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Abstract Supply chain operations directly affect service levels. Decision on amendment of
facilities is generally decided based on overall cost, leaving out the efficiency of each unit.
Decomposing the supply chain superstructure, efficiency analysis of the facilities (ware-
houses or distribution centers) that serve customers can be easily implemented. With the
proposed algorithm, the selection of a facility is based on service level maximization and
not just cost minimization as this analysis filters all the feasible solutions utilizing Data
Envelopment Analysis (DEA) technique. Through multiple iterations, solutions are filtered
via DEA and only the efficient ones are selected leading to cost minimization. In this work,
the problem of optimal supply chain networks design is addressed based on a DEA based
algorithm. A Branch and Efficiency (B&E) algorithm is deployed for the solution of this
problem. Based on this DEA approach, each solution (potentially installed warehouse, plant
etc) is treated as a Decision Making Unit, thus is characterized by inputs and outputs. The
algorithm through additional constraints named “efficiency cuts”, selects only efficient solu-
tions providing better objective function values. The applicability of the proposed algorithm
is demonstrated through illustrative examples.
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1 Introduction

Productivitymeasurement and efficiency in particular is a common term among the discipline
of production economics. Each organization, firm, enterprise, business bank, can extract the
efficiency of its branches, units if the latter are described by inputs and outputs. Efficiency
is generally defined as the ratio of the amount of output produced given the unit’s inputs or
resources. Thus, in order to measure the efficiency of a unit, certain inputs and outputs of a
unit should be provided a priori. Deploying Data Envelopment Analysis (DEA) technique,
the efficiency of each unit can be calculated (Charnes et al. 1981, 1985).

In the past decades there have been advances in Integer Programming (IP); one of which is
Mixed Logical Linear Programming (MLLP) or Mixed Integer Linear (MILP) Programming
models, where binary variables provide information regarding the installation of a plant or
the selection of a route or a procedure, depending on the nature of the model (Hooker and
Osorio 1999). This “family” of problems is generally solved with IP techniques, one of
which is Branch and Bound (B&B) (Ross and Soland 1975). Based on this approach, a tree
representation of the problem is provided; given a minimization direction to the problem (a
transformation can be deployed if there is a maximization direction in the objective function)
each node is examined separately for feasibility and for objective value improvement.

The optimal design of supply chain network problem is an extension of a transportation
problem. Based on this type of problem, multiple echelons are considered representing the
different stages of transportation or manufacturing process that products are subject to. The
aim of these type of problems includes the minimization of total operational cost, lead time,
stock out instances, or the maximization of profit, or customer satisfaction that the firm or
enterprise will gain. Assuming that a supply chain is designed with respect to warehouse
selection and installation, then each potentially installed warehouse has inputs and outputs
which are schematically presented in Fig. 1.

Due to the existence of binary variables B&B solution approach can be easily imple-
mented providing solutions that are subjected to a single criterion. However, as can be seen
in Fig. 1, considering each potentially installed warehouse as an entity then another conflict-
ing objective is added to the problem. Based on this new objective facilities are not selected
only based on cost minimization (or profit maximization) but also on whether these solutions
are efficient. If more than one sites are selected then a possible approach is to add a single
sourcing constraint which will select a single facility that reduces greatly the overall cost, but
it may also cause the problem to become infeasible. In this case, other methodologies must
be employed in order to provide solution to the problem.

The proposed algorithm is formulated in order to reduce the number of facilities (ware-
houses) in a supply network design problem. When designing the supply chain network, the
Decision Maker (DM) seeks for less warehouses (facilities in general) as possible in order

Warehouse

Inputs Outputs

Cost
Outgoing connections

Outgoing quantities

Variable Fixed

Fig. 1 Inputs and outputs of a warehouse
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to reduce cost. This is obtained through economies of scale, however, reduction in facilities
leads to less customers’ satisfaction. Generally the models that are used in order to design
supply chain network, use single sourcing constraint in order to reduce the number of facili-
ties by imposing the model to select one facility to accommodate a cluster of demand zones.
This constraint is hard and often leads to infeasibility. In case of infeasibility, the model
has to be solved without single sourcing constraint by letting the model to select as much
facilities (warehouses) as needed in order to satisfy demand of the customers. Also, the cost
is significantly increasing, depending on the demand pattern. On the contrary, the presented
algorithm selects the warehouses based on their efficiency, leading to better results, both by
reducing cost and by increasing efficiency. The algorithmfilters all the optimal results derived
from the initialMILPmodel and iteratively selects those warehouses that are fully technically
efficient. Some of the methods that are employed for solving supply chain network design
problems, in case of infeasibility, are Lagrangean Relaxation and Benders Decomposition,
however, these methods use relaxation of “hard” constraints in order to solve the problem.
The presented algorithm solves the problem based on two dimensions: cost and efficiency.
Additional constraints remove inefficient solutions. In case that this new problem is now
infeasible, different thresholds of efficiency are considered in the constraint, where the lower
level of that percentage is left to DM to decide.

In this work, which is an extension of the work of Grigoroudis et al. (2014), a Branch and
Efficiency (B&E) algorithm is proposed for the optimal design of supply chain networks.
Through an iterative procedure, an initial vector of solutions is provided along with the
inputs and outputs of each solution. Each solution is filtered in the following stages through
constraints (efficiency cuts). The algorithm stops if the number of the non-zero solutions of
the final vector is less than a certain pre-determined level, or there is no change in objective
function’s value. An approach that is integrating DEA technique in the selection of solutions,
providing a Multi-Objective Programming model, as solutions are not only subjected to
constraints to the problem, but also to the “efficiency cuts” that are posed by B&E approach,
has not yet been proposed in the supply chain literature.

2 Literature review

In the recent years supply chain design literature has expanded to consider the rapidly chang-
ing economic environment in which a supply chain network should be designed. There has
been proposed a plethora of mathematical programming models that have been applied to
supply chain network design problems of which Mixed Integer Linear Programming (MILP)
and Mixed Integer Non Linear Programming (MINLP) models have been widely used, pro-
viding generic frameworks for managerial use.

Optimal supply chain network design models are divided into two categories; the steady
state and the multi-period ones. In the first case, time is absent from the analysis, and this
type of formulation provides average levels of decisions, while in the multi-period models,
the decisions are made with respect to the planning horizon.

The key point in modeling supply chain networks is the demand uncertainty. A number of
studies have captured the stochasticity with distribution functions that best describe demand.

Tsiakis et al. (2001) proposed a steady state model for the optimal supply chain network
design, with decisions that regard the installation of facilities (distribution centers and ware-
houses). Demand uncertainty is modeled through different demand and capacity parameter
scenarios.
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The optimal design of supply chain networks has been also proposed by Petridis (2015).
Demand stochasticity is proposed by Normal Distribution, while probabilistic constraint are
integrated in a single framework for the optimal supply chain network providing decisions
about the occurrence of stock out instances.

In their work, Rodriguez et al. (2014) employed a multi-period model for the optimal
design of supply chain taking into consideration demand uncertainty providing a production
plan that integrates tactical and strategic decisions.

Supply chain management in global scale integrates decisions that take into account the
factors that contribute to the sustainability of a supply chain network. A holistic approach
towards the optimization of sustainability subject to the economic, ecological and social
objectives has been proposed in the work of Kannegiesser and Günther (2014).

