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ABSTRACT

We consider experimentally and theoretically a refined parameter space near the transition to multi-pulse mode-
locking. Near the transition, the onset of instability is initiated by a Hopf (periodic) bifurcation. As cavity
energy is increased, the band of unstable, oscillatory modes generates a chaotic behavior between single- and
multi-pulse operation. Both theory and experiment are in good qualitative agreement and they suggest that the
phenomenon is of a universal nature in mode-locked lasers at the onset of multi-pulsing from N to N + 1 pulses
per round trip. This is the first theoretical and experimental characterization of the transition behavior, made
possible by a highly refined tuning of the gain pump level.
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1. INTRODUCTION

The onset of multi-pulsing as a function of increasing laser cavity energy is a ubiquitous phenomenon observed
in mode-locking.1, 2 Indeed, the multi-pulsing dynamics has been demonstrated in a wide variety of theoretical
and experimental configurations with both passive and active laser cavities3-.16 Until recently, there was no
satisfactory theoretical understanding of the instability mechanism that initiated the multi-pulsing process.
However, theoretical progress on a mode-locked laser cavity based upon a waveguide array (WGA) architecture
led to a significant theoretical advancement in quantifying the multi-pulsing process.17 Indeed, the analysis
associated with the multi-pulsing instability showed that the underlying transition from N to N+1 pulses per
round trip occurred in a nontrivial manner. Specifically, a linear stability analysis of the mode-locked solution
shows that, as the gain increases, the stable pulse solution undergoes an oscillatory Hopf bifurcation which leads
to a stable mode-locked breather solution. Increasing the gain further leads to a transition from the breather
to a two pulse per round trip steady-state configuration. The transition process is chaotic in nature, with the
solution dynamically switching back and forth between the breather and the two-pulse state over a range of
gain parameters, before the two pulse per round trip state stabilizes at higher gain. However, irrespective of the
saturable absorption mechanism used for mode-locking, i.e. a passive polarizer, carbon nanotube, wave-guide
array, quantum well saturable absorber, etc., this transition phenomenon seems to be fairly universal in mode-
locking models. In this manuscript, a highly-sensitive experimental study is performed near the multi-pulsing
instability threshold in a laser mode-locked with single-walled carbon nanotube (SWCNT) saturable absorption.
The experimental findings confirm qualitatively the theoretical multi-pulsing predictions17 and suggests that the
phenomenon is relevant to a broad range of mode-locked laser cavity configurations, regardless of the specific
saturable absorption mechanism. To our knowledge, this is the first experimental study of its kind and shows
the key role that the gain saturation plays in determining the nonlinear, dynamical transition in mode-locked
laser cavities.

Theoretical progress on the multi-pulsing transition has often been hampered by the theoretical difficulty
in characterizing the instabilities of mode-locked solutions in various laser cavity configurations.2 Indeed, a
full analytic treatment of the characteristic instabilities of mode-locked solutions in the master mode-locking
equation has only recently been given.18, 19 Much of this difficulty is due to the fact that the gain saturation
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Figure 1. Schematic of the experimental setup. The saturable absorber (S.A.) used is single-walled carbon nanotubes.

acts as a nonlocal term in the governing equations, making a standard linear stability analysis highly nontrivial.
And yet, the gain saturation term is critical in determining the overall stability of the system. Ignoring the
term, or treating it as a constant, completely misses the multi-pulsing stability transition and leads to erroneous
conclusions about the stability of the mode-locked pulses in general. Here, for mathematical convenience only,
we consider the saturable absorption mechanism in the laser cavity to be generated by a waveguide array. The
primary advantage of the waveguide array based laser cavity17, 20, 21 is that exact solutions can be calculated and
their stability explicitly analyzed, and as the gain is increased, robust multi-pulse operation occurs. This is unlike
the qualitative master mode-locking equation which is not very robust and suffers from collapse and blowup of the
mode-locked solution near the multi-pulsing transition point. But it should be emphasized that the waveguide
array is not the mechanism responsible for generating the chaotic behavior, is is simply the saturable absorption
mechanism for initiating the mode-locking process. The mode-locked solutions are first found to undergo a Hopf
bifurcation to stable, periodic breathers as the gain is increased in the cavity. The resulting periodic breathers
are then destabilized and a chaotic behavior is observed as the cavity energy intermitingly switches between one
and two pulses. A slight increase in gain brings the pulses finally into the stable multi-pulsing state for which the
inter-pulse dynamics becomes important.3, 15, 22 The range of gain values for which this oscillatory and chaotic
transition happens is quite small, suggesting that it could be easily missed in experiment if a refined study is
not performed near the transition point. Further, this process repeats itself when transitioning from N to N +1
pulses per round trip.17 Our analysis showed that harmonic mode-locking can be predicted by the gain model

g(Z) =
2g0

1 + N‖A0‖2/e0
, (1)

which gives the gain parameters for which N pulses per round trip configurations exist, assuming that g0

corresponds to a stable one-pulse solution. The theory also predicts bi-stability between several stable N pulse
per round trip solutions, which is also in qualitatively agreement with experimental findings.

