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ABSTRACT

We present a theoretical description of the generation of ultra-short, high-energy pulses in two laser cavities
driven by periodic spectral filtering or dispersion management. Critical in driving the intra-cavity dynamics is
the nontrivial phase profiles generated and their periodic modification from either spectral filtering or dispersion
management. For laser cavities with a spectral filter, the theory gives a simple geometrical description of the
intra-cavity dynamics and provides a simple and efficient method for optimizing the laser cavity performance.
In the dispersion managed cavity, analysis shows the generated self-similar behavior to be governed by the
porous media equation with a rapidly-varying, mean-zero diffusion coefficient whose solution is the well-known
Barenblatt similarity solution with parabolic profile.
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1. INTRODUCTION

Although the practical and innovative uses of mode-locked lasers has continued to grow in the past decade,1 its
broader impact has been limited due to restrictions on pulse energies, which is a consequence of the underlying
cavity nonlinearities. Recently however, great effort and progress has been made experimentally to achieve mode-
locked fiber lasers that produce high-energy, ultra-short pulses.2, 3 A key parameter in achieving this aim is the
cavity group velocity-dispersion (GVD). For anomalous GVD, ultra-short pulses can be easily obtained where
the GVD balances the self-phase modulation (SPM) to produce soliton-like pulses that are nearly bandwidth-
limited.1, 4 The desire for higher energy pulses suggests consideration of cavities with segments of normal and
anomalous GVD or with large and net normal GVD. These include the self-similar laser5 and the chirped pulse
oscillator (CPO).6, 7 In general, high-energy pulses can be generated, but it is necessary to compensate for the
phase accumulated across the pulse.1, 4

Recently, two new experimental configurations, both operating in the non-soliton regime, have been developed
for obtaining high pulse energies. First, Chong et al. demonstrated a new class of high powered femtosecond
fiber lasers, in which pulse-shaping is based on the spectral filtering of a highly-chirped pulse in the cavity.2, 3

In contrast to soliton-like processes that dominate modern mode-locked lasers, these lasers depend strongly on
dissipative processes as well as phase modulations to shape the pulse. Remarkably, no anomalous dispersion
is required in the cavity, so this kind of laser is referred to as an all-normal dispersion (ANDi) laser. Second,
self-similar (parabolic) pulse solutions have been recently observed experimentally8–10 in laser cavities with a
mean-zero GVD. In both these new lasers, the intracavity dynamics, generated either from the spectral filtering
or dispersion management, plays a critical role in both stabilizing the mode-locked pulse and producing high-
energy output. The aim of this manuscript is to highlight the modeling efforts required for quantifying the
large intracavity fluctuations and to show how these fluctuations are key to generating novel, high-energy, mode-
locked pulses. The analysis also provides a theoretical framework for optimizing the laser cavity performance
and characterizing the global-attracting nature of the mode-locked solutions.
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2. GOVERNING EQUATIONS

The evolution of electromagnetic energy in the laser cavity is subject to a number of physical components:
dispersion elements, bandwidth-limited gain components, and saturable absorption (intensity-discrimination) el-
ements. These components are responsible for generating, among other things, intra-cavity chromatic dispersion,
self-phase modulation, attenuation, and gain saturation. Haus proposed that these different elements could be
averaged together into a single Ginzburg-Landau type evolution equation: the master mode-locking model.11

Due to stability considerations, the master equation is often augmented by a quintic saturation term which
prevents blow-up of the solution. Thus the cubic-quintic Ginzburg-Landau equation (CQGLE) incorporates the
laser cavity’s intensity discrimination in a phenomenological way. The governing evolution is then given by
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where the saturated gain behavior is given by1, 4

g(z) =
2g0

1 + ‖u‖2/e0
. (2)

Here u is the electric field envelope, z is the propagation distance, and t is the retarded time. The energy of
the pulse is given by ‖u‖ =

∫ ∞
−∞ |u|2dt, and β and σ measures the strength of the cubic and quintic saturable

absorber terms respectively. The parameters δ, g0 and e0 measure the cavity attenuation, the amplifier gain
strength, and cavity saturation energy respectively.

