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ABSTRACT

Recent theoretical investigations have demonstrated that the stability of mode-locked solution of multiple fre-
quency channels depends on the degree of inhomogeneity in gain saturation. In this paper, these results are
generalized to determine conditions on each of the system parameters necessary for both the stability and ex-
istence of mode-locked pulse solutions for an arbitrary number of frequency channels. In particular, we find
that the parameters governing saturable intensity discrimination and gain inhomogeneity in the laser cavity also
determine the position of bifurcations of solution types. These bifurcations are completely characterized in terms
of these parameters. In addition to influencing the stability of mode-locked solutions, we determine a balance
between cubic gain and quintic loss, which is necessary for existence of solutions as well. Furthermore, we de-
termine the critical degree of inhomogeneous gain broadening required to support pulses in multiple frequency
channels.
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1. INTRODUCTION

Nonlinear photonic technologies are of continued scientific interest due to their proposed performance increases
over their electronic counterparts. The two most commercially successful applications of nonlinear photonics
have come from two fiber optic-based applications: optical fiber communications and mode-locked fiber lasers.1

In both cases, the optical fiber serves as a nearly ideal waveguide whose dispersion and nonlinearity is used
as the basis for controlling the light pulses, i.e. the optical bits. Indeed, the intensity-dependent cubic (Kerr)
nonlinearity exhibited in the optical fibers has led to significant theoretical and experimental consideration of
soliton solutions of the nonlinear Schrödinger equation (NLS). The robust and stable nature of the one-soliton
solutions to NLS have led to their consideration as optical bits in wide range of applications far beyond optical
communications and fiber lasers. Current optical fiber-communication networks increasingly rely on wavelength-
division multiplexing (WDM) technologies in conjunction with optical time-division multiplexing (OTDM) of
individual WDM channels. The combination of high-repetition-rate data streams with a large number of WDM
channels has pushed transmission rates to nearly 1 TB/s.1 This has created a demand for all-optical transmission
sources that can generate pico-second mode-locked pulses at various wavelengths.3–6 Here, we develop a low-
dimensional theoretical description of the dynamics of a multiple-wavelength mode-locked laser source. We
characterize the stability and interaction dynamics of the mode-locked soliton-like solutions as a function of
the number of frequency channels mode-locked. Further, we develop a comprehensive theoretical treatment of
the bifurcation structure, via a center manifold and normal form reduction, associated with the mode-locking
behavior.

Mode-locking is a fundamentally nonlinear phenomena whereby an often perturbatively small intensity-
discrimination element in a laser cavity leads to the formation of stable and robust perturbed solitons in the laser
cavity.7, 8 These mode-locked pulses often behave as global attractors to the underlying laser system. It is the
intensity discrimination element in the cavity that breaks the Hamiltonian and completely integrable structure
of the NLS so as to achieve a globally attracting solution. In addition to intensity discrimination, amplification
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in the laser cavity must be applied in order to compensate for losses in the laser cavity. For pulsed lasers, the
past decade has focused on the use of Erbium-doped fibers for amplification operating at 1550 nm. Thus the two
basic components modifying the basic NLS description is the inclusion of the cavity amplification and intensity
discrimination. A wide variety of physically realizable schemes have been proposed and developed for generat-
ing the requisite intensity discrimination including nonlinear interferometry in a figure eight laser, polarization
rotation in the ring laser, quantum saturable absorption in a linear cavity configuration, spectral filtering with
polarization filters in a dispersion controlled cavity, and nonlinear mode-coupling in a waveguide array-based
laser.

More recently, intensity discrimination methods have been used to experimentally generate mode-locked pulses
at multiple frequencies simultaneously,3–6 i.e. multi-frequency mode-locking. Theoretical models of the govern-
ing equations have also been developed to characterize the resulting nonlinear interactions among the different
frequency channels.10–13 These theoretical studies have primarily focused on the cubic-quintic Ginzburg-Landau
model description for the mode-locking process,10–12 which is related to the master mode-locking description
originally proposed by Haus.7, 8 Our objective in this manuscript is to characterize the low-dimensional dynam-
ical system description of the mode-locking process.12 Specifically, we completely characterize the underlying
bifurcation structure of the mode-locking process as a function of such key critical parameters as the homogeneous
and inhomogeneous gain broadening effects and intensity discrimination parameters. Our formalism and normal
form reductions are capable of a complete classification of the mode-locking for two frequency operation. The
methods can also be applied and extended to multiple frequencies, but the results are more difficult to extract
analytically. Highlighted in the bifurcation analysis is the key role that the gain model plays in determining the
stability of multiple frequency laser operation.

