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Abstract

Keith Priscott, Aston University.

“Discovering Knowledge Structures in Mind Maps of Mental Health Risks”

For the Degree of Doctor of Philosophy, 2011.

This thesis addressed the problem of risk analysis in mental healthcare, with respect to the GRiST
project at Aston University. That project provides a risk-screening tool based on the knowledge of 46
experts, captured as mind maps that describe relationships between risks and patterns of behavioural
cues. Mind mapping, though, fails to impose control over content, and is not considered to formally
represent knowledge. In contrast, this thesis treated GRiSTs mind maps as a rich knowledge base in need
of refinement; that process drew on existing techniques for designing databases and knowledge bases.

Identifying well-defined mind map concepts, though, was hindered by spelling mistakes, and by am-
biguity and lack of coverage in the tools used for researching words. A novel use of the Edit Distance
overcame those problems, by assessing similarities between mind map texts, and between spelling mis-
takes and suggested corrections. That algorithm further identified stems, the shortest text string found
in related word-forms. As opposed to existing approaches’ reliance on built-in linguistic knowledge, this
thesis devised a novel, more flexible text-based technique.

An additional tool, Correspondence Analysis, found patterns in word usage that allowed machines
to determine likely intended meanings for ambiguous words. Correspondence Analysis further produced
clusters of related concepts, which in turn drove the automatic generation of novel mind maps. Such maps
underpinned adjuncts to the mind mapping software used by GRiST; one such new facility generated
novel mind maps, to reflect the collected expert knowledge on any specified concept.

Mind maps from GRiST are stored as XML, which suggested storing them in an XML database. In
fact, the entire approach here is ”XML-centric”, in that all stages rely on XML as far as possible. A
XML-based query language allows user to retrieve information from the mind map knowledge base. The
approach, it was concluded, will prove valuable to mind mapping in general, and to detecting patterns in
any type of digital information.

Keywords: GRiST, FreeMind, Mind Map, XML, WordNet, Levenshtein Distance, Correspondence
Analysis, Spelling, Stemming, Metadata.
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1.1. MENTAL HEALTH PROBLEMS IN THE U.K.

The domain of this research is the problem of assessing risks posed by people suffering from mental

health problems. As a starting point, this chapter reflects on the many people in the U.K. affected by

mental health problems, and who face further difficulties after legislation focussed more on care in the

community, rather than in hospitals. That move made risk assessment a very important topic, especially

given the media attention received by the few high-profile cases of mentally ill people becoming violent,

or even committing murder.

The GRiST project, though, helps to overcome the difficulties that non-specialists encounter in de-

ciding when to refer such patients to expert clinicians. That project, in part, used the technique of mind

mapping to record knowledge from mental health experts. Rather than spending considerable manual

effort on refining the resulting mind maps, though, this thesis seeks to process them automatically. In

that respect, certain challenges arise, solutions to which are given in an overview of this work. Firstly,

then, to introduce the incidence and types of mental health problems in the United Kingdom.

1.1 Mental Health Problems in the U.K.

Mental health problems cause enormous distress to individuals and families alike. Along with the ob-

vious human costs comes an appreciable financial burden; just by itself, England annually spends over

£12 billion on mental health care (Social Exclusion Unit, 2003), suggesting that many people in Great

Britain have mental disorders of some kind. Indeed, depression and anxiety affect one in six adults in

the United Kingdom; a further five in every thousand people are afflicted by schizophrenia or by bipolar

affective disorder, sometimes called ‘manic depression’. Those illnesses are known collectively as person-

ality disorder, or psychopathic disorder; people suffering from such conditions are more likely to commit

serious violent offences (ONS, 2000).

On the other hand, psychological problems might result in self-harm or even suicide; in fact, seventeen in

every hundred thousand men in the U.K. killed themselves in just one year, with a third as many women

doing so (British Psychological Society, 2002). Given a U.K. population of around sixty million, that

amounted to over six thousand people committing suicide in a single year. In just one city, Bridgend in

Wales, twenty young people died at their own hand between 2007 and 2008, with that total continuing

to grow during the course of this thesis (Sky News, 2008). Nationwide, many more people inflict lesser

forms of so-called para-suicide, including cutting themselves, taking overdoses, and pulling out hair

(British Psychological Society, 2002).

In 1990, though, the NHS and Community Care Act changed the nation’s approach to handling

mental health problems. That year, the care of people suffering from severe psychiatric disorders devolved
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1.2. RISK ANALYSIS IN MENTAL HEALTH

away from hospitals towards local services. As a result, patients find it harder to obtain the necessary

psychiatric help (Mueser, Drake, & Resnic, 1997). Indeed, Discharges from hospital in response to the

Act are seen as premature and inappropriate, with local services forced to assess people who might

formerly have been in institutions. As a result, people that constitute mental health risks might present

at front-line agencies such as the police and emergency services, which generally lack any expertise for

making assessments. Experienced risk managers, in contrast, coordinate long term treatment, rather than

participating in day-to-day care (Buckingham et al., 2004). Instead of service users disappearing with

their difficulties unacknowledged, a risk-screening process is required that empowers front-line agencies;

that would allow non-specialists to determine the nature of any risks, and whether referrals to specialists

are needed (Eastman, 1997).

The NHS and Community Care Act, then, moved emphasis from care in institutions to care in the

community. As a result, the problem of assessing risks posed by service users, both to the public at large

and to themselves, has become more pressing. In that light, there now follows an overview of attempts

to quantify risks arising from mental health problems, after which an existing project is introduced that

helps non-specialists to make risk assessments. That project recorded knowledge from mental health

specialists by means of mind mapping; variation in expressing ideas within those mind maps motivates

this thesis. This chapter closes with a preview of forthcoming chapters that rectify that problem.

1.2 Risk Analysis in Mental Health

Risk analysis, then, serves to identify people that present a danger either to themselves or to others. To

that end, risk analyses identify cues that are correlated with such risks; some cues, though, are better

predictors than others. With regard to violent behaviour in people diagnosed with personality disorder,

patients’ abuse of alcohol or of street drugs increases the risk of injuring other people. Even so, a history of

violence best predicted any Risk To Others (RTO). In a similar vein, previous self harm better predicted

suicide than did, say, unemployment (British Psychological Society, 2002). In children, a risk of self harm

arose from cues that included bullying, parental neglect, serious physical illness, and physical or sexual

abuse. Risk analysis, then, must consider patients’ lives and lifestyles, in addition to any specific medical

conditions (The Children’s Society, 2008).

Analysing mental health risks bears comparison with predicting volcanic eruptions; the problem in

respect of the latter lies in gauging the probability of a certain type event, of a given magnitude, occurring

within a specified period of time. The answer lies in considering combinations of cues that, by themselves,

do not suggest any immediate risk (Booth, 1979). That well expresses the problems facing community

care, and reflects a similar approach to resolving them. Such multi-faceted problems demand identifying
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combinations of cues, so as to head off eruptions either in volcanoes or in people.

A further difficulty arises, though, in that the most important cue for any given risk might, in fact, be

absent. Indeed, just a small proportion of people classed as RTO have been violent in the past. So-called

false negatives arise from assessing such cases, when low-risk patients actually become violent. Further,

public reaction to high-profile murders by mental health patients has led to avoiding false negatives at all

costs, which accordingly reduces the threshold for intervention. Conversely, false positives raise problems

regarding civil liberties: people free of mental disorder might yet become violent if, say, intoxicated. It

would, though, be wrong to incarcerate such people in mental institutions pending further investigation

(Petch, 2001).

All the same, it is not just extreme violence against other people that is of concern; alleviating self-harm

and general misery are valid reasons for wanting to analyse risk factors. An additional complication,

though, is that any particular cue might correspond to several types of risk; front-line services, then,

face a difficult task in discerning cues that suggest a need for more detailed, specialist assessment. For

that reason, the actual need is for a risk screening tool that helps non-specialists to determine what

combinations of cues justify such referrals. Such a tool would identify patterns of cues integrated into a

single, accurate risk prediction (Buckingham et al., 2004).

Although it is essential that mental-health practitioners make risk assessments, that skill yet lacks a

precise scientific basis. Although partly due to low incidences of suicide and violence among service users,

factors influencing clinical judgements are inherently difficult to study. So-called actuarial approaches

to predicting risks, though, emphasise enduring static factors, rather than any dynamic ones that are,

in fact, more important. Further, pattern of cues, rather than any particular one, better predict mental

health risks. For example, young single mothers present combined cues of gender, parental status, marital

status, and age; such combinations are better indicators of risk than should any particular cue taken in

isolation (Buckingham, Adams, & Mace, 2007). Having introduced the role of risk analysis in mental

health care, then, attention now turns to a project that elicited experts’ knowledge of risk assessment.
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1.3 The GRiST Project

This thesis builds on a joint project between the universities of Aston and Warwick that addressed the

difficult problem of screening mental health risks. To that end, the Galatean Risk Screening Tool (GRiST)

helps front-line services to interpret cues presented by patients. Inspired by Galatea, the mythical perfect

woman sculpted by Pygmalion, GRiST focuses on hypothetically ‘perfect’ representatives of given classes

of risk; galateas, then, allow the dissemination of expert advice about risk assessment to front-line services.

By integrating patterns of cues, GRiST gives a single, accurate risk prediction which, in turn, promotes

the earlier and more accurate detection of patients at risk (Buckingham et al., 2004).

With respect to service-users, GRiST aimed to promote earlier detection of mental health problems,

and to improve any ensuing risk assessment. That, in turn, should lead to more timely interventions and

better targeted referrals to specialists in the field; indeed, GRiST might be used for self-assessment. Over-

all, GRiST promotes long-term improvements in mental health status and social integration (Buckingham,

2007).

Knowledge held in galateas came, in fact, from a multidisciplinary panel of about fifty full-time mental

health clinicians, including nurses, general practitioners, social workers, psychiatrists, and psychologists,

in response to a letter from Buckingham and Adams (2005) inviting participation in GRiST. Galateas

improved on existing approaches by indicating the likelihood of any risk actually resulting from observed

cues. That was done by means of Membership Grades (MGs) varying from 0 to 1, indicating respectively

that a particular cue never, or always, predicted a corresponding risk. The galatea for suicide, for example,

would comprise all cues whose largest MG was associated with that risk; alternative models, on the other

hand, would seek a typical personal profile that predicts suicide (Buckingham, 2007).

Galateas, then, represent ‘perfect’ combinations of cues associated with particular risk factors, in-

cluding self-harm, suicide and RTO. In that way, galateas constitute a database of client cues and as-

sociated risk judgements, based on knowledge provided by practitioners as part of their clinical practice

(Buckingham et al., 2004). Knowledge encapsulated in that way was initially gathered by questionnaire,

the current version of which is available on the web site for The GRiST Project (2007). Subsequent less

structured information, though, came from transcripts of interviews with mental health specialists. Qual-

itative results from each such interview were further recorded as mind maps, by means of a free software

package called FreeMind (Buckingham & Adams, 2006). The forty six resulting mind maps constitute

the domain of this thesis, which a subsequent overview of GRiST put in context of the overall project in

Figure 1.1. That diagram depicts the stages involved in collecting and refining knowledge about mental

health risks:
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Figure 1.1: A diagram of the GRiST project (Buckingham, Ahmed, & Adams, 2007)

In fact, the diagram of GRiST from Figure 1.1 reflects two main stages, the first of which identified low-

level cues that might be recognised by people lacking a mental health background, while the second stage

quantified associations between those cues and particular risks (Buckingham, 2007). Figure 1.1 shows

that first stage, then, to start with transcripts of interviews with GRiST panellists; those transcripts were

subsequently coded as mind maps, which appear in the top-left corner. Forty-six such interviews with

mental-health practitioners were subsequently integrated into a single mind map, which was subsequently

transformed by the LISt Processor (LISP) into an alternative tree structure. That initial hierarchy,

though, was too large, and was savagely pruned by software that used Extensible Style-sheet Language

Transformations (XSLT) due to the limited time available to panellists; in fact, experts just monitored any

proposed cuts, and annotated the pruned knowledge structure with their opinions by means of web-based

software (Buckingham, Ahmed, & Adams, 2007).
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The tree from the first stage of GRiST, then, identified information that might be collected while

assessing people at risk. Concepts higher up the resulting pruned tree reflected concordance between

higher numbers of experts than did more detailed concepts lower down that hierarchy. Following that

first phase, the second stage in developing GRiST quantified associations between cues and risk factors,

which started with the data-gathering tree shown at the bottom-right corner of Figure 1.1. Further,

responses to questions attached to any identified cues prompted additional improvements, and yielded

the final knowledge hierarchy. XSLT transformed that tree structure on demand, to report just relevant

associations for particular users. The resulting knowledge structure showed, for example, that previous

episodes of risk behaviour by service users impacted all risks save self neglect; in contrast, experts saw self

neglect as almost wholly dependent on current circumstances (Buckingham, Ahmed, & Adams, 2007).

That same overview of GRiST gave the combined mind map in Figure 1.2 overleaf, which integrated

those created in FreeMind by particular experts; note that the number of experts raising any concept is

encoded in each node, to give a rough measure of its importance. Further, nodes enclosed by borders,

and appended by a small circle, indicate hidden sub-hierarchies available on clicking such ‘folded’ nodes

in FreeMind (Buckingham, Ahmed, & Adams, 2007):
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Figure 1.2: Detail from a GRiST mind map (Buckingham, Ahmed, & Adams, 2007)
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Mind map nodes from Figure 1.2 reflect observable cues for the top-level risk of suicide, which further

comprises underlying sub-concepts such as any past client episodes. That concept, in turn, branches to

patterns of episodes, both in terms of when they happen, and in respect of any changes over time. In that

way, mind mapping allowed GRiST to display precisely how low-level cues are assessed by mental health

experts in terms of their impact on top-level risk categories. That approach, then, provided standards

for governing the collection and the storage of information, and offered a universally comprehensible risk

language. By means of web-based resources, mental health expertise encoded in GRiST is available to

all interested parties (Buckingham, 2007). Because mind mapping was so important to GRiST, that

technique is now discussed in more detail.

1.4 The Technique of Mind Mapping

Although information is commonly presented as text, people differ in the ways that they prefer to absorb

information. While ‘sensing’, for example, emphasises concrete, practical thinking, the ‘intuitive’ mode

reflects a preference for abstract, innovative thinking. In particular, people might prefer visual represen-

tations such as pictures and diagrams (Felder & Spurlin, 2005). Indeed, mind mapping is a strong form

of such a visual style. For people having alternative learning styles, though, mind maps might not be the

best way to present information. That said, human viewers are not of prime importance, here; rather, it

is the way that GRiST used mind mapping as a precursor to a more formal representation of machine-

readable knowledge. All the same, the background to that technique is important in understanding such

knowledge structures.

When reflecting on human thought processes, key ideas have been envisaged as spheres, which are

covered in hooks for attaching related themes. The way that hooks issue from the entire surface of any

sphere gave rise to the term ‘radiant thinking’; mind mapping was invented to record ideas in that way,

as a non-linear alternative to taking ordinary notes. Although originally drawn freehand on paper, mind

maps can nowadays be created on personal computers by means of, say, the iMindMap™ package sold on

the inventor’s web site. A mind map from that web site appears overleaf as Figure 1.3; it was created in

iMindMap™ to describe that very web site (Buzan, 1974, 1996, 2003, 2008):
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Figure 1.3: A mind map devised by Buzan (2008) of the iMindMap™ web site
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1.4. THE TECHNIQUE OF MIND MAPPING

The mind map from in Figure 1.3 conforms to rules dictated by the technique’s originator; specifically, a

‘true’ mind map requires that:

1. images and colours should be used, in addition to words;

2. a single Basic Organising Idea (BOI) should appear at the centre;

3. each branch should contain just a sole key image or word;

4. branches should be connected to form a nodal structure;

5. the resulting structure should be hierarchical (Buzan, 1974, 1996, 2003).

Mind maps created by the GRiST project, henceforth simply called ‘GRiST mind maps’, will shortly be

discussed in relation to those rules. That will require an appreciation of how those rules yield a ‘perfect’

mind map such as that from Figure 1.3, above. The overall need for colours and images is clearly met

in that mind map. The single BOI specified by rule two is a composite image of Buzan and the World

Wide Web, WWW. Single related concepts such as software, books and training then radiate from that

key idea, satisfying rule three. Rule four demands a structure based on nodes, which occurs in Figure 1.3

as ideas branch into more specific concepts. Such branching additionally fulfils rule five, which requires a

hierarchy of nodes. By conforming to rule five, the mind map in Figure 1.3 constitutes what Sowa (1992)

describes as an inverted tree structure.

Broadly speaking, GRiST mind maps follow those rules: using recognised mind mapping software

helped to ensure that. Buckingham and Adams (2006) actually employed an open-source programme

called FreeMind (Polansky & Foltin, 2010) in preference to proprietary tools such as iMindMap™. The

screen-shot in Figure 1.4 shows how ideas about risk analysis were captured as a mind map in FreeMind.

That mind map represents the transcript of an interview with one of forty six mental health specialists,

who was assigned the number 16 to ensure anonymity. Nodes highlighted with shading in Figure 1.4

overleaf will shortly help to explain some key terminology:.
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Figure 1.4: A mind map from GRiST
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1.5. CHALLENGES POSED BY GRIST MIND MAPS

In FreeMind, the terms ‘node’ and ‘concept’ refer to the text in any branch, and will be represented thus:

[a mind map node]. The BOI at the centre of any mind map is the root node, or simply the root. Various

main risk categories radiate from the root in Figure 1.4; one such concept expresses Risk To Others,

[RTO]. That so-called parent node branches into various children, such as [state of mind], which in

turn is the parent of [hopeless]. In that respect, a path comprises the nodes that must be traversed

from the root to reach any specific node. Along with [hopeless], two further shaded nodes, [substance

misuse] and [impulsive], are called ‘leaf nodes’ due to having no branches. The GRiST mind map in

Figure 1.4, then, appears to conform to the rules of mind mapping, being a hierarchy of nodes radiating

from a central root. Closer inspection, though, reveals differences of varying importance, as shown next.

1.5 Challenges Posed by GRiST Mind Maps

An important difference between the GRiST mind map from Figure 1.4 and the ideal from Figure 1.3 is a

lack of images and colours. Such lack of adherence to the first rule of mind mapping, though, is irrelevant;

rather than mind maps as an aid to memory, or for making presentations, GRiST mind maps serve as a

precursor to a database of mental health knowledge. The emphasis here, then, is on allowing machines,

rather than humans, to retrieve and process knowledge from mind maps. In that respect, just concepts

expressed as words are important; omitting the images required by rule one is of no consequence. Neither

is the lack of adherence to rule two, which demands a single BOI; the root node [condensed 16] is not

really a BOI, but a label in the emerging database. Rather, it is the single-word concepts demanded by

rule three that are of crucial importance; concepts in GRiST mind maps often contain several words,

contravening that requirement. In illustration, long nodes from the sub-hierarchy under [RTO] that were

hidden earlier in Figure 1.4 are revealed overleaf in Figure 1.5:
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Figure 1.5: Detail from a mind map from GRiST

31



1.5. CHALLENGES POSED BY GRIST MIND MAPS

The mind map from Figure 1.5 shows that some ‘concepts’ in GRiST mind maps were actually quite

complex ideas. While such richness provided GRiST researchers with a wealth of information about

mental health risks, it hinders any fully automated approach to interpreting mind maps. Indeed, the two

nodes highlighted in Figure 1.5 contained so many words that they are shown truncated. Even in shorter

nodes, several concepts might contribute to an overall idea. This thesis does not aim to reconfigure such

nodes, as the manual refinement reported by Buckingham and Adams (2006) had already rendered them

into an acceptable form. Accordingly, the root of the mind map from Figure 1.4 contained the word

‘condensed’.

Rewriting phrases as single words would, in fact, reduce mind maps to a Bag-Of-Words (BOW) that

fails to represent semantic relationships (Bekkerman & Allan, 2005). In that light, insisting on single-word

nodes risks losing information. Although key concepts in GRiST mind maps must be identified, the aim

here is to map them, rather than to reconfigure individual nodes. Indeed, that rule is counter-intuitive,

as detail of the ‘perfect’ mind map from Figure 1.3 shows; that concerns the idea of news being ‘hot off

[the] press’, as Figure 1.6 demonstrates:

Figure 1.6: Detail from Figure 1.3 of the ‘perfect’ mind map devised by Buzan (2008).