In the context of supply chain network design model, DEA formulations have been pro-
posed in order to assess the efficiency of supply chain networks (Network DEA, Two stage
DEA formulation etc). The following works demonstrate the use of DEA to supply chain
area. However, most applications of DEA to supply chain systems is performed in an entirely
different context to the one presented in this paper.

A non linear programming model has been proposed by Liang et al. (2006) for the evalu-
ation of supply chain efficiency under intermediated performance evaluation.

Amulti-phase supply chain network designmodel has been proposed by Talluri and Baker
(2002) utilizing DEA technique alongwith a game theoretic approach for pairwise evaluation
of performance, designing the supply chain and providing optimal routing decisions.

Besides the evaluation of supply chain efficiency, sub operations conducted among the
nodes of supply chain is also of major importance. In their work, Cheung and Hausman
(2000), propose an exact measure efficiencymeasurement of (Q, R) policy of a two-echelon,
multiple retailers system. Evaluation of supply chain performance has been proposed in the
work of Forker et al. (1997) where through the combination of non linear DEA and regression
analysis, Total Quality Management measures were provided.

Frota Neto et al. (2008) applied DEA and utilized DEA technique’s ability for efficiency
extraction integrating into a unified framework with a multi-objective optimization model.

In their work Chen and Yan (2011) proposed a special network DEA approach in order to
provide exact modeling with respect to the internal interactions of the supply chain. Similar
works have been also proposed by Prieto and Zofío (2007), Huang et al. (2010) and Färe
and Grosskopf (2000) proposed Network DEA models that can eventually be applied to the
supply chain network evaluation framework.

Yang et al. (2011), have proposed an exact production possibility set for evaluating the
performance different forms of supply chain models, while a game theoretic DEA model
has been proposed by Chen et al. (2006), for analyzing the efficiency game between two
supply chain parts. The model is proposed to explain bargaining supplier and manufacturer’s
behavior for decision process. The internal supply chain performance, has been examined
by Wong and Wong (2007) using technical and cost efficiency models. Using this DEA to
measure the internal operations, inefficiencies in supply chain operations can be identified.

Generally, DEA technique has been used in order to provide efficiency of whole supply
chain network system or to measure the performance of specific critical sub-systems, like
suppliers, plants etc. Yet, the data for the application of DEA technique are provided a-priori,
while the results are not taken into account during the optimization technique.

In this paper a DEA based algorithm is proposed for the optimal design of supply chain
networks design. The algorithm utilizes the properties of DEA technique to provide produc-
tivity scores based on multiple inputs and outputs for each examined unit. It is assumed that
in the proposed algorithm, except for the maximization of profit or revenue (minimization of
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cost), there is another objective based on which the selection of solutions is conducted, the
maximization of selected solutions. The proposed algorithm is called Branch and Efficiency
(B&E) as in each iteration the algorithm adds “efficiency cuts”, which are constraints to filter
only the feasible and efficient solutions to be accepted. None of the existing papers in the
literature have proposed such an algorithm until now.

3 B&E algorithm

3.1 Introduction to B&E

In general, a Mixed Integer Linear Programming (MILP) model is expressed with mathemat-
ical formulation as in (1) whereas x represents the vector of continuous variables while y the
vector of binary variables. In MILP formulation (1), cT and dT are the coefficients of contin-
uous and binary variables correspondingly. Finally, f represents the vector of right-hand side
of constraints while xL and xU are vectors representing the upper and lower bounds placed
on non-negative variables x.

P0 min cT · x + dT · y
s.t.

A · x + B · y ≤ f

xL · y ≤ x ≤ xU · y
x ≥ 0, y ∈ {0, 1} (1)

Continuous variables represent upstream or downstream flows towards the different nodes of
the supply chain while binary variables represent the decision of connections or the selected
facilities. Setting in advance what are the characteristics that the DM would like to measure
in each of the selected binary variables (facilities), inputs and outputs should be provided.
Assuming that h and k are sub-matrices of x and y, that contain nonzero continuous or integer
solutions that will be introduced as inputs and outputs correspondingly. The following Linear
Programming (LP) model represents an output oriented DEA model in a matrix form. The
sub-matrices h and k of x and y are used in order to extract the efficiency for each binary
solution set to 1.

DEAmax z

s.t.

�T · h ≤ h′

�T · k ≥ k′ · z
� ≥ 0 (2)

The aim of this approach is the minimization of total cost by selecting the decisions that
concentrate maximum efficiency. For this purpose, a new MILP model is formulated with
constraints with respect to efficiency filtering of solutions. In the following MILP model,
efficiency cut constraints are introduced for the filtering of solutions that concentrate highest
efficiency. Binary variables y are now replaced by binary variables ξ that are used to select
the efficient solutions.

Pε
0 min cT · x + dT · ξ

s.t.
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A · x + B · ξ ≤ f

xL · ξ ≤ x ≤ xU · ξ

E · ξ ≥ α

x ≥ 0, ξ ∈ {0, 1} (3)

As it can be seen in (3), the formulation is the same as in (1) but due to the fact that only the
efficient solutions are selected with addition of efficiency constraintE ·ξ ≥ α. In formulation
(3), α is a vector of efficiency where the solutions with efficiency score greater or equal than
this threshold, are selected with variables ξ. The solution approach is shown in Fig. 2. Initially
the iterations counter (ε) is set to 0 while the set of selected solutions N is empty. Solving
MILP model (1) an upper bound for the objective value is obtained; this value will be used
as an indicator for the next steps of the B&E algorithm. The solutions provided by (1) will
be used as inputs and outputs for efficiency evaluation via DEA technique. The inputs and
outputs must be determined in advance by the DM so that would characterize each potential’s
solution efficiency. It must be noted that if the number of DMUs is less than an acceptable
threshold (T ), where DEA cannot provide reliable results, B&E algorithm stops. Here it
is assumed that T = max {m · n, 3 · (m + n)}. This can be modeled with the cardinality

of the positive solutions of problem P0 and is defined as S =
{
X∗ ∈ F

/
X∗ > 0

}
. This

means that each problem is unique and a special customization should be performed in
advance.

After efficiency calculation, Technical Efficiency (TE) is calculated as an efficiency
measure, and is defined as the reciprocal of ϕ (Andersen and Petersen 1993). Additional
constraints are introduced in order to allow only solutions that gather efficiency equal to 1.
Correspondingly, new binary variables (ξ) are introduced replacing those that concerned the
selection of a solution. These variables are triggered only if the solution is efficient.

In case where optimal solutions for binary variables (ξ∗) yield infeasibility, the range of
efficiency becomes wider in order to incorporate the minimum number of solutions that make
the problem to be solved to optimality and reduce the objective function value. The algorithm
stops when the number of DMUs drops below a certain level or there is no change in the
objective function value.

Throughout this procedure, the initially empty set of solutions N is filled with solutions
that satisfy the conditions of iterative set J γ .