2. GOVERNING EQUATIONS

The evolution of the electromagnetic field in the laser cavity is subject to several key physical effects. In
addition to the inherent effects of chromatic dispersion and self-phase modulation proposed as the basis for
soliton formation and propagation,1, 2 the laser cavity requires a saturating gain to counteract the net laser cavity
losses incurred from output coupling and the intensity discrimination element. Thus the inclusion of chromatic
dispersion, self-phase modulation, attenuation, bandwidth limited gain, and an intensity-discrimination element
comprise the key components of a laser cavity. Averaging over all these physical effects that occur per round trip
in the laser cavity, a master mode-locking model has been developed that uses a generic nonlinear loss to provide
the necessary intensity discrimination.7, 8 A wide variety of other theoretical models have also been developed
to describe the mode-locking process, but here we use the cubic-quintic master modelocking equation7, 8 that
has been recently demonstrated to make explicit connection to a passive laser cavity with a linear polarizer.14–16

The governing equations can be shown, via an averaging method, to result in a coupled set of partial differential
equations for the electric field at each WDM frequency 11, 17
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where n = 1, 2, · · · , N and N is the total number of frequency channels being mode-locked. The model includes
the nonlinear interaction associated with both self- and cross-phase modulation. Note that the small four-wave
mixing products which appear at new sideband frequencies have been neglected.17, 18 The normalizations for the
amplitude un arise from standard soliton scalings so that the propagation distance z and time t in the boosted
frame are scaled in soliton units.10 Such a scaling sets the coefficient of the self-phase modulation and chromatic
dispersion to unity. The energy equilibration parameters are determined from the gain bandwidth parameter τn

and the linear attenuation γn. The parameter δn = (1/vgn − 1/vg0) measures the group-velocity (vgn) walk-off
between the individual frequency channels in the boosted time frame of the center frequency (note that vg0 is
the group-velocity of the center frequency). Although the group-velocity is explicitly considered, stable mode-
locking forms bound state solutions moving at the average group-velocity of the channels.11, 12 This numerical
observation is critical to the low-dimensional model developed in this manuscript.
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2.1 Gain Modeling

One of the most critical aspects of the multi-frequency dynamics is the gain saturation model gn(z). To our
knowledge, no experimental studies exist that quantify the multi-frequency gain saturation behavior. However,
it is known that in such a multi-frequency, broadband scenario, two gain effects are present: homogeneous
gain broadening and inhomogeneous gain broadening.19 Qualitatively, the homogeneous gain broadening effect
amplifies all frequencies equally. Thus in a multi-frequency scenario, all frequency channels would act to saturate
the erbium optical amplifier. The inhomogeneous gain broadening amplifies in a frequency dependent manner.
This implies that different frequency channels saturate independently of the entire gain spectrum of the erbium
fiber. These two effects must be modeled at least qualitatively in order to achieve a physically relevant gain
model.12

The qualitative gain model as in Bale, Farnum and Kutz12 incorporates both homogeneous and inhomogenous
broadening effects. This simple model generalizes the standard and well-established saturable gain model of
Haus.7 Under this gain model, the degree of homogeneous and inhomogeneous gain broadening is controlled
by the parameter α, which will be treated as the primary bifurcation parameter in this manuscript. It is this
parameter that ultimately determines the stability of the multi-frequency mode-locking operation. The gain in
channel n is given by

gn(z) = αGn(z) + (1 − α)Gh(z) (2)

with

Gh(z) =
2g0

1 +
(

N∑
n=1

||un||2
)

/(N e0)
, (3a)

Gn(z) =
2g0

1 + ||un||2/e0
, (3b)

where ||un|| =
∫ ∞
−∞ |un|2dt, e0 is the saturation energy of the cavity, and g0 measures the strength of the

gain pumping. Here Gh (Gn) models the homogeneously (inhomogeneously) saturated gain in channel n. The
inhomogeneously broadened gain is often called the self-saturation. Note that the total gain gn(z) models both
homogeneous and inhomogenous gain broadening as a linear combination between the two effects. The parameter
α measures the strength of each relative to each other. Indeed, α acts as a homotopy parameter where α = 0 gives
purely homogeneous gain broadening and α = 1 generates only inhomogeneous (self-saturating) gain broadening.