The separate nodes [hot], [off] and [press] from Figure 1.6, though, do not capture the intended

meaning. Indeed, insisting on single-word nodes would require humans and machines alike to reconstruct

any original meaning, during which nodes, and accordingly ideas, might be recombined incorrectly. Per-

mitting more expressive nodes avoids that problem of interpretation for humans, and faithfully represents

intended ideas. Nodes such as [hot off the press] should be permitted, as those words collectively

represent a specific idea; the same argument applies to nodes in GRiST mind maps.
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Although GRiST allowed such multi-word nodes, the transformed knowledge tree had to be pruned

in order to remove redundant nodes, and to ensure that structure’s integrity; that reflected principles

from designing relational databases (Buckingham, Ahmed, & Adams, 2007). That association might, in

fact, be taken further; indeed, mind maps and galateas are seen here as belonging to a wider family of

‘semantic networks’ that are refined by a process of normalisation (Mylopoulos, 1998). Although GRiST

researchers started that process, mind maps from that project might themselves be normalised further;

that would encourage their use as formal repository of knowledge, rather than just as precursors to the

database of mental health knowledge comprised by galateas.

Richer ideas in mind map nodes, though, hinder any automated interpretation. While optimal for

viewing by humans, such longer nodes hide key concepts from machines; such concepts must, then, be

isolated by researching words in various ways. In fact, what might seem a trivial problem detracts from

such lexical analyses. Specifically, spelling mistakes mean that concepts might be overlooked; the problem

deepens on examining responses from a freely available spelling checker; inappropriate corrections that

arise would be misleading if allowed to pass unchallenged.

A further obstacle to analysing mind maps automatically concerns the various forms that words take;

nodes might contain related words that are hidden from machines by textual variations. The term stem

will be used from this point on to denote such short forms. The process of stemming, then, involves

mapping words to some base form (Brants, 2003). Determining the longest sub-string that identifies

related words, while excluding others, will lead to groups of words that express any particular underlying

concept. Stems derived on linguistic principles, though, are restricted to specific languages; the desire

here is for a more flexible approach based on textual similarities alone. Such an ability to quantify

differences between text strings will further help machines to select appropriate spelling corrections.

In addition to stemming related word forms, the actual meanings of words affect the treatment of

concepts from GRiST mind map nodes. Distinctions between, say, nouns and verbs indicate whether

concepts represent things or actions, respectively. Unfortunately, the tool chosen for analysing words

in this thesis cannot perform that task reliably; ambiguous words, in particular, impede attempts to

determine exact concepts. To overcome that problem, a novel approach is applied to deciding appropriate

word-usage automatically. That approach analyses words that appear immediately before and after

certain prepositions; subsequently, patterns in the distribution of known actions and things around those

prepositions will help to resolve ambiguous cases. However, the term ‘heuristic’ best describes applying

reliable knowledge in that way: the search is for guidelines, rather than for absolute rules.

A further problem concerns structural variations between individual GRiST mind maps. In fact, the

template used to create mind maps evolved over time, and took several iterations to stabilise. Ultimately,
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agreement between three independent researchers exceeded 90% on the template categories (Buckingham

& Adams, 2006). While that evolutionary process helps to explain differences in hierarchical structure

evident in GRiST mind maps, it remains a challenge in respect of those collected mind maps as a

formal semantic network. In addition to repeating identical nodes at various levels in those mind maps,

nodes that express similar concepts often do so in slightly different wording. Processing mind maps

automatically, then, demands that machines reconcile such variations.

In order to overcome that problem, the lexical tool already mentioned will be combined with a multivariate

statistical analysis; resulting clusters of related nodes emerging from that analysis will identify nodes

bearing words of similar forms, or of related meanings. Those clusters indicate node hierarchies for

automatically generated, idealised mind maps. The result will constitute a refined information base, as

well as being a more formal representation for human researchers. Rather than producing a sole, static

combined mind map, though, the proposed approach generates such idealised node hierarchies on demand.

New mind maps will be created automatically to represent the expression of particular concepts across

the collection of GRiST mind maps, by means of an enhanced FreeMind interface. Having described the

domain of this thesis, then, the overview that follows describes the contents of forthcoming chapters.
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1.6 Research Questions to be Answered

The overall aim here is to provide a much-needed theoretical framework for mind mapping, and to

overcome or justify the aspects of GRiST mind maps just addressed in Section 1.5. Currently, mind

maps enjoy little attention as formal representations of knowledge, and are relegated to personal use,

for ”brainstorming”, and for making presentations. The primary research question, then, asks whether

mind maps might be viewed collectively as a type of database. Should that be the case, mind mapping

would be allowed into the family of recognised formats for machine-readable knowledge that are evident

in existing research.

Further questions, though, arose during the early part of this research. An initial scan of GRiST’s

collection of mind maps revealed spelling mistakes that would detract from the primary aim of refining

those mind maps into a formal database. It was assumed that existing spelling checkers would easily

perform the desired corrections, but preliminary experiments showed several such algorithms to perform

quite badly. Clearly, that had to be addressed in order to determine reliable concepts, on which the new

database of mind maps would be built.

A further difficulty hindered that endeavour, namely, that of identifying related forms of words; any

emerging knowledge structure would best treat related word forms as instances of a common underlying

concept. That process, called ”stemming”, identifies related word forms while keeping apart any unrelated

ones. However, attempts at stemming encountered problems similar to those found for spelling correction,

in this case that existing algorithms depended on embedded linguistic knowledge. That posed the further

research question of how stemming might be performed on a purely textual basis, with no prerequisite

for knowledge of any particular language.

Yet another research question arose from initial attempts to have machines derive the meaning of words

from GRiST mind maps. The tool selected for researching words, WordNet, suffered from ambiguity and

from a restricted coverage of English. That, in turn, hindered the identification of specific concepts, and

of different word forms that yet have related meanings. Treating mind maps as a database demands

greater certainty about the meanings of words.

The final research question addressed in this thesis concerns variations in how GRiST’s panel of experts

expressed ideas. Each of the 46 mind maps at the heart of this research was created in isolation by a

particular individual. Subsequently, the GRiST project subjected those mind maps to intense manual

reformulation, which yielded an consensual view of mental health risks, and any associated personal,

behavioural and social indicators evident in patients. Such a high degree of manual intervention begs
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the question of whether that process of refinement might be automated. Making that possible, though,

depended on answering the questions raised already.

Here, then, is a summary of the research questions to be answered in subsequent chapters:

• Can a theoretical framework be provided for mind mapping? That is the overriding aim

of this thesis: to raise the humble status of mind mapping in Knowledge Engineering, by

discovering ways of formalising knowledge held as mind maps.

• Is it possible to improve on existing spelling correction algorithms? Automated spelling

correction commonly fails to recognise less common words, such as the medical terminology

found in GRiST mind maps. Corrections offered by existing checkers are often ludicrous,

as any user of word processors might have found. Is there, then, a way to better select

appropriate corrections, and to recognise words that, although missing from any dictionary

employed, yet exist as valid English words?

• Is it possible to improve on existing stemming techniques? Existing algorithms depend on

linguistic knowledge embedded by developers. Instead of limiting such ”stemmers” to specific

languages, it would be much better should machines deduce related word forms without resort

to linguistic rules.

• What can be done to resolve the ambiguity evident in WordNet? Although WordNet is a

powerful and ubiquitous tool, it has definite limitations. In particular, ambiguity presents

a major hurdle to having machines determine exact meanings for words used by human

authors.

• How might the structure of mind maps be refined automatically? In sharp contrast to ac-

cepted digital formats for representing knowledge, no control is exerted over the structure of

mind maps. If mind mapping is to be treated as a formal representation of knowledge, the

resulting variation in expressing ideas must be overcome.

The degree to which those questions were answered will be reviewed at the end of this thesis, in the

summary provided by Chapter 11. For now, there follows an overview of the topics covered by subsequent

chapters.
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1.7 Thesis Overview

Items in the following list describe the chapters comprising this thesis; for each chapter, a brief overview

of the topics to be covered is offered:

Part I: Extracting Knowledge from GRiST Mind Maps.

• Chapter 1: Defining the Problem Domain. This introductory chapter.

• Chapter 2: A Theoretical Framework for Mind Mapping addresses mind maps in the wider

context of ‘semantic networks’ such as concept maps and relational databases. As the poor

relation of that family, though, mind maps are confined to gathering knowledge for inclusion

in more formal semantic networks. In sharp contrast, GRiST mind maps are seen here as

constituting an information base of metal health knowledge, in turn making them amenable

to the process of ‘abstraction’ by which related representations are refined. Applying ab-

straction to GRiST mind maps yields a format for storing knowledge in addition to any

inherent hierarchical associations.

• Chapter 3: Spelling Correction for GRiST Mind Maps deals with spelling mistakes that de-

tract from identifying key concepts in GRiST mind maps. A review of automated spelling

correction, though, reveals that ‘non-words’ might be valid words that standard dictionaries

happen to lack. In fact, support for taking words as presented, or for determining acceptable

corrections, will come from words encoded in GRiST mind maps themselves. Spelling correc-

tions will be further refined by means of an algorithm widely used for comparing texts: the

Levenshtein Distance, L. Applications of and refinements to L suggest an adjusted version,

which experiments show to improve spelling correction for GRiST mind maps, in addition

to revealing valid, novel terms.

• Chapter 4: Stemming for GRiST Mind Maps. Locating key concepts in GRiST mind maps

further involves identifying related words, at first by means of a process called ‘stemming’.

That process identifies any invariant portion of related word forms, often by means of rules

specific to particular languages. In contrast, the Levenshtein Distance that Chapter 3 applied

to spelling correction will further help in extracting stems from mind map nodes, though

without linguistic rules; experiments subsequently show the utility of that approach to ex-

tracting key concepts from GRiST mind maps.
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Part II: Applying Knowledge to GRiST Mind Maps.

• Chapter 5: Resolving Ambiguity in GRiST Mind Maps. Key concepts related by virtue of

shared stems are complemented by researching the WordNet lexical database. That reveals

related meanings between words from GRiST mind maps, rather than related forms. After

an overview of WordNet, certain challenges in using it are raised. The first is that WordNet

covers just certain types of words, which is easily overcome by existing lists of such words.

A more difficult problem remains, though, in that WordNet might report competing inter-

pretations of any given word. In that respect, a technique called ‘clustering’ is proposed for

resolving ambiguous words, especially in conjunction with prepositions. Resulting nouns and

verbs further reveal relationships between subjects, actions, and objects intended or inferred

by GRiST panellists.

• Chapter 6: Clustering Concepts from GRiST Mind Maps describes the actual tool employed

for clustering, which Chapter 5 introduced as a means of resolving ambiguity in WordNet;

that tool is Correspondence Analysis (CA). After describing the underlying mechanisms of

CA, which draws on classical mechanics, studies are reviewed of applying CA to researching

plain text. Those studies suggest a way to determine patterns of word usage around prepo-

sitions, which will subsequently resolve ambiguous cases in GRiST mind maps. Interpreting

CA results, though, is generally a human activity; in contrast, automating CA for GRiST

mind maps allows machines to derive such patterns unaided.

• Chapter 7: Experiments in Resolving Ambiguity presents results from applying the approach

from Chapter 6 to overcoming problems posed by WordNet, described in Chapter 5. Ex-

periments start by identifying ‘triples’ of words, each triple comprising a word, followed by

a preposition, with a further word after that. CA on triples composed of just unambiguous

words reveal reliable patterns of usage, which subsequently suggest most likely interpreta-

tions of ambiguous words from further, novel triples. Instead of words themselves, though,

CA involves so-called ‘meta types’ that reflect roles that words play in phrases, as ‘things’,

as ‘actions’, or as ‘modifiers’. That knowledge further augments the hierarchical associations

inherent in mind maps, enriching the emerging information base of mental health knowledge.

• Chapter 8: Refining the Structure of GRiST Mind Maps is concerned with generating ide-

alised, combined versions of the collected GRiST mind maps, from nodes identified by an

amalgamation of CA, stemming, and WordNet; the ensuing mind maps provide overall knowl-

edge structures for particular concepts. After drawing related meanings from WordNet, the

chapter describes the hierarchical nature of CA clusters that contribute nodes to any com-

bined mind map. Experiments in refining mind map structures first address just nodes

grouped by stems; subsequently, those mind maps are supplemented by semantically related

nodes identified by WordNet.
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Part III: Implementation, Summary and Conclusions.

• Chapter 9: Mind Maps, Metadata and an XML Database introduces the eXtensible Mark-

up Language (XML) in which FreeMind encodes mind maps. Because of that, a native XML

database is used to store both GRiST mind maps and any knowledge gathered by experiments

in earlier chapters; in fact, such additional knowledge constitutes ‘metadata’ that describe

existing data encoded in mind maps. That database further responds to queries from both

machines and humans, about either type of data.

• Chapter 10: Benefits to GRiST demonstrates the gains accruing from this thesis. Such

benefits include extensions to FreeMind that communicate with the XML database, and

provide a work space for GRiST researchers. One such extension generates refined mind

maps on demand, while a further one aids navigation between related nodes. Importantly,

metadata that support any automated decisions are made available to humans. The chapter

closes by considering the implementation of this approach in Java and XML.

• Chapter 11: Summary and Conclusions ends this thesis by offering a summary of the ap-

proach taken here to normalising and enriching GRiST mind maps. Accordingly, the conclu-

sion is that GRiST will benefit from this research, as will the application of mind mapping

in general.

1.8 Chapter Summary

This first chapter introduced risk assessment in mental health care, and the GRiST project that dissem-

inates expert knowledge to front-line services. That research initially used mind maps to capture ideas

about mental health risks; those mind maps were discussed in terms of rules proposed by the inventor of

the technique. It was argued that mind maps be considered more formally as a type of semantic network,

and might benefit from techniques used to refine, say, relational databases.

To that end, refinement starts by identifying specific concepts, by means of a popular textual com-

parison algorithm that will further aid in refining spelling corrections. An additional obstacle to deter-

mining precise concepts is ambiguity; sometimes, the exact meaning of a word cannot be deduced by

linguistically-based approaches. That will be overcome by a multivariate analysis of words surrounding

various prepositions, from which will arise heuristics for deciding the precise meaning of ambiguous words.

The final problem raised in this chapter was that of structural variation in GRiST mind maps. Any

idealised structure will demand breaking down existing nodes and reassembling them into novel hierar-

chies, which is accomplished by a combination of textual, linguistic and multivariate analyses. Resulting

clusters form the basis of combined mind maps that best represent particular concepts across the GRiST

collection. The present chapter ended with an overview of the remainder of this thesis.
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2.1 Of Mind Maps and Semantic Networks

Mind maps, then, comprise a single root node that diverges into a hierarchy of concepts. That notation,

in turn, describes what Sowa (1992) calls a semantic network that represents knowledge as hierarchies of

inter-connected nodes. In fact, semantic networks arose as early as the third century AD, when a Greek

philosopher gave his name to the Tree of Porphyry. An English version of that early semantic network

appears in Figure 2.1:

Figure 2.1: The Tree of Porphyry, from Sowa (1992).

Figure 2.1 shows the concept Substance as the top of a hierarchy, with increasingly specific concepts

appearing at progressively lower levels. At each level, ‘differentiae’ allow for opposing attributes that

concepts might express. Near the bottom of the tree comes the concept Animal, which encompasses both

rational and irrational types. In that way, humans and beasts alike are animals; humans, though, are

rational ones, while beasts are irrational. Importantly, concepts inherit differentiae from succeeding levels

in the hierarchy. In addition to being rational, then, humans are sensitive, animate, and ultimately, a

material Substance (Sowa, 1992).

In fact, galateas created by Buckingham et al. (2004) might be seen as a further type of semantic

network, based on knowledge collected from mental health experts. Such knowledge concerned the risks

that patients pose both to themselves and to other people, as well as the cues associated with those
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risks. For example, the galatea below in Figure 2.2 reveals cues that were deemed to indicate a risk of

self-neglect:

Figure 2.2: A galatea for self neglect, from Buckingham et al. (2004).

Figure 2.2 decomposes the risk of self neglect into its constituent elements, which include mental state

and diet. Although non-specialists might identify some of those cues unaided, GRiST contributes by

showing how experts organise ideas about mental health risks. Identifying patterns of cues is a major

advantage of the GRIST approach that helps, say, general practitioners to make risk assessments. To

that end, the GRIST web site grants access to the knowledge held in galateas to front line services1. The

galatea just presented as Figure 2.2 suggests that a client with a dietary problem, for example, might be

at risk of general self-neglect. Observing related cues, such as a lack of compliance with medication, would

compound that concern. Several indicators occurring together might precipitate specialist intervention.

That depends on the likelihood of a risk actually resulting from observed behaviour. Indeed, more

than one type of risk may be associated with a single cue. That problem was overcome by assigning a

Membership Grade (MG) to each cue in a galatea. MGs reflect the degree of association between any

cue and a particular risk, indicating the most likely interpretation for any combination of cues. That, in

turn, yields a single, accurate risk assessment (Buckingham et al., 2004; Hegazy & Buckingham, 2008).

The Galatean approach was complemented by mind mapping as an alternative way of gathering expert

knowledge (Buckingham & Adams, 2006). Indeed, the aim here is not to supplant galletean semantic

networks, nor yet to reproduce them. Rather, it is the mine of non-hierarchical knowledge in those mind

maps that is of particular interest. All the same, hierarchical knowledge will be reflected in standardised

structures, resembling the combined mind map created from those of individual mental health experts.

1See http://www.galassify.org/grist/development/docs/grist-v3.pdf.
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In fact mind maps and galateas alike have much common, as shown next by considering mind maps in

relation to more formal structures called ‘semantic networks’.

2.1.1 Mind Maps in Relation to Semantic Networks

Mind maps from GRiST, then, are to be addressed in terms of alternative ways of storing knowledge.

Such representations will provide a more formal framework for mind mapping; applying that framework

will help to identify and organise related concepts from GRiST mind maps. The first such related format,

concept maps, are addressed next, after which more formal representations are introduced.

Mind Maps in Relation to Concept Maps

Mind mapping, then, bears comparison with more formal approaches to representing knowledge. One

such alternative technique is called concept mapping, which Cañas and Carvalho (2004) see as closely

related to mind mapping. Indeed, the recurring word ‘mapping’ suggests the similarity of those two

forms. Take, for example, the concept maps reproduced overleaf in Figure 2.3 that depict alternative

meanings of the word ‘chair’. The concept map to the left denotes chairs as furniture, and describes

relationships with concepts such as ‘room’ and ‘table’. The concept map to the right, though, gives an

academic interpretation of ‘chair’ that involves the related concepts of ‘department’ and ‘professors’:
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Figure 2.3: Concept maps for two meanings of ‘chair’, from Cañas and Carvalho (2004).
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Relationships from concept maps in Figure 2.3, then, appear as annotated links between nodes. Such

links in the concept map of household chairs from Figure 2.3 showed that rooms ‘have’ tables and chairs,

which ‘are’ furniture, while rooms ‘are part of a’ building. From an academic viewpoint, though, a chair

‘is one of the’ professors that, along with a secretary and students, belong within a department. Despite

that slight improvement over mind mapping, concept maps suffer from a lack of formalism (Cañas &

Carvalho, 2004). By implication, that drawback affects mind maps to a greater degree.

Concept maps about chairs from Figure 2.3, though, do resemble mind maps in that they comprise

nodes connected by branching lines. On the other hand, those concept maps highlight an important

difference, in that they permit relationships resembling the differentiae from the Tree of Porphyry. In

that respect, the sole similarity between mind maps and concept maps is a shared hierarchical nature;

general concepts appear around the top of any hierarchy, and more specific concepts toward the bottom.

Mind maps, though, lack any cross-links by which concept maps depict related areas of thought (Novak

& Cañas, 2006).

Concept maps about chairs from Figure 2.3, then, differ from mind maps in being well annotated. That,

indeed, is one of the benefits of concept maps: they are unbound by the invented rules of mind mapping.