3. INTRACAVITY DYNAMICS

The governing CQGLE (1) will be the starting point of the theoretical analysis of the intracavity dynamics.
Specifically, we will consider two very different types of perturbations to the cavity: spectral filtering and dis-
persion management. Both compensate for accumulated phase and produce high-energy pulses whose dynamics
can be elegantly captured with asymptotic and pertubation methods.

3.1 Spectral Filtering

The governing equation (1) is a partial differential equation modeling the spatial-temporal evolution of elec-
tromagnetic energy in the laser cavity. The variational method can be used to capture the intra-cavity pulse
dynamics. The literature regarding variational reductions12 in nonlinear Schrödinger type systems is vast, espe-
cially given its applicability in optical transmission systems. To fully capture the varying phase profiles which
have been observed in the ANDi laser cavity,2, 3 we assume a solution-based mode-locking ansatz form

u(z, t)=
η(z)√

B(z) + cosh(η(z)t)
e−iΨ(z,t) (3)

with Ψ(z, t) = A(z) ln(B(z)+cosh(η(z)t))+ϕ(z). The specific form of the phase profile Ψ is essential to capture
the different spectral profiles observed in the ANDi laser.2, 3 The evolution of the ansatz parameters as a function
of propagation distance12 is then found to satisfy the ordinary differential equations

Dx = g (4)
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Ωp

Figure 1. The experimental laser cavity configuration includes an amplifier with parabolic gain band-width Ωg and a
gaussian spectral filter with band-width Ωf . A typical pulse solution with spectral band-width Ωp is also shown. Note
that the key parameter Γ = Ωf/Ωp.

The components in the vector g include the terms from dispersion and self-phase modulation, as well as the gain
and loss perturbations. They are given by
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where all primes denote differentiation with respect to the parameter B, and the parameters H, G, Q, R, S, W, Y
and Z are B-dependent integrals given by

H =
∫

dt

Θ
, G =

∫
ln Θdt

Θ
, Q =

∫
t sinh3 t dt

Θ4
, R =

∫
sinh2 t dt

Θ2
, (7)
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with Θ = B + cosh t and all integrations range over t ∈ [−∞,∞].

Despite the complicated structure of the equations, the dynamics are quite easy to characterize. The phase
variable ϕ can easily be eliminated from the system (4) resulting in a 3 × 3 system that can be analyzed in the
phase plane. For different parameter regimes, the dynamics exhibits a stable node, a stable spiral node and a
limit cycle in the η, B and A phase plane. The location of the fixed point as well as its stability depend on the
parameters in the equations. The key contribution to pulse shaping in the ANDi lasers arises from the spectral
filter. Although the fixed points of the reduced model have the correct temporal and spectral profiles seen in the
ANDi laser, it fails to capture the round trip cavity dynamics.2, 3 To capture the intra-cavity pulse fluctuations
we must consider the operation of the spectral filter. The spectral filter can be assumed to be a Gaussian function
with full width half maximum (FWHM) Ωf , and will typically fall under the gain bandwidth, as shown in Fig. 1.
The ratio Γ = Ωf/Ωp, where Ωp is the FWHM of the pulse bandwidth, determines how significant the filtering
action is. For example, if Γ >> 1, then the filter will have no effect on the pulse, however if 0<Γ<1 then the
filter will modify the pulse solution in some way.

To observe the spectral profile evolution per round trip in the laser cavity, the filter action cannot be averaged
into Eq. (1) and must be considered as a discrete forcing on the governing equations. To obtain an understanding
of the mechanism of the filter, we consider its effects in the context of the reduced model. For bandwidth ratios
0 � Γ < 1, multiplying the spectrum of (3) by a Gaussian filter results in a similar pulse form with modified
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Figure 2. (a) Illustration of the laser cavity with discrete filter and four labeled positions in the cavity. (b) The intra-cavity
mode-locked evolution in the experimentally relevant variables along with the action of the spectral filtering (dotted line).
(c) The output spectral profiles at the labeled intra-cavity positions of (a) and (b). This prototypical pulse evolution is
characteristic of the all-normal dispersion fiber laser.3 Note that high energy, high peak amplitude pulses can be obtained
if the output coupler is placed at position 3.

