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ABSTRACT 
We report an investigation on the statistics of group delay for few-mode fibres operating in the weak and strong 
linear coupling regimes as well as in the intermediate coupling regime. A single expression linking the standard 
deviation of the group delay spread to the fibre linear mode coupling is validated for any coupling regime, 
considering up to six linearly polarized guided modes. Furthermore, the study of the probability density function 
of the group delays allowed deriving and validating an analytical estimation for the maximum group delay spread 
as a function of linear mode coupling. 

1. INTRODUCTION 
Mode-division multiplexing over few-mode fibres (FMFs) has been proposed as a next-generation solution to 
overcome the impeding installed capacity exhaustion of current single-mode fibres (SMFs). However, MDM-FMF 
systems require significantly higher equalizer complexity given the overall group-delay (GD) spread due to 
differential mode delay and linear mode coupling [1], [2]. Thereby, the estimation of the maximum GD spread is 
of foremost importance. However, most studies on the statistical properties of the GDs consider the two extreme 
coupling regimes, weak and strong [1], [2]. Recently, we validated one single expression linking the standard 
deviation of GDs to the coupling strength for any coupling regime, considering a FMF guiding 3 linearly polarized 
(LP) modes [3] and a FMF guiding 6 LP modes [4]. More recently, in [5], this expression was rederived analytically. 

In this paper, we review and extend our previous studies [3], [4]. The standard deviation and probability density 
function of the coupled GDs as well as the cumulative distribution of the maximum GD spread are investigate for 
the intermediate coupling regime. Furthermore, analytical estimators for these quantities are validated. 

2. Group-Delay Statistics 
The statistical theory of polarization mode dispersion (PMD) in SMFs [6] has identified two coupling regimes, the 
strong coupling and the weak coupling, determined by one parameter, the correlation length Lc. The Lc is defined 
as the length for which the average power in the orthogonal polarization is within e-2 of the power in the starting 
polarization. When the transmission distance L is much bigger than Lc, the fibre is in the strong coupling regime, 
conversely, when the L is much smaller than the Lc, the fibre is in the weak coupling regime. Furthermore, the 
PMD theory predicts the existence of principal states of polarization (PSPs) with well-defined group delays (GDs). 
In the weak coupling regime, the spread of the uncoupled GDs scales linearly with L, and in the strong coupling 
regime, the spread of the coupled GDs of the PSPs scales with L1/2. In [7], an elegant expression linking the 
standard deviation (STD) of the coupled GDs of the PSPs (σgd) to the fibre correlation length was presented and 
was shown to be valid for both coupling regimes and also for the transition region between them: 
 

 ( ) 1 2
2 exp 1gd c c cL L L L Lτσ σ= − + −    (1) 

 

where στ is the STD of the uncoupled GDs per unit length. 
In [8], it has been shown that the PMD theory can be extend to the multimode case, where coupled modes 

having well defined GDs were called principal modes (PMs). Neglecting the mode dependent loss, the linear 
propagation through a FMF guiding N modes can be described by a N × N unitary matrix, M(ω), where ω is the 
optical angular frequency. In this case, the GDs of the PMs, at each single frequency, are the eigenvalues of the 
Hermitian GD operator G(ω) = jMω(ω)MH(ω), where Mω(ω) = dM(ω)/dω and H stands for Hermitian transpose. 
Finally, the STD of the coupled GDs of the PMs of a link with K sections (σgd) can be expressed as a function of 
the STD of the uncoupled GDs of the PMs along one section (στ,section), assuming that all fibre sections have 
identical statistical properties. In the strong coupling regime, the fibre can be modelled as K independent sections 
with length approximately equal to or slightly greater than Lc, where the coupling is introduced in each section by 
a random unitary matrix. The STD of the coupled PMs of a link operating in this regime is σgd = K1/2·στ,section. In 
the weak coupling regime, the mode coupling can be neglected, and the STD of the uncoupled PMs is given by 
σgd = K·στ,section. Furthermore, with intermediate coupling, it has been shown in [5] that σgd in FMFs also follow (1). 