3.2 Notation

Index

i Plant
j Warehouse
k Customer
γ Iteration

Parameters

PU
i Upper bound of produced quantities at plant i

PL
i Lower bound of produced quantities at plant i

QU
i j Upper bound of transported quantities from plant i to warehouse j

QU
jk Upper bound of transported quantities from warehouse j customer k

WU
j Upper capacity of warehouse j
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Solve P1: Cu=C0

TEγj=1/φγj

N = ∅
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Fig. 2 The proposed B&E algorithm in a flowchart presentation

β j Coefficient relating quantity at capacity at warehouse j
I j Inventory level stored warehouse j

Monetary parameters

cPi Production cost at plant i
cVi j Unit transportation cost of products transported from plant i to warehouse j

cFi j Rout transportation cost of products transported from plant i to warehouse j

cVjk Unit transportation cost of products transported from warehouse j to customer k

cFjk Route transportation cost of products transported from warehouse j to customer k

cPENk Penalty cost assigned to uncovered demand of customer k
Fj Installation cost of warehouse j
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Plant CustomerWarehouse

jkX

i j k

ijX jY

Fig. 3 The examined supply chain network

Continuous variables

Pi Production quantity at plant i
Qi j Transported quantity from plant i to warehouse j
Q jk Transported quantity from warehouse j to customer k
Wj Capacity of warehouse j
λ j Lambda (peers)
gk Variable modeling deficit in demand of customer k
TC Total cost
ϕ j Efficiency of each

Binary variables

Xi j 1 if the connection between plant i and warehouse j exists, 0 otherwise
X jk 1 if the connection between warehouse j exists and customer k exists, 0 otherwise
Y j 1 if warehouse j will be installed, 0 otherwise
ξ j 1 if warehouse j will be installed under efficiency level a%, 0 otherwise

3.3 Introduction through Supply Chain Network Design (SCDN) problem

In order to demostrate the applicability of the B&E algorithm, an introduction to the proposed
mathematical programming algorithm is provided, via an application of a simple SCDN
problem.

In Fig. 3, the network of the supply chain is presented. In the supply chain network
proposed here it is assumed that only a single product is manufactured, stored and transported
throughout the channels of the network. The application of B&E algorithm is intensively
demonstrated in a simple SCDNmodel, so that it can be analytically described, however, the
algorithm can be applied in any SCDN formulation independently of whether it is theoretical
or real.

The supply chain network that is examined in this paper, consists of three nodes; the
plants, the warehouses and customers. In the first link of the supply chain, the plants which
manufacture the product for the customers, are assumed to be already located. These pro-
duced quantities are subjected to certain constraints. Once the products are produced, they
are eventually stored in warehouses (the location of which is to be determined). From the
warehouses, the quantities are delivered to the final link of the chain (the customer), according
to corresponding demand.

In Fig. 3, the binary variables that correspond to the supply chains arcs (connections)
and nodes (warehouses) are shown. The present model can be extended in order to take into
account, more than one products, while there are many stages and echelons, the problem is
extended to a multi-product, multi-stage multi-echelon SCDN problem.
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The levels of decision the supply chain may provide are the following:

a) The quantities produced, transported and stored
b) Capacity of the installed facilities and their location.

3.4 SCDN model

Due to the presence of binary variables, the following is a Mixed Integer Linear Program-
ming (MILP) model with objective function (4) and constraints (5)–(15) andmodels a typical
supply chain.Objective function (4) represent overall Total Costwhich consists of the produc-
tion cost (a), variable transportation cost (b), fixed transportation cost (c) among nodes and
finally the installation cost (d). The last term represents penalty cost of uncovered demand.

P0 : min TC =
(a)︷ ︸︸ ︷∑

i

cPi · Pi +
(b)︷ ︸︸ ︷∑

i

∑
j

cVi j · Qi j +
(c)︷ ︸︸ ︷∑

i

∑
j

cFi j · Xi j +
(b)︷ ︸︸ ︷∑

j

∑
k

cVjk · Q jk

+
(c)︷ ︸︸ ︷∑

j

∑
k

cFjk · X jk +
(d)︷ ︸︸ ︷∑

j

Fj · Y j +
∑
k

cPENk · gk (4)

s.t.

Pi =
∑
j

Qi j , ∀ i (5)

Pi ≤ PU
i , ∀ i (6)

Pi ≥ PL
i , ∀ i (7)∑

i

Qi j =
∑
k

Q jk, ∀ j (8)

Qi j ≤ QU
i j · Xi j , ∀ i, j (9)

Q jk ≤ QU
jk · X jk, ∀ j, k (10)

Xi j ≤ Y j , ∀ i, j (11)

X jk ≤ Y j , ∀ j, k (12)

Wj ≥ β j ·
(∑

i

Qi j + I j

)
, ∀ j (13)

Wj ≤ WU
j · Y j , ∀ j (14)

∑
j

Q jk + gk = dk, ∀ k (15)

Y j , Xi j , X jk ∈ {0, 1}
Pi , Qi j , Q jk,Wj , gk ≥ 0, ∀ i, j, k (16)

In the above problem, constraints (6), (7) suggest that the quantities produced in plant i should
not exceed and upper (PU

i ) and lower (PL
i ) bound production correspondingly. Constraint (5)

is a mass balance constraint representing that product flow from warehouse j to customer k
should be equal. Constraint (15) models the quantity that ends to the final node, the customer,
and is assumed to cover demand of customer k. An additional variable is added in order to
provide the magnitude of any shortfalls in demand. The introduction of slack variable gk in
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constraint (15), guarantees that the problem is not infeasible, in case that the demand is high
and cannot be covered by supply. The following term

∑
k
cPENk · gk is introduced in objective

function (4) (Erdirik-Dogan and Grossmann 2008).
Besides constraints that regard to continuous variables, there are also logical constraints

that are introduced in order to model the logical conditions. Constraints (9) and (10) suggest
that the transported quantities from plant i to warehouse j and fromwarehouse j to customer
k are upper bounded if—f the corresponding connection exists. Constraints (11) and (12)
are introduced for the supply chain design network. In the two constraints is stated that if
warehouse j is installed then the corresponding connection from warehouse j to plant i and
fromwarehouse j to customer k exists.Constraint (13) states thatwarehouse’s capacity should
be more than product’s quantities that will be transported to warehouse j plus the inventory
level stored at warehouse j . The aforementioned quantities are multiplied by coefficient
β j expressing the amount of warehousing capacity required to hold a unit amount of the
examined product at warehouse j . Constraint (14) is introduced to model the upper bound
of warehouse capacity j .

Non-negativity constraints are imposed to production, transportation and warehousing
variables as seen in (16).

4 B&E formulation

In this section the B&E algorithm will be deployed on the SCDN model that was previously
described. Based on this approach, each node acts as an unit being described by inputs and
outputs. The efficiency of each unit is extracted based on their level of inputs and outputs.
Thus, the incurring efficiency can bemeasuredwithDEA.The data thatwill be fed toDEAare
acquired by solving the initial problem, while the inputs and outputs are a-priori determined.
In Fig. 4, the inputs and outputs of the warehouse facility is provided. If it assumed that a
warehouse was a branch of an enterprise, then the most productive one would be the one that
would minimize its operational cost and would provide more services.

Integrating DEAmodel into the SCNDmodel, non-linearity terms will arise that may lead
to local optima. In order to obtain global optima and to maintain the linearity of the model
and extract the efficiency of each potential solution, B&E algorithm is applied.

4.1 Data

The data used for the efficiency extraction are generally provided in advance after statistical,
qualitative or techno economic analysis. As mentioned in the previous section and can be
seen in B&E flowchart, DEA technique is applied for the caclulation of DMUs efficiency.
Here DMUs are considered to be the potentially installed warehouses. The data that are
provided to DEA technique, are not externally provided, but come within the solution of the
problem. The only parameter that should be predetermined is the inputs and outputs that the
DM considers that capture the productivity of each warehouse.