Those rules insist that branching should occur just downwards in any mind map; cross-linking between

nodes is forbidden. Neither do mind maps allow annotated links (Buzan, 1974, 1996; Novak & Cañas,

2006). Obeying that rule would disallow the lateral link in Figure 2.3 which declares that a chair ‘is one

of the’ professors. Now, although concept maps might be enriched by labelled links, those from Figure

2.3 might be considered too long. Indeed, it has been argued that labels should be kept to just one or

two words (Novak & Cañas, 2006).

In contrast to such specific relationships allowed by concept maps, mind map nodes are just associatively

linked (Sure et al., 2002). In other words, unlabelled branches in mind maps indicate merely that one

concept is associated with another. Such criticism over mind maps’ associative nature, though, is too

severe. Admittedly, mind maps cannot describe the nature of relationships between nodes. All the same,

node hierarchies in mind maps reflect dependencies between concepts, just as they do in concept maps.

By means of an appropriate node hierarchy, any mind map could reflect, say, that chairs belong in rooms

rather than rooms in chairs.

Mind Maps in Relation to Formal Representations of Knowledge

A crucial difference between GRiST mind maps and the concept maps from Figure 2.3 is the use of

well-defined concepts. Whereas those concept maps comprised single-word nodes, those from GRiST

mind maps express ideas as phrases, or even as complete sentences. That goes against the tendency for

representing knowledge as discrete classes evident in concept mapping, or indeed, in the Tree of Porphyry.
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In fact, that tree has been described more formally as a definitional network of is-a relationships between

concept types and sub-types. In that sense, a human is-a animal. Known alternatively as subsumption

hierarchies, such semantic networks emphasise inherited properties between concepts and sub-concepts.

Indeed, more recent forms of semantic networks expressed in Description Logics (DL) closely resemble

the Tree of Porphyry (Sowa, 1992).

Subsumption hierarchies allow machines to derive structured knowledge from an otherwise unstructured

soup (Sowa, 2006). While not detracting from the rich content of GRiST mind maps, they do resemble

such a soup in terms of any formal representation of knowledge. Taking that analogy slightly further, the

aim here is to classify the ingredients of that soup after having served it. To that end, attention turns

next to how semantic networks couched in DL might reveal an approach to handling mind maps.

That more recent type of semantic network, DL, has been described as a formalism for representing

knowledge. So-called Knowledge Bases (KBs) constructed from DL hold subsumption relationships in

a machine-readable format. Rather than dictating subsumption in a rigid tree such as Porphyry’s, DL

actively derive sub-concepts by examining corresponding instances in the KB. For example, a user might

want to determine if concept C is a sub-concept of D, which would be clear from a fixed structure such

as the Tree of Porphyry. In DL, though, subsumption must be proved by inspecting instances of concepts

C and D. Should all instances of C in addition qualify as instances of D, then subsumption has been

proved, and C is a true sub-concept of D; class C is fully contained within class D, that is, C v D.

The more general concept D is the subsumer, while sub-concept C is the subsumee. Subsumption then,

involves checking all instances of C and D within any KB; only then can an answer can be provided

(Nardi & Brachman, 2002)1.

Because retrieving information from a KB is such an active process, response times could be slow. That

problem might be alleviated by default rules that impose subsumption directly, removing the need to

deduce it from scratch. The former example of subsumption between concepts C and D, then, could be

dictated when creating any KB, rather than deduced at run-time (Nardi & Brachman, 2002). In that

way, we have come full-circle from subsumption in a strict tree-like structure, by way of dynamically

derived relationships, to an alternative dictated form.

2.1.2 Instances of Mind Mapping in Knowledge Engineering

Mind maps receive sparse treatment as formal repositories of knowledge, and have even been considered

on a par with Excel™ spreadsheets as a means of capturing knowledge from domain experts. Although

useful in early stages of gathering knowledge, mind maps and spreadsheets alike are seen as having

limited capacity for capturing any problem domain (Nagypál, 2007). In that respect, mind mapping is

1Note that encountering an instance of C that is not an instance of D would prove subsumption false.
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seen as best suited to so-called brainstorming, as a means of exchanging and developing ideas. That said,

integrating mind maps with better controlled knowledge representations is an attractive idea (Sure et al.,

2002). The consensus is that although mind maps cannot formally represent knowledge, they might yet

serve as useful precursors.

Mind maps, then, are seen as unsuited to holding knowledge in support of reasoning by machines.

Mind mapping, it is said, is incapable of representing knowledge structures perfectly and completely.

Indeed, mind maps might hold knowledge in any form that domain experts find acceptable (Biplab,

Wallace, Wallace, & Gill, 2008). In fact, a similar problem arose in creating mind maps for GRiST

(Buckingham & Adams, 2006); chapter 1 noted similar variation between participating mental health

experts. Before introducing a novel approach that helps to raise the status of mind mapping, attention

turns to studies that have used that technique to whatever degree.

Mind Mapping in relation to OntoEdit, an Ontology Editor

The first such study concerns OntoEdit, a tool created by Sure et al. (2002) that has import and export

facilities for transferring knowledge to and from mind maps. OntoEdit, though, holds knowledge as

atomic concepts, and loads just such mind maps that comprise similarly well-defined ideas. In that

way, mind map node hierarchies might be exchanged between equivalent structures within OntoEdit.

Specifically, branching mind map nodes are taken to express concepts and sub-concepts (Sure et al.,

2002). To illustrate, Figure 2.4 depicts overleaf a mind map that is loaded into OntoEdit:
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Nodes from a mind map in the background of Figure 2.4 were loaded into an OntoEdit concept hierarchy

in the foreground. In fact, both mind map and ontology from that figure express atomic concepts that

resemble database fields. In marked contrast, GRiST mind maps created by Buckingham and Adams

(2006) recorded expansive knowledge about mental health risks. Such relatively verbose ideas could not

readily be loaded into OntoEdit, due to its dependence on atomic concepts. A general term for such

well-structured knowledge is the word ‘ontology’, which is defined as an explicit conceptualisation of a

domain. In other words, ontologies explicitly describe whatever concepts and relationships that might

represent knowledge from a particular area of interest (Gruber, 1995). Indeed, from that word ‘ontology’

comes the ‘Onto’ in OntoEdit.

The strict concept hierarchy in any ontology, though, cannot be inferred from mind map nodes; such

nodes are seen as no more than associated. That weak relationship meant restricting mind mapping to

the early stages of building a stricter representation. Although mind maps proved useful for capturing

relevant knowledge, OntoEdit’s import and export facilities constituted just valuable add-ons (Sure et al.,

2002). A separate OntoEdit report describes an ontology that arose from manually refining knowledge

recorded as mind maps. That knowledge resulted from brainstorming sessions which required consensus

from so-called domain experts (Sure, Staab, & Studer, 2002). In that respect, the process was similar to

the one described for GRiST by Buckingham and Adams (2006).

Mind Mapping for Brainstorming Ontologies

Mind mapping for brainstorming a problem domain is a recurring theme. Work by Reich, Brockhausen,

Lau, and Reimer (2002) used such an approach to agree basic concepts for an ontology about skills

management. That ontology embodied a systematic approach to identifying and classifying skills within

the work force at Swiss Life, an insurance company. During early phases of development, concept hi-

erarchies were refined in mind maps by means of a proprietary tool called MindManager™. Mind map

nodes were reorganised in that editor by drag and drop operations; such refinement was necessary due

to mind mapping tools’ failure to check for duplicate nodes. Mind maps created in that way contained

atomic concepts well suited to a more formal ontology (Reich et al., 2002). In that respect, such concepts

resembled those loaded into OntoEdit by Sure et al. (2002).

The topic of managing human resources recurs in a study by Hefke and Stojanovic (2004), in which

mind maps recorded answers to a questionnaire about company employees’ skills. Knowledge from those

mind maps was transferred manually to a Requirements Specification Document (RSD); concepts isolated

in that RSD were subsequently loaded into OntoEdit. In that way, mind maps constituted precursors to

an ontology (Hefke & Stojanovic, 2004). Figure 2.5 next shows detail from the resulting skills ontology:
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Figure 2.5: A concept map of competencies and skills, from Hefke and Stojanovic (2004).
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Figure 2.5 reveals an obvious difference between mind maps and OntoEdit ontologies, in the latter’s

use of attributes such as ‘hasCompetence’, which were emphasised by darker shading. That ontology

subsequently formed the backbone of a skills requirements system, and supported users’ requests regarding

the competences of employees. Should an appropriate employee be available, just that person would

be reported. Otherwise, employees were ranked by the degree to which they matched the required

competences (Hefke & Stojanovic, 2004).

Mind Mapping for Visualising Ontologies

A novel approach to visualising ontologies by means of mind maps was taken by Lin, Wei, Lee, and Lee

(2005). The ontology in question served to display site maps, as an aid to website design. Websites

having dynamic content, though, could not be mapped in advance. Instead, site maps were generated on

demand by means of an ontology. So-called knowledge objects in web-pages were further associated with

elements from the ontology, which described the structure of any site map. Now, although the ontology in

question comprised a concept map, mind maps were offered as an output option. A ‘Mindmap’ function

on a user interface invoked FreeMind to print sub-hierarchies of concepts from the main ontology (Lin et

al., 2005).

In fact, various ontology editors use mind maps as an aid to visualising knowledge structures, although

a review of five such editors was disappointing. Even for such limited display purposes, support for mind

mapping in those editors was rated as poor (Biplab et al., 2008). Existing studies, then, offer little

insight into treating GRiST mind maps as knowledge hierarchies. Whereas nodes in mind maps created

by Buckingham and Adams (2006) were expressive and complex, mind maps devised by Hefke and

Stojanovic (2004) used well-defined concepts, as did those created by Sure et al. (2002) and by Reich et

al. (2002).

Mind maps then, when used at all, comprised just inputs to, or outputs from, any ontology. As input,

brainstorming by means mind maps contributed concepts to a more formal ontology. As output, mind

maps exported from OntoEdit presented ontologies in a readily comprehensible way. Lin et al. (2005)

further offered a function that used FreeMind to print concept sub-hierarchies from a main ontology. In

contrast to that lowly status, mind maps in themselves will be shown to constitute an information base

of mental health knowledge, as discussed next.
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2.2 GRiST Mind Maps as an Information Base

In fact, semantic networks and relational databases have been collectively termed information bases.

Within any such information base exist so-called atoms that stand for generic concepts (Mylopoulos,

1998). That overlap between relational databases and semantic networks leads, in turn, to comparisons

with mind maps, DL, and concept maps. Having brought mind mapping under a more general heading

of semantic networks, it follows that mind maps might, in some way, be treated as information bases.

Approaches to refining information bases of whatever type should indicate ways to organise knowledge

from GRiST mind maps. Attention turns next, then, to established principles that are applied to designing

and using information bases.

2.2.1 The Characteristics of Information Bases

As Sowa (1992) points out, knowledge bases differ from relational databases in terms of organising

knowledge. All the same, those formats share marked similarities. Consider, for example, the rote

memory that underpins most important computer systems. Such systems rely on exact records stored

largely in relational databases, although networks might fulfil that role. A further essential feature of

both types of repository lies in retrieving data that are similar, yet not identical (Sowa, 1992).

Databases and knowledge bases further suffer a fragility in respect of changes in any data recorded (Sowa,

2006). A further similarity arises between ways that those information bases organise information. In

any KB, so-called default rules allow subsumption relationships to be imposed directly. Procedural rules,

on the other hand, govern inferences about existing KB individuals, which leads to new facts (Nardi &

Brachman, 2002). In an analogous way to default rules, indexes within relational databases provide more

direct access to any underlying information (Mylopoulos, 1998). In addition, procedural rules perform a

function that resembles Structured Query Language (SQL) within a relational database.

Similarities between relational databases and semantic networks, then, permits viewing them from a com-

mon theoretical standpoint (Mylopoulos, 1998). Practical applications provide further evidence of that

close relationship. Relational databases were, in fact, used to store galatean knowledge for the GRiST

project (Buckingham et al., 2004). In the realm of DL, performance problems have been overcome by

holding individuals from a KB in relational database. That approach avoided the repeated computations

required to identify instances of concepts (Horrocks, Li, Turi, & Bechhofer, 2004). Indeed, closer inte-

gration of knowledge base principles with relational theory is to be encouraged. Rather than using those

repositories side by side, a consolidated methodology might treat them as identical (Debenham, 1996).

The term ‘information base’, then, well suits relational databases and semantic networks alike. Such
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networks, in turn, include mind maps, DL, and concept maps. Indeed, the KB of competencies and skills

created by Hefke and Stojanovic (2004) was stored as a concept map. Although Section 2.1.1 raised

labelled links as a difference between concept maps and mind maps, approaches to validating the former

might yet help in refining the latter. That, in turn, bears comparison with techniques for formalising

database and knowledge base structures.

Mind Mapping in respect of Concept Mapping

There are, in fact, two ways of building concept maps of any domain. So-called normative concept maps

hold just single instances of specific concepts, giving complete consensus over any domain. Conversely,

descriptive concept maps allow differing representations of a single domain. In fact, normative and

descriptive approaches are complementary, and provide a comprehensive view from different perspectives.

All the same, a descriptive approach is preferable to demanding a single correct concept map (Albert &

Steiner, 2005).

Descriptive concept maps, then, need not agree on representations of any domain, bringing to mind the

variation between GRiST mind maps from the domain of risk analysis in mental health. Then again, the

combined mind map for GRiST created by Buckingham and Adams (2006) fulfilled a role that Albert

and Steiner (2005) describe for normative concept maps, in providing a single correct view of the domain

in question. That raises the possibility of treating GRiST mind maps in a similar way to concept maps.

While abundant descriptive knowledge exists in both individual and combined mind maps from

GRiST, there is less of the normative variety. Take, for example, the problem of duplicated nodes

raised by Reich et al. (2002); atomic concepts such as ‘abuse’ recur throughout the combined GRiST

mind map. That is contrary to the cross-domain consensus expressed by any normative concept map. A

further lack of normative knowledge arises from what Biplab et al. (2008) noted as mind maps’ ability

to take any form whatever, as long as they are hierarchical. In addition, both descriptive and normative

concept maps are physical entities, as are GRiST’s individual and combined mind maps. That two sepa-

rate yet complementary concept or mind maps co-exist is important to the more fundamental distinction

discussed next.

Mind Mapping in respect of Relational Databases and DL

Normative and descriptive concept maps, then, might exist side by side. A further dichotomy exists,

though, between the idea of any information base and its actual embodiment. In that respect, atoms

in any information base stand for generic concepts, while concrete applications comprise individuals, or

tokens, of such generic concepts (Mylopoulos, 1998). In a similar way, relational database terminology

distinguishes between relations and tables: relations are theoretical constructs that correspond to tables

in any actual database. Individual relations, designed for a particular purpose, are known as relation
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variables, or relvars. At a more detailed level, relations are comprised of tuples, whereas actual tables

contain rows or records1. In relational databases, all such intensional knowledge is stored in so-called

schemata (Date, 1975, 2003).

A corresponding separation exists in DL. The distinction there is between intensional knowledge

about any problem domain, and extensional knowledge specific to a particular problem; the form that

extensional knowledge might take is regulated by intensional knowledge. What are called a TBox2 and

an ABox respectively hold intensional and extensional knowledge in a KB (Nardi & Brachman, 2002).

As do relational schemata, DL TBoxes dictate what form records might take within an information base;

mind maps, in contrast, are subjected to no such control.

The Lack of Normative and Intensional Knowledge from GRiST Mind Maps

GRiST mind maps have already been shown to resemble descriptive rather than normative concept maps.

In a similar vein, those mind maps constitute extensional, rather than intensional, knowledge about risk

assessment. Indeed, the very nature of mind mapping rejects any notion of intensional knowledge. Such

freedom of expression led to the variations in structure and in content noted in Chapter 1. Although

GRiST researchers agreed on categories for a template mind map, compliance could not be ensured; the

FreeMind tool had no facility for enforcing such a template (Buckingham & Adams, 2006). Any lacking

intensional knowledge in GRiST might, in fact, be added retrospectively, by noting techniques that aid

the design of information bases. That will involve the dual processes of abstraction and normalisation,

by which key concepts might be identified in GRiST mind maps.

2.2.2 Applying Abstraction to Information Bases

Designing information bases entails a process called abstraction, which suppresses irrelevant detail in

order to emphasise what generic concepts, or classes, have in common. The first stage in abstraction,

classification, yields generic concepts that constitute intensional knowledge. Those concepts, or atoms,

govern the creation of individuals in an information base (Mylopoulos, 1998). Subsequently, the second

stage of abstraction applies a technique known as normalisation, which is described as putting one thing

in one place. With respect to relational databases, that means passing through successive stages called

normal forms. Those forms progressively refine any database’s design, with each level assuming that

preceding forms have been achieved. The first normal form, 1NF, operates on tuples, while remaining

forms address entire relations (Date, 2003).

1Terms such as ‘tuples’ and ‘record’ are often, though incorrectly, interchanged (Date, 1975).
2The ‘T’ in TBox may be taken as either ‘Terminology’ or ‘Taxonomy’ (Nardi & Brachman, 2002).
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Normal Forms

Achieving 1NF involves excising redundant information from individual tuples. That problem arises when

fields in any tuple comprise lists of values known as repeating groups. Because tuples must contain atomic

fields, attaining 1NF decomposes such groups into single-field tuples. In terms of relational calculus, any

tuple x that contains concepts c0 . . . cn is expressed as x → {c0, c1 . . . cn}. In that expression, x is the

determinant, while {c0, c1 . . . cn} are dependants of x. Such multiple concepts within a sole tuple must

be restated as singletons1. For the current example, that would result in x→ c0, x→ c1. . .x→ cn. The

relationship between determinant and dependants from 1NF is, then, one-to-many (1:M). In that way, a

single value of x associates various atomic concepts held as separate tuples (Date, 1975, 2003).

While 1NF addressed multiple classes within a single tuple, the second normal form (2NF) deals with

duplicated fields within whole relations. Once 1NF is achieved, 2NF ensures that such fields arise just

once. Say that a relvar for holding shipping orders stores a city for any delivery address. Now, cities

might be specified for every dispatch note in the database. That, though, raises problems of accuracy and

conformity; spelling errors or a poor grasp of geography might yield multiple names for any particular

location. Eliminating such duplication would ensure that city names conformed to recognised values,

and improve the accuracy of dispatches. Individual city names would be stored just once in a separate

relation, and be assigned an unique code. Any shipping address would subsequently need just that code,

with actual names coming from the newly created relation. Such codes in the main shipping orders

relation are called foreign keys, which correspond to a primary key of the code from the city names

relation (Date, 2003).

Having attained 2NF, the third normal form (3NF) ensures that columns in any relation depend on

the key, the whole key and nothing but the key (Date, 2003). For example, the destination of any dispatch

depends solely on the associated order number. Should orders further require the name of a delivery firm,

3NF would insist on recording that separately; delivery details depend more on availability than on any

particular order number.

Applying Normal Forms

In fact, normal forms that refine relational databases apply to information bases in general; removing

redundant or duplicated fields enhances performance and avoids making conflicting updates (Mylopoulos,

1998; Date, 2003). An analogue of 2NF for knowledge bases can be illustrated by means of concepts A

and B, which the axiom A ≡ B equates as synonyms. That equivalence makes redundant the axiom

B ≡ A; all occurrences of B, in fact, can be replaced by concept A, imposing uniformity across any KB

(Tsarkov, Horrocks, & Patel-Schneider, 2007). Indeed, normal forms introduced by Date (1975) apply

1Singletons may be represented without enclosing braces (Date, 2003).
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as much to rules in knowledge bases as they do to relations in more traditional databases. In contrast,

knowledge that is left un-normalised remains unnecessarily hard to understand (Debenham, 1996, 1998).

Attention turns now to overcoming the sparsity of intensional knowledge in GRiST mind maps by means

of abstraction.

2.2.3 Applying Abstraction to GRiST Mind Maps

This thesis addresses the lack of intensional knowledge in GRiST mind maps, and in mind mapping

generally. Intensional knowledge, though, usually precedes extensional knowledge; abstraction refines the

design for any information base before creating actual records (Date, 1975; Mylopoulos, 1998). Conversely,

abstraction here will applied to existing extensional knowledge in GRiST mind maps, to derive what might

be called reverse-engineered intensional knowledge.