The paper is outlined as follows: In Sec. 2, a brief overview is given of the experimental configuration used
to generate mode-locked pulses. Section 3 outlines the basic theoretical model used for predicting the transition
phenomena at the multi-pulsing threshold. Section 4 highlights the computational and experimental findings and
shows the qualitative agreement between theory and experiment in regards to the periodic and chaotic transition
regions. A brief overview of the results and its implications are given in Section 5.

2. EXPERIMENTAL SETUP

Although the transition from single to multi-pulse operation is a ubiquitous phenomena in pulsed laser systems,
here we investigate this phenomena using a soliton thulium-doped fiber laser23 shown in Fig. 1. It contains ∼ 70
cm of Tm-Ho co-doped fiber with a 9 μm core diameter and ∼ 60 dB/m absorption at 1570 nm. The cavity
is formed between two loop mirrors (with reflectivities ∼ 40 and 5 percent) based on 2 × 2 fused couplers. It
should be noted that the fiber ends at the outputs have to be angle cleaved to avoid detrimental feedback. The
saturable absorber used are SWCNTs, which are fabricated using the technique reported previously.24 In this
laser, the SWCNTs have an outer diameter ∼ 1.5 nm so as to place the absorption band near 2 μm. The total
dispersion of the laser cavity is estimated to be ∼ −0.2 ps2.

Mode-locking occurs when the pump power is increased to 320 mW, however the laser tends to start in a
multiple-pulsing regime. Single pulse operation is achieved by reducing the pump power to ∼ 200 mW. The laser
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Figure 2. Experimentally measured time series of the separation of two pulses once single pulse operation transitions to
multi-pulsing. (a) For a certain pump power, the separation of the two pulses is nearly periodic. A best fit sinusoidal
function (dashed) is fit to the data (squares) and shows excellent agreement. (b) For increasing pump power, the separation
of the two pulses is not periodic, and evolves irregularly. The Fourier transform of the time series is shown in (c) for the
periodic case and (d) for the irregular case. Note that the spectrum in (d) is a signature that the separation dynamics is
chaotic.

is quit stable and produces a pulse with duration of 750 fs and a 9 nm bandwidth. From this pump level the
gain was increased in small intervals from 200 mW.

As the pump level is increased from 200 mW, the single pulse undergoes an instability and transitions into
a breather. Further increasing the pump level leads to a transition regime in which the cavity energy oscillates
between single and two-pulse operation. To characterize the dynamics, we measure the pulse separation of the
“two pulses” (when separation is zero, it is a single pulse). Figure 2(a) shows the time series of the separation
as the pump level is increased. The Fourier transform of the time series highlights that two dominant modes
exist (Fig. 2(c)), typical of periodic behavior. Increasing the pump level, the oscillation period becomes more
irregular as seen in the time series in Fig. 2(b). Taking the Fourier transform shows that indeed there are more
than two modes present in the oscillations (Fig. 2(d)). Further, the dense, rapidly varying modal distribution
shown here is characteristic of chaotic behavior.

In general, the transition from one- to two-pulse operation consists of an interesting regime where the pulse
is in-between the two states. Within this region, as the pump level is increased the oscillations between the two
states becomes more irregular, until finally stable two-pulse operation is obtained. Although we have focused on
the one to two pulse transition, we have experimentally observed the same dynamics between any N to N + 1
transition.

3. GOVERNING EQUATIONS

There are a large number of theoretical models2 that have been developed for quantifying the energy equilibration
and mode-locking exhibited by numerous experimental configurations.1 To make progress on quantifying the
transition dynamics observed in a mode-locked laser cavity, we consider a specific theoretical model where the
intensity discrimination is provided by the nonlinear mode-coupling in waveguide arrays.17, 20, 21 We emphasize
that this is for convenience only in illustrating the transition phenomena. Indeed, the experimental configuration
considered is mode-locked not by waveguide arrays, but by the saturable absorption action of the SWCNTs
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Figure 3. Mode-locked solution branches of the form (4) with (5). Depicted are the 1-pulse branch (N = 1), 2-pulse
branch (N = 2) and 3-pulse branch (N = 3) along with their corresponding stability region (shaded gray region). The
inset demonstrates the linear (spectral) instability that occurs near the Hopf bifurcation point of the 1-pulse branch of
solutions. As the gain increases past the Hopf bifurcation point, bands of oscillatory, unstable modes cross into the right
half plane leading to a breather solution and chaotic dynamics.

described in the previous section. Regardless, the transition phenomenon considered holds in both cavities and
exhibits the universal nature of the multi-pulsing transition behavior.