In this work, an output oriented DEA model is applied in order to extract the efficiency
of each DMU (warehouse) with inputs and outputs as seen in Table 1. The choice of these
data to serve as inputs and outputs are done on the basis of selecting the warehouses that can
provide the maximum services at the minimum cost. In Table 1 the inputs and the outputs
that will be provided to DEA technique are presented. The inputs of the study are: (a) the cost

which corresponds to the transportation of quantities from plant to warehouse
(
C1,V

j

)
and
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j jF Y⋅

j jkkTQ Q= ∑

Inputs Outputs

j jkkOC X= ∑

1,V V
j ij ijiC c Q= ⋅∑

1,F F
j ij ijiC c X= ⋅∑
2,F F
j jk jkkC c X= ⋅∑

2,V V
j jk jkkC c Q= ⋅∑

Plant

Plant

Plant

Warehouse

Customer

Customer

Customer

Fig. 4 Inputs and outputs of warehouse node

Table 1 Inputs and Outputs of
the proposed supply chain Inputs C1,V

j = ∑
i c

V
i j · Q∗

i j

C2,V
j = ∑

k c
V
jk · Q∗

jk

C1,F
j = ∑

i c
F
i j · X∗

i j

C2,F
j = ∑

k c
F
jk · X∗

jk

C I N
j =

{
Fj · Y ∗

j , γ = 1

Fj · ξ∗
j , γ > 1

Output OC j = ∑
k X∗

jk

TQ = ∑
k Q

∗
jk

from warehouse to customer
(
C2,V

j

)
, (b) the fixed transportation cost for routes done from

plant to warehouse
(
C1,F

j

)
and from warehouse to customer

(
C2,F

j

)
and c) the installation

cost of warehouse j
(
C I N

j

)
. The outputs of the study are depicted in order to capture the

magnitude of service level each warehouse can provide. Thus as outputs are considered (a)
the total quantity that a warehouse can send to each customer (T Q j ) and (b) the out coming
connections, that is, how many customers a warehouse is connected to and therefore can
serve (OC j ). Thus the higher the efficiency the highest the service level that each warehouse
can provide to each customer.

4.2 Measuring DMUs efficiency

As in this model, the efficiency is derived through solutions of a MILP model, inputs and
outputs must be selected so that the efficiency of each warehouse is captured. As it can be
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seen from Table 1, incoming quantities have not been taken into account because due to the
mass balance constraint, incoming quantities are equal to out coming quantities of a node.

In the following LP model, output oriented DEA model is presented. The data provided
for the evaluation of efficiency of each warehouse are the solutions from the initial MILP
model P0.

LPmax ϕ

s.t.∑
j

λ j · C1,V
j ≤ C1,V

o

∑
j

λ j · C2,V
j ≤ C2,V

o

∑
j

λ j · C1,F
j ≤ C1,F

o

∑
j

λ j · C2,F
j ≤ C2,F

o

∑
j

λ j · Fj ≤ Fo

∑
j

λ j · T Q j ≥ T Qo · ϕ

∑
j

λ j · OC j ≥ OCo · ϕ

λ j ≥ 0, ∀ j

ϕ free (17)

The extraction of each DMU’s efficiency is preformed after solving the LP model (17) for
each of the examined DMUs. In order to provide conclusions for the efficiency of each DMU,
as ϕ is a free variable and can obtain any value, Technical Efficiency (TE) index is used. This
index is defined as the reciprocal of ϕ (18) and is bounded in the range [0, 1].

TE = 1/ϕ (18)

The next step in B&E algorithm is to add those DMUs with TE = 1 in J γ set, where all
efficient solutions are stored. In order to investigate which DMUs hold an efficiency of 1, the
next binary variable is introduced:

ξ j =
{
1, TE j ≥ α

0, o/w
∀ j (19)

As it can be seen in (19), binary variable gets the value of 1, if TE is greater than or equal
to an efficiency threshold. Initially this value is 1, but if the problem yields infeasibility then
this value is reduced. Binary variable is triggered when TE of a warehouse is greater or equal
to a, using the following constraint.

TE j ≥ a · ξ j , ∀ j (20)

The set of efficient solutions at each iteration of the algorithm is defined as follows:

J γ = {
ORD( j) : TE j ≥ a · ξ j

}
(21)
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Assuming that N is the set of all non-zero solutions after ε iterations of the algorithm, then
DMUs with technical efficiency less than a will be included in the following set:

Ē = N/J γ (22)

In the previous context, the set of inefficient solutions is defined as the set subtraction of the
set of all solutions after ε iterations of the algorithm minus the set of inefficient solutions.

4.3 Solving problem Pγ

0

In order to design the supply chain network, using binary variables for efficient solutions,
constraints that are introduced for the design of the network (logical) are reformulated. A
DMU is selected if—f satisfies constraint (20). Thus, the binary variable that corresponds to
the selection of warehouses

(
Y j

)
is replaced with binary variable ξ j . Constraints (11)–(14)

are reformulated as follows:

Xi j ≤ ξ j , ∀ i, j (23)

X jk ≤ ξ j , ∀ j, k (24)

Wj ≥ β j ·
(∑

i

Qi j + ξ j · I j
)

, ∀ j (25)

Wj ≤ WU
j · ξ j , ∀ j (26)

In constraints (23), (24) and (26), binary variable Y j is replaced with variable ξ j and as it can
be seen (25) has been modified introducing it to the inventory parameter in order to avoid
any infeasibilities that may occur. As Qi j is controlled by binary variables that correspond
to connections, namely Xi j , through constraint (9) and binary variables are connected with
constraint (11), such that if a warehouse is installed then the corresponding connection is
created, thus Qi j has an indirect relation with the variable that correspond to quantities trans-
ferred. For this reason, binary variable is also introduced to the lower bound and especially
on the inventory parameter which is not controlled by any logical or continuous variable.

Except for the supply chain network and logical constraints, the objective function of the
problem is modified as follows:

min TC =
∑
i

cPi · Pi +
∑
i

∑
j

cVi j · Qi j +
∑
i

∑
j

cFi j · Xi j +
∑
j

∑
k

cVjk · Q jk

+
∑
j

∑
k

cFjk · X jk +
∑
j

Fj · ξ j +
∑
k

cPENk · gk (27)

In objective function (27), the installation cost is now computed upon the product of instal-
lation cost and binary variable ξ . The procedure is graphically represented in the following
figure (Fig. 5). In Fig. 5, the reduction of cost is performed through consecutive efficiency
cuts. The proposed B&E algorithm is not the logic cut type technique. At the beginning the
value of the objective function is higher than in any of the iterations of the algorithm. The
basis for this argument is that the binary variable that corresponds to supply chain network
design is replaced by a binary variable that measures efficiency of solutions and is subjected
to an additional constraint, the efficiency cut. Thus in each iteration through the selection of
reduced number of facilities, the overall cost is also minimized. The thick black line indicates
the point where the data are insufficient for the application of DEA technique.

The new formulated problem Pγ
0 is described by objective function (27) and constraints

(5)–(10), (23)–(26), (15) and (16). The initial value of the objective function will be greater
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Fig. 5 Minimization of cost through iterative efficiency cuts

than the value of any consecutive iteration. This is attributed to the reduction of solutions (by
zeroing) for certain indices as stated in (28).