Any resulting intensional knowledge will, though, be stored separately from those mind maps, in

a more traditional type of database. That arrangement more resembles the adjacent relational and

knowledge-based stores used by Tsarkov et al. (2007) than it does ontologies from Sure et al. (2002) or

the dual normative and descriptive concept maps of Albert and Steiner (2005). Such a separate store of

intensional knowledge will allow existing mind maps to act as a normalised information base. Although

normalisation improves IR performance, it is the organisation imposed that is important here.

Normalising Knowledge from GRiST Mind Maps

Atomic concepts from the first stage in abstraction, classification, are of particular interest here. The

goal, though, is not to make GRiST mind maps conform to some abstract representation; that would

reflect the extreme reductionism of the BOW approach rejected in Chapter 1, along with the insistence

by Buzan (1996) on single-word nodes. That is not to deny the importance of atomic concepts, but to

argue against rewriting individual nodes as isolated words. Rather, narrowly-defined concepts held as

intensional knowledge will mediate access to extensional knowledge in mind maps. Classifying important

words from mind map nodes will reveal where recurring ideas appear; atoms permit references to specific

ingredients of what Sowa (2006) might call mind map soup.

The second phase of abstraction, normalisation, builds on the results of classification to yield the

desired intensional knowledge. The question arises, then, of what intensional knowledge might be gleaned

from GRiST mind maps? Remembering that Sure et al. (2002) view branches in mind maps as mere

associations, intensional knowledge must first reflect such associations. Just a single atom accomplishes

that: a unique identifier, from here on called nodeID. A tuple of that atom is expressed in relational

calculus as nodeID → nodeID. Actual records from that tuple represent a link between two GRiST

nodes having the specified values of nodeID. GRiST nodes, though, regularly contain several important

words, constituting what Date (2003) called repeating groups. Applying 1NF overcomes that with a
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further tuple, nodeID → concept, where instances of concept hold particular ideas from a specific node.

Tuples such as nodeID → concept reflect the lossless nature of normalisation; discrete concepts might

be addressed individually, as a set by means of the nodeID field, or as the full node text. No data

have been discarded; indeed, much new information will have arisen. Such intensional knowledge permits

queries against mind maps, which is a characteristic of information bases. For example, a user might

ask for nodes that express a given concept, which in turn might be augmented by nodes containing

related concepts. Individual nodes, then, will largely remain intact; they express ideas in a way that

Buckingham and Adams (2006) saw as optimal for human interpretation. Intensional knowledge arising

from normalisation, though, will promote a more detailed automated analysis of those mind maps.

Treating nodes as composed of tuples further suggests viewing mind maps as analogous to relations,

which comprise such tuples. Whereas 1NF operates at the level of tuples, 2NF removes redundant or

duplicated fields from relations. Following 2NF, foreign keys from any relation correspond to primary keys

in a separate relation. That approach will be taken for nodes that express related yet specific concepts

anywhere in GRiST’s mind maps. A representative will be selected from such related nodes, expressed

in tuples of the form nodeID → nodeID. Any given representative node appears to the left of the arrow;

those to the right are equivalent in meaning. The result is very much in the spirit of what Date (2003)

called putting one thing in one place.

The Benefits Normalising GRiST Mind Maps

Queries made against mind maps would benefit from retrieving just representative nodes. Performance,

though, is a minor issue in face of opportunities arising from intensional knowledge held in 2NF. One

such opportunity involves entire paths rather than individual nodes. Recall that paths denote branches

leading from any mind map’s root node to lower-level nodes. Normalisation, then, allows paths comprising

nodeIDs of representative nodes rather than actual node texts. In that way, paths expressing related

concepts at equivalent levels in any hierarchy yield identical sequences of nodeID values. That, in turn,

allows direct comparisons between paths.

Such directly comparable paths further allows machines to identify nodes that are inserted or deleted

between any two paths. That, in turn, will allow paths to be refined into a standardised knowledge

structure of hierarchical mind map nodes. Inserted or deleted nodes, though, yield less common hierar-

chies, due to a lack of intensional knowledge that might have imposed an agreed template. In such cases,

nodes form differing hierarchies that depict related meanings might be refined into a single, representative

version by means of 2NF. The lossless nature of that process, though, will leave any original mind maps

intact; such revised hierarchies will be reflected in intensional knowledge, held separately.
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In addition, sorting normalised paths of node keys will group together paths that employ similar nodes;

further eliminating duplicate paths yields a list of unique paths, which will be reassembled automatically

into a combined knowledge structure. That, in turn, alleviates the manual task endured by Buckingham

and Adams (2006). Such novel mind maps will contain just a single instance of any particular path, with

any related paths integrated by a degree of reconfiguration. The third normal form, 3NF, ensures that

any fields in a tuple depend solely on the key of the containing relation. The process of classification

suggested a tuple for representing related words in the form concept → concept. That tuple lacks a

nodeID field: the meaning of any specific word does not depend on what node contains it. The outcome

of applying 3NF is similar to that obtained from meeting 2NF, in that separate relations are indicated

for holding data in a more usable form.

2.3 Identifying Related Concepts

The process of abstraction, then, refines and optimises intensional knowledge, which regulates what might

be stored in any information base, and in what manner. Classification starts that process by identifying

any atoms needed to hold such intensional knowledge. Subsequently, successive stages of normalisation

determine structures of such atoms. The first stage, 1NF, reorganises repeating groups within any tuple,

or record. After that, 2NF and 3NF refine relations that store such tuples. Field in any tuple, though,

must hold just atomic values; mind map nodes, in contrast, often express several concepts. Such nodes

might be split into constituent words held as separate nodes. That BOW approach, though, was rejected

in Chapter 1 because of the ensuing loss of meaning.

A Normalised View of Concepts from GRiST Mind Maps

Rather than rewriting mind maps nodes in that way, tuples of the form nodeID → concept represent key

concepts as atoms of intensional knowledge. A further tuple, concept → concept, allows for words that

express related meanings. In fact, two types of related words are considered here. The first type concerns

morphological variations that yet share a common sub-string, from here on termed a stem. Such word

variations arise from appending pre- and suffixes to stems. Words that lack any common stem, though,

might yet be related. Although completely different in terms of text, people recognise such words are

synonymous. Machines must emulate that human knowledge in order to discern relationships between

such words.

It is important that machines concur with humans when identifying related words. From a mor-

phological viewpoint, over-short stems will group together words that are not truly related. Conversely,

stems that are too long will fail to wholly identify related words. Machines, then, must determine stems

of optimum length. Although so-called stemmers exist, they suffer disadvantages that must be overcome,
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such as being designed for handling specific languages. An analogous problem arises from analysing word

meanings, in that words might be just remotely related. Given that tools exist to detect the meanings

of words, the challenge lies in determining the degree of any reported synonymy. Concepts related by

morphology or by meaning will, though, be held as stems rather than as actual words. Records based

on the tuple nodeID → concept will group together nodes that express morphological variations of a

particular concept. Records from the concept → concept tuple will further be populated by stems to

indicate synonymy between entire groups of words.

Spelling Mistakes in GRiST Mind Maps

An further aspect of GRiST mind maps, though, detracts from identifying the required atoms; mis-

spellings and a sometimes specialised mental-health vocabulary obscures human authors’ intended mean-

ings from machines. Although absent from any digital dictionaries, it would be wrong to treat such

uncommon words as spelling mistakes; indeed, that they are used by specialists makes them particularly

important. Even for true mistakes, any spelling checker might suggest inappropriate replacements which,

if accepted, would introduce false knowledge. Machines, then, face two problems. The first is whether

novel words should be treated as they stand, or corrected by means of a spelling checker. That second

option raises the further problem of determining appropriate suggestions from any offered.

A Tool for Refining Spelling Corrections and for Stemming

Having introduced problems that machines face in processing GRiST mind maps, attention now turns to

one of the tools chosen to overcome those problems. In fact, acceptable stems and spelling corrections

alike will depend on measuring any similarity between words. To that end, the chosen measure is the

Levenshtein Distance, referred to as L. Before describing that algorithm in detail, though, the next

chapter starts by looking at spelling errors in more detail. After explaining the origins of spelling mistakes,

an overview of existing research raises various issues concerning approaches to automated correction.

Following that comes a proposal for handling spelling errors in GRiST mind maps.

Themes encountered during spelling correction will recur in respect of stemming. Chapter 4, then,

continues by describing approaches to deriving stems from isolated words. After that, studies are reviewed

that account for context during stemming, before turning to stemming for GRiST mind maps. Both

spelling correction and stemming will rely on the Levenshtein Distance, to which various refinements

have been made in the past. In particular, the effect of word length on any judged similarity must be

taken into account. Such an adjustment for use in analysing GRiST mind maps closes that chapter.
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2.4 Chapter Summary

This chapter, then, placed mind maps in the context of semantic networks, and described various ap-

proaches that used mind mapping in knowledge engineering, albeit to a limited degree. By dint of being

semantic networks, GRiST mind maps were further seen as a potential information base. That led to

considering just what characterises information bases; in particular, the process of abstraction was seen

to improve any design. Accordingly, abstraction was considered in respect of GRiST Mind Maps, in an

attempt to identify related concepts. This summary, then, closes the chapter, and attention moves to a

means of resolving unrecognised words found in GRiST mind maps.
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Spelling Correction for GRiST Mind Maps
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3.1 Introduction

One of the problems facing any automated analysis of GRiST mind maps, then, concerns spelling mistakes

made by mental health specialists. Unaided, though, machines are prone to offering inappropriate, and

sometimes amusing, corrections. That is because such suggestions are mere character strings that resemble

any spelling error. A contrasting problem further arises should so-called spelling errors, in fact, be words

that are missing from whatever dictionary is researched. This chapter, then, presents an approach to

correcting spelling errors in GRiST mind maps, while retaining valid, though unrecognised, words. That

will involve assessing any similarity between spelling errors and suggested corrections.

Before addressing mistakes from GRiST, though, an overview describes current approaches to auto-

mated spelling correction in general. That review starts by identifying the causes of spelling errors, before

presenting approaches to automated correction. In that respect, various challenges arise in detecting and

resolving spelling mistakes. Meeting those challenges will involve a measure called the Edit Distance,

which quantifies similarity between errors and any proposed alternatives. In addition to the standard

algorithm, though, adjustments to the Edit Distance commonly allow for words of differing lengths. Af-

ter giving examples of studies that do that, the particular adjustment proposed by this thesis will be

presented. That measure, in turn, will be shown to greatly improve spelling correction for GRiST mind

maps. Now, then, to the review of approaches to automated spelling correction in general.

3.2 An Overview of Automated Spelling Correction

As users of the Internet and of word processors might well be aware, spelling corrections offered by

machines are sometimes inappropriate, or even bizarre. For example, spell-checking the LATEX source of

this thesis offered ‘parsnip’ as a replacement for the mark-up command ‘\parskip’, and ‘shortcake’ for the

citation mark-up, ‘\citeA’. While not suggesting any built-in culinary bias, accepting such ‘corrections’

automatically would have been completely wrong. Those suggested corrections are quite dissimilar to

the intended words, but were the best that the spelling checker could find. With regard to GRiST’s

mind maps, such inappropriate replacements would undermine any emerging knowledge structures. A

more discerning approach must be sought if those mind maps are to be checked automatically for spelling

errors.

Kukich (1993) sees correcting errors automatically as much harder than simply identifying them. The

so-called morphological productivity of the English language, though, hinders both of those processes; new

words regularly enter the language, while existing ones leave it. That nouns are often ‘verbified’ illustrates
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that tendency - for example, the noun ‘Balkans’ yielded the novel verb ‘balkanisation’. While interactive

spelling checkers allow users to evaluate suggested corrections, automating that process requires machines

to take such decisions unaided. For that reason, existing spelling correction techniques are of limited scope

and accuracy (Kukich, 1993).

In fact, three challenges are inherent in automated spelling correction. By ascending difficulty, the first

concerns detecting non-words that are strings missing from any dictionaries used. That is not to say,

though, that such non-words are invalid; in fact, therein lies the challenge: is any particular non-word a

spelling error, or a valid yet uncommon word? Having identified non-words, the second challenge arises of

correcting them in isolation. That might involve overcoming the third challenge of considering the context

of any misspelled words. Most existing techniques are said to ignore that last and most difficult problem

of context, concentrating instead on isolated misspellings. That approach, though, ignores information

that might be gleaned from the linguistic or textual context of misspelled words (Kukich, 1993).

3.2.1 Detecting Non-Words

The simplest approach to automated spelling correction is to search lists of acceptable words. Non-words

are those that are missing from such electronic dictionaries, and are at first treated as invalid, pending

further evidence to the contrary. That approach, though, suffers increased response times when searching

larger dictionaries. A compromise must be struck, then, between the richness of such dictionaries, and

the time taken to search them. A further problem is that removing non-words fails to offer possible valid

interpretations, and disregards what might otherwise be important information (Kukich, 1993).

Despite increased response times, it is tempting to assume that larger dictionaries will reduce the in-

cidence of non-words. Unfortunately, a second problem arises from that approach: that of accuracy.

Unsuitable matches have been shown to rise from 10% for a 50,000-word dictionary to almost 16% for

one of 350,000 words. That reflects an increasing probability of any misspelled word inappropriately

matching a dictionary entry, especially for shorter misspellings (Kukich, 1993). Clearly, suggested correc-

tions must be analysed further before they are accepted. Rather than abandoning non-words or replacing

them by inappropriate corrections, as many as possible valid novel words must be retained.

3.2.2 Correcting Isolated Misspellings

Non-words, then, can be identified by consulting electronic dictionaries. Although any given non-word

will not be found, there might yet exist valid words that it resembles. Such valid words constitute possible

corrections for any non-word in question. Rather than taking the first correction from any proffered list,

such suggestions are better treated as competing candidates. The challenge lies in selecting the most

appropriate candidate, which in turn demands an understanding of how errors arise (Kukich, 1993).
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The Sources of Spelling Mistakes

In fact, spelling errors result from inserting, deleting, substituting, or transposing characters in any

word. Such mistakes reflect either simple typographic errors, or so-called cognitive errors; the former are

accidental mistakes by keyboard users, whereas the latter reflect misconceptions about any language used

(Kukich, 1993). Spelling errors further stem from minor phonetic alterations (Crowell, Zeng, & Kogan,

2003). In fact, such phonetic alterations are examples of the cognitive errors mentioned by Kukich (1993).

Although Kukich (1993) sees substituted letters as a source of spelling errors, such transformations are

commonly made deliberately. The pastime of word-ladder puzzles requires players to transform a given

word into a different one, by replacing one letter at a time. The example from Adamchik (2009) presented

next as Figure 3.1 shows how to change the word ‘sail’ into ‘rail’; substituted letters are highlighted in

bold type, and described opposite the ‘rungs’ between words in the ladder:

sail
Replace ‘s’ in ‘sail’ with ‘r’, giving ‘rail’

Replace ‘l’ in ‘rail’ with ‘r’, giving ‘rain’
rail
rain

Replace ‘a’ in ‘rain’ with ‘u’, giving ‘ruin’
ruin

Figure 3.1: A word-ladder puzzle, adapted from Adamchik (2009)

.

Puzzles such as the one from Figure 3.1 must use words of identical length, which allows transformation

just by replacing letters; should arbitrary-length words be permitted, letters would have to be inserted or

deleted as well as substituted. Although solving word-ladder puzzles might seem trivial, it demonstrates

the principle behind most approaches to correcting isolated misspellings. Specifically, the separation

between any two words might be expressed in terms of the number of single-letter transformations required

to change one into the other (Adamchik, 2009). That measure, called the Edit Distance (Navarro, 2001),

will shortly be described in more detail. For now, suffice to say that machines can quantify the similarity

of two text strings, in terms of the number operations required to transform one into the other.

Applying the Edit Distance to Suggested Spelling Corrections

According to Brill and Moore (2008), most spelling checkers use the Edit Distance as a way of comparing

words. That was the approach taken by Kernighan, Church, and Gale (1990) in devising a program

called correct, which processes words rejected by the spell program found on Unix® systems. In a

preliminary phase, three human judges assessed so-called triples of words. The first word of any triple

was a spelling mistake, while the remaining two words were candidate replacements from correct. All

such triples comprised words having an Edit Distance of one, that is, the three words of any triple differed
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from one another by just a single inserted, deleted or substituted letter (Kernighan et al., 1990).

In that study, judges recorded a percentage probability of any candidate correction being the best one.

Candidates with the highest probabilities were chosen as replacements for misspellings in associated

triples. That task proved more difficult than had been expected, with each judge taking about half a

day to inspect the 564 triples used. Of those 564 triples, 235 were rejected because a majority of judges

could not agree on the most likely correction. The remaining 329 triples formed the input to correct

(Kernighan et al., 1990).

Having set benchmark probabilities, the next step required correct to calculate so-called conditional

probabilities. That involved deriving a score for each candidate correction, in terms of two factors. The

first factor, Pr(c), was the probability of a candidate c existing in the 1988 AP corpus, expressed as:

Pr(c) = (freq(c) + 0.5)/N , where:

freq(c) = the frequency of any candidate c in the AP corpus, and

N = 44 million, the number of words in that corpus

(Kernighan et al., 1990).

In that way, Pr(c) reflected relative frequency in the AP corpus of suggested corrections, allowing correct

to accept common suggestions in preference to uncommon, though valid, ones (Kernighan et al., 1990).

The second factor used by correct accounted for words transformed by insertions, deletions, substi-

tutions and reversals. That process relied on a training dataset, held separately from the selected 329

test triples. Given a list of corrections judged appropriate by humans, correct was able to determine

patterns of transformed letters, or of pairs of letters, in misspelled words. That gave rise to a measure

expressed as Pr(t|c): the probability of a letter t from the training set being transformed into c in the

test set. For any misspelling, correct selected the candidate having the greatest product of factors Pr(c)

and Pr(t|c). Of the 329 novel triples investigated, that approach gave 87% agreement with a majority of

the human judges (Kernighan et al., 1990).

Notable Points about Using the Edit Distance

Several points of interest arise from the work of Kernighan et al. (1990). Most importantly, that study

demonstrated the idea of transforming words by inserting, deleting or otherwise substituting letters when

making typing mistakes. That said, the test phase addressed candidate corrections separated from any

misspelling by just one such transformation, which surely underestimates the severity of errors that people

make. Furthermore, the reliance on triples meant that two, and no more, candidates were considered

for any misspelling. Again, that is unrealistic given the tendency that Kukich (1993) noted for shorter
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misspellings to yield many candidates.

A further point concerns the required intervention by human judges. In contrast, the preferred

approach to spell-checking GRiST mind maps would be fully automatic. Next comes the need to train

the correct program, which is impractical given the relatively small sample of mind map nodes compared

to the 44 million-word AP corpus. Simply, there are insufficient nodes in GRiST mind map to commit a

good proportion to training. A final point is that the measure Pr(t|c) was language-specific, being based

on cross-referencing letters from the English alphabet. GRiST’s medical specialists were indeed British;

all the same, a linguistically neutral approach would facilitate work in other E.U. countries.

Analysing Sub-Strings of Words

Although that study by Kernighan et al. (1990) has various shortcomings, its application of Pr(t|c) to

transposed letters is of great interest; it raises the possibility of analysing letters and sub-strings of words,

in addition to words themselves. Kukich (1993) refers to such sub-strings as n-grams, where ‘n’ is the

number of letters contained. She split non-words into n-grams, each of which was researched in a pre-

compiled table of n-gram statistics. That determined the likelihood of any particular n-gram occurring

deliberately; the summation of probabilities from all of a non-word’s n-grams indicated its likelihood of

being a valid word (Kukich, 1993). In that way, candidate corrections for non-words were treated as

likely or unlikely combinations of letters.