When placed within an optical fiber cavity, the pulse shaping mechanism of a waveguide array leads to stable
and robust mode-locking.17, 20, 21 In its most simple form, the nonlinear mode-coupling is averaged into the
laser cavity dynamics17 to generate a master equation for the WGA-driven mode-locking dynamics. Symmetry
considerations in the WGA and computational studies of the mode-locking dynamics predicts that the evolution
dynamics in the WGA mode-locked cavity can be accurately represented by17, 20

i
∂u

∂z
+

1
2

∂2u

∂t2
+γ|u|2u+Cv+iδ0u−ig(z)

(
1+τ

∂2

∂t2

)
u=0 (2a)

i
∂v

∂z
+C(w+u)+iδ1v = 0 (2b)

i
∂w

∂z
+Cv+iδ2w = 0 , (2c)

where the saturated gain (energy equilibration) behavior1 is given by

g(z) =
2g0

1 + ‖u‖2/e0
. (3)

with ‖u‖ =
∫ ∞
−∞ |u|2dt. Here the u(z, t), v(z, t) and w(z, t) represent the normalized electromagnetic fields in the

center waveguide (u) and two neighboring waveguides (v and w). The variables z and t present the normalized
propagation distance and time respectively. Note that the equations governing the neighboring WGA fields
are ordinary differential equations. All fiber propagation and gain effects occur in the central waveguide (u)
since this is the only waveguide that experiences saturated gain. This model accounts for all the leading-order
physical effects in the cavity including the chromatic dispersion in the central waveguide, self-phase modulation
(γ), linear attenuation in the three waveguides (δ0, δ1 and δ2 respectively), WGA evanescent linear coupling (C),
linear gain (g0), bandwidth-limit on the gain (τ), and energy saturation (e0). A detailed analysis of the scalings
can be found in Refs.17, 20 Note that we are only considering the anomalous dispersion laser cavity in order to
be consistent with the experimental findings. However, multi-pulsing is also observed in normal dispersion laser
cavities as well.

It is this approximate system which will be the basis for our analytic findings and transition phenomenon
studies. The primary reason for considering this model is the the fact that Eq. (2) provides a great deal of
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analytic insight due to its hyperbolic secant solutions

u(z, t) = ηsechωt1+iAeiθz, (4)

where the solution amplitude η, width ω, chirp parameter A, and phase θ satisfy a set of nonlinear equations.17

Note that although this chirped pulse solution is the same as that found in the master mode-locking equation,1

the mode-locked solution here is a global attractor, is not susceptible to blow-up and is highly robust under
perturbation. Indeed, stability of this solution, its Hopf bifurcation, chaotic transition, and corresponding
solutions with N pulses per round trip can all be explored in a semi-analytic fashion.17

To understand the stability of the multi-pulsing solutions, once can consider a laser cavity with N mode-
locked pulses of the form (4). Assuming the pulses are well-separated so that any pulse-to-pulse overlap can be
neglected, the multi-pulse solution can be constructed by assuming a solution of the form (4) with the gain (3)
modified to be17

g(z) =
2g0

1 + N‖u‖2/e0
. (5)

The simple step of including the number of pulses N in the saturating gain gives the N pulse mode-locked state.
Figure 3 demonstrates the stability and solution branches for N = 1, 2 and 3. The gray region in this figure
denotes the area of stable mode-locked solutions. Stability is determined by linearizing about the steady-state
solution (4) and considering the associated eigenvalue problem. Linear instability occurs for any eigenvalue
whose �{λ} > 0.17 The insets on the 1-pulse solution branch (N = 1) illustrate the Hopf instability mechanism
computed previously.17 Note that there is an entire band of unstable modes if one proceeds far enough beyond
the Hopf bifurcation point. It is conjectured that this large number of unstable modes is ultimately responsible
for the chaotic behavior observed in the multi-pulsing transition. Linear stability no longer holds in this case
since the solutions are now time-periodic and full Floquet-type analysis is required. This analysis shows that the
model (2) provides an ideal analytic framework and model for characterizing the multi-pulse transition.