∑
i

∑

j∈Ē
cVi j · Qi j +

∑
i

∑

j∈Ē
cFi j · Xi j +

∑

j∈Ē

∑
k

cVjk · Q jk

+
∑

j∈Ē

∑
k

cFjk · X jk +
∑

j∈Ē
Fj · ξ j = 0 (28)

For non-efficient solutions, when ξ j∈Ē = 0 the decisions that concern to the installation of
a facility are also 0. The aforementioned state is derived from the following inequalities.

Xi j ≤ 0 ⇔
Xi j = 0 ∀ i, j ∈ Ē (29)

X jk ≤ 0 ⇔
X jk = 0 ∀ j ∈ Ē, k (30)

Finally, the variables that regard to the quantities become also 0 when a solution is not
efficient. Given the fact that the system should be in a balanced form, quantities are channeled
through the selected facilities, which are the efficient ones. The procedure stops at the point
where objective function value has no improvement in two consecutive iterations or when
the number of DMUs in each iteration is less than the minimum amount of DMUs needed
for the functionality of DEA.

5 Results

5.1 Description of case study

In this section, the applicability of the model is presented through a case study. The proposed
B&E algorithm can be applied in any supply chain, reducing overall cost. In the supply chain
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Table 2 Data of the proposed case study

Description Parameter Value

Upper bound of produced quantities of plant i PU
i 8000

Lower bound of produced quantities of plant i PL
i 5000

Upper bound of transported quantities from plant i to
warehouse j

QU
i j 500

Upper bound of transported quantities warehouse j to
customer k

QU
jk 500

Unit production cost at plant i cPi U [0, 200]
Fixed route cost from plant i to warehouse j cFi j U [50, 100]
Unit transportation cost from plant i to warehouse j cVi j U [0, 20]
Fixed route cost from warehouse j to customer k cFjk U [50, 100]
Unit transportation cost from warehouse j to customer k cVi j U [0, 20]
Penalty cost assigned to uncovered demand of customer
k

cPENk 106

Fixed installation cost of warehouse j Fj U [50, 100] × 103

Coefficient relating quantity at capacity warehouse j β j U [0.0001, 0.01]
Inventory kept at warehouse j I j U [0, 100]
Demand of customer k dk U [500, 1000] × 103

network presented in the previous section, a single homogeneous product is manufactured
and transported throughout the links of the supply chain.

In the following table (Table 2) the data of the case study are presented. Simulated data have
been used drawn from uniform distribution which is considered as fair due to the fact that all
observation have the same probability of occurrence. The unit production and transportation
cost is measured in relative money units/units (r.m.u/u) while parameters with respect to
capacity and demand are measured in units (u).

5.2 Numerical results

In this section the application of B&E is demonstrated through the results of the case study.
The case study was model and solved in GAMS optimization software using CPLEX as
LP and MIP solver on an Intel Pentium, 2.3GHz, 2GB RAM laptop computer. Even if the
instance is medium to large with |I | = 50 plants, |J | = 50 plants and |K | = 50 customers,
the problem was solved in 10 CPU seconds to optimality.

5.2.1 Initialization

First MILP model P0 is solved to optimality providing decisions about the number of ware-
houses. A summary of the data (inputs and outputs) that are derived after solvingMILPmodel
P0 are shown in Fig. 6. Regarding the outputs, the average value of the total quantity (T Q j )

(Fig. 6a) that is sent from the selected warehouses to the customers is 5000 r.m.u while the
average value of the total outgoing connections is 10 (OC j ) (Fig. 6b). Regarding the inputs,
the average value of the variable transportation cost from plant to warehouse (Fig. 6c) (C1,V

j )
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Fig. 6 Boxplot for outputs: a total quantity b outgoing connections and inputs: c variable transportation cost
from plant to warehouse, d variable transportation cost from warehouse to customer, e fixed transportation
cost from plant to warehouse, f fixed transportation cost from warehouse to customer, after solving P0

is almost 800 r.m.u and almost the same conclusions can be extracted for variable transporta-
tion cost from warehouse to customer (C2,V

j ) (Fig. 6d). Finally, the average values of fixed

transportation cost from plant to warehouse (C1,F
j ) (Fig. 6e) and fixed transportation cost

from warehouse to customer (C2,F
j ) (Fig. 6f) are 12,500 and 10,000 r.m.u correspondingly.

After solvingmodel P0 50 warehouses are selected providing a total cost of 27,352,117.18
r.m.u. The number of warehouses (viz. the decision variables that correspond to the
installation of a warehouse) is larger than the minimum DMU requirements of T =
max {5 · 2, 3 · (5 + 2)} = 21 needed in order for the DEA results to have validity, so the
procedure continues.
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Table 3 Technical efficiency for all selected DMUs (warehouses)

Warehouse Technical efficiency Warehouse Technical efficiency

1 1 26 0.845

2 0.978 27 1

3 0.788 28 0.992

4 0.937 29 0.914

5 1 30 0.957

6 1 31 1

7 1 32 0.962

8 0.912 33 0.923

9 0.949 34 1

10 0.957 35 0.999

11 0.983 36 0.962

12 0.967 37 0.937

13 0.874 38 0.743

14 0.954 39 0.898

15 0.896 40 0.972

16 0.965 41 0.998

17 1 42 0.954

18 0.999 43 1

19 0.989 44 1

20 0.941 45 1

21 0.945 46 1

22 0.932 47 0.967

23 1 48 0.914

24 0.965 49 0.997

25 0.950 50 0.988

Bold values indicate the point at which the algorithm terminates and the optimal value

5.2.2 DEA

Each DMU’s (warehouse) efficiency is evaluated through LPmodel (17), with the use of pre-
formulated inputs and outputs. The inputs and the outputs (as have been defined in Table 1)
are calculated from the optimal solutions of P0(Q∗

i j , Q
∗
jk, X

∗
i j , X

∗
jk, Y

∗
j ) as can be seen in

Fig. 4. Solving LP model (17), the efficiency of each warehouse is extracted and the initial
set of solutions is the following:

N = {1, 2, 3, . . . , 50} (31)

The Technical Efficiency of each of the selected DMUs (warehouses) is presented in the next
table (Table 3) and the efficient warehouses are shown with bold. As it can be seen in Table 3,
the majority of DMUs selected has a technical efficiency of 1 and are most likely to remain
in N . Yet, as the problem has indirect two objectives, namely the maximization of efficiency
of the final supply chain network and the minimization of cost, if a warehouse may have a
large cost comparing to the other, it may be excluded.
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Table 4 Results from
application of B&E algorithm to
larger instances

Bold values indicate the point at
which the algorithm terminates
and the optimal value

Instance Objective (r.m.u) No. facilities Iterations

|I | = 100
|J | = 100

51,969,399.72 100 P0

|K | = 100 50,682,282.31 23 γ = 1

|I | = 150
|J | = 150

76,899,574.02 150 P0

|K | = 150 73,652,608.31 19 γ = 1

|I | = 200
|J | = 200

102,015,663.39 200 P0

|K | = 200 95,210,734.52 35 γ = 1

5.2.3 Efficiency cuts

As aim of the proposed algorithm is to reduce the number of facilities in order to reduce
overall cost but at the same time increase the service level of the customers, the efficiency
cuts are applied to the secondMILPmodel Pγ=1