Work by Kukich (1993) demonstrated the use of n-grams to generate reliable corrections for non-

words. Despite being absent from any dictionaries used, likely combinations of letters were treated as valid

words. In a similar way, enhancing spelling correction by means of n-grams was one aspect of U.S. patent

application 7366983. A process of partitioning split any non-word into segments of varying numbers

of characters. Any proposed spelling correction was similarly partitioned, and the resulting segments

compared with those from the associated non-word. A prior training exercise on valid corrections had

determined probabilities of any particular segment being replaced by another (Brill & Moore, 2008). In

similar way to Kernighan et al. (1990), novel arrangements of segments were deemed more or less likely

in light of summing those probabilities.

The patent application of Brill and Moore (2008) is just one means of correcting spelling errors

automatically. Having shown various approaches to identifying non-words, and to selecting appropriate

corrections for isolated misspellings, attention now turns to the third challenge raised by Kukich (1993):

that of accounting for context.
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3.2.3 Accounting for the Context of Misspellings

According to Kukich (1993), existing approaches to automated spelling correction tend to ignore the diffi-

cult problem of context. All the same, Wilcox-O’Hearn, Hirst, and Budanitsky (1998) made a useful step

in that direction by considering entire sentences, rather than correcting isolated misspellings. Specifically,

sentences that contained just a single suspected spelling error were analysed. The non-word in any such

sentence became the middle word of a trigram. The remaining two words of any trigram comprised words

immediately before or after the corresponding non-word. Having generated a trigram for the erroneous

part of any sentence, further trigrams were assembled from remaining words. Subsequently, research-

ing an existing list of trigram frequencies gave a sequence of probabilities, which described patterns of

trigrams in any sentence (Wilcox-O’Hearn et al., 1998).

The next step retrieved candidate corrections for spelling errors found in sentences. Following that, any

original sentence was repeatedly rewritten; successive novel sentences used candidate corrections in place

of the corresponding non-word. Such novel sentences were ranked by probability of component trigrams

that depicted actual usage. In that way, a machine deemed sentences arising from a given suspect word

to be more or less likely. Any preferred sentence had the highest overall probability of trigram usage in

the associated group. In turn, such selected sentences bore preferred words, whether those were spelling

suggestions or unchanged suspect words. That approach did, though, raise erroneous results that were

considered inevitable from any statistical model. Indeed, a number of correctly identified spelling mistakes

received inappropriate replacements (Wilcox-O’Hearn et al., 1998).

Treating Texts as Sources of Knowledge

While Kernighan et al. (1990) expressed a hope to account for context in future work, Wilcox-O’Hearn

et al. (1998) made real steps in that direction. Both of those studies used trigrams to assist spelling

correction; there was, though, an important difference in what those trigrams comprised. In the former

study, trigrams held a spelling mistake and two candidate replacements. Human judges assessed those

trigrams to yield statistics about trigram usage, which subsequently formed the input to the correct

programme. The latter study, on the other hand, used trigrams comprising a non-word and any immediate

neighbouring words. Once created, such trigrams were not treated differently to those from valid parts of

sentences. Trigrams comprising parts of words, then, did not reflect the wider context of any non-word

as did trigrams of whole words.

Rather than relying on just edit transformations or the context of misspellings, Mcnamee, Mayfield,

and Piatko (2001) produced a fusion of those two approaches. That study gave rise to the Hopkins Auto-

mated Information Retriever for Combing Unstructured Text (HAIRCUT), which addressed misspellings

in a test dataset of 1,588,374 words. Importantly, that dataset itself constituted a source of spelling
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corrections. Words appearing in three or less of those documents were treated as spelling mistakes. In

such cases, candidates comprised words that appeared in at least five of the test dataset’s documents.

Candidates further had to be separated by just one insertion, deletion or substitution from any original

misspelling. The most common such suggestion was taken as the preferred correction. That combi-

nation of edit distance and context was said to help dramatically on two queries, but to be wrong for

‘tartin’. That non-word was corrected to the more common ‘martin’, rather than to desired word ‘tartan’

(Mcnamee et al., 2001).

Treating Candidate Spelling Corrections as Edit-Neighbours

Having earlier criticised the work of Kernighan et al. (1990) for underestimating the severity of spelling

errors, a similar issue arises from the study by Mcnamee et al. (2001). In both cases, experiments

addressed candidate corrections separated by just one edit operation from any misspelling, a matter that

recurred in U.S. patent application 7366983. In a combination of edit distance and context, that patent

introduced the idea of edit-neighbours: candidate corrections separated from an associated non-word by

a single inserted, substituted or deleted letter. By that definition, edit-neighbours were equally likely

replacements for any suspected spelling mistake. A most likely correction arose from inspecting words

that preceded and followed any suspect word. That gave the probability P (w|context) of any word w

appearing with particular preceding and following words. The candidate having the highest value of

P (w|context) constitutes the best correction (Brill & Moore, 2008).

Accounting for the Meanings of Words

Generally timid approaches, then, handled spelling corrections that closely resembled any offending word.

Context, though, was important in assessing any such corrections. In a broader sense still, context has

extended to cover the meanings of words. In that respect, Kukich (1993) assessed approaches that used

Natural Language Processing (NLP) to determine appropriate spelling corrections. Instead of any textual

edit distance, semantic distance measures separation between words’ meanings. Although effective, such

NLP approaches as seen as over-complex (Kukich, 1993). Indeed, results from purely textual analysis are

noticeably better than from such semantic approaches (Wilcox-O’Hearn et al., 1998).
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3.3 Improving Spelling Correction for GRiST Mind Maps

Suggested spelling corrections, then, might be rejected should they differ greatly from perceived mis-

spellings; instead, offending words will be retained. The approach here is to assume that spelling errors

will roughly resemble any intended words. Suggestions close to any word that they mean to replace will

be accepted, while those differing markedly will be rejected. Indeed, such offending words will be retained

in an extensible extra dictionary. In particular, suggestions much longer or shorter than any misspelled

word are less likely to be acceptable.

Further, misspelt words and proposed corrections alike will be researched in GRiST mind maps, which

themselves constitute an extra dictionary. Suggestions might receive support should they exist in those

mind maps. Conversely, words wrongly identified as spelling errors will be accepted should several authors

use them; such words were likely typed deliberately. Should no alternate authors use any given word,

the relative similarities of perceived errors and suggested corrections are considered. As Idzelis (2005)

and Brill and Moore (2008) point out, assessing similarities between words commonly involves the Edit

Distance, which reflects the numbers of letters that might be rearranged to yield any spelling mistake.

In fact, the Levenshtein Edit Distance is used here; the standard version, though, reflects just a total

number of transformations between any two words, regardless of where such changes occur. That short-

coming might be overcome by modifying the algorithm, as approaches to automating spelling correction

will show. Following that comes the adjustment applied by this thesis, which is assessed experimentally.

3.3.1 The Levenshtein Distance, L

In fact, textual analysis was not the original application for the edit distance. Rather, Levenshtein (1966)

devised it to automatically correct transmission errors between early computers. Words in that context

were strings of binary digits, or bits, from a binary alphabet described as {0, 1}. Unfortunately, hardware

channels used to transmit sequences of binary words were prone to corruption. Words at the receiving

end sometimes differed in various ways to what was sent; put another way, such channels were noisy. The

Levenshtein Distance, L, helped to alleviate that problem of noisy channels (Levenshtein, 1966) 1.

The types of errors inherent in noisy channels have been described already, while discussing the challenge

of spelling correction. Transmission errors involving deletion arose when a so-called empty word replaced

valid bits. Using the symbol ∧ to represent any such empty word, deletions were expressed as 0 → ∧

and 1→ ∧. Conversely, insertions occurred when a valid bit replaced an empty word: ∧ → 0 or ∧ → 1.

A third type of error, reversal, arose when 1 → 0 or 0 → 1. To that end, L identified such transmission

1The terms Levenshtein Distance and Edit Distance are, in fact, synonymous (Navarro, 2001).
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errors, and further attempted to determine what was actually sent (Levenshtein, 1966).

In practice, rectifying transmission errors involved what were termed binary codes. Such codes comprised

valid combinations of characters from the original alphabet {0, 1}, and the empty word ∧. By specifying

allowable words, binary codes identified any bad segments emerging from a channel. Any word with, say,

a deleted bit would fail to find a corresponding code. In such cases, the closest matching code was taken

as the intended content, the word ‘closest’ being expressed in terms of two binary words, x and y, in the

function r(x, y). That function reflected the smallest number of insertions, deletions and reversals that

transformed a transmitted segment x into received segment y. Bits deemed to have been, say, inserted

into y were deleted from x to reveal the most likely intended binary word (Levenshtein, 1966).

Applying the Levenshtein Distance to Further Alphabets

That consideration of insertions, deletions and reversals led to the metric L: a quantitative measure of

any difference between strings from a particular alphabet. Although L was conceived for handling just

the characters 1 and 0, strings from larger alphabets might be compared in the same way. Indeed, codes

could be constructed for any alphabet of r letters, where r > 2 (Levenshtein, 1966). The importance of

L, then, transcends any ability to recreate corrupted binary information, and has become an important

way of comparing words constructed from any alphabet. Indeed, studies that were reviewed in Section

3.2 constituted approaches based on a noisy channel model (Kernighan et al., 1990; Wilcox-O’Hearn et

al., 1998; Brill & Moore, 2008).

Moving from a binary alphabet to English does, though, require one small change in terminology.

While retaining the notions of insertion and deletion, it is better to refer to ‘replacements’ rather than

to ‘reversals’. That is because reversals cannot occur in words from larger alphabets, as letters have

no specific inverse. Any specific character, though, might be replaced by another. In that respect,

transposition is a special type of substitution that resembles reversal, in that two characters change places

between any given pair of words. Regardless of that difference in terminology, small values of L between

two strings from any alphabet mean that such words are close variants of one another (Levenshtein, 1966;

Navarro, 2001). Having introduced L, the algorithm will now be discussed in more detail.

Calculating the Levenshtein Distance

Calculating L involves a process called dynamic programming, for which Navarro (2001) gives the algo-

rithm reproduced below as Figure 3.2. That algorithm computes L between a source string x of length

|x| and a target string y of length |y|, by means of a matrix expressed as C0..|x|, 0..|y|. The number of

rows in that matrix depends on the length |x| of the source, while the number of columns depends on the

length |y| of the target. In that way, rows in such matrices correspond to letters from any source word,

and columns to those from any corresponding target word. Here, then, is how L arises from words x and
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y, which are respectively indexed by variables i and j:

Ci,0 = i Set top-row cells to i.
C0,j = j Set left-hand column cells to j.

Ci,j = if(xi = yj) then Letter i of word x = letter j of word y: current
cell = cell above & to the left: ↖.Ci− 1, j − 1

else Letter i of word x ! = letter j of word y: find
the neighbouring ↑, ←, or ↖ cell having the
lowest value.

1 +min(Ci−1,j , Ci,j−1, Ci−1,j−1)

Figure 3.2: Dynamic programming for L, adapted from Navarro (2001).

The first two entries in Figure 3.2 prime the matrix by setting the first row to the series 0..|x|, and the

first column to 0..|y|. That accounts for either of words x or y being an empty string; a blank target

string, say, means that all characters in x must be deleted to make y. In that case, the minimum number

of deletions is the number of characters in x, that is, the length of the source string (Navarro, 2001).

The remainder of Figure 3.2 depicts an iterative process that assigns successive cells in the matrix. Any

given cell receives a value that depends on neighbouring cells above, to the left, and diagonally above and

to the left. Because that involves cells at positions i−1 and j−1, the algorithm starts those subscripts at

1, rather than at zero. Note further that such upper, left, and upper-left neighbours must be computed

before any given cell can be assigned. In general, that is accomplished by traversing the matrix one row

at a time, from left to right (Navarro, 2001). In fact, an identical value of L would arise regardless of

which order strings processed. Because the algorithm is symmetrical, matrices might be traversed in

any direction without affecting L. In addition, insertions, say, in any given source string correspond to

deletions from any target word (Ackroyd, 1980; Navarro, 2001).

Calculating any specific cell depends on letters at respective positions i in the source word x and j

in the target, y. Should those two characters be identical, the algorithm in Figure 3.2 assigns the value

from the upper-left neighbour of cell Ci,j . That reflects the lack of any need to transform letter xi into

yj . Conversely, when those two letters differ, the algorithm assigns Ci,j by adding 1 to the smallest

value from neighbouring cells. That value reflects a minimum cost for transforming letter xi into yj . A

final value for L appears in the bottom-right cell, Ci,j , which reflects the minimum cost, in terms of the

number of operations, of turning string x into y (Navarro, 2001).

Steps in Calculating L

The matrix that follows as Figure 3.2 shows the first steps in comparing two common words from GRiST

mind maps: ‘abused’ and ‘abusive’. Letters from those two words are shown here just for information, in

the outer row and column; although the algorithm considers individual letters, they not required in the
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matrix. The first mandatory row comprises initial values of 0..|x| for the source string ‘abused’, while

the first column is set to 0..|y| for the target string ‘abusive’. Those initial settings, shown in italics, do

not depend on neighbouring cells; rather, they are assigned directly.

Conversely, values for individual cells of the second row, shown shaded, arise from comparing the first

letter of x with all those in y, that is, cells C1,1..|y|. It must be stressed that those cells are assigned as

the algorithm progresses, even though they are presented as if completed. Beneath that nascent matrix

come four rows of computations for individual cells. The first three of those rows give the edit operations

that were considered, with the selected one highlighted. The last row assigns any derived values to the

corresponding shaded cells, C1,1..|y|:

a b u s i v e

0 1 2 3 4 5 6 7

a 1 0 1 2 3 4 5 6 C1, 1..|y|

min
of:

xi = yj ↑ 1 + 2 ↑ 1 + 3 ↑ 1 + 4 ↑ 1 + 5 ↑ 1 + 6 ↑ 1 + 7
i = 1,
j = 1..|y|= ‘a’ ← 1 + 0 ← 1 + 1 ← 1 + 2 ← 1 + 3 ← 1 + 4 ← 1 + 5

↖= 0 ↖ 1 + 1 ↖ 1 + 2 ↖ 1 + 3 ↖ 1 + 4 ↖ 1 + 5 ↖ 1 + 6

Ci,j C1,1 = 0 C1,2 = 1 C1,3 = 2 C1,4 = 3 C1,5 = 4 C1,6 = 5 C1,7 = 6

Figure 3.3: Steps for i = 1, j = 1..|y| in calculating L

Steps from Figure 3.3 compare the first letter, ‘a’, of the source word with all of those from the target

word. Using i = 1 and j = 1 in the first step means that characters xi and yj are identically ‘a’. In that

special case, the algorithm ignores the left and upper neighbours, and selects the upper-left cell. The

value in that cell gives a cost of 0 for transforming ‘a’ into ‘a’, that is, nothing. Because this is the first

row, that cost comes from an initialised value rather than from one derived by the algorithm.

Subsequent steps in Figure 3.3 deal with differing source and target letters. When, for example, i = 1

and j = 2, those letters xi and yj are ‘a’ and ‘b’ respectively. In such cases, neighbouring cells reflect

the lowest cost of changing xi into yj . In that way, cell C1,2 has upper neighbour C0,2, which holds the

value 2; adding 1 gives a total cost of 3. The value 1 in upper-left neighbour C0,1 in turn gives a total

cost of 1 + 1 = 2. The lowest cost, though, comes from the value 0 in left-hand neighbour C1,1. The

resulting total of 1 + 0 = 1, then, is the lowest cost of transforming ‘a’ into ‘b’. Coming from a left-hand

neighbour, that lowest cost reflects that ‘a’ was substituted by ‘b’ in the target word.

The Dynamic Nature of Calculating L

As Navarro (2001) points out, the computation of L is called dynamic because any matrix grows as

the algorithm progresses. In that way, cells having i = 1 in Figure 3.3 constitute upper neighbours of

cells in the subsequent row, where i = 2. Rather than the initial values used when i = 1, that second

iteration depends on values from the preceding step; that is shown in Figure 3.4, which compares the
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source word’s second letter, ‘b’, against all those in the target word ‘abusive’. Cells on row i = 2 are

derived in succession as the algorithm increments j. When i = 2 and j = 2, the letters xi and yj are

both ‘b’; in that case, the second cell of calculations assigns C2,2 directly from the upper-left neighbour:

a b u s i v e

0 1 2 3 4 5 6 7

a 1 0 1 2 3 4 5 6

b 2 1 0 1 2 3 4 5 C2, j..|x|

min
of:

↑ 1 + 0 xi = yj ↑ 1 + 2 ↑ 1 + 3 ↑ 1 + 4 ↑ 1 + 5 ↑ 1 + 6
i = 2,
j = 1..|y|← 1 + 2 = ‘b’ ← 1 + 0 ← 1 + 1 ← 1 + 2 ← 1 + 3 ← 1 + 4

↖ 1 + 1 ↖= 0 ↖ 1 + 1 ↖ 1 + 2 ↖ 1 + 3 ↖ 1 + 4 ↖ 1 + 5

Ci,j C2,1 = 1 C2,2 = 0 C2,3 = 1 C2,4 = 2 C2,5 = 3 C2,6 = 4 C2,7 = 5

Figure 3.4: Steps for i = 2, j = 1..|y| in calculating L

Steps from Figure 3.4, then, compare the ‘b’ in ‘abused’ with successive letters of the word ‘abusive’.

Because cell C2,2 was set just by reference to upper-left neighbour C1,1, cell C2,2 inherits a value of 0

that was set in a similar way for comparing ‘a’ with ‘a’ to give cell C1,1. In other words, the cost of 0 for

changing ‘b’ into ‘b’ reflects a preceding zero-cost transformation.

Steps for i = 1 from Figure 3.3 selected a uniform edit operation when source and target letters differed.

The lowest cost in all such cases came from left-hand neighbours. That is not so when i = 2; Figure 3.4

obtained a lowest cost from upper neighbour C1,1 when j = 1, rather than from left-hand neighbours

when j = 3..|y|. The cost entered into cell C1,1 arose, in fact, from comparing ‘a’ in ‘abuse’ with ‘b’ in

‘abusive’ during the preceding step for i = 1. In the current step, where i = 2, the comparison is between

‘b’ in ‘abuse’ and ‘a’ in ‘abusive’. In that way, the cost of changing ‘b’ into ‘a’ is the inherited cost of

transforming ‘a’ into ‘b’. Repeated steps, then, give a matrix of costs; such a matrix is presented next.
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The Matrix Arising from Calculating L

Importantly, inverse transformations such as ‘a’ to ‘b’ and ‘b’ to ‘a’ cancel one another, emphasising the

symmetry of matrices for L noted by Ackroyd (1980) and by Navarro (2001). Repeating the processes

described for the first two rows until i = |x| and j = |y| gives the finished matrix in Figure 3.5, where a

final value of L = 3 appears in C6,7, the bottom-right cell:

a b u s i v e

0 1 2 3 4 5 6 7

a 1 0 1 2 3 4 5 6

b 2 1 0 1 2 3 4 5

u 3 2 1 0 1 2 3 4

s 4 3 2 1 0 1 2 3

e 5 4 3 2 1 1 2 2

d 6 5 4 3 2 2 2 3

Figure 3.5: Steps for i = 1..|x|, j = 1..|y| in calculating L

The value of L = 3 Figure 3.5, then, is the minimum number of insertions, deletions or substitutions

needed to transform ‘abused’ into ‘abusive’.

In fact, no asymmetrical insertion, deletion or substitution occurs in Figure 3.5 until both i and j

reach 5. Whereas preceding cases of i = j were cost-free because letters xi and yj were identical, the

value for cell C5,5 arose from comparing ‘e’ in ‘abuse’ with ‘i’ in ‘abusive’. Rather than defaulting to the

upper-left neighbour, those different letters forced the algorithm to determine the lowest cost from three

competing neighbours. Now, the dynamic programming algorithm from Figure 3.2 added the constant 1

in such cases, rather than simply taking any neighbouring cell’s value. Just as for comparisons between

identical letters, an upper-left neighbour yielded the lowest cost. In this case, though, further adding 1

to the 0 in C4,4 gave an overall cost of 1.

That an upper-left neighbour in Figure 3.2 gave the lowest cost of transforming ‘e’ into ‘i’ meant that

those letters were substituted. In a similar way, cell C6,6 arose from comparing ‘d’ in ‘abused’ with ‘v’

in ‘abusive’. In that case, the lowest cost of 1 came from cell C5,5; adding 1 gave a total cost of 2. Cell

C5,5, in turn, reflected the prior cost of 1 incurred by substituting ‘e’ with ‘i’.