Variations in the gain saturation homogeneity in erbium-doped fiber amplifiers is well known to be influenced
by a number of factors, including temperature.19 Thus given the absence of a comprehensive experimental study
of the degree of homogeneous to inhomogeneous gain broadening, it is difficult to estimate the parameter α.
However, provided there is only a small amount of inhomogeneous gain broadening, it will be shown that the
laser cavity can support stable multi-frequency operation. This is in agreement with the effort to use enhanced
inhomogeneous gain broadening for gain equilization in WDM systems.19 As with WDM systems, the multi-
frequency mode-locking stability is greatly influenced by enhancing the inhomogenous gain broadening.

2.2 Low-dimensional (Reduced) Model

The governing equation (1) is a partial differential equation modeling the spatial-temporal evolution of electro-
magnetic energy in the laser cavity. To obtain analytic insight into the dynamics of this model, a variational
method can be used to describe the complete evolution problem with ordinary differential equations that govern
the evolution of a finite set of pulse parameters. The literature regarding variational reductions in nonlinear
Schrödinger systems is vast,20 and has been used to describe various aspects of mode-locking behavior21–27 as
well as general Ginzburg-Landau systems.28 The variational method is traditionally rooted in the Hamiltonian
nature of the system, i.e. it is assumed that some conserved energy functional can be constructed. Classical
Hamiltonian theory then allows for the construction of the associated Lagrangian via a Legendre transforma-
tion. The variational reduction then applies the Euler-Lagrange equations to the free parameters in the ansatz
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assumption. A modified variational reduction29 is necessary since (1) contains dissipative terms due to gain
saturation and intensity discrimination.12 Assuming an ansatz of the form

un(z, t) = ηn(z) sech(ωn(z) t) exp [iφn(z)] (4a)

ωn(z) =
(
η2

n(z) + 2
N∑

j=1(j �=n)

η2
j (z)

)1/2

(4b)

is motivated by the exact solutions of (1) with σ = 0.11 Further, simulations of (1) suggest that pulses at
different frequencies lock to the same group-velocity so that no center position variable evolution is assumed in
the ansatz.11, 12 This gives the coupled amplitude evolution equations
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where the substitution Yj = η2
j /ωj, Yn = η2

n/ωn is made for clarity. The ansatz chosen for our variational ansatz
is unchirped, in contrast to the exact solutions to Hauss master mode-locking equation, which in general have
a non-trivial phase profile. However, in the anomalous dispersion regime, the magnitude of this phase chirp
is known to be small. For example, with the system parameters we used, the phase chirp for solutions to the
full simulations are on the order of O(10−3) for the single channel case, and O(10−2) for the dual-channel case.
Furthermore, those hyperbolic secant solutions provide only a guide for choosing an ansatz, since such solutions
are not generally admissible for the case when sigma is not equal to zero. Given the small size of the chirp in
comparison to the other system parameters, we decided to neglect it in our ansatz. If, on the other hand, we
had been modeling pulses in the normal dispersion, then neglecting the chirp would certainly be inappropriate.
Moreover, our recent findings show the variational reduction to be quite accurate in depicting the dynamics.12

It is important to note that since only trivial phase profiles are considered in the ansatz (4), the cross-phase
modulation, which exchanges nonlinear phase across different frequency channels, does not explicitly account
for amplitude coupling. In this model, the direct coupling between neighboring channels largely occurs due to
the homogeneous gain broadening effects in (5). The analysis in the remainder of the manuscript concerns the
coupled amplitude equations (5) in both the dual- and N -frequency system. Note that unless stated otherwise,
the following parameter values are taken in all simulations: βn = 0.05, σn = 0.01, τ = 0.10, g0 = 0.25, and
γ = 0.2167.