0 . Model Pγ=1
0 presented in Sect. 4.3 (γ = 1

denotes first iteration) receives the initial solutions from model P0. After solving Pγ=1
0 the

number of selected facilities has dropped from 50 to 13 which are the following: 1, 5, 6, 7,
17, 23, 27, 31, 34, 43, 44, 45, and 46. It must be noticed that from all DMUs, the model
found and excluded those with Technical Efficiency equal to 1. The problem was solved to
optimality and without any infeasibility occurrence. The results of model Pγ=1

0 can be easily
confirmed from Table 3 as all the selected facilities have a Technical Efficiency equal to 1;
if any infeasibility instance would occur, based on the flowchart of B&E algorithm (Fig. 2),
wider Technical Efficiency bounds would be used. The cost after the first iteration of B&E
algorithm is 27,059,894.34 r.m.u. As the number of facilities that are selected from Pγ=1

0
is less than the threshold set for DEA functionality (terminating criterion

∣∣N γ=1
∣∣ < 21),

the algorithm stops. The optimal solutions are the one derived from Pγ=1
0 . The number of

selected facilities that are eventually selected are 13 (from 50 that have been selected after
solving P0) leading to cost reduction from 27,352,117.18 r.m.u. to 27,059,894.34 r.m.u.

5.2.4 Larger instances

In this section the application of the algorithm to larger instances is demonstrated. In Table 4
the instance characteristics (size of the problem), the results (objective function value and
number of selected facilities) and the iterations for final solutions are presented.

As it can be seen from Table 4, in the proposed problems initially all the warehouses are
selected. The initial cost is considered as an upper bound for the iterations of B&E algorithm
and at each iteration overall cost decreases. In all instances, the algorithm terminated after
the first iteration (γ = 1) either because the number of facilities is less than the threshold or
because after selecting the efficient warehouses of first iteration, the MILP model Pγ

0 was
infeasible.

6 Conclusions

Efficiency measurement is applied to firms or to units when the data (inputs and outputs)
are known a priori. Using DEA technique the efficiency is extracted for each DMU under
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examination. Considering each solution as a DMU, it is possible to evaluate the solutions
efficiency using endogenous data. When modeling the supply chain network design, single
sourcing constraints are used in order to provide better results in terms of minimizing the
overall cost (objective function value) and economies of scale through facilities concentration.
However, this typeof constraint is a “hard” constraint andmayeventually leads to infeasibility.

In this paper a Branch and Efficiency (B&E) algorithm has been deployed for the optimal
design of supply chain networks. The algorithm integrates DEA technique in the design of
supply chain network, through an iterative process and takes into advantage the strengths of
DEA to provide efficiency scores for multiple inputs and outputs. Up to now, DEA technique
has been applied in order to measure performance of a system based on exogenous data. The
proposed B&E algorithm takes into the data provided within the optimization procedure in
each iteration. Based on this approach, the problem is initially solved providing non-zero
solutions for the initialization of the algorithm. The initialized values are fed to DEA to
measure the efficiency of the unit under examination (in this case warehouses). Through the
addition of efficiency cuts, the algorithm selects only the efficient solutions, which minimize
overall cost (or maximize profit/revenue).

For illustrative purposes, a two-stage supply chain model is proposed. Production units
form the first link of this supply chain network while customer’s site form the last link,
both of which are assumed to be already installed. The model is designed in such a way
so as to provide decisions about the potential installation of warehouses. Setting a-priori
the characteristics that could capture the efficiency of each facility (warehouse), the data
are provided to the algorithm. The proposed algorithm has two characteristics; heuristic and
evaluative. The first comes from the fact that even if initial solutions are provided during
the initialization process, the algorithm searches among the “efficient neighborhoods” and
would accept or exclude solutions based on efficiency cuts, after the evaluation process. The
algorithm is generic and can be applied in any type of supply chain, regardless the level of
complexity, making it a valuable tool for long and short term managerial decisions.
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Appendix—an illustrative example

The proposed methodology is shown through a toy illustrative example so that it can be
reproducible by researchers in supply chain network design and practitioners. Assuming
that there are 5 plants (i = 1, . . . , 5), 20 possible warehouses ( j = 1, . . . , 20) to be
installed and 5 demand zones (customers) (k = 1, . . . , 5). Analytically the model P0 for
the examined instance is shown in mathematical formulation (32)–(44). The production cost
for each plant i is presented in Table 5. The data regarding fixed and variable transporta-
tion cost (cFi j , c

F
jk, c

V
i j , c

V
jk) are given in Tables 6 and 7. Warehouse installation cost (Fj ),

capacity coefficient (a j ) and holding inventory (I j ) are given in Table 8. Upper and lower
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Table 5 Production cost for each
plant i i cPi

1 34.35

2 168.65

3 110.08

4 60.23

5 58.44

Table 6 Fixed and variable transportation cost from plant i to warehouse j

j cFi j cVi j

i

1 2 3 4 5 1 2 3 4 5

1 61.203 91.545 59.105 51.707 58.708 4.515 11.931 4.025 1.742 12.033

2 67.492 61.541 82.286 79.257 66.532 7.922 10.229 5.943 10.808 0.540

3 92.814 83.287 78.037 81.061 65.845 5.520 0.901 3.945 2.537 3.922

4 53.356 88.793 88.498 69.468 66.104 3.047 15.662 4.927 14.680 19.014

5 75.011 65.183 64.890 67.936 98.199 18.726 18.915 12.930 2.265 6.711

6 99.906 55.525 83.055 62.152 99.680 8.453 11.929 14.699 9.767 11.885

7 78.937 75.119 87.791 62.321 68.495 2.693 12.147 1.709 15.912 5.184

8 99.557 58.009 81.372 56.525 68.644 7.721 7.250 3.007 9.841 12.813

9 88.113 93.623 64.193 96.672 88.599 7.493 11.881 8.684 10.671 3.105

10 56.535 63.256 54.321 68.997 69.834 5.370 13.597 3.739 0.212 9.200

11 81.986 64.291 55.126 89.170 95.655 18.967 10.132 13.854 10.877 7.867

12 57.976 79.698 82.063 65.002 55.979 3.779 3.185 15.259 9.023 16.109

13 62.504 86.136 77.265 56.274 86.774 5.950 13.138 3.096 19.507 10.820

14 83.446 81.412 51.576 87.444 52.771 1.491 10.478 7.788 3.677 7.814

15 71.768 73.190 89.618 53.462 78.815 8.027 2.488 13.909 3.271 11.156

16 67.985 70.665 53.638 60.101 52.570 2.034 19.734 16.916 0.493 18.655

17 67.572 55.885 58.783 50.253 50.300 7.678 4.562 12.254 3.556 6.975

18 56.575 65.711 76.282 63.481 70.061 6.482 13.513 19.519 1.226 0.166

19 57.505 52.328 87.510 74.993 75.994 3.843 15.536 0.538 0.333 18.977

20 79.456 66.928 58.906 57.564 81.444 2.247 18.649 3.749 16.713 11.438

bound for produced quantities (PL
i , PU

i ) are set to be 5000 and 8000 correspondingly. The
upper bound of flow from plant to warehouse and from warehouse to customer is set to be
QU

i j = QU
jk = 500. The upper bound of the warehouse capacity (WU

j ) is assumed to be 1000.
Demand for each customer k is given in Table 9. In this instance algorithm terminates if the
number of possible facilities is less than 10 (Fig. 2, |N γ | < 10) or the Pγ