4. MULTI-PULSE TRANSITION: THEORY AND EXPERIMENT

To make a qualitative comparison with the experimental findings of Sec. 2, simulations are performed and
evaluated near the theoretically predicted Hopf transition point of (2). Unlike the previously analysis of Kutz
and Sandstede,17 emphasis is placed on the pulse-to-pulse interaction of the transition to demonstrate and
confirm the experimental findings. Although the focus here will be on the transition from one to two pulses, a
similar transition is predicted to occur from N to N + 1 pulses.17

Figure 4 demonstrates the mode-locking dynamics as a function of the gain strength parameter g0. Over
the range of values g0 = 2.3, 2.52, 2.53, 2.68, 2.72 and 2.75, the mode-locking is observed to go from 1-pulse per
round trip to 2-pulses per round trip. During the transition, the Hopf (periodic) bifurcation is clearly observed
(top right panel of Fig. 4) to preceed the onset of chaotic dynamics. Specifically, the breather solution begins
to breath erratically and drift while intermittingly forming two pulses and then one again. For sufficiently high
gain, two stable mode-locked pulses are formed. To make connection with experimental findings of this process,
the distance between neighboring pulses is computed for the simulations shown in Fig. 4 with g0 = 2.68 and
g0 = 2.72. For these two gain values, Fig. 5 shows the pulse-to-pulse distance and its Fourier transform with
the DC component removed. The oscillations for these two gain values corroborate the experimental findings by
showing a dominant periodic signature (g0 = 2.68) and a chaotic signature (g0 = 2.72). Thus the multi-pulsing
transition behavior is qualitatively consistent in both theory and experiment. A quantitative comparison is not
possible due to aliasing in the experimental video footage as well as the fact that the theoretically based WGA
model is different from the SWCNT mode-locking of the experiment. Specifically, in the experimental movies in
which each frame was on the order of a fraction of a second, several million round trips of the cavity will have
elapsed. Thus the visualization misses many of the faster timescale events that are captured in the simulations.
Thus when comparing, it should be noted that the separation between the pulses of simulation are not expected
to match the experimental video. At best, we can investigate the Fourier spectra in order to ascertain the periodic
or chaotic signatures. Regardless, both models exhibit the key features predicted, suggesting the broader nature
of the phenomena.17
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Figure 4. Mode-locking dynamics as a function of increasing gain pumping g0 =2.3 (a), 2.52 (b), 2.53 (c), 2.68 (d), 2.72
(e) and 2.75 (f). As the gain is increased, mode-locking is observed to go from 1-pulse per round trip to 2-pulses per
round trip via a Hopf bifurcation followed by a chaotic regime of interaction. The parameters for numerical simulation
are γ = 8, C = 5, δ0 = δ1 = 0, δ2 = 10, τ = 0.1 and e0 = 1.17

5. CONCLUSION

The phenomenon of multi-pulsing in mode-locked lasers has been well-known for almost two decades, with its
energy quantization and pulse-to-pulse interactions having been studied and quantified by numerous researchers3-
.16 Indeed, there are still many open problems and competing theories concerning the fundamental physical
mechanisms that drive the multi-pulse interaction. Despite the various studies, this manuscript provides for the
first time, to our knowledge, a detailed study of the transition dynamics when the cavity bifurcates form N to
N + 1 pulses per round strip. As is clearly evident in the theory and experiment, periodic and chaotic behavior
occurs very close to the transition point of the instability. The initial instability is shown to be driven by a Hopf
bifurcation as a band of unstable eigenvalues cross into the right half plane, i.e. the real part of the eigenvalues
are positive, leading to growth and instability. It is conjectured that as the gain is increased further the large
number of oscillatory modes that cross into the right-half plane generate a complicated oscillatory (chaotic)
structure, thus leading to the observation of seemingly random oscillations in the pulse-to-pulse interactions. A
further increase in gain leads to stable N + 1 mode-locking once again.

Although the theory and experiments are in qualitative agreement, there remain open questions about the
pulse-to-pulse interactions. Specifically, the role of the translationally invariant zero mode in forcing the trans-
lation of the pulse as observed in the panels of Fig. 4. Additionally, what the phase dynamics and how do
they drive the pulse-to-pulse separation. And finally, what determines the length scale of separation for the
mode-locked pulses once stabilized in the N + 1 configuration.
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Figure 5. Numerical simulations of the pulse-to-pulse distance and its Fourier transform for two different gain values. For
the top panel, g0 = 2.68 and a strong periodic signature is observed in the spectrum in (c). As the gain is increased to
g0 = 2.72 in (b), the periodicity is lost and a stronger chaotic motion is observed as illustrated in the spreading of the
spreading of the spectral signatures in (d). Note that the DC signature has been zeroed out in the spectrum. Aside from
g0, the parameters are the same as those used in Fig. 4.
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