3. DUAL FREQUENCY OPERATION

In this section we consider dual-frequency operation with identical equation parameters at each frequency, i.e.
β1 = β2, τ1 = τ2, etc. Non-identical parameters can be considered, however the complexity of the system restricts
analytical progress.12 For the reduced model (5), the dynamics simplifies to the coupled ordinary differential
equations
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with the gain given by
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Dual-frequency operation presents a simplified model that allows for the visualization of the overall dynamics
in a two-dimensional phase space.31 Further, consideration of dual-frequency operation provides key insights for
the general N -frequency operation.

3.1 Equilibrium Solutions

Equilibrium solutions can be found by setting the right-hand side of (6) to zero. Here we only consider the fixed
points in the first quadrant where η1 > 0, η2 > 0. Fixed points in other quadrants exist and represent solutions
that are out of phase. However, (6) is invariant under the transformation ηn → −ηn, thus it suffices to only
consider solutions where η1 > 0, η2 > 0.

There exists an equilibrium solution P1 = (η1, η2) = (η̂, η̂) where the amplitude in each channel is identical.
This corresponds to the ideal case where equal mode-locked pulsed solutions at each frequency are achieved. For
this equilibrium solution, the gain (7) is independent of the choice of gain model (independent of α), and is given
by

g1 = g2 =
2g0

1 + (2/
√

3)η̂
. (8)

Substituting P1 and the gain values into f1 and f2 and setting it to zero we obtain the quintic polynomial

F (η̂)=(6g0−3γ) − 2
√

3γη̂+(2β−6g0τ)η̂2

+
4√
3
βη̂3− 8

5
ση̂4− 16

5
√

3
ση̂5 =0, (9)

which gives the solution (numerically) for η̂. For the physically reasonable system parameters outlined above,
F (η̂) has one real root at η̂ = 1.1966, which is in agreement with the observed fixed point in the phase plane
analysis.12

A second class of fixed points lie on the η1 and η2 axes. The fixed points P2 = (η̂, 0) and P3 = (0, η̂)
correspond to solutions in which a single channel dominates while the field in the other channel is zero. Again
it is sufficient to find the roots of a single polynomial

G(η̂,α)=(6g0−3γ)+(6g0(2−α)−9γ) η̂ +(2β−2g0τ−6γ)η̂2

+(6β−2g0τ(2−α))η̂3+(4β−8
5
σ) η̂4 −24

5
ση̂5−16

5
ση̂6. (10)

to obtain values of η̂. Note that for P2 and P3 the position of the roots depends on the inhomogeneity parameter
α. Figure 1 shows the value of the real root of (10) as a function of α. It is clear that as the level of inhomogeneity
is increased, the amplitude decreases.

Finally, a third class of equilibrium solutions exists for a restricted interval of the inhomogeneity parameter
α.12 This represents dual-frequency operation with mode-locked pulse solutions that have different amplitudes
and widths in each channel. Thus the (symmetric) fixed points are given by P4 = (η̂, η̄) and P5 = (η̄, η̂), where
η̂ ≥ η̄. The values η̂ and η̄ can be found by setting the right-hand side of (6) to zero and solving the resulting
two coupled polynomials numerically. It is important to note that there is a restricted α interval in which real
values for P4 and P5 can be found. In particular, at the bottom of this interval the fixed point P4 coalesces with
the fixed point P2, and at the top of this interval P4 merges with P1. Similarly, at the bottom of this interval
the fixed point P5 coalesces with the fixed point P3, and at the top of this interval P5 merges with P1.12 The
exact interval values can be found by the linear stability analysis that follows.