0 yields infeasibility
in γ iteration for any a value in the range of [0.7, 1]. The penalty cost for uncovered demand
is assumed to be 106.
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Table 7 Fixed and variable transportation cost from warehouse j to customer k

j cFjk cVjk

k

1 2 3 4 5 1 2 3 4 5

1 66.68 99.19 88.32 55.5 99.74 11.86 13.68 3.175 6.636 6.317

2 79.02 58.32 82.17 67.22 95.62 10.4 7.276 3.355 13.66 10.11

3 95 50.81 68.43 83.22 79.67 11.52 14.4 13.67 0.397 16.8

4 51.73 92.09 96.6 75.4 64.98 14.2 3.11 12.21 13.23 3.887

5 74.83 52.25 88.69 76.65 87.34 7.27 12.48 14.63 8.279 3.15

6 86 81.58 55.75 98.56 85.34 0.25 0.203 19.04 19.53 19.33

7 99.31 92.74 81.07 85.07 85.04 17.13 2.832 0.995 11.06 3.681

8 89.54 80.51 52.72 74.26 52.63 19.88 16.18 6.124 1.748 8.61

9 84.93 59.74 61.3 90.68 99.59 6.994 2.347 11.72 8.911 8.246

10 87.53 85.92 50.03 63.19 91.19 18.29 4.276 4.483 10.85 12.62

11 90.98 93.02 60.63 72.84 51.92 6.549 2.976 18.58 5.021 1.252

12 66.15 71.99 65.77 56.74 90.55 6.203 0.804 16.42 4.619 8.201

13 70.84 57.09 73.28 64.15 94.78 6.052 8.898 14.32 11.86 2.624

14 53.22 70.73 67.08 73.41 82.13 3.225 6.313 11.44 5.374 0.728

15 82.18 66.88 55.04 95.29 60.87 13.73 13.49 6.643 15.2 3.536

16 95.94 72.59 54.5 68.71 70.75 13.65 13.46 16.62 10.3 5.661

17 70.21 55.58 87.56 90.17 51.18 11.11 8.28 1.468 16.12 6.654

18 74.04 63.93 95.08 50.88 84.05 1.694 11.44 0.441 14.84 18.1

19 97.55 95.01 94.94 93.72 69.55 11.22 9.457 14.35 10.26 17.74

20 75.21 91.56 80.11 54.11 78.89 15.43 2.802 5.29 13.65 8.996

P0 : min TC =
5∑

i=1

cPi · Pi +
5∑

i=1

20∑
j=1

cVi j · Qi j +
5∑

i=1

20∑
j=1

cFi j · Xi j +
20∑
j=1

5∑
k=1

cVjk · Q jk

+
20∑
j=1

5∑
k=1

cFjk · X jk +
20∑
j=1

Fj · Y j +
5∑

k=1

cPENk · gk

s.t. (32)

Pi =
20∑
j=1

Qi j , i = 1, . . . , 5 (33)

Pi ≤ PU
i , i = 1, . . . , 5 (34)

Pi ≥ PL
i , i = 1, . . . , 5 (35)

5∑
i=1

Qi j =
5∑

k=1

Q jk, j = 1, . . . , 20 (36)

Qi j ≤ QU
i j · Xi j , i = 1, . . . , 5, j = 1, . . . , 20 (37)

Q jk ≤ QU
kj · X jk, j = 1, . . . , 20, k = 1, . . . , 5 (38)
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Table 8 Installation cost,
capacity coefficient and holding
inventory of warehouse j

j Fj β j I j

1 98,276.24 0.009795 70.49

2 97,894.74 0.003893 41.59

3 94,961.33 0.007867 54.98

4 66,377.28 0.009663 34.50

5 72,854.95 0.009541 69.96

6 79,809.01 0.003303 93.35

7 93,931.18 0.003925 46.93

8 58,533.63 0.002933 21.36

9 81,680.11 0.002566 51.08

10 88,579.48 0.007581 36.57

11 78,472.3 0.003431 93.54

12 51,383.89 0.007826 6.80

13 90,549.69 0.006557 50.39

14 63,946.48 0.003619 39.24

15 71,667.46 0.007666 20.49

16 66,813.11 0.00107 52.95

17 79,432.13 0.008799 58.91

18 78,719.58 0.001136 34.58

19 77,171.07 0.004855 25.29

20 78,908.08 0.004228 54.77

Table 9 Demand for each
customer k

k dk

1 773,740.9

2 529,133.4

3 688,861.1

4 987,033.5

5 689,909.4

Xi j ≤ Y j , i = 1, . . . , 5, j = 1, . . . , 20 (39)

X jk ≤ Y j , j = 1, . . . , 20, k = 1, . . . , 5 (40)

Wj ≥ β j ·
(

5∑
i=1

Qi j + I j

)
, j = 1, . . . , 20 (41)

Wj ≤ WU
j · Y j , j = 1, . . . , 20 (42)

20∑
j=1

Q jk + gk = dk, k = 1, . . . , 5 (43)

Y j , Xi j , X jk ∈ {0, 1}
Pi , Qi j , Q jk,Wj ≥ 0, i = 1, . . . , 5, j = 1, . . . , 20, k = 1, . . . , 5

(44)
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Table 10 Inputs and outputs after solving model P0

j Outputs Inputs

Outgoing
connections

Total quantity
sent

Installation
cost

Fixed
transportation
cost from plant
to warehouse

Fixed
transportation
cost from
warehouse to
customer

Variable
transportation
cost from plant
to warehouse

Variable
transportation
cost from
warehouse to
customer

1 3 1500 98,276.24 172.01 243.57 5141.10 8064.04

2 3 1500 97,894.74 210.36 236.10 8356.02 10,369.37

3 2 1000 94,961.33 149.13 178.22 2411.60 5960.84

4 2 1000 66,377.28 141.85 157.07 3987.18 3498.76

5 2 1000 72,854.95 166.13 162.17 4487.74 5210.13

6 2 1000 79,809.01 155.20 167.58 11,907.25 226.91

7 3 1500 93,931.18 235.22 258.86 4792.91 3753.73

8 2 1000 58,533.63 139.38 126.97 5128.57 3936.09

9 3 1500 81,680.11 246.42 244.25 11,835.05 8793.43

10 3 1500 88,579.48 179.85 199.14 4660.43 9802.90

11 2 1000 78,472.30 159.95 144.94 8999.28 2113.72

12 3 1500 51,383.89 202.68 194.88 7993.23 5813.02

13 2 1000 90,549.69 139.77 165.62 4523.16 4337.75

14 4 2000 63,946.48 305.07 279.50 11,730.01 7819.90

15 2 1000 71,667.46 126.65 115.91 2879.29 5089.09

16 2 1000 66,813.11 128.09 139.46 1263.24 7982.02

17 3 1500 79,432.13 156.44 194.32 7547.11 8201.16

18 2 1000 78,719.58 133.54 169.12 696.06 1067.45

19 3 1500 77,171.07 220.01 286.28 2356.68 15,466.53

20 2 1000 78,908.08 138.36 171.67 2998.17 4046.40

Solving model P0 for the specific parameters presented above, the following optimal
solutions are derived. The data in Table 10 represent the inputs and outputs that will be used
in the following step. The outputs that are used are: (a) outgoing connections (

∑5
k=1 X

∗
jk),

and (b) total quantity sent (
∑5

k=1 Q
∗
jk). Inputs are (a) installation cost (Fj · Y ∗

j ), (b) fixed

transportation cost from plant to warehouse (
∑5

i=1 c
F
i j · X∗

i j ), (c) fixed transportation cost

from warehouse to customer (
∑5

k=1 c
F
jk · X∗

jk), (d) variable transportation cost from plant

to warehouse (
∑5

i=1 c
V
i j · Q∗

i j ), (e) variable transportation cost from warehouse to customer

(
∑5

k=1 c
V
jk · Q∗

jk). The cost that is derived is 3,971,290.09 r.m.u.