parameters. Thus we are able to assume that the filter acts only on the fixed point (η0, B0, A0) of the dynamical
system (4), modifying the fixed point in some way, i.e. (η0, B0, A0) → (ηf , Bf , Af ) where the new values are
computed numerically after filtering via a least-square fitting. The accurate spectral and temporal fit between
the post-filtered pulse and the pulse solution (3) with modified parameters clearly illustrates that the application
of the spectral filter on the fixed point solution effectively changes the pulse parameters. Combining the reduced
model, which is based on averaged evolution equations, with the essential discrete element in the laser, the spectral
filter, we obtain a graphical interpretation of the intra-cavity dynamics of the ANDi laser since the filter acts as
a periodic forcing (per round trip) on the governing equations that modifies the fixed point solution parameters
(η0, B0, A0). We consider a laser configuration with the parameters g0 = 3, δ = 1, τ = 0.2, D = −0.4, ε = 0.5,
and σ = −0.1 corresponding to a stable node at (η0, B0, A0) = (1,−0.5, 3.3).

By examining the evolution along flow lines we can understand the dynamics of the ANDi laser. Figure 2
shows an example of the laser dynamics with a filter bandwidth ratio Γ = 0.5. Figure 2(a) shows the laser
configuration with the spectral filter as the primary discrete element. Figure 2(b) illustrates the phase line
(whose initial condition is specified by the spectral filter width) in a relevant phase plane whose phase variables
are the pulse duration (η), peak amplitude (η/(1 + B)), and pulse energy ηF (B). Figure 2(c) shows the spectral
profiles at the various positions labeled in the laser set-up and phase plane. The fixed point is denoted by “4”,
where the pulse directly after filtering is denoted by the “1” position. The periodic application of the filter (once
per round trip) actively controls the parameters of the mode-locked pulse, changing the pulse solution parameters
in (3) from the fixed point “1” to position “4”. Further, along the flow line the dynamic pulse evolution contains
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different spectral profiles that have been observed experimentally in the ANDi laser cavity.2, 3 Note that the
periodic orbit acts as a globally attracting state of the system, producing large intracavity fluctuations per round
trip of the cavity. The optimal energy and peak power output can be extracted from the laser cavity at position
“3” as is graphically demonstrated.

3.2 Self-similar mode-locking
In contrast to spectral filtering, we can also achieve the necessary phase compensation by applying a dispersion
map to the laser cavity. This in turn will generate large intracavity fluctuations. In this case, the parameter D
in (1) is dependent upon z. We investigate (1) when the dispersion length Z0 is much longer than the typical
period P of the dispersion map, so that

ε = P/Z0 � 1 (8)

and the dispersion fluctuations occur on a rapid scale. The period P is simply determined by the physical length
of the laser cavity while the dispersion length is related to the pulse width of the mode-locked pulses. Specifically,
the dispersion length is the length it takes for the full-width, half-maximum pulse width to double in the absence
of nonlinearities. For convenience and simplicity, we let

D = d(z/ε) = cos(2πz/ε). (9)

Note that although the results apply to a general d(z), it will prove helpful to consider the particular case here
of a simple sinusoidal dispersion map.

Simulations suggest that the dispersion fluctuations must occur on a rapid-scale in order for the parabolic
states to persist. Such a clear scale separation between the dispersion map period and the fundamental dispersion
and nonlinearity scale suggests the application of a multi-scale transformation technique. The transformation
procedure considered relies on the Green’s function of the linear part of the left hand side of (1) since it accounts
explicitly for the dispersion fluctuations. Using Fourier transforms, it is easy to calculate that the Green’s
function for the linear Schrödinger equation13

iGz +
1
2
d(z/ε)Gtt = 0, (10)

with G(t, t′, 0) = δ(t − t′) is given by

G(t, t′, z) =
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4πμ(z)
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(−i(t − t′)2

4μ(z)

)
. (11)

Here 2μ(z) =
∫ z

0
d(s)ds ∼ O(ε) is the accumulated dispersion for a rapidly-varying, mean-zero map.

