sign of xi − xi−1 persists in the next step [11]. Thus, at the transition, if there are two
consecutive peaks with increasing height, the next peak is likely to be larger than the previous one (and if
there are two consecutive peaks with decreasing height, the next one is likely to be smaller than the previous
one); on the contrary, in the sequence of time-intervals, two consecutive intervals that are increasingly long
(∆Ti < ∆Ti+1) are likely to be followed by shorter interval (∆Ti+1 > ∆Ti+2), and two consecutive decreasing
intervals (∆Ti > ∆Ti+1) are likely to be followed by a longer one (∆Ti+1 < ∆Ti+2).

Let us note that the optimal value of pattern length D depends of the length of correlations embedded into
the time series [9]. We note however that the OP sequence does not take into account the actual values of
the data points {xi} and thus, does not provide information about the presence of extreme fluctuations in the
time-series. By considering lagged data points, this method allows to analyze specific time-scales. For example,
correlations among (xi, xi+τ , xi+2τ ) can be inferred from the corresponding OP probabilities.

In order to demonstrate the robustness of the results with respect to the choice of the threshold, in Fig. 5
we plot the OP probabilities with D = 2 and D = 3 and the PE-entropy for three thresholds: 0, 1, and 2 (i.e.,
as the time-series are normalized to zero mean and unit standard deviation, with these thresholds we consider
only the intensity peaks that are above the mean value, above one standard deviation, and above two standard
deviations). In the three cases one can observe that the same transition is detected, at the same value of the
control parameter.

In the case of ordinal analysis, as Fig. 3*** shows, the results are robust also with respect to the length of
the ordinal pattern, D.

To investigate the presence of specific time-scales in the dynamics, we analyze the lagged time series, i.e.
the sequence of {Ii, Ii+τ , Ii+2τ , . . . }, where τ is the lag time. We begin by considering the case τ = 1 (i.e., we
analyze all data points). Figure 3(a) displays the PE entropy and the HVG entropy vs the pump power, and
same behavior is seen in both entropies: there is a clear transition at pump power 0.9 W, where both entropies
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Figure 5. (a) OPs for D=2 (first row) and D=3 (second row) for different thresholds (0, σ, 2σ. PE entropy is plotted for
the same thresholds in the last row.

smoothly decrease. It is also observed that for the highest pump power, both entropies increase again. This
reveals that during the transition there is an increase in the “ordering” of consecutive intensity values (that is
captured by both entropies, which decrease), but for the highest pump power the trend reverses and the disorder
increases. In contrast, the entropy computed in the conventional way and referred as pdf-entropy (i.e. the
entropy calculated from the intensity pdfs of the initial intensity dynamics, I(t)) does not capture this behavior:
as it can be seen in Fig. 3 (b), after the transition the pdf-entropy monotonously decreases with the pump
power. Thus, the PE and HVG entropies provide consistent information, which complements that gained from
the standard pdf-entropy. The good agreement between the two entropies, also seen in Figs. 2(c) and 2(d), is
remarkable because the two methods transform a time series into a sequence of integer numbers by using very
different encoding rules.

By varying the value of the lag time τ , i.e. by taking into account not all points in data sets, but every
second (τ = 2) point, every third (τ = 3) point etc., we are able to identify a specific oscillation time-scale in the
intensity time-series during the transition. The PE entropy vs τ for pump powers below (0.85 W), at (0.90 W)
and above (0.95 W) the transition is displayed in Fig. 6. Here we can notice that, at the transition, there are
specific lags for which the PE entropy decreases sharply. Similar results were obtained with the HVG entropy.

The sharp minima indicate that, for pump power 0.90 W and for specific lags, 6 different patterns of length
D = 3 are not all equally probable, and thus, there are serial correlations in the sequence of lagged intensity
values. To explore the length of such correlations, we computed the PE entropy using longer ordinary patterns
(D = 4 and D = 6) and found that the minima were more pronounced, revealing the existence of long serial
correlations. .

To investigate the nature of these correlations we plot on Fig. 7 how the probabilities of 6 different ordinary
patterns of length D = 3 depend on the lag time. We note a periodic alternation in which 012 and 210 became
the more probable or the less probable patterns. The probabilities of the other four patterns are similar (no clear
clusters are seen). The lag values for which 012 and 210 are less probable correspond, as expected, to the lag
values where the autocorrelation function is minimum (and negative). However, unexpectedly, the lag values for
which 012 and 210 are more probable, do not correspond to the maxima of the autocorrelation; and moreover,
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Figure 6. Permutation entropy vs the lag time before (0.85), at (0.9), and after (0.95 W) the transition to optical
turbulence. Error bars were computed by dividing the data in 10 windows and computing the PE entropy in each
window.

for the lag values where the autocorrelation is maxima, the all six ordinary patterns have similar probabilities.
These observations suggest that ordinal analysis identifies subtle correlations in the ordering of data points,
which are not seen by the standard autocorrelation function, that measures correlations in the values of the data
points.
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Figure 7. Probabilities of the ordinary patterns of length D=3 vs lag time τ .

These “order correlations” result into different types of spatio-temporal patterns. Let us recall that the initial
intensity spatio-temporal dynamics could be seen as intensity spatio-temporal dynamics [8]. Similar concept has
been recently employed for studying interaction of cavity solitons and topological solitons as addressable bits
[22]. Here we apply this concept and choose specific lag times defined from Fig.7 to be used as round-trip times
in processing of the initial data series (see [8] for details of plotting spatio-temporal dynamics). The lag times
chosen correspond to where the six patterns are equally probable, when ’210’ and ’012’ are more probable than
the rest and when they are less probable than the rest, indicated in Fig.7 with arrows.

Figures 8(a)-(c) display examples with lags such that patterns 012 and 210 are as probable [Fig. 8(a)], more
probable [Fig. 8(b)]) and less probable [Fig. 8(c)] than the other four patterns. We can see that these spatio-
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temporal dynamics of patterns display clear and different coherent structures. These observations can be useful
for confronting the predictions of state-of-the-art laser models with empirical data, and the theoretical studies
could provide insight into the physical mechanisms underlying these correlations.
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Figure 8. Spatiotemporal structures identified with the specific lags indicated with arrows in panel (a). The color scale
indicates the value of Ii with i 14 n j and 14 396, 431, and 496 in units of the sampling time. The pump power is 0.9 W.

To summarize, by applying two independent tools of nonlinear time-series analysis we have uncovered long-
range temporal correlations in the intensity output of a fibre laser during the transition to a wave turbulence
regime. Output of laser radiation is easily measurable, making these easily implementable methods useful and
valuable techniques for investigating coherent structures in complex laser radiation. Both approaches can be
applied to any high-dimensional complex systems that undergo similar transitions accompanied by the generation
of extreme fluctuations.
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