3. Linear Mode Coupling 

The mode coupling is quantified with the parameter XTm = ∑v≠LP01(Pv / Pm), where Pv is the power of mode v, after 
a given fibre segment under test, when only the m mode was launched, where m is the mode that shows higher 
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coupling strength. In the FMF case, we generalize Lc as the length for which (Pm - ∑v≠mPv) = e-2, equivalent to 
XTm = [e2 - 1]/[e2 + 1] (-1.18 dB). In the literature, the mode coupling values of fabricated FMFs range 
from -50 dB/100m to -40 dB/100m for fibres with step-index or graded-index profiles [9],[10] (Lc values ranging 
from 7,000 to 800 km), going up to -28 dB/100m for coupled multi-core fibres [11] and -7 dB/100m for fibres with 
ring-index profiles [12]. Note that for a fibre with Lc = 800 km, the strong coupling regime is fully achieved only 
for L > 8,000 km (L >> Lc). Consequently, for typical fibre link distances, less than 1000 km, the system is neither 
operating in the strong coupling regime nor the weak coupling regime (L~Lc). Thus, the performance of FMF 
systems, for these mode coupling levels and typical distances, might not be accurately modelled by random unitary 
matrices (every ~100 m) because the impact of group delay spread and intermodal nonlinearity on the performance 
might be underestimated. In the next section, the impact of the coupling strength on the GD spread is accessed as 
well as the average XT per km required for strong coupling operation.  

Firstly we briefly review the mode coupling model [13]. We model the fibre imperfections responsible for mode 
coupling as random fluctuations of the core centre position, given by: ε(x, y, z) = εp(x+δx(z), y+δy(z), z), where ε 
is the perturbed permittivity, εp is the ideal relative permittivity, δx and δy are the random displacement of the 
abscissa and ordinate coordinates, respectively. The proposed model divides the fibre in multiple sections of length 
Ls, each with a constant random displacement of the core centre position, as shown in Fig. 1. Therefore, each 
section has constant coupling coefficients. In order to analytically describe the coupling arising from the waveguide 
imperfections, we used the coupled wave theory [14], particularly the following coupled-mode equations: 
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where Ãµ(z,ω) is the Fourier transform of the mode µ slowly varying field envelope Aµ, βµ(ω) is the mode µ 
propagation constant, and βlµ is the l th order coefficient of a Taylor expansion of βµ(ω) centred at the carrier 
frequency ω0. Cµν are the coupling coefficients given by the area integral of the dot product of the electrical fields 
of mode µ and mode ν, over the area where the permittivity difference is nonzero. Finally, the unitary matrix M(ω) 
for a FMF can be obtained by numerically solving (2) or by using the semi-analytical solutions presented in [15].  

Fig. 2 shows the mode coupling strength averaged over the azimuth displacement, as a function of the 
normalised radial displacement, for a 6 LP mode fibre presented in [16]. Note that, coupling strengths are 
calculated considering degenerate modes such as LP11a and LP11b as one mode. In Fig. 2, it can be seen that the 
mode coupling strength only depends significantly on the mode being considered for displacements higher than 
1 %. Such higher coupling for LP02 and LP21 can be explained noting they belong to the same LP mode group. 
Moreover, XTLP21

< XTLP02
 for any displacement in Fig. 2 because any power launched in LP21a couples 

preferentially with LP21b (and vice-versa) and in the second place to LP02. Given the higher values of XTLP02
, we 

define Lc for this mode. Note that XTm values above 10 dB mean that almost all power launched in mode m has 
been transferred to other modes.  

 

4. Results 
In this section, we evaluate the statistics of the GDs for a FMF guiding 6 modes and presenting a DMD of 
5.19 ps/km (we assumed zero DMD between degenerate LP modes) [16]. The XTLP02

 value was varied from -50 
to 0 dB/100m by varying the amplitude of the variation in lateral section offset, assuming a section length of 100 m. 
This range fully covers the range of coupling values presented in the literature [9]-[12]. Finally, the GDs were 
calculated through direct numerical solution of the coupled-mode equations describing the mode coupling [13], [15].  

