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ABSTRACT

We report an investigation on the statistics ofugrdelay for few-mode fibres operating in the weakl strong
linear coupling regimes as well as in the interragdicoupling regime. A single expression linking gtandard
deviation of the group delay spread to the fibredir mode coupling is validated for any couplingime,
considering up to six linearly polarized guided medFurthermore, the study of the probability dgrfsinction
of the group delays allowed deriving and validatamganalytical estimation for the maximum groupagtedpread
as a function of linear mode coupling.

1. INTRODUCTION

Mode-division multiplexing over few-mode fibres (Fg) has been proposed as a next-generation sohation
overcome the impeding installed capacity exhausifaurrent single-mode fibres (SMFs). However, MBWMIF
systems require significantly higher equalizer ctamity given the overall group-delay (GD) spreacedo
differential mode delay and linear mode coupling [2]. Thereby, the estimation of the maximum GDead is
of foremost importance. However, most studies enstlatistical properties of the GDs consider the éwxtreme
coupling regimes, weak and strong [1], [2]. Reggnite validated one single expression linking ttendard
deviation of GDs to the coupling strength for anypling regime, considering a FMF guiding 3 lingarblarized
(LP) modes [3] and a FMF guiding 6 LP modes [4] r&ecently, in [5], this expression was rederiardlytically.

In this paper, we review and extend our previoudiss [3], [4]. The standard deviation and prohigbdensity
function of the coupled GDs as well as the cumwatiistribution of the maximum GD spread are ingadé for
the intermediate coupling regime. Furthermore, ditall estimators for these quantities are validate

2. Group-Delay Statistics

The statistical theory of polarization mode disper¢PMD) in SMFs [6] has identified two couplinggimes, the
strong coupling and the weak coupling, determingdie parameter, the correlation lengthThel. is defined

as the length for which the average power in thieogional polarization is withig? of the power in the starting
polarization. When the transmission distahde much bigger thah, the fibre is in the strong coupling regime,
conversely, when the is much smaller than tHe,, the fibre is in the weak coupling regime. Furthere, the
PMD theory predicts the existence of principalestaif polarization (PSPs) with well-defined groetays (GDs).

In the weak coupling regime, the spread of the uptaml GDs scales linearly with and in the strong coupling
regime, the spread of the coupled GDs of the P8&es withLY2 In [7], an elegant expression linking the
standard deviation (STD) of the coupled GDs of RISPs €yq) to the fibre correlation length was presented and
was shown to be valid for both coupling regimes alsd for the transition region between them:

0y =V20. L [exp(-L/L,) +L/L, - 1 @)

whereg, is the STD of the uncoupled GDs per unit length.

In [8], it has been shown that the PMD theory carektend to the multimode case, where coupled modes
having well defined GDs were called principal mo@de#s). Neglecting the mode dependent loss, theafin
propagation through a FMF guidildymodes can be described bila N unitary matrix,M (w), wherew is the
optical angular frequency. In this case, the GDthefPMs, at each single frequency, are the eideesaf the
Hermitian GD operatoG(w) = jM ,(w)M (@), whereM ,(w) = dM (w)/dw and™ stands for Hermitian transpose.
Finally, the STD of the coupled GDs of the PMs dih& with K sections 44q) can be expressed as a function of
the STD of the uncoupled GDs of the PMs along a®ien ¢.sectiop, assuming that all fibre sections have
identical statistical properties. In the strongmling regime, the fibre can be modelledkagdependent sections
with length approximately equal to or slightly grerathanLc, where the coupling is introduced in each sedbipn
a random unitary matrix. The STD of the coupled Ri¥la link operating in this regime g4 = K%, section IN
the weak coupling regime, the mode coupling camdgdected, and the STD of the uncoupled PMs isngbye
oqd = K-ozseciion FUrthermore, with intermediate coupling, it hagt shown in [5] thatys in FMFs also follow (1).