3.2 Linear Stability Analysis

The linear stability of the fixed points can be found by examining the eigenvalues of the Jacobian matrix evaluated
at each fixed point31

J(η1, η2) =
[

A(η1, η2) B(η1, η2)
C(η1, η2) D(η1, η2)

]
, (11)
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Figure 1. In contrast to the η1 = η2 case, the position of the (η1, 0) solution depends on the value of gain inhomogeneity
α. In the single pulse operation, changing α determines the amount of gain an individual channel receives.
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We first consider the linear stability at the equal amplitude equilibrium solution P1 = (η̂, η̂). Since the amplitudes
and gain values are equal (g1 = g2 = g), it is easy to see from (12) that the diagonal entries of J are equal
(A(η̂, η̂) = D(η̂, η̂)), as well as the off-diagonal entries (B(η̂, η̂) = C(η̂, η̂)). Using this symmetry, the eigenvalues
are given by

λ1 =
1
6
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3
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)
g−6g√

3
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]
. (13b)

Note that λ1 < 0 is independent of the gain model (independent of α). There is a critical value of α = αc where
the eigenvalue λ2 = 0. Setting (13b) to zero gives

αc=−(
√

3+2η̂)

(
3γ−6βη̂2+8ση̂4−(3−τ η̂2)g

)
14ηg(1 − τ η̂2)

≈0.2947. (14)

For values α < αc, the equilibrium point P1 = (η̂, η̂) is unstable since λ2 > 0. For α = αc, P1 changes its
stability and becomes a stable node for α > αc. A detailed bifurcation analysis of this fixed point as a function

Proc. of SPIE Vol. 7582  758216-6



0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

0.15

α, degree of inhomogeneity

E
ig

en
va

lu
es

 o
f J

ac
ob

ia
n

Stability of Single Pulse Solution

λ
2
(η,0)

λ
1
(η,0)

Figure 2. The stability of the (η1, 0) solution depends only on the sign of ∂f2
∂η2

evaluated at (η1, 0). Note that the position
of η1 depends on the choice of α. The figure shows that the single pulse solution is stable for α < 0.1997

of α is considered in the next section. The linear stability analysis of the fixed point P1 shows that to achieve
dual-frequency operation, a sufficient amount of inhomogeneous gain broadening is required. This is consistent
with numerical simulations11, 12 and efforts to enhance inhomogeneous gain broadening in WDM system.19

The fixed points P2 = (η̂, 0) and P3 = (0, η̂) represent single-channel operation. Due to the symmetry of (6),
the linear stability analysis for P2 is the same as for P3, thus allowing us to only consider P2. Evaluating the
Jacobian (11) at the fixed point P2 we see that B(η̂, 0) = C(η̂, 0) = 0, resulting in the eigenvalues

λ1 = A(η̂, 0), λ2 = D(η̂, 0). (15)

Since the position of η̂ depends on the value of α, characterizing the stability as a function of the gain broadening
parameter is difficult. Figure 2 shows the numerical calculation of the eigenvalues A and D at the fixed point P2

as a function of α. The eigenvalue associated with A is always negative, where at α = αs = 0.1997 the eigenvalue
associated with D becomes positive. Thus a bifurcation occurs at αs where the stable fixed point at P2 goes
unstable for all α > αs. Further, it can be shown for α values just above αs, two new stable nodes exist on either
side of the fixed point P2. Thus this instability can be described by a standard pichfork bifurcation.31

The same pitchfork bifurcation occurs at P3 = (0, η̂) at α = αs. Thus for α slightly greater than αs two new
stable fixed points exist (P4 and P5) in the first quadrant so that there are five fixed points in total. These new
equilibrium points represent dual frequency operation where the mode-locked pulses have different amplitudes
as denoted by P4 = (η̂, η̄) and P5 = (η̄, η̂) in the previous subsection. A linear stability analysis of P4 and P5 can
be performed numerically and reveals that these solutions are always stable nodes. However, as discussed in the
previous section these solutions exist for a restricted α interval. Indeed, the exact interval has been found from
the α values at the corresponding bifurcations of the fixed points P1, P2 and P3. Thus the stable equilibrium
solutions P4 and P5 exist from αs = 0.1997 < α < αc = 0.2947 for the physically reasonable values considered.

Table 1 summarizes the equilibrium solutions and their linear stability for the reduced model (6). It is
clear that by increasing the amount of inhomogeneous gain broadening, stable dual-frequency operation can be
achieved. Indeed, it is the inhomogeneous gain broadening parameter α and the bifurcations of the fixed points
that effectively controls dual-frequency operation. In the following section a detailed bifurcation analysis is given.