The final value of L in cell C6,7 arises from comparing ‘d’ with ‘e’. All of the three neighbours

consulted bore a value of 2, giving a cost of 2 + 1 = 3. That would best be interpreted as appending the

letter ‘e’ with an insertion. That, as Navarro (2001) points out, is unimportant should just a value of L

be required1. The nature of such changes are more obvious to humans; L emulates that ability, allowing

1Indeed, the implementation by Gilleland (2003) introduced in Part III defaults to ‘deletion’.
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machines to determine what transformations separate any two words. That, in turn, reflects the degree

of similarity between words.

A Drawback of the Standard Version of L

In light of comparing ‘abused’ and ‘abusive’, it is tempting to use L directly as a criterion of similarity.

Smaller values of L would indicate relatively little difference between character strings, be they candidate

spelling corrections or words related by a common stem. An important problem remains, though: any

specific value of L indicates more overall variation between short words than between longer ones. It

follows that any algorithm for L might account for the lengths of strings under comparison. All the

same, various studies have found the standard algorithm for L sufficient. Attention now turns to such

approaches, before examining adjusted forms of the Edit Distance.

3.3.2 Using and Refining the Levenshtein Distance

The Edit Distance, then, provides a means of filtering candidate suggestions for spelling mistakes. Indeed,

Brill and Moore (2008) applied L to that task when creating a patented spelling checker. In addition, L

has been successfully applied to a process known, if clumsily, as lemmatisation, by which Lyras, Sgarbas,

and Fakotakis (2007) identified so-called lemmas in Greek texts. Whereas Brill and Moore (2008) modified

the algorithm for L, Lyras et al. (2007) used the standard version to good effect.

Applying the Standard Version of L

Selecting L as tool reflected that algorithm’s successful application in areas such as genomics, speech and

handwriting recognition, spell-checkers, and Internet search engines. In genomics, for example, strings of

interest comprise the initials of the four base pairs that make up DNA, from the alphabet {A, T,C,G}. In

contrast, approaches to spelling correction discussed in Section 3.2 involved alphabets used by humans.

Whatever the application or alphabet, L measures the relative similarity of strings. For the process of

lemmatisation, L offered a means of determining likely lemmas, from which users might choose (Lyras et

al., 2007).

A lemma for any given word arose as follows. First of all, such words were researched in a database of

30,000 Greek lemmas, compiled in advance. Searches that yielded several candidate lemmas were refined

by comparing suggestions against whatever word was entered. That involved computing the standard L

separating any input word from each associated lemma. Having done that, lemmas having the minimum

L within the returned list were chosen. That, though, was the default selection criterion. Should users

so wish, lemmas of a specified additional distance were returned for consideration. Entering, say, 2 as

the desired approximation returned lemmas having a distance of L 6 (min + 2) from the source word

entered, where min was the minimum L for the group concerned (Lyras et al., 2007).
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Accounting for String Lengths when Calculating L

Whatever alphabet is used, then, higher values of L reflect greater variation between any two strings.

Indeed, L might better be described as a measure of dis-similarity. The impact of any edit operations,

though, depends on the lengths of strings being compared; even a single transformation between short

strings is more noteworthy than it would be between longer ones. Overcoming that problem demands

that raw values of L be adjusted to account for words’ lengths. Such a relative edit distance would better

reflect the extent to which edit operations affect any given word (Paleo, 2007).

A review by Navarro (2001) reveals considerable research into refining and extending the Edit Dis-

tance algorithm. Because using L to compare large texts involves numerous calculations, improving

computational efficiency is a common aim. That is not the motivation here, though. Rather, it is that

the basic form of L is, by itself, too coarse a measure. Indeed, Brill and Moore (2008) point out most

spelling checkers apply some form of weighting to L when comparing words. Fortunately, Navarro (2001)

sees L as easily adapted. Attention turns next, then, to studies that have made such adaptations.

Adaptations to the Levenshtein Distance

The study of Greek text by Lyras et al. (2007) used L to support decisions taken by humans. Although

highlighting the benefit of applying L to stemming, human intervention and a dependence on existing

stems limited the utility of that approach. In contrast, Ackroyd (1980) made an adjustment to L in

search of a more automated process. That study modelled the transmission of speech signals by using

simulated telephone lines, aiming to aid machines in identifying spoken words. To that end, a process of

character-string encoding transformed utterances into what were called symbol-strings. The result was a

dataset of five symbol-strings for each of ten spoken words (Ackroyd, 1980).

That dataset, though, showed wide variation in the length of symbol-strings, due to how quickly people

spoke. A Weighted Levenshtein Distance (WLD) solved that problem by disregarding minor variations

in word duration, while remaining sensitive to large differences. The starting point for the WLD was

the standard dynamic programming algorithm, which was expressed in a slightly different way than was

presented for Navarro (2001) in Figure 3.2. In that respect, Figure 3.6 shows a cost of d(i, j) applied to

any insertion, deletion or substitution at respective positions i and j in the source and target strings:

g(i, j) = min

 (g(i− 1, j) + d(i, j)

(g(i− 1, j − 1) + d(i, j)

(g(i, j − 1) + d(i, j)

 insertions: comparison is ↑
substitutions: comparison is ↖
deletions: comparison is ←

Figure 3.6: An alternative form of L, from Ackroyd (1980).
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Figure 3.6 shows the familiar operations of insertion, substitution and deletion noted by Navarro (2001),

which correspond respectively to upper, upper-left and left neighbouring cells. Whereas that version of

the algorithm added a standard cost of 1 to values from neighbouring cells, the alternative version in

Figure 3.6 shows that just d(i, j) is considered. For two given strings, though, identical values of L arise

from both versions. A cost of 1 for all operations in the alternative achieves the same end (Ackroyd,

1980).

Standard L was adapted by means of a weighting dID that applied just to insertions and deletions. The

cost of substitutions, d(i, j), is retained from the standard version, as shown in Figure 3.7:

g(i, j) = min

 (g(i− 1, j) + dID

(g(i− 1, j − 1) + d(i, j)

(g(i, j − 1) + dID

 insertions: weighted by constant dID

deletions: weighted by constant dID

Figure 3.7: A weighted form of L, from Ackroyd (1980).

The weighting dID in Figure 3.7 carried a value of 2, affecting insertions and deletions equally. WLD for

transforming any part of symbol-string A into B, was the same as for turning B into A (Ackroyd, 1980).

More importantly than the weighting dID itself was the adjustment made to the WLD for symbol-

strings of differing lengths. For any two symbol-strings of respective lengths I and J , that involved first

multiplying the difference in those lengths by the weighting dID. The resulting value was subtracted from

the standard version of L, as the following expression shows:

weightedWLD = WLD − |I − J |dID (Ackroyd, 1980).

That adjustment allowed the WLD to compensate for the lengths of symbol-strings, eliminating any

penalty on words of differing lengths. Subtracting a function of string lengths from L reduced the impact

of values arising from widely differing lengths. The larger any such difference became, the lower the

resulting L. That is not to say that large edit distances were ignored completely; rather, L arising from

differences in string lengths were less influential than those due to substituted symbols. In that way, words

that closely resembled one another apart from the speed of speech were treated as identical. Experiments

showed that spoken English digits were correctly recognised in about 95% cases. For words of more than

one syllable, that rose to nearly 99%, which was deemed as good as might be hoped (Ackroyd, 1980).

Applying Weighted Forms of L to Analysing Text

Work by Ackroyd (1980) well demonstrated the utility of adjusting L for the relative lengths of partici-

pating strings. The symbol-strings examined, though, comprised electronic representations of utterances
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rather of printable English words. Attention now, then, turns to ways that weighted forms of L assist

in analysing text. One such example comes from a study by Paleo (2007) of so-called gazetteers, soft-

ware programmes that search for words in texts. On detecting words that exist in a pre-prepared list,

gazetteers highlight matching regions in any text under analysis. For example, regions that refer to cities

are annotated with the locations of those cities (Paleo, 2007).

Absolute edit distances, though, were not seen as useful, a separation of one character being more

noteworthy in short words than in longer ones. Accordingly, an Approximate Gazetteer dealt with

relative distances, derived as follows. The gazetteer first computed L between a given word from the

supplied list and any region of text. Subsequently, the length of such regions was multiplied by a relative

threshold of between 0.0 and 1.0, giving an absolute threshold against which to compare values of L.

Text regions that yielded values of L below any associated absolute threshold were deemed to be worthy

of annotation by the gazetteer. In that study, the Levenshtein algorithm was seen as a good compromise

between flexibility in handling edit operations, and of computational efficiency. (Paleo, 2007).

Amending the Underlying Algorithm of L

Whereas Paleo (2007) adjusted values of L after they had been calculated, Higuera and Micó (2008)

altered the underlying algorithm. The resulting contextual edit distance accounted for word-lengths in a

Spanish dictionary of over 80,000 words. In fact, differing flavours of L stressed specific aspects of any

comparison. Figure 3.8 shows the first of those distances, dsum, between strings x and y of respective

lengths |x| and |y|. The component dE(x, y) represents the standard edit distance between those strings:

Figure 3.8: Weighting L by means of dsum, from Higuera and Micó (2008).

Although Higuera and Micó (2008) offered little further explanation of the adjusted distance from Figure

3.8, it is important here due to considering the lengths of strings x and y, |x| and |y| respectively. Dividing

the standard edit distance dE by the summed lengths |x| + |y| would reduce L when comparing longer

words. In that respect, standard L would not differentiate between comparing a short word and a very

long one, and comparing two medium-sized words having the same summed length.

In contrast, two further distances dmin and dmax respectively divide dE by the length of the shorter

word, min(|x|, |y|), or of the longer word, max(|x|, |y|). Whatever particular measure is applied, though,

the general rule is that the edit distance d(x, y) is inversely proportional to any word lengths involved,

that is, d ∝ 1
l . In that expression, l might constitute summed lengths, or just the shorter or the longer
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one. In all of those cases, though, values of d tend to diminish as l grows. Any given value of L, then,

would indicate a greater distance between short strings than between longer ones.

3.3.3 A Proposed L′ that Accounts for Word Length

Referring to any refined version of L as L′, the common rule is that L′ ∝ L
d . A given number of deletions,

insertions or replacements between longer strings would produce a smaller value of L′ than would shorter

words. The approach taken here relies just on the simple version of L from Figure 3.2 that uses costs

of 0 and 1. Word lengths, though, will be considered only after first calculating simple L between two

strings. Exactly what that length adjustment entails is addressed next.

The term d was introduced to express various combinations of two words’ lengths. Possibilities

included the sum of lengths, the longer length, the shorter one, and the ratio of the two. Ackroyd (1980)

provided the sole example of using absolute differences in lengths. Even so, that was but part of an

expression involving the additional weighting dID. In fact, that absolute difference in lengths constitutes

the adjustment applied by this thesis.

In illustration, the example of ‘abuse’ versus ‘abusive’ involved both replacements and insertions. All the

same, the value of L = 3 suggests that removing the last three letters would leave the common sub-string

‘abus’. Unfortunately, words that are not related often yield the same result of L = 3, for example,

‘articulate’ compared with ‘particular’. Clearly, a more discerning measure must be sought Rather than

dividing L by some combination of word lengths, the L′ algorithm employed here involves subtraction.

Further, that adjustment will be applied after calculating simple L, in contrast with studies reviewed in

Section 3.3.2 that adjusted the underlying algorithm itself. The adjustment employed here subtracts any

difference in word lengths, d, from L. For two words of respective lengths i and j, then, L′ is calculated

as follows:

absolute difference in word lengths: d = |i− j|

adjusted L: L′ = L− d.

Although that might seem over-simple in comparison to adjustments made by other approaches, the

efficacy of L′ is proved by experiments in improving spelling correction that now follow.
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3.4 Experiments in Improving Spelling Correction

The proposed means of checking spelling corrections were assessed by implementing the pseudo code from

Figures 3.9 and 3.10. The resulting Java class MindmapSpellChecker was run against the collection of

GRiST mind maps to assess the overall effectiveness of those measures. Specific attention was paid to

values of maxL that led to accepting appropriate corrections, while rejecting others.

Method

The first step was to compile a list of unique words from GRiST mind maps. To that end, all nodes were

retrieved from the database that held those mind maps1. Text from each node was transformed to lower

case, then split into separate words by the Java method split() from the String class. Characters other

that alphanumeric ones served as delimiters, and were discarded during that process. For a particular

node, that yielded one or more words comprised of just the letters a− z and the numerals 0− 9. Words

containing numerals were subsequently discarded, and did not participate in the analysis. The following

command, then, splits text in a Java String object called nodeText into an array of single words:

String[] words = nodeText.toLowerCase().split('\\W');

Words resulting from splitting nodes were loaded into a Java TreeSet object. By storing any particular

value just once, such objects omit duplicated entries. The ensuing list served as an extra dictionary

for checking spelling corrections, although the mind map containing any non-word was not consulted.

Suspected errors absent from that list of GRiST words were passed to the Jazzy spelling checker from

Idzelis (2005). Jazzy provides several dictionaries as separate files, of which just two were used: the

general and the U.K. dictionaries; words from the U.S. dictionary did not contribute spelling corrections.

Candidate corrections from Jazzy were further processed by a bespoke Java object, MindmapSpellChecker,

which calculated L and L′ between errors and corresponding suggestions. Although matrices introduced

in Section 3.3.2 revealed shared sub-string between words, that facility will not be used to validate spelling

corrections. Appropriate corrections might be rejected needlessly if, say, a letter must be inserted in order

to correct a misspelling, splitting any shared sub-string to either side of that insertion. The very nature of

spelling correction suggests makes that likely. For that reason, just the Edit Distance from such matrices

will be used to refine suggested corrections.

1Chapter 9 deals in full with retrieving information from GRiST mind maps.
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Proposed refinements for spelling corrections are summarised next as pseudo code in Figure 3.9, which

shows how a given word is researched, and any suggestions evaluated:

Pseudo Code for L′ spelling correction Comments

get corrections for word Retrieve suggestions for the current word

for each correction until one accepted Find the first acceptable suggestion

if correction in GRiST Correction is a word from GRiST mind maps

accept correction Accept proposed correction for the current word

else

if correctionOk() Check acceptability with L′

accept correction Accept proposed correction for the current word

end-if

end-if

end-for

Figure 3.9: Pseudo Code for checking spelling corrections by means of L′.

An empty list from the first step from Figure 3.9 indicates a valid word; otherwise, suggested corrections

are checked in GRiST mind maps, which in that way constitute a dictionary. The loop that processes

spelling corrections will be entered, then, should any suggestions arise. Words that receive no support

from those mind maps are checked further by the function correctionOk()1. Additional pseudo code

for that function appears next as Figure 3.10, which applies L′ to proposed corrections:

Pseudo Code for correctionOk() Comments

get L between word & correction Compute L and L′ = L− d between word & suggestion

if L′ = 0 Length differences account for variation

accept correction Accept proposed correction for the current word

else

if (d = 0 AND L < maxL) Equal lengths, and reasonably similar words

accept correction Accept proposed correction for the current word

end-if

end-if

Figure 3.10: Pseudo code for the correctionOk() function called from Figure 3.9.

Pseudo code from Figure 3.10 first checks for corrections having L′ = 0 in comparison with spelling

mistakes; such suggestions are accepted. The second check, applied when L′ > 0, is performed on words

that yield corrections having the same length. In such instances, L′ is checked against a constant given

as maxL. Suggestions are rejected should L exceed that constant, indicating excessive variation.

1Please note the font used to depict functions such as correctionOk(), and subsequently, all Java classes.
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The first candidate separated by L′ = 0 from any offending word was accepted automatically. Otherwise,

simple L assessed corrections that were the same length as the word that produced them. Values from

the inclusive range 0..2 were applied as the constant maxL, which defined successively more lenient

criteria for accepting corrections. Suggestions were dismissed should comparisons with offending words

yield L > 2. Such unrecognised words were subsequently researched in the list from GRiST, in search of

smaller words that yielded L′ = 0. That, in turn, would reveal valid words embedded in misspellings.

Non-words arising from conjoined words were split into separate, valid words. That was done by a

combination of L′ and researching words from GRiST mind maps. Non-words were compared against each

word from the list compiled from those mind maps. Cases having L′ = 0 were added to a TreeSet from

an array of such objects; each element of that array represented a particular non-word. On completion,

MindmapSpellChecker examined the resulting list of TreeSets. Should any such object contain more

than just a single word, the lengths of those words were summed. Non-words having lengths equal to the

summed length from the associated TreeSet were split into those corresponding words.

Results

GRiST mind maps contained 4447 unique words, of which 4253 were wholly alphabetic. Jazzy failed to

recognise 374 of those 4253 words, and offered suggestions for 337. Of those suggestions, 212 appeared in

GRiST mind maps, and were accepted as novel words. Of the remaining 125 unrecognised words assessed

by L′, 59 yielded corrections that gave L′ = 0. A further 30 corrections of identical length to the word

producing them were accepted by means of the standard Edit Distance, where L = 1; an additional 11

corrections were accepted by L = 2. Suggestions for the remaining 37 words were rejected as having L

greater than the ceiling of maxL = 2. A summary of results presented so far follows as Table 3.1:

Note Test Performed on Non-Word vs. Jazzy Suggestion Counts

Rejected words No suggestions from Jazzy 37

Accepted
suggestions

Found as a word in GRiST mind maps 212

L′ = 0 59

d = 0 and L = 1 30

d = 0 and L = 2 11

Rejected
suggestions

All suggestions failed the above tests 25

Totals 374

Table 3.1: Summary of Spelling Correction Results.

Details of results from Table 3.1 are presented next in four parts. First of all come corrections that were

accepted solely by consulting Jazzy, to show how it performed unaided. After those come corrections that

found support from GRiST mind maps. The third set of results shows suggestions that were accepted
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due to checking L and L′. After that come results from Jazzy alone that improved on consulting GRiST

mind maps, or on checking L and L′. For each of those first three sets of results, acceptable corrections

are shown first. Separate tables of inappropriate corrections, where needed, appear immediately after any

suitable ones. The fourth main set shows results that corrected conjoined words by splitting them into

separate, valid words. Following the main four sets of results from spelling correction, a supplementary

set highlights corrections that will subsequently affect stemming.

Results I for Jazzy corrections Alone

Taking the first suggestion from Jazzy for any dubious word sometimes yielded suitable corrections. A

few examples are presented next as Table 3.2:

Non-Word Suggestion Non-Word Suggestion Non-Word Suggestion

aquire acquire flucky fluky survelience surveillance

begining beginning likliehood likelihood tattooes tattoos

colabarating collaborating openess openness welbeing wellbeing

Table 3.2: Appropriate spelling corrections from Jazzy alone.

In contrast to corrections from Table 3.2, Jazzy accepted various candidate corrections that, to a human,

would be blatantly misleading. Examples of such inappropriate suggestions follow as Table 3.3:

Non-Word Suggestion Non-Word Suggestion Non-Word Suggestion

agrophoia agraphia keyworker coworker sytem stem

benzoes bonzes parasuicidal presystole untreatable intratubal

clorazil gloriously premorbid pyromorphite whinging winging

Table 3.3: Inappropriate spelling corrections from Jazzy alone.

Discussion I of Jazzy corrections Alone

The first set of results, then, determined the efficacy of simply consulting Jazzy. As Table 3.2 showed,

appropriate suggestions arose for misspellings of various lengths. Those cases needed no further analysis,

any first suggestion from Jazzy proving adequate. Conversely, Table 3.3 showed various unacceptable

suggestions from Jazzy. Indeed, certain of those words were not mistakes at all, but valid words missing

from Jazzy’s dictionaries. That echoes the distinction made by Kukich (1993) between non-words which

constitute true errors, and those that, while unrecognised, are actually valid. Examples included ‘para-

suicidal’ and ‘clorazil’, having respective corrections ‘presystole’ and ‘gloriously’. To a human eye, such

suggestions bear little, if any, resemblance to corresponding suspect words.