The transformation is performed by introducing the new function A(t, z) defined by

A(t, z) =
∫

G†(t, t′, z)u(t′, z)dt′. (12)

The evolution equation for A can be found by using the adjoint relation u(t, z) =
∫

G(ξ, t, z)A(ξ, z)dξ. Plug-
ging this into the governing equation (1), making use of (10), then multiplying by the adjoint G†(ξ, t, z) and
integrating with respect to ξ gives an exact transformation. At this point no approximations have been made
– the transformation from u to A is simply a linear change of variables. Since μ ∼ ε � 1, the integrals can be
approximated using stationary-phase asymptotics.13 Expanding the integrals about the stationary phase points
gives an approximate evolution for A in terms as a series expansion in μ ∼ ε � 1. Further, we assume that δ, τ ,
μ, β, and σ are small parameters thus allowing us to neglect higher order terms with μδ, μβ, etc., products.

The effective equation can be put into a more transparent form with the amplitude-phase decomposition
A(t, z) =

√
ρ(t, z) exp(iΘ(t, z)) so that

ρz = μ(z)(ρ2)tt+2ρ(δ−βρ−σρ2)+τ
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Figure 3. Typical evolution of the Barenblatt similarity solution (15) over four dipsersion map periods with D(z) =
cos(2πz/ε). The breathing dynamics is induced by the periodically varying diffusion coefficient μ(z) ∼ O(ε).

A key observation is that for μ > 0 the phase equation (13b) is ill-posed whereas for μ < 0 the amplitude equation
(13a) is ill-posed. This problem is an artifact of the averaging process and can be treated via regularization or by
including higher order correction terms.13 In contrast to other averaging techniques used on dispersion managed
systems, we emphasize that the averaging technique used here retains the critical dependence of the parameter
μ on z. This plays a key role in the stabilization of the parabolic state. Indeed, if the μ(z) parameter is averaged
out to be a constant, the theory fails to correctly capture the breathing nature of the solutions. Specifically, the
profile undergoes typical self-similar broadening until the expansion formally breaks down at z ∼ 1/

√
ε.13

In the limit where the dissipative perturbations on the right hand side of (1) are small in comparison with
the dispersion map, i.e. (δ, β, σ, τ) � ε < 1, the leading order amplitude equation is governed by the porous
media equation

ρz = μ(z)(ρ2)tt. (14)

The porous media equation has the Barenblatt similarity solution

|u|2≈ρ(t, z)∼ 1
12(γ+z∗)1/3

[
a2
∗−

(
(t−t∗)

(γ+z∗)1/3

)2
]

+

(15)

where γ = γ(z) = 2
∫ z

0
μ(s)ds and f+ = max(f, 0) so that the subscript + indicates that the function is either

zero or positive in (15). The solution is characterized by the three parameters (a∗, t∗, z∗) which represent the
mass, center position, and pulse-width of the solution respectively. Note that u ≈ A when ε � 1.13 Here, to first
order in μ ∼ ε, the evolution equation for the amplitude decouples from the equation for the phase. Figure 3
illustrates the typical time-dependent evolution of the Barenblatt solution (15) over four cavity round trips. We
emphasize that the breathing dynamics results from the periodic fluctuations in the integral of the cumulative
dispersion γ(z). Indeed, the averaging technique used here retains the oscillatory nature of the dispersion map in
the form of a z-dependent oscillatory coefficient in Eqs. (15). This oscillatory variation suppresses the structure
from undergoing its usual self-similar broadening and allows for stable self-similar breathers.