4. MULTI FREQUENCY (N > 2) MODE-LOCKING

As the number of frequency channels is increased, there are numerous fixed points to the system (5).12 Here
we are concerned with the stability of the equilibrium solution P1 = (η1, η2, · · · , ηN ) = (η̂, η̂, · · · , η̂) where the
amplitude in each channel is identical. This corresponds to the ideal case where N equal mode-locked pulsed
solutions at each frequency are achieved.
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(η1, η2) 0 ≤ α < αs αs ≤ α < αc α ≥ αc

P1 = (η̂, η̂) unstable unstable stable
P2 = (η̂, 0) stable unstable unstable
P3 = (0, η̂) stable unstable unstable
P4 = (η̂, η̄) N.A. stable N.A.
P5 = (η̄, η̂) N.A. stable N.A.

Table 1. Summary of the fixed points and their linear stability for dual-frequency mode-locking in the reduced model (6).
The solutions and their stability depend on the degree of inhomogeneous gain broadening parameter α. Note that for the
specific parameters considered, αs = 0.1997 and αc = 0.2947.

Similar to dual-frequency operation, the gain (5b) is independent of the choice of gain model (independent
of α), and is given by

g1 = g2 = · · · = gN ≡ g =
2g0

(1 + 2√
2N−1

η̂)
. (16)

The fixed point amplitude η̂ can be found by setting (5a) equal to zero and solving the quintic polynomial

FN=3(2g0−γ)− 6γ√
2N−1

η̂+2(β−(2N−1)g0τ)η̂2

+
4β√
2N−1

η̂3−8σ

5
η̂4− 16σ

5
√

2N−1
η̂5. (17)

The linear stability of the solution P1 can easily be calculated due to the symmetry of both the fixed point
P1 and the gain equation (5b). The Jacobian J(η̂) is an N × N constant matrix given by

6Jij=

⎧⎪⎪⎨
⎪⎪⎩

(3−τ(2N−1)η̂2)g+(3−τ(2N+1)η̂2)η̂ ∂gi

∂ηi

∣∣∣
P1−3γ+6βη̂2−8ση̂4 if i=j[

−4τ η̂g + (3 − τ(2N−1)η̂2) ∂gi

∂ηj

∣∣∣
P1

]
η̂ if i �=j.

(18)

Note that due to the symmetry of the gain (5b), the derivatives in the diagonal elements ∂gi/∂ηi|P1 are equal
for all i = 1 · · ·N . Similarly, the derivatives ∂gi/∂ηj in the off-diagnal elements (i �= j) are equivalent at the
fixed point P1. Since the Jacobian matrix is circulant with off-diagonal elements of equal value, there are only
two distinct eigenvalues

λ1 = A − B (19a)
λ2 = A + (N − 1)B, (19b)

where A denotes the diagonal elements in (18) and B the off-diagonal elements. Note that λ1 has algebraic
multiplicity N − 1. Using (18) in (19) the eigenvalues are given by

λj =
1
6

[
Aj(N ; η̂) + Bj(N ; η̂)

(
Cj(N) + αDj(N)

)]
(20)
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Figure 3. For multifrequency operation, the Jacobian matrix has two distinct eigenvalues. The first eigenvalue is negative
for sufficient gain inhomogeneity parameter α. The second eigenvalue is always negative. Stable multi-pulse operation can
be achieved when all eigenvalues are negative. Shown above are the eigenvalues for three channel operation and twenty
channel operation.

where

A1(N ; η̂) =
(
3−τ(2N − 3)η̂2

)
g−3γ+6βη̂2−8ση̂4 (21a)

A2(N ; η̂) =
(
3−τ(6N − 3)η̂2

)
g−3γ+6βη̂2−8ση̂4 (21b)

B1 = B2 =
3 − τ(2N − 1)η̂2)η̂g

N(2N − 1)
3
2

(
1 + 2/

√
2N − 1η̂

) (21c)

C1(N) = 4N − 8 (21d)
C2(N) = 8N2 − 22N + 12 (21e)
D1(N) = −8N2 − 2N + 8 (21f)
D2(N) = −20N2 + 32N − 12 (21g)