Fig. 3 shows the standard deviation of the GDs of the PMs (σgd) as a function of distance up to 10,000 km, 
obtained by averaging over 2000 different realizations of lateral offsets giving rise to a given XTLP02 value. As was 

 

 

 
Fig. 1. Sketch of a fibre with distorted core-cladding boundary. Fig. 2. XTm averaged over the azimuth displacement as a 

function of the radial displacement 
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found for 3 LP modes [3], Fig. 3 shows a good agreement between numerical simulation and the analytical 
expression (1), for any coupling value studied and for any distance up to 10,000 km. This verifies that Eq. (1) 
remains valid for 6-mode fibres (the validity for 3-mode fibres had been studied in [3]). In Fig. 3, it can be seen 
that for coupling values ranging from -50 to -40 dB/100m, σgd scales approximately linearly with distance. But, 
at -40 dB/100m the deviation from linear growth is already noticeable above 1,000 km, thus even with such a low 
coupling, the FMF is operating in intermediate coupling regime. Increasing XTLP02, σgd	gradually converges to the 
strong coupling regime. However, even for a XTLP02 equal to -7 dB/100m (the highest value found in literature 
[12]) the fibre is still not fully operating in the strong coupling regime when considering a section length of 100 m. 
In this case, assuming strong coupling regime (random unitary matrices every 100 m), would underestimated σgd 
by a factor of 2.76.  

Fig. 4 shows the PDF of the ordered GDs (�m, �1 ≤ �2 ≤ ⋯ ≤ �6), normalized by the σgd of the PMs, after 
1000 km for two different coupling values, overlapped with the analytical marginal PDF (thin black line) derived 
for the strong coupling regime [1]. Note that the normalization factor (σgd) depends on the XTLP02

 (Lc) value, see 
Eq. (1). Fig. 4 (a) shows that for -30 dB/100m the GDs of the PMs vaguelly resemble the GDs of the LP modes 
given the impulse-like PDF of �2 (“LP11a”) and �3 (“LP11b”). Further results for lower coupling values shown that 
all GDs present impulse-like PDFs. In Fig. 4 (b), for -20 dB/100m, the match between the simulated PDFs and the 
analytical PDF for strong coupling is good, even though the GDs have been normalized by different factors (Eq. 
(1)). Further results shown that the match between the simulated PDFs and the analytical PDF improves for higher 
coupling values. A similar match was obtained for 3 modes.  

In a MDM system, in order to fully compensate for DMD and mode coupling, the MIMO equalizer must span 
a temporal memory at least as long as the system GD spread �τ6-τ1�. Fig. 5 shows the complementary cumulative 
distribution function (CCDF) of the normalized GD spread, Pr��τ6-τ1� σgd⁄ >p
, obtained through simulation after 
1000 km for different coupling values (averaging over 6000 different realizations). Fig. 5 shows that for 
XTLP02

≥-30 dB/100m the CCDFs are very similar to the analytical approximation obtained for strong coupling [17] 
(dashed line). Conversely, for XTLP02

 lower than -30 dB/100m the normalized GD spread is significantly smaller 
than the normalized GD spread for strong coupling. 

Combining this observation with the normalisation factor (Eq. (1)), we find that the required temporal equalizer 
memory length (∆TEQ) to span the channel memory with a given outage probability p and for a given mode 
coupling strength is given by (in time units): 

 
 

Fig. 3. Standard deviation of the GDs of the PMs as a function 
of transmission distance showing simulation results (markers) 

and analytical results (solid lines). 
 

 
Fig. 4. Probability density function of the ordered normalized 

GDs (�m σgd⁄ ), obtained through simulation after 1000 km, with 
different XTLP02

 values. 
 

 

Fig. 5. Complementary cumulative distribution of the 
normalized GD spread, obtained through simulation after 

1000 km, with different XTLP02
 values. 
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where U(p) can be calculated using (5) derived in [17], dashed line in Fig. 5. A ∆TEQ from 4σgd to 5σgd is sufficient 
to span the channel memory with an outage probability from 10−4 to 10−6.  