Although the Barenblatt solution (15) captures the fundamental self-similar structure, it is not the attracting
state of the underlying system. This is expected since we have neglected the dissipative terms needed to create
an attractor. Further, the Barenblatt soluton has unphysical discontinuous derivatives at its edges. So although
insightful, it is a mathematical idealization that is physically unrealizable. In many applications, spectral filtering
is much weaker than other dissipative terms, i.e. τ � (δ, β, σ, μ). In this case, the amplitude equation

ρz = μ(z)(ρ2)tt+2ρ(δ−βρ−σρ2) , (16)
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Figure 4. Attracting dynamics of the solution (a) and its phase-plane (inset) obtained from numerical simulation of the
amplitude equation (16) from a Gaussian initial condition with δ = 0, β = σ = 0.1, and ε = 0.5. The output is shown
at the beginning of each dispersion map. (b) Comparison of the parabolic solution from solving (16) numerically (solid
black) with the solution from the full governing Ginzburg-Landau equation (1) (solid grey), a quadratic Barenblatt profile
(dashed) and hyperbolic secant pulse (dots). The tail structure is also exhibited in experiments.8

is still decoupled from the phase equation. Although exact solutions to (16) are not attainable, this equation
sheds light on why parabolic states persist in this system. Specifically, for small values of the parameters δ, β
and σ, equation (16) is perturbatively close to (14). Likewise, the solutions of the two equations should also be
perturbatively close so that the leading order behavior of (16) inherits the self-similar Barenblatt structure of
(15). Note that this implies that (16) is not strictly self-similar as certain symmetries associated with (14) are
broken. Regardless, the inclusion of dissipative terms allows for an attracting parabolic breathers to exist for
a wide range of parameter space. Further, numerical simulations suggest the parabolic states are robust to a
variety of perturbations including white-noise fluctuations.

Figure 4 shows the numerical simulation of (16) from initial amplitude ρ(t, 0) =
√

2exp
[−t2

]
. The output

point in the Poincaré map is taken to be at the beginning of each map period. Figure 4(a) shows that the
initial Gaussian structure quickly settles to a steady state solution in the Poincaré map. In contrast to the
Barenblatt solution, the output pulse profile here has finite derivatives at its edges. The inset of Fig. 4(a) plots
the corresponding (ρ, ρt) phase plane and shows that there is indeed an attracting homoclinic orbit (solid line)
which represents the steady state solution. To show that this attracting state has a parabolic profile, the output
pulse (once settled to the parabolic breather), along with a Barenblatt quadratic (dashed) and hyperbolic secant
(dotted) fit is plotted in Fig. 4(b). In addition, the numerical solution for the Ginzburg-Landau equation (1)
with parameters τ = δ = 0, −β = σ = 0.1, and ε = 0.5 is included (solid grey). This shows that the solutions
to (1) and (16) are perturbatively close as expected. Further, there is the remarkable agreement between the
solution profile of (16) and experiments.8 Unlike the Barenblatt solution, the parabolic solution to (16) is a
physically realizable, smooth profile that correctly captures the tail structure and attracting nature observed in
experiments.8

4. CONCLUSIONS

In conclusion, we have shown that the consideration of the large intracavity dynamics generated from either
spectral filtering or mean-zero, dispersion management leads to nontrivial, periodic mode-locked states that
act as global attractors to the laser cavity system. In the all-normal dispersion fiber laser with filtering, we
characterized these behaviors with a reduced model which is based on an averaged CQGLE equation. A key
contribution to pulse shaping in these lasers arises from the spectral filter, which converts large frequency chirp
to self-amplitude modulation. The variational method used here provides a geometrical interpretation that
completely describes the intra-cavity dynamics. The resulting intra-cavity temporal and spectral profiles are in
good agreement with observed numerical and experimental results. Thus the laser can be engineered to take
advantage of the intra-cavity pulse dynamics by placing the output coupler at positions where the pulse has the
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desired temporal and spectral profile. When considering a rapidly-varying, mean-zero dispersion, the intracavity
evolution dynamics results in a perturbed version of the nonlinear (porous media) diffusion equation with mean-
zero diffusion coefficient. The dissipative contributions in the GL equation make the parabolic structure an
attracting state of the system. Thus the two driving mechanisms of parabolic propagation are the mean-zero
dispersion map which generates self-similarity and dissipation which makes the self-similar structure an attractor.
The combination of the two phenomena result in the formation of the parabolic breathers that have been recently
observed experimentally in the context of mode-locked lasers.8
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