Figure (3) shows the eigenvalues for the case of N = 3 (top) and N = 20 (bottom) as a function of the gain
ratio parameter α. Note that for both scenarios, λ2 < 0 for all α ≤ 1. Further, λ1 > 0 for 0 ≤ α < αc. Here αc

determines the critical amount of inhomogeneous gain broadening for which stable equal-pulse multi-frequency
mode-locking is achieved. The trends of the eigenvalues depicted in Fig. (3) are consistent for all N > 2. Indeed,
λ2 is always negative whereas λ1 goes from positive to negative at some critical value αc. We can find the
dependence of αc on N by setting λ1 to zero and solving for α, giving

αc = − 1
D1(N)

[
A1(N ; η̂)
B1(N ; η̂)

+ C1(N)
]

(22)

This result gives the necessary ratio of inhomogeneous gain broadening needed to achieve equal-pulse N -frequency
mode-locking. An important result of (22) is the amount of inhomogeneous gain broadening necessary for stable
equal-pulse multi-frequency mode-locking for any number of frequency channels. Figure(4) shows the critical
value of α necessary to stabilize equal-pulse multi-frequency mode-locking as a function of N . We see that
αc(N) increases with N , and asymptotically approaches 0.5 for large values of N. Thus if half of the total gain
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Figure 4. The critical amount of inomogenous broadening (αc) required for multi-pulse operation depends on the number
of frequency channels N . As N becomes large, this critical value tends asymptotically to 0.5, indicating that stable
multi-pulse operation can always be achieved, given sufficient inhomogeneous gain broadening.

is comprised of inhomogeneous gain broadening, stable multi-frequency mode-locking will be achieved for all N .
Indeed, these results are consistent with numerical simulations12 and experimental findings.19

5. CONCLUSIONS

The analysis presented in this manuscript considers a low-dimensional theoretical description of the mode-locked
dynamics in a multiple wavelength mode of operation. Although the multi-frequency models have been considered
previously,10–13 here we provide a detailed stability and bifurcation analysis of the low-dimensional reduction.
We demonstrate that the stability of the multi-frequency lasing depends critically on the parameter α which
measures the ratio of homogeneous and inhomogeneous gain broadening effects. Indeed, in order for multi-
frequency operation to occur and be stabilized, a sufficient amount of inhomogeneous (channel self-saturation)
gain broadening must be present. Such theoretical findings are in agreement with experimental efforts in WDM
systems to enhance the inhomogeneous gain broadening for stabilizing lightwave systems.19 For dual-frequency
operation, the transition in mode-locking stability as a function of the parameter α is completely characterized
by a center manifold reduction when the largest eigenvalue passes through zero. The center manifold reduction
shows the fundamental bifurcation structure at the stability transition to be a supercritical pitchfork bifurcation.

This bifurcation analysis applies in the transition from single frequency operation to dual-frequency operation
with differing amplitudes. It also applies to the transition from dual-frequency operation as it goes from identical
to differing amplitudes. Thus the normal form reduction completely characterizes the stability transition and
bifurcation structure in the three possible operating regimes of the laser. Various perturbations to the stability
structure are also considered, including the effects of the cubic-quintic saturable absorption terms in the full
governing equations. These terms also have a profound impact on the multi-frequency mode-locking performance
and stability of the laser. Specifically, these terms can shift the region of stable two-pulse operation as a function
of the parameter α. Further, they can broaden the range of parameter space for which pulses with different
amplitudes can be stabilized.

From an applications viewpoint, the low-dimensional model derived clearly demonstrates the critical inter-
play between homogeneous and inhomogeneous gain broadening effects. Specifically, only a small amount of
inhomogeneous gain-broadening allows for multi-frequency operation in the laser. Further, bound-state (locked
in time) mode-locking at multiple frequencies can be supported. Thus the mode-locking process counteracts the
effects of group-velocity walk-off between neighboring frequency channels. Thus the theoretical analysis of the
multi-frequency mode-locking indicates that such a mode-locking device is feasible and technologically relevant
as has been demonstrated by limited experimental findings.3–6 Further, the findings validate the efforts in the
WDM community to enhance the inhomogeneous gain broadening19 as this is clearly the key to producing stable
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multi-frequency operation. With the increasing demand for increased optical bandwidth, the multi-frequency
mode-locking model provides a promising source for WDM signal generation which can be implemented in
enabling WDM/OTDM technologies.
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