3. Linear Mode Coupling

The mode coupling is quantified with the param&i®s = > v+rp1(Pv / Pm), wherePy is the power of mode, after
a given fibre segment under test, when onlyrtheode was launched, whemeis the mode that shows higher
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Fig. 1. Sketch of a fibre with distorted core-clamipboundary. Fig. 2.XT,, averaged over the azimuth displacement as a

function of the radial displacement

coupling strength. In the FMF case, we generdlizas the length for whichPg, - 3v.:mPy) = €2, equivalent to
XTm=[€?- 1)/[¢ + 1] (-1.18 dB). In the literature, the mode canpl values of fabricated FMFs range
from -50 dB/100m to -40 dB/100m for fibres withstiadex or graded-index profiles [9],[10A]l{values ranging
from 7,000 to 800 km), going up to -28 dB/100mdoupled multi-core fibregd 1] and -7 dB/100m for fibres with
ring-index profiles [12]. Note that for a fibre Wit = 800 km, the strong coupling regime is fully astad only
for L > 8,000 km L >>L¢). Consequently, for typical fibre link distancéss than 1000 km, the system is neither
operating in the strong coupling regime nor the kveaupling regime l(~L¢). Thus, the performance of FMF
systems, for these mode coupling levels and typiisédnces, might not be accurately modelled bgiwemunitary
matrices (every ~100 m) because the impact of gdelgy spread and intermodal nonlinearity on thiéopmance
might be underestimated. In the next section, tingaict of the coupling strength on the GD spreatégssed as
well as the averag€T per km required for strong coupling operation.

Firstly we briefly review the mode coupling modeB]. We model the fibre imperfections responsiblerfiiode
coupling as random fluctuations of the core ceptigition, given byz(X, y, 2 = ep(x+X(2), y+y(2), 2), wheree
is the perturbed permittivity, is the ideal relative permittivitygx and dy are the random displacement of the
abscissa and ordinate coordinates, respectivelypfdposed model divides the fibre in multiple &es of length
Ls, each with a constant random displacement of tine centre position, as shown in Fig. 1. Therefessh
section has constant coupling coefficients. In otd@nalytically describe the coupling arisingirthe waveguide
imperfections, we used the coupled wave theory, daicularly the following coupled-mode equations

0.A,(2) =[5, ()~ A, ] Al 20)-12, G, (3 2o)exp| (A, ~5o) @)

CUE +00 *
C,(2)= 4°J.J'_w[5(xyz)—£p(xyﬂEﬂ[Ev dxc 3)
whereA,z &) is the Fourier transform of the mogeslowly varying field envelopéy, S{w) is the modeu
propagation constant, an@j, is thel™ order coefficient of a Taylor expansion Bf(w) centred at the carrier
frequencya. Cuv are the coupling coefficients given by the aréegral of the dot product of the electrical fields
of modex and mode, over the area where the permittivity differereadnzero. Finally, the unitary matik(w)

for a FMF can be obtained by numerically solvingdRby using the semi-analytical solutions preséni [15].

Fig. 2 shows thanode coupling strengthveraged over the azimuth displacement, as aifundf the
normalised radial displacement, for a 6 LP modeefipresented in [16]. Note that, coupling strengihs
calculated considering degenerate modes such asdml LR, as one mode. In Fig. 2, it can be seen that the
mode coupling strength only depends significantiyttte mode being considered for displacements hitjize
1 %. Such higher coupling for kPand LB1 can be explained noting they belong to the samenbBe group.
Moreover, XT p,, < XT p,, for any displacement in Fig. 2 because any powendhed in LRa. couples
preferentially with LRy, (and vice-versa) and in the second place tg.L®iven the higher values T p,, we
defineL, for this mode. Note thafT,, values above 10 dB mean that almost all powerclageh in modenm has
been transferred to other modes.