Specialised medical terminology, though, might legitimately be excluded from general-purpose checkers
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such as Jazzy. Even so, less arcane words such as ‘keyworker’, ‘untreatable’ and ‘whinging’ failed to find

dictionary entries. Corrections for truly misspelt words suffered a similar problem. Although ‘agrophoia’

was an error, the suggestion of ‘agraphia’ would be misleading. The intended word ‘agrophobia’ was not

offered as a suggestion, revealing the limitations of dictionary files searched by Jazzy. Perhaps one or

more additional dictionaries might yield a majority decision in such cases; even so, nothing short of a full

list of English words could be seen as complete. Any such list would not be current for very long, due to

the dynamic nature of English noted by Kukich (1993).

Results II for Jazzy Corrections Researched in GRiST Mind Maps

Several misspellings yielded just a sole suggestion. In 148 such cases, suggestions existed in one or more

GRiST mind maps. Table 3.4 gives examples of sole corrections accepted in that way:

Non-Word Suggestion Non-Word Suggestion Non-Word Suggestion

abusice abusive generalisied generalised oppossed opposed

breavement bereavement helplesness helplessness pyschotic psychotic

childhhood childhood ilness illness referal referral

depresed depressed litrature literature shittiy shitty

elderely elderly mpulsive impulsive trearful tearful

finacial financial nihlistic nihilistic uncomon uncommon

Table 3.4: Appropriate sole suggestions accepted by reference to GRiST mind maps.

In addition, various unrecognised words yielded several suggestions. In 41 such cases, the first suggestion

was accepted on finding support in one or more GRiST mind maps. A selection of those corrections

appears next as Table 3.5. The number of suggestions for any word from the Non-Word column is

given under column n, followed by the first correction from any proffered list. Examples are ordered

alphabetically by the number of suggestions:

Non-Word
Suggestions

Non-Word
Suggestions

Non-Word
Suggestions

n 1
st n 1

st n 1
st

absense 2 absence neglectt 2 neglect reqire 5 require

diference 2 difference severly 2 severely worring 5 worrying

familiy 2 family diferent 3 different

Table 3.5: Appropriate first suggestions accepted by referring to GRiST.

In cases of multiple suggestions, the first correction in any such list did not, sometimes, exist in GRiST’s

mind maps. The second suggestion from Jazzy, though, was found in those mind maps in 14 such cases,

a selection of which appear next as Table 3.6. Preferred second suggestions in that table appear in bold

type; examples are again ordered alphabetically by number of suggestions:
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Non-Word
Suggestions

Non-Word
Suggestions

n 1
st

2
nd n 1

st
2
nd

especialy 2 especial especially illnesss 3 illness’s illnesses

sayng 2 sang saying tenous 5 tenus tenuous

seperate 2 sperate separate ligher 6 liger lighter

Table 3.6: Appropriate second suggestions accepted by referring to GRiST mind maps.

Note that all second suggestions from Table 3.6 were longer than corresponding first entries; that was

due entirely to Jazzy. Further, second suggestions were better than those offered before them.

Discussion II of Jazzy Corrections Researched in GRiST Mind Maps

Suggestions from Jazzy, then, were researched in a list of words from GRiST mind maps. Cases from

Table 3.4 where Jazzy offered just a single correction showed various acceptable suggestions. Corrections

such as ‘psychotic’ for ‘pyschotic’ proved Jazzy to contain certain mental-health terms, at least; such

words, though, enjoy relatively common usage. That is further true of corrections such as ‘referral’,

‘depressed’, and ‘nihilistic’. In jazzy’s favour is the suggestion ‘shitty’ for ‘shittiy’ that shows a coverage

of slang terms. Note, though, that the difference between, say, ‘psychotic’ and ‘pyschotic’ arises from

transposing the letters ‘sy’ for ‘ys’; in terms of edit distance, two substitutions constitutes a relatively

small difference that should not challenge Jazzy. Support from GRiST mind maps, though, further boosts

confidence in such corrections.

A similar approach yielded results from Table 3.5, except that any corrections appeared as the first

entries in longer lists of suggestions. Finding corrections in GRiST mind maps terminated such searches

immediately, ignoring any further suggestions: the first one proved acceptable. Suggestions were, though,

relatively similar to any offending words; the word ‘reqire’, for example, needs just a single insertion of

‘u’ to make ‘require’. Because such suggestions were but competing candidates, support from GRiST

mind maps was all the more important in selecting the best correction.

Table 3.6 further presented corrections appearing second in any list from Jazzy. Interestingly, Jazzy

presented shorter corrections before longer ones; take, for example, the misspelling ‘ligher’ that yielded

six suggestions. The first one, ‘liger’, is a cross between a male lion and a tigress, whereas the longer sub-

sequent entry ‘lighter’ was a far more likely replacement. For longer lists of suggestions, then, researching

GRiST mind maps avoided inappropriate corrections in favour of longer, apposite ones.

Ignoring whatever mind map contained any non-word avoided taking support from the author respon-

sible. Cutting and pasting non-words in FreeMind would lend false evidence of such words’ true existence,

whereas usage by a further author is more convincing. In fact, such research yielded no inappropriate

corrections, regardless of position in any list of suggestions. That is not to say, though, that all spelling
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errors were rectified in that way. Corrections that failed to find support from GRiST mind maps, then,

were further checked by means of L′; results from that procedure are presented next.

Results IIIa for Spelling Corrections Checked by L′ = 0

In the absence of any support from GRiST mind maps, then, proposed spelling corrections were analysed

by means of L′. Suggestions at an adjusted distance of L′ = 0 from corresponding unrecognised words

were accepted without further checks; a selection of such corrections appears next in Table 3.7. Column

L lists simple edit distances between words and any suggested corrections. Differences in length between

words and suggestions appear under column d, with the resulting adjusted distance under L′:

L d L′ Non-Word Suggestion L d L′ Non-Word Suggestion

1 1 0

acurately accurately

1 1 0

occurence occurrence

develomental developmental poteniate potentiate

embarassment embarrassment stupororus stuporous

forefully forcefully targetting targeting

hetrosexual heterosexual 2 2 monsylabic monosyllabic

Table 3.7: Appropriate spelling corrections accepted by L′ = 0.

All but one of the suggestions from that table were the first or only one offered by Jazzy, as was the case

for subsequent results in this section1. All of the inappropriate spelling corrections accepted by applying

a criterion of L′ = 0 are presented next as Table 3.8:

L d L′ Non-Word Suggestion L d L′ Non-Word Suggestion

1 1 0

paradoxicaly paradoxical
1 1

0

parkinsons parkinson

spliff spiff whinging winging

factly fatly 2 2 ptsd ptosed

Table 3.8: Inappropriate spelling corrections accepted by L′ = 0.

Discussion IIIa of Spelling Corrections Checked by L′ = 0

Suggestions from Jazzy, then, might not exist in any GRiST mind map. In such cases, corrections were

compared with any word they sought to replace. To that end, L′ quantified any similarity between non-

words and candidate corrections. For example, the value of L = 1 between the replacement ‘heterosexual’

for ‘hetrosexual’ from Table 3.7 indicated just a single insertion, deletion, or substitution. The difference

in those words’ lengths, d = 1, gives L′ = L− d = 1− 1 = 0. That lengths differed by 1, then, accounts

for all the variation noted by L = 1. In other words, a letter must have been inserted, rather than deleted

or substituted; that is the letter ‘e’ inserted between ‘het’ and ‘rosexual’. In a similar way, the correction

‘monosyllabic’ was accepted for ‘monsylabic’. Although that case gave d = 2 and l = 2, the value of

L′ = L− d = 0 indicated two insertions: the letter ‘o’ after ‘mon’, and a second ‘l’ in ‘sylabic’.

1The sole exception was the second suggestion ‘wouldst’ that replaced ‘wouldnt’.
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Table 3.7 showed the majority of suggestions accepted in that way to be suitable, with exceptions

listed in Table 3.8. Of those inappropriate substitutions, ‘ptsd’ was an acronym for post-traumatic stress

disorder rather than a real word. For the misspelling ‘paradoxicaly’, accepting the first suggestion that

had L′ = 0 led to abandoning the search in favour of ‘paradoxical’. The more suitable word ‘paradoxically’

came second in the list, due to Jazzy’s tendency to offer shorter suggestions first. Checking might be

allowed to continue, stopping on the first unlikely suggestion rather than on the first reasonable one.

Further problems arose from accepting suggestions from single-entry lists, when any suggestion similar

enough to the corresponding non-word was applied automatically. For example, lack of support for the

word ‘spliff’ elsewhere in GRiST mind maps led to L′ = 0 accepting ‘spiff’ as a replacement. In fact, the

node [patient x .half a spliff] was a child of [cannabis] that in turn branched from [substance

misuse] by way of [drugs]. Context, as Kukich (1993) and Wilcox-O’Hearn et al. (1998) note, might

contribute knowledge that leads machines to better choices. That, though, would mean considering

semantic distance, in order to link ‘spliff’, which is actually a cannabis cigarette, to related words that

concern drug abuse.

Results IIIb for Spelling Corrections Checked by d = 0 and L′ = 1

Whereas L′ = 0 in Table 3.8 guaranteed acceptance, cases having L′ > 0 were subjected to further

checking by means of L, the standard Edit Distance. That metric was applied to non-words having

suggestions of identical length, that is, when d = 0. An acceptance threshold of L = 1 in such cases gave

the results in Table 3.9; the redundant L′ column is retained to highlight that L′ = L when d = 0:

L d L′ Non-Word Suggestion L d L′ Non-Word Suggestion

1 0 1

antecedant antecedent

1 0 1

genisis genesis

collabaration collaboration perepheral peripheral

dysthimia dysthymia reduntant redundant

fundemental fundamental tranqyillisers tranquillisers

Table 3.9: Spelling Corrections Accepted by d = 0 and L = 1.

While corrections from Table 3.8 were appropriate, others were less so. Such inappropriate corrections

accepted by d = 0 and L = 1 appear next as Table 3.10:

L d L′ Non-Word Suggestion L d L′ Non-Word Suggestion

1 0 1

aspergers aspersers

1 0 1

detox detor

bugetting begetting rejecton rejector

cotard dotard wouldnt wouldst

Table 3.10: Inappropriate Corrections Accepted by d = 0 and L = 1.
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Discussion IIIb of Spelling Corrections Checked by d = 0 and L′ = 1

Further to cases having L′ = 0, Table 3.9 presented largely suitable corrections separated by L′ = 1 from

any suspect word. In those cases, suggestions were accepted should d = 0, indicating a corresponding non-

word of identical length. In that way, the error ‘tranqyillisers’ was correctly changed to ‘tranquillisers’.

Identical lengths of 14 letters gave d = 0; a value of L = 1 further yielded L′ = 1, indicating the sole

substitution of ‘u’ for ‘y’. In fact, the majority of corrections from Table 3.9 involved replacing one vowel

with another, such as in ‘peripheral’ for ‘perepheral, ‘dysthymia’ for ‘dysthimia’, and ‘fundamental’ for

’fundemental’1; that suggests a rule to be researched further. For now, the correction ‘tranquillisers’ in

particular encourages links between forms of drugs, whether obtained on prescription or off the street.

The few exceptions that arose were listed in Table 3.10. Of those, the word ‘aspergers’ was a medical

term missing from Jazzy’s dictionaries, as was the missing word ‘detox’, a slang term for detoxification

therapy undergone by drug addicts. Surprisingly, ‘rejector’ was the sole suggestion offered for ‘rejecton’;

‘rejection’ would have been preferable, emphasising that suggestions can be checked only if they actually

arise.

Results IIIc for Spelling Corrections Checked by d = 0 and L′ = 2

While continuing to insist on identical lengths, allowing slightly more variation between words and sug-

gested corrections produced the results Table 3.11, for cases where d = 0 and L = 2:

L d L′ Non-Word Suggestion L d L′ Non-Word Suggestion

2 0 2

assualt assault

2 0 2

sequelea sequelae

decieve deceive talior tailor

exagerrated exaggerated wierdly weirdly

heirarchy hierarchy

Table 3.11: Appropriate Spelling Corrections Accepted by d = 0 and L = 2.

The next set of results in Table 3.12 show inappropriate suggestions accepted by d = 0 and L = 2:

L d L′ Non-Word Suggestion L d L′ Non-Word Suggestion

2 0 2
naomi nomoi

2 0 2
respitory raspatory

underactive interactive

Table 3.12: Inappropriate Spelling Corrections Accepted by d = 0 and L = 2.

Discussion IIIc of Spelling Corrections Checked by d = 0 and L′ = 2

Results for L′ = 1 between non-words and candidate corrections raised confidence in accepting such

suggestions; results arising for d = 0 and L′ = 2 from Table 3.11 further proved that approach. Having

1Treating ‘y’ as a vowel, as indicated by Phonics on the Web at [http://www.phonicsontheweb.com/y-roles.php.
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adjusted for word length, allowing two edit operations identified and corrected spelling errors. Replace-

ments for ‘decieve’, ‘wierdly’ and ‘heirarchy’ reflected authors’ tendency to transpose the vowel pairs ‘ie’

and ‘ei’, which accounts for two substitutions found by L = 2. The first two examples were corrected

by replacing ‘ie’ by ‘ei’, while the reverse worked for the non-word ‘heirarchy’. The required two substi-

tutions for ‘talior’, though, involved a consonant and a vowel, transforming ‘li’ to ‘il’ in the correction

‘tailor’. Those letters, though, were contiguous, unlike those in ‘exagerrated’. In that case, L = 2 reflected

deleting a ‘g’ and inserting the letter ‘r’ to give ‘exaggerated’.

Results IIId for Spelling Corrections Checked by L′ > 0

So far, suggestions have been accepted for comparisons having L 6 2 combined with d = 0. Non-words

having suggestions of differing length, though, had d > 0. In such cases, corresponding values of L and L′

differed accordingly. Suggestions for non-words were rejected should L′ exceed zero, as Table 3.13 shows.

Those results are sorted by L′, which ranges from 1 to 7; acceptable suggestions that were wrongly refused

appear in bold type:

L d L′ Non-Word Suggestion L d L′ Non-Word Suggestion

2 1 1 agrophoia agraphia 6 3 3 premorbid pyromorphite

2 1 1 colabarating collaborating 4 0 4 likelyto ligulate

3 1 2 keyworker coworker 6 2 4 clorazil gloriously

3 1 2 survelience surveillance 6 2 4 asbergers icebreakers

3 0 3 seroxat Xeroxed 9 2 7 parasuicidal presystole

Table 3.13: Spelling corrections rejected by d = 0 and L > 2, or by d > 0 and L′ > 0.

Discussion IIId of Spelling Corrections Checked by L′ > 0

Raising the ceiling maxL to 2, then, yielded the erroneous corrections from Table 3.12. Perhaps that

‘Naomi’ is a name might prevent it being replaced, although that would entail external sources of knowl-

edge such as those studied by Sure et al. (2002) and Lin et al. (2005). Because the error ‘respitory’ arose

from the node [agitate respitory conditions], it seems reasonable to assume ‘respiratory’ as the

intended word, though Jazzy did not offer that suggestion. Adding ‘r’ to that error to give ‘respirtory’

forced the appropriate correction from a command-line check. Accomplishing that by reducing L from

2 to 1 indicates an underlying consideration of edit distance by Jazzy. A further unsuitable correction

accepted by L′ = 2 and d = 0 was ‘interactive’ for ‘underactive’, which should be hyphenated1.

Results discussed so far may seem obvious to humans; suggestions from Table 3.13 that failed the

test for d = 0 and L − d = 2, though, reveal the value of refining spelling corrections. Table 3.3, which

showed unrefined Jazzy corrections, showed ‘agraphia’ replacing non-word ‘agrophoia’. That correction,

1Jazzy duly accepts ‘under-active’ as valid.
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though, was rejected by means of checking L′. Unfortunately, that does not much help the search for

concepts in GRiST mind maps; rather than introducing the word ‘agraphia’ into the information base

those mind maps comprise, ‘agrophoia’ was retained as a novel word. The desired word ‘agrophobia’

was not uncovered. On the other hand, rejecting the correction ‘pyromorphite’ for the medical term

‘premorbid’ meant retaining a valid and important word.

Two results from Table 3.13 had d = 0, indicating non-words and corrections of identical length. The

first example, ‘seroxat’ was rejected as a replacement for ‘Xeroxed’ due to L′ > 2. That value arose from

L = 3, which gave L′ = L − d = 3. A difference of three edit operations in words of identical length,

then, was deemed too great. In a similar way, the suggestion ‘ligulate’ for ‘likelyto’ was rejected because

of L′ = 4. Although leaving ‘likelyto’ intact, that non-word is preferable to ‘ligulate’; the sub-string

‘likely’ might yet match related words from GRiST mind map nodes. Regrettably, valid suggestions

‘collaborating’ and ‘surveillance’ were rejected. That they are long words suggests that values of d = 1

more acceptable in such cases, rather than d = 0.

Results IV for Corrections that Split Words

Lastly come results for composite words resolved by research in GRiST mind maps. All misspellings

under the Non-Word column of Table 3.14 gave L′ = 0 when compared with smaller words from those

mind maps. Corresponding shorter words appear under the columns headed Separated. Three words

from Table 3.14, ‘anemia’, ‘hypo’ and ‘thoria’, did not exist in any GRiST mind map, and appear in bold

type. Non-words that failed to be split are likewise shown in bold:

Non-Word Separated Non-Word Separated Non-Word Separated

alcoholicsdrug
alcoholic

courtproceedings
court

majorityclients
clients

drug proceedings majority

causesanemia
causes

disinhibited
dis

otherrisk
other

anemia inhibited risk

childcare
care

hypothoria
hypo

otherservices
other

child thoria services

confusedmoving
confused

killthemselves
kill

preferedmethod
method

moving themselves prefer

Table 3.14: Corrections that changed when further checks were applied.

One of the emboldened words from Table 3.14, ‘anemia’, was deemed valid on having Jazzy research the

supplied U.S. dictionary. Conversely, ‘hypo’ and ‘thoria’ did not appear as separate words in any GRiST

mind map, and was left intact.
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Discussion IV of Corrections that Split Words

Results from Table 3.14 showed corrections that split misspellings into separate words. That was accom-

plished by comparing such misspellings with all other words from GRiST mind maps. Values of L′ = 0

between composite words and those from mind maps meant that corresponding values of L arose entirely

from insertions at the beginning or at the end of such smaller words. That, in turn, indicated a shorter

word embedded in a longer one. Although one such sorter word, ‘anemia’, did not exist in any GRiST

mind map, the U.S. dictionary researched by Jazzy reported it as valid. Researching that U.S. word in

the U.K. dictionary yielded the more appropriate correction ‘anaemia’.

Of all the conjoined words from Table 3.14, just one was left intact. The word ‘hypothoria’, though,

is a medical term that well fits the information base of GRiST mind maps. Indeed, ‘hypo’ is actually

a prefix that is best ignored as an actual word. Remaining composite words were successfully split by

means of applying the criterion L′ = 0. Take, for example, the words ‘majority’ and ‘clients’ that comprise

‘majorityclients’, or ‘alcoholicsdrug’ that yields ‘alcoholics’ and ‘drug’. Separating such important words

allows them to participate in the tuples nodeID → concept and concept → concept. In that way,

knowledge has arisen from nonsense, demonstrating the advantage of L′ over L.

In contrast, standard L would have missed that aspect of words such as ‘alcoholicsdrug’. Respective

values of 4 and 10 between ‘alcoholicsdrug’ and the shorter words ‘alcoholics’ and ‘drug’ would reflect

little similarity, particularly in the latter case. Those values of L, though, fail to reflect that ‘drug’,

say, was appended to ‘alcoholics’ to make ‘alcoholicsdrug’. Subtracting from L the difference in length

between any two strings d, though, cancels out insertions to reveal smaller, valid words.

Supplementary Results for Corrections that Affect Stemming

The need for accurate atomic concepts was raised in Chapter 2; that, in turn, relies on stems of optimal

length that neither over- nor under-stem words from GRiST mind maps. With that in mind, Table 3.15

shows corrections that will affect the length of any shared sub-strings between related words. Three stems

are considered; for each stem, pairs of columns give groups of non-words to the left that, corrected, yield

those on the right:

Stem: ‘agress’ Stem: ‘assess’ Stem: ‘differ’

Non-Word Correction Non-Word Correction Non-Word Correction

aggession aggression assessing assessing diference difference

aggresion aggression assesment assessment diferent different

aggresive aggressive assessmenr assessment difering differing

aggresively aggressively differeniate differentiate

Table 3.15: Corrections that changed when further checks were applied.
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Discussion of Supplementary Results that Affect Stemming

Various results from the four main sets were re-presented in Table 3.15 to show spelling corrections that

affect stemming. Words from the first pair of columns expressed variations on the concept of aggression.