The DEA formulation that is used in order to assess the efficiency is presented below:

LPmax ϕ

s.t.
20∑
j=1

λ j ·
(∑5

i=1
cVi j · Q∗

i j

)
≤

∑5

i=1
cVio · Q∗

io
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Table 11 Efficiency scores per
each warehouse j

j 1/ϕ j 1/ϕ

1 1 11 1

2 0.814942 12 1

3 0.831777 13 0.857106

4 0.909887 14 1

5 0.792112 15 1

6 1 16 1

7 0.928171 17 1

8 1 18 1

9 0.784875 19 1

10 1 20 0.871074

20∑
j=1

λ j ·
(∑5

k=1
cVjk · Q∗

jk

)
≤

∑5

k=1
cVjo · Q∗

jo

20∑
j=1

λ j ·
(∑5

i=1
cFi j · X∗

i j

)
≤

∑5

i=1
cFio · X∗

io

20∑
j=1

λ j ·
(∑5

k=1
cFjk · X∗

jk

)
≤

∑5

k=1
cFjo · X∗

jo

20∑
j=1

λ j ·
(
Fj · Y ∗

j

)
≤ Fo · Y ∗

o

20∑
j=1

λ j ·
(∑5

k=1
Q∗

jk

)
≥ ϕ ·

(∑5

k=1
Q∗

jo

)

20∑
j=1

λ j ·
(∑5

k=1
X∗

jk

)
≥ ϕ ·

(∑5

k=1
X∗

jo

)

λ j ≥ 0, j = 1, . . . , 20

ϕ free (45)

After solving output oriented DEAmodel (45), the efficiency of warehouses are shown in
Table 11.

Based on constraint (51), for α = 1 facilities with efficiency score less than 1 are excluded,
therefore the following MILP model (Pγ=1

0 ), (γ represents the iteration) is solved:

Pγ=1
0 : min TC =

5∑
i=1

cPi · Pi +
5∑

i=1

20∑
j=1

cVi j · Qi j +
5∑

i=1

20∑
j=1

cFi j · Xi j +
20∑
j=1

5∑
k=1

cVjk · Q jk

+
20∑
j=1

5∑
k=1

cFjk · X jk +
20∑
j=1

Fj · ξ j +
5∑

k=1

cPENk · qk (46)

s.t.

(33)−(38), (43)
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Xi j ≤ ξ j , i = 1, . . . , 5, j = 1, . . . , 20 (47)

X jk ≤ ξ j , j = 1, . . . , 20, k = 1, . . . , 5, (48)

Wj ≥ β j ·
(

5∑
i=1

Qi j + ξ j · I j
)

, j = 1, . . . , 20 (49)

Wj ≤ WU
j · ξ j , j = 1, . . . , 20 (50)

TE j ≥ a · ξ j , j = 1, . . . , 20 (51)

ξ j , Xi j , X jk ∈ {0, 1}
Pi , Qi j , Q jk,Wj ≥ 0, i = 1, . . . , 5, j = 1, . . . , 20, k = 1, . . . , 5

(52)

According to constraint (51) warehouses 2–5, 7, 9, 13 and 20 are not selected, thus the
new table of data after solving the model Pγ=1

0 are presented in Table 12. The selected
warehouses are 1, 6, 8, 10, 11, 12, 14, 15, 16, 17, 18 and 19. The total cost after solving
model Pγ=1

0 is 3,433,156.64 r.m.u. The following set of selected warehouses, is constructed
J 1 = {1, 6, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19}.

The results (inputs and outputs) of Pγ=1
0 is shown in Table 11. The warehouses that are

selected (J 1) constitute a subset of the set of initially selected facilities. The inputs and
outputs of the facilities have changed as a result of some warehouses not being selected.
Due to mass balance constraints, new connections are created and through these channels the
customers’ demand is satisfied. For this reason, just filtering the solutions derived from P0, is
wrong as when a warehouse is not selected the optimal solutions of the variables (quantities,

Table 12 Inputs and outputs after solving model Pγ=1
0

j Outputs Inputs

Outgoing
connections

Total quantity
sent

Installation
cost

Fixed
transportation
cost from
plant to
warehouse

Fixed
transportation
cost from
warehouse to
customer

Variable
transportation
cost from
plant to
warehouse

Variable
transportation
cost from
warehouse to
customer

1 5 2500 98276.24 322.27 409.44 17123.27 20833.52

6 2 1000 79809.01 155.20 167.58 11907.25 226.91

8 4 2000 58533.63 307.58 260.11 15395.47 16331.99

10 4 2000 88579.48 249.69 290.33 9260.60 16113.47

11 4 2000 78472.30 304.24 308.75 21364.91 7898.38

12 4 2000 51383.89 284.74 285.43 15622.97 9913.30

14 5 2500 63946.48 356.65 346.58 15623.80 13540.50

15 5 2500 71667.46 366.85 360.26 19425.22 26298.70

16 4 2000 66813.11 234.29 307.99 19048.96 21536.72

17 5 2500 79432.13 282.79 354.70 17513.22 21815.43

18 4 2000 78719.58 255.83 283.93 10693.55 14209.49

19 4 2000 77171.07 272.34 381.22 10124.45 22642.17
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Table 13 Efficiency scores for
each warehouse j ( j ∈ J1)

j 1/ϕ j 1/ϕ

1 0.935953 14 1

6 1 15 0.953885

8 1 16 0.9656

10 1 17 1

11 0.976109 18 1

12 1 19 1

connections etc) are re-adjusted due tomass balance constraints in order to satisfy customers’
demand.

In order to further reduce the number of selected facilities and therefore reduce the cost
of the supply chain network, the efficiency of warehouses derived after solving model Pγ=1

0
is calculated. The DEA model used is the following:

LPmax ϕ

s.t.∑

j∈J 1

λ j · xin, j ≤ xin,o, ∀in
∑

j∈J 1

λ j · yout, j ≤ ϕ · yout,o, ∀out

λ j ,≥ 0, j ∈ J 1

ϕ free (53)

The results for the efficiency scores are presented in Table 13. It can be seen that only 5
warehouses are now efficient. Model Pγ=2

0 is solved while the efficient warehouses that are
now will be selected are 6, 8, 10, 12, 14, 17, 18, and 19.

This constraint makes the problem infeasible, and at that point the efficiency score (a),
based on which the warehouses are selected, is relaxed. The model is infeasible for all values
less than 1 (0.7 ≤ a < 1). In this case, the algorithm terminates (Fig. 2) and the selected
warehouses are 1, 6, 8, 10, 11, 12, 14, 15, 16, 17, 18 and 19 which correspond to the optimal
solutions of Pγ=1

0 with total cost of 3,433,156.64 r.m.u.
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