4. Results

In this section, we evaluate the statistics of @&@s for a FMF guiding 6 modes and presenting a DMD
5.19 ps/km (we assumed zero DMD between degenePataodes) [16]. Th&T,p,, value was varied from -50
to 0 dB/100m by varying the amplitude of the vaoiatn lateral section offset, assuming a sectmgth of 100 m.
This range fully covers the range of coupling valpeesented in the literature [9]-[12]. FinallyetlsDs were
calculated through direct numerical solution of ¢tbeipled-mode equations describing the mode cayflig], [15].
Fig. 3 shows the standard deviation of the GD$hefRMs §y4) as a function of distance up to 10,000 km,
obtained by averaging over 2000 different real@aiof lateral offsets giving rise to a givém gy, value. As was
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Fig. 3. Standard deviation of the GDs of the PMa &mction
of transmission distance showing simulation requftarkers)
and analytical results (solid lines).
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found for 3 LP modes [3], Fig. 3 shows a good age® between numerical simulation and the analytica
expression (1), for any coupling value studied fordany distance up to 10,000 km. This verifiest thg. (1)
remains valid for 6-mode fibres (the validity fom®de fibres had been studied in [3]). In Fig.tZan be seen
that for coupling values ranging from -50 to -40/H8m, ¢,y scales approximately linearly with distance. But,
at -40 dB/100m the deviation from linear growtlaiseady noticeable above 1,000 km, thus even with & low
coupling, the FMF is operating in intermediate doupregime. Increasin¥Ti ry,, 64g gradually converges to the
strong coupling regime. However, even foK@ py, equal to -7 dB/100m (the highest value found terditure
[12]) the fibre is still not fully operating in thegrong coupling regime when considering a sedéogth of 100 m.

In this case, assuming strong coupling regime @andnitary matrices every 100 m), would underestighagq

by a factor of 2.76.

Fig. 4 shows the PDF of the ordered GBs, (; < 7, < --- < 7¢), normalized by they, of the PMs, after
1000 km for two different coupling values, overlagpwith the analytical marginal PDF (thin blackeljrderived
for the strong coupling regime [1]. Note that tlgmalization factor4y) depends on th¥T, 5, (Lc) value, see
Eq. (1). Fig. 4 (a) shows that for -30 dB/100m &ies of the PMs vaguelly resemble the GDs of thamd®les
given the impulse-like PDF af, (“LP11a") and t;3 (“LP11y’). Further results for lower coupling values shotlat
all GDs present impulse-like PDFs. In Fig. 4 (lo),£0 dB/100m, the match between the simulateds4pid the
analytical PDF for strong coupling is good, eveoutph the GDs have been normalized by differenpfactEqg.
(2)). Further results shown that the match betwbkesimulated PDFs and the analytical PDF impréwebkigher
coupling values. A similar match was obtained fon@des.

In a MDM system, in order to fully compensate fdviD and mode coupling, the MIMO equalizer must span
a temporal memory at least as long as the systerspe&adzs-71). Fig. 5 shows the complementary cumulative
distribution function (CCDF) of the normalized Gprsad, P@(zs-rl)/agd >p), obtained through simulation after
1000 km for different coupling values (averagingeo\6000 different realizations). Fig. 5 shows tliat
XTip,,=-30 dB/100m the CCDFs are very similar to the atizdyapproximation obtained for strong coupling@][1
(dashed line). Conversely, fT, p, lower than -30 dB/100m the normalized GD spreagigsificantly smaller
than the normalized GD spread for strong coupling.

Combining this observation with the normalisatianotbr (Eq. (1)), we find that the required tempeclalizer
memory length £Tgg) to span the channel memory with a given outagbatsility p and for a given mode
coupling strength is given by (in time units):



AT, OU(p)o,, =U( V20, L (€% +y 1,-1)"
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whereU(p) can be calculated using (5) derived in [17], @glsline in Fig. 5. AATgq from 4oyq to Soyq is sufficient
to span the channel memory with an outage prolalfibm 104 to 10,

5. Conclusions

In this paper, we reported an investigation onstlagistics of the group-delays in FMFs. The ingzdion shows
that even for the FMFs in the literature presentiigh coupling strength (-7 dB/100m), the perfore&is not
accurately modelled by random unitary matrices ewd 00 m), which give a factor of 2 error. Furtmere, an
analytical estimation for the maximum GD sprea@ &snction of the coupling strength, was valida@dFMFs
guiding up to 6 LP modes and for any coupling regiifherefore, this analytical estimator is a valedbol for
the development of future FMF systems.
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