5. Conclusions 
In this paper, we reported an investigation on the statistics of the group-delays in FMFs. The investigation shows 
that even for the FMFs in the literature presenting high coupling strength (-7 dB/100m), the performance is not 
accurately modelled by random unitary matrices (every ~100 m), which give a factor of 2 error. Furthermore, an 
analytical estimation for the maximum GD spread as a function of the coupling strength, was validated for FMFs 
guiding up to 6 LP modes and for any coupling regime. Therefore, this analytical estimator is a valuable tool for 
the development of future FMF systems. 

Acknowledgments 
This work has been partially supported by the European Union (Grants 619732-INSPACE, 654809-HSPACE, 
659950-INVENTION, and 627545-SOLAS), and by the EPSRC (Grant EP/L000091/1-PEACE). To access the 
research data supporting this publication, see http://dx.doi.org/10.17036/80b2ce0e-f835-4b02-b046-
c28909e71128. 

REFERENCES 
[1] K. Ho, et al., “Statistics of group delays in multimode fiber with strong mode coupling,” J. Lightw. 

Technol., Vol. 29, no. 21, p. 3119 (2011). 
[2] C. Antonelli, et al., “Stokes-space analysis of modal dispersion in fibers with multiple mode transmission,” 

Opt. Express, Vol. 20, no. 11, p. 11718 (2012). 
[3] F. Ferreira, et al., “Impact of Linear Mode Coupling on the Group Delay Spread in Few-Mode Fibers,” 

Proc. OFC 2015, p. Tu2D.1, (2015). 
[4] F. Ferreira, et al., “Few-Mode Fibre Group-Delays with Intermediate Coupling,” in Proc. ECOC 2015, p. 

Th.1.6.1, (2015). 
[5] S. Ö Arık, et al., ”Delay Spread Reduction in Mode-Division Multiplexing: Mode Coupling Versus Delay 

Compensation,” J. Lightw. Technol., vol. 33, no. 21, p. 4504 (2015). 
[6] C. Poole, “Statistical treatment of polarization dispersion in single-mode fiber,” Opt. Lett., Vol. 13, no. 8, 

p. 687 (1988). 
[7] P. Wai, et al., “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly 

varying birefringence,” J. Lightw. Technol., vol. 14, no. 2, p. 148 (1996). 
[8] S. Fan, et al., “Principal modes in multimode waveguides,” Opt. Lett., Vol. 30, no. 2, p. 135 (2005). 
[9] L. Grüner-Nielsen, et al., “Few Mode Transmission Fiber With Low DGD, Low Mode Coupling, and Low 

Loss,” J. Lightw. Technol., Vol. 30, no. 23, p. 3693 (2012). 
[10] T. Mori, et al., “Low DMD Four LP Mode Transmission Fiber for Wide-band WDM-MIMO System,” 

Proc. OFC 2013, p. OTh3K.1 (2013). 
[11] R. Ryf, et al., “Space-division multiplexed transmission over 4200-km 3-core microstructured fiber,” Proc. 

OFC 2012, p. PDP5C.2 (2012). 
[12] N. Fontaine, et al., "Experimental investigation of crosstalk accumulation in a ring-core fiber," Proc. 

PSSTMS 2013, p. TuC4.2 (2013). 
[13] F. Ferreira, et al., “Nonlinear Semi-Analytical Model for Simulation of Few-Mode Fiber Transmission,” 

Photon. Technol. Lett., Vol. 24, no. 4, p. 240 (2012). 
[14] D. Marcuse, Theory of Dielectric Optical Waveguides. New York: Academic, 1974. 
[15] F. Ferreira, et al., “Semi-analytical model for linear modal coupling in few-mode fiber transmission,” Proc. 

ICTON 2012, p. Th.A1.5 (2012). 
[16] F. Ferreira, et al., “Design of Few-Mode Fibers with M-modes and Low Differential Mode Delay,” J. 

Lightw. Technol., Vol. 32, no. 3, p. 353 (2014). 
[17] K. Ho, et al., “Delay-Spread Distribution for Multimode Fiber With Strong Mode Coupling,” Photon. 

Technol. Lett., Vol. 24, no. 21, p. 1906 (2012). 