Corrections for all four of those misspellings would add an extra ‘s’ to the best stem for that group of

words, giving ‘agress’ rather than ‘agres’1. In the middle pair of columns, ‘s’ is inserted into ‘assessing’

and ‘assesment’ to give ‘assessing’ and ‘assessment’ respectively. Otherwise, the stem ‘asses’ might be

taken as the plural of ‘ass’. In addition, the non-word ‘assessmenr’ is replaced by ‘assessment’, which

already exists in the group. In that way, the number of words to consider while stemming is reduced. For

the right-hand pair of columns, inserting the letter ‘f’ into words such as ‘difering’ and ‘diferent’ extends

the stem ‘difer’ to ‘differ’2.

General Discussion of Spelling Correction Results

The approach presented in this section aimed to accept suitable corrections from Jazzy, while rejecting

inappropriate suggestions. Using GRiST mind maps as an additional dictionary proved to be the single

most successful way of achieving that end. All the same, taking into consideration L and L′ successfully

differentiated likely suggestions from those best rejected. The proposed approach to refining spelling

corrections makes that of Petkovic, Kostanjcar, and Pale (2005) seem overly simplistic. In that study,

suggestions separated from any non-word by 2, or sometimes 3, edit operations were accepted as correc-

tions. The measure L′ offered here proved more discerning in handling unrecognised words from GRiST

mind maps.

As Navarro (2001) notes, though, L in any form is best applied to shorter texts; dynamic programming

algorithms take unacceptably long to derive L between larger strings, due to comparing each source

letter with every letter in any target string. Although all words from GRiST mind maps were researched

when splitting composite non-words, L was applied to single pairs of words, and worked quickly. The

relatively small amount of words in GRiST helped, there. Should larger repositories be examined, the

MindmapSpellChecker Java programme might take unacceptably long to process words in that way.

Allowing corrections that exist as words in one or more mind maps yielded reliable results. No

inappropriate corrections were accepted, regardless of where in any list of suggestions they occurred.

Appropriate suggestions often appeared first in a list, sometimes by themselves. The first correction from

longer lists was sometimes rejected in preference for the second suggestion. In those cases, researching a

dictionary derived from the problem domain avoided inappropriate corrections. That all such corrections

improved on Jazzy supports viewing of GRiST mind maps as a valuable body of knowledge.

1Agres is, in fact, a town in Valencia, Spain - see http://en.wikipedia.org/wiki/Agres
2Difer is actually a yacht manufacturer - see http://www.difer-yachts.com/
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3.5. QUALITATIVE & QUANTITATIVE COMPARISON WITH JAZZY

3.5 Qualitative & Quantitative Comparison with Jazzy

To illustrate what improvements accrue from using L for spelling correction, rather than algorithms such

as Jazzy, the earlier summary of results is reproduced below as Table 3.16. Of the 374 non-words detected

by Jazzy, 37 found no correction at all. Of the remainder, 212 were used in separate experts’ mind maps,

and accepted as valid words. Jazzy, then, was asked to supply just 125 suggestions for supposed non-

words. Of those, 100 corrections were accepted because they were close enough to the corresponding

spelling mistake. The remaining 25, though, were rejected, and the offending word left unchanged:

Note Test Performed on Non-Word vs. Jazzy Suggestion Counts

Rejected words No suggestions from Jazzy 37

Accepted
suggestions

Found as a word in GRiST mind maps 212

L′ = 0 59

d = 0 and L = 1 30

d = 0 and L = 2 11

Rejected
suggestions

All suggestions failed the above tests 25

Totals 374

Table 3.16: Summary of Spelling Correction Results (Reprise).

Table 3.16 shows that considerably less of Jazzy’s suggestions were accepted when subjected to additional

processing. After further checking, what Jazzy deemed to be non-words were found more likely to be

unknown yet valid words. That is the main improvement made by this thesis: instead of blindly accepting

Jazzy’s first suggestion, novel words were accepted as important concepts for the knowledge base of GRiST

mind maps. In that sense, rejecting inappropriate suggestions was as important as any actual corrections

made.

3.6 Chapter Discussion

In fact, two discussions follow now. The first compares the approach assessed here by experiments against

contrasting techniques reviewed in Section 3.2. The second discussion highlights ways in which applying

L′ helped to refine suggested spelling corrections for non-words from GRiST mind maps. To begin, then,

by considering that approach in relation to other work.
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Spelling Correction by Means of L′ in Contrast To Reviewed Approaches

Automated spelling corrections, while often inappropriate, are the best that any spelling checker might

find. Any information base arising from GRiST mind maps, though, would suffer should misleading re-

placements be accepted; a more discerning approach, therefore, was brought to bear on correcting spelling

errors automatically. That, in turn, demanded addressing the three challenges raised by Kukich (1993):

detecting non-words, correcting isolated spelling errors, and considering the context of any misspelled

words.

The first of those challenges was met by means of the Jazzy spelling checker; any word from GRiST

that generated spelling suggestions was, it follows, a non-word. Rather than automatically taking the

first suggestion for any non-word, though, further analysis determined the most acceptable, if any. Should

that analysis reveal excessive variation between a given non-word and any suggested corrections, what

might have been spelling errors were retained as valid novel words. To that end, refinement by means of

L and L′ effectively undid spelling errors by determining the number of inserted, deleted or substituted

letters needed to transform a given non-word into any proposed correction. That process was illustrated

on a superficial level by means of a word-ladder puzzle. In a similar way, though, the Edit Distance L

quantified variation between text strings that might be seen as a far more challenging word ladder.

Indeed, Brill and Moore (2008) note that most spelling checkers use the Edit Distance to compare

words. Rather than isolated words, though, Kernighan et al. (1990) addressed triples of words, comprising

a spelling mistake and two candidate replacements. Variation between words in any triple, though, was

limited to an Edit Distance of one: words in any triple differed by just a single inserted, deleted or

substituted letter. In addition, human judges assessed such candidate corrections in advance, in order to

provide a training dataset. In an observation similar to that made by Buckingham and Adams (2006)

about pruning GRiST mind maps, that task proved more difficult and time consuming. In contrast,

the approach taken here was fully automated, and required no training. Further, the measure used by

Kernighan et al. (1990) was specific to English. In contrast, my approach based on L′ is able to process

whatever alphabet, even non-linguistic ones.

Working at a finer granularity than whole words, Kukich (1993) used n-grams of letters to generate

reliable spelling corrections. More likely combinations of letters were treated as valid, even though they

might not be recognised by any spelling checker. The approach described here, though, treated words

primarily as strings of characters from a given alphabet; comparisons were limited to just pairs of letters

from corresponding source and target words. All the same, whole words were important in studies by

Wilcox-O’Hearn et al. (1998), by Kernighan et al. (1990), and by Mcnamee et al. (2001), which researched

unrecognised words in the very texts under investigation. Those studies treated as valid any frequently
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occurring non-words. A similar approach was used here, though in absolute terms, rather than by word

frequencies. Non-words used by one or more separate GRiST authors were left intact, which admitted

various specialised terms associated with mental health risks.

Although those studies highlighted the efficacy of using any body of text as a dictionary in itself, certain

shortcomings were evident. Notably, Wilcox-O’Hearn et al. (1998) handled just those sentences containing

a sole spelling error; in contrast, the approach described here copes with numerous spelling errors in any

mind map node. In addition, Kernighan et al. (1990) underestimated the severity of spelling errors,

allowing candidate corrections separated by just a single edit operation from any misspelling. That

was further the case in a patent application made by Brill and Moore (2008). Indeed, they stress that

approach’s facility with strings of arbitrary size. That, though, is actually inherent in L, and true of any

approach that uses it.

In a broader sense, context might cover the meanings of words; such approaches, though were rejected

both by Kukich (1993) and by Wilcox-O’Hearn et al. (1998) as over-complex, and no better than purely

text-based techniques. Concurring with that view, the proposed approach based on L and L′ described

in this chapter successfully corrected misspelled words, while leaving intact novel, though valid, words.

Having, then, discussed the proposed approach to spelling correction in relation to other work, particular

contributions to GRiST are addressed next.

Checking Spelling in Mind Maps by Means of L and L′

The overall aim of this chapter lay in identifying, and possibly correcting, non-words from GRiST mind

maps. Misspelled words detract from the accuracy and coverage of any information base arising from

those mind maps; inappropriate corrections, though, would be similarly damaging. Indeed, words such

as ‘parasuicidal’ and ‘clorazil’ were not mistakes at all, but valid words unknown to Jazzy. Specialised

medical terminology, though, might legitimately be excluded from general-purpose checkers; even so, the

less arcane words ‘keyworker’ and ‘untreatable’ were likewise absent from Jazzy. Respective suggestions

‘presystole’ and ‘gloriously’, though, were rejected, and those novel words retained. Despite allowing for

word-length, L′ detected excessive variation between corrections and corresponding non-words.

In certain cases, suggestions such as ‘psychotic’ for ‘pyschotic’ were acceptable, proving Jazzy to

contain at least some mental-health terms; such words, though, enjoy relatively common usage. Further,

the correction ‘shitty’ for ‘shittiy’ showed a degree of coverage for slang terms. Longer lists of suggestions,

though, benefited from researching candidate corrections in GRiST mind maps. Rather than taking the

shortest suggestion that normally takes precedence in Jazzy, such research revealed better options. In

that way, the non-word ‘worring’ was corrected to ‘worrying’ found elsewhere in GRiST mind maps,

rather than the shorter suggestion ‘warring’. Further, context in respect of those mind maps might
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involve hierarchical clues. Although ‘spliff’ appeared just once in the entire collection, a parent node of

[drugs] might discourage taking Jazzy’s offer of ‘spiff’ as a replacement. That, though, would demand

a consideration of semantic distance in addition to the Edit Distance.

Rejecting inappropriate suggestions, then, was of equal importance as retaining valid, though un-

known, ones. A further advantage of applying spelling correction prior to the main task of extracting

knowledge was in splitting long strings into separate words. In addition to removing invalid words, novel

ones were generated in that way, for example, ‘alcoholics’ and ‘drug’ replacing ‘alcoholicsdrug’. Whereas

standard L between such words would indicate great variation, L′ adjusted for word-lengths to reveal

underlying shared sub-strings. Although inappropriate corrections continued to arise, refinements applied

here reduced that number dramatically. As a result, non-words that might have been excluded in fact

enriched the information base, and were allowed to participate in further analyses.

3.7 Chapter Summary

After introducing the need for spelling correction before fully analysing GRiST mind maps, an overview

of automated spelling correction revealed three challenges: detecting non-words, correcting isolated mis-

spellings, and accounting for the context of misspellings. Having shown ways in which spelling mistakes

arise, and approaches to resolving such errors, this chapter proceeded with an approach to refining sug-

gestions for non-words from GRiST mind maps. The popular Levenshtein algorithm, L, was introduced

as a measure of Edit Distance between non-words and any alternatives offered.

Various studies, though, have refined that metric to allow for the lengths of any strings under comparison.

Following that lead, the proposed L′, accounted for word-lengths, ensuring that suggestions resembled any

corresponding non-word. Subsequently, experiments assessed improvements arising from that approach to

spelling correction, and discussed any results. This summary now closes the chapter, and turns attention

to the role of L′ in stemming.
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4.1 Introduction

Chapter 2 showed that intensional knowledge might be extracted from the extensional variety held in

GRiST mind maps. The dual processes of classification and normalisation yielded the tuple nodeID →

concept, records from which reflect particular ideas from a specified node. Such records allow GRiST

mind maps to act as an information base of ideas about mental health risks. Rather than holding actual

words, though, records from that tuple store shorter strings that match portions of related words. Within

any group of such words, members will contain that sub-string, which is called a stem, and any process

that identifies them, stemming. After spelling correction, then, stemming is the second challenge facing

this automated analysis of GRiST mind maps. To that end, the Edit Distance that helped to refine

suggested spelling corrections will further aid stemming.

Before addressing mind maps specifically, though, an overview describes current approaches to stem-

ming in general. Existing studies will be shown to derive stems from isolated words, and further to account

for context during stemming. Following that comes an exposition on extracting stems from GRiST mind

maps by means of adjusted Edit Distance, L′. Subsequent experiments assess the proposed approach to

stemming mind map concepts. Although results from each experiment are discussed as they arise, an

overall chapter discussion assesses the value of applying L′ to stemming in light of those experiments,

before a summary closes the chapter. To start, then, with the promised overview of stemming.

4.2 An Overview of Stemming

In a review of approaches to automated text analysis, Aas and Eikvil (1999) note the ever-increasing

amount of information on the Internet, and see a growing need for helping users to manage and search

such resources; the time and money required to categorise information by hand makes automation in-

creasingly attractive. To that end, a process of feature extraction might transform documents into a

more manageable state. In that sense, feature extraction is a form of pre-processing that feeds any main

algorithm under investigation (Aas & Eikvil, 1999).

An important part of such pre-processing is stemming, which removes suffixes from words to reveal so-

called stems. Any specific stem identifies a group of words that express a particular underlying concept

(Aas & Eikvil, 1999). Put another way, stemming is the search for what Mayfield and McNamee (2003)

call the morphologically invariant portion of any word, while Xu and Croft (1998) refer to a process of

reducing variant word forms to common roots. Similarly, Porter (1980) notes that Information Retrieval

(IR) might improve should so-called term groups be conflated, that is, merged into a single term.
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By whatever definition, stemming produces strings of letters that are not in themselves words. That

end-users might find such stems difficult to interpret is unimportant. Rather, stems serve to facilitate IR

by expanding words in any query with related forms. In that way, queries might retrieve a larger set of

relevant documents. Now, although stemming might improve the recall of information, there is a risk of

inappropriate stems retrieving non-relevant documents. The challenge lies in achieving the best trade-off

between those opposing tendencies (Xu & Croft, 1998).

Approaches to stemming reflect the two categories that were seen earlier for spelling correction:

processing words in isolation as opposed to considering context. As to the former, basic stemming might

simply involve removing suffixes from plurals; researching tables of common word-endings is one way to

do that (Xu & Croft, 1998). In a similar vein, a stem dictionary might be used (Porter, 1980). More

advanced approaches to stemming isolated words employ so-called conflation algorithms. While some

researchers embed linguistic knowledge in such algorithms, others treat words as just n-grams of letters.

Approaches that consider context, on the other hand, use whatever text surrounds any stemmed word to

assess the likelihood of being correct. Having introduced the two main approaches to stemming, attention

now turns to various studies that employed them.

4.2.1 Deriving Stems from Isolated Words

Stemming, then, identifies groups of related words. For example, Aas and Eikvil (1999) derived the stem

‘walk’ for ‘walker’, ‘walked’, and ‘walking’ by removing the respective suffixes ‘-er’, ‘-ed’, and ‘-ing’. That

the stem ‘walk’ is a word in its own right is of no particular importance; Xu and Croft (1998) point out

that stems are better seen as n-grams that are embedded in related words. In fact, the algorithm that

Aas and Eikvil (1999) used was what they call the popular Porter stemmer, which is discussed next.

The Porter Stemmer

Porter (1980) devised an ingenious approach of splitting words into n-grams that contained just vowels or

consonants. N-grams composed of vowels were termed V , while C denoted n-grams of consonants. The

length of any particular n-gram, then, depended solely on the number of contiguous letters of a specific

type. Having identified V and C n-grams within any word, the Porter stemmer goes on to analyse

repeating sequences of V C. In that way, words are reduced to recurring blocks that comprise one or

more vowels followed by one or more consonants. The symbols [C] and [V ] represented the first and last

such sequences, should they exist. Between those extremes might be m repetitions of V C. The following

expression, then, sums up the construction of any English word:

[C](V C)m[V ] (Porter, 1980).

Cases where m = 0 mean that words comprise just the [C] and [V ] components. Words that do contain

V C groups have m > 0; in those cases, the [C] and [V ] components are allowed to be null (Porter, 1980).
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Although Porter (1980) provides examples, they are not well discussed; what follows is an interpretation

of some of those examples. Table 4.1 gives shows the construction of words having m values from 0 to 2.

The middle columns of that table show [C], V C and [V ] as described by Porter (1980), while the final

column is my comment:

m Word [C] V C [V ] Comment

0 tree tr - ee Just [C] and [V ].

1 trouble tr (ou bl) e V1 = ‘ou’ C1 = ‘bl’.

2 troubles tr
(ou bl)

-
V1 = ‘ou’ C1 = ‘bl’,

(e s) V2 = ‘e’ C2 = ‘s’.

Table 4.1: Stems from the Porter stemmer, adapted from Porter (1980)

.

All of the rows from Table 4.1 have an identical [C] component, ‘tr’. In the first row, the word ‘tree’

was accounted for by just the [C] and [V ] components, each having two letters. For m = 1, the word

‘trouble’ starts with ‘tr’ in [C], while the [V ] component contains the final ‘e’. In between comes a single

V C group, with ‘ou’ and ‘bl’ in V and C respectively. The final entry contains the word ‘troubles’, for

which m = 2. Note that taking the plural of ‘trouble’ raises m from 1 to 2; adding the consonant ‘s’ to

the vowel ‘e’ yields an additional V C group. Because of that, the terminating [V ] is left empty.

Having discovered a way of sub-dividing words, Porter (1980) goes on to specify five steps in his

algorithm. Each of those steps bears a transformation rule that results in a shortened suffix. In addition,

an optional condition stipulates when any particular rule should be applied. Those conditions used a

shorthand notation based on the symbol ‘∗’. For example, ∗v∗ meant that any stem resulting from

removing a suffix must contain a vowel, while ∗o stood for a stem that ended with the pattern consonant-

vowel-consonant (CVC), where the second consonant is not W, X or Y. Table 4.2, then, lists those five

steps in stemming:

Step
Suffix Rule

Condition
Example

From To From To

1
-sses -ss - caresses caress

-ing - (∗v∗) motoring motor

2 -ational -tion (m > 0) conditional condition

3 -alize -al (m > 0) formalize formal

4 -ance - (m > 1) allowance allow

5 -e - (m = 1 & ! ∗ o) cease ceas

Table 4.2: Step that comprise the Porter stemmer, adapted from Porter (1980)

.
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The lack of a condition from the first entry from Table 4.2 means that ‘-ing’ can always be removed.

Conversely, the second example for Step 1 stipulates that any stem must contain a vowel; that was the

case for ‘motor’, which actually contains two ‘o’s. The next step, number 2, specifies that ‘-ational’ may

be shortened to ‘-tion’ just for words having one or more V C group. That same condition applies to

Step 3, which adjusts, for example, ‘-alize’ to ‘-al’. In a similar way, Step 4 applied just to words having

at least two V C groups. Lastly, the ‘!’ symbol in Step 5 negates the ‘∗o’ requirement for any remaining

stem to end in CVC; that ‘ceas’ ends with the pattern VCV satisfies that condition (Porter, 1980).

Porter (1980) notes that the first step deals just with plurals and past participles. That step in fact

had three discrete parts, although subsequent steps were seen as more straightforward. Importantly, the

algorithm avoids removing suffixes that would result in too short a stem. The value of m was seen as a

useful guide in that respect. For example, removing the suffix ‘-ate’ from ‘relate’ having m = 1 would

render the short stem ‘rel’. The value of m = 2 for ‘activate’, though, leaves the adequate stem ‘activ’. In

practice, applying suffix-stripping steps to 10,000 words yielded 6,370 distinct stems. Stemming reduced

the number of terms by about one third (Porter, 1980).

The Dual Problems of Under- and Over-Stemming

Over-aggressive stemming, though, risks obtaining stems that are too short to be useful. That risk recurs

in research by Orengo and Huyck (2001), who note that what appears to be a suffix might actually part

of any desired stem. Removing such false suffixes would produce stems that conflate unrelated words.

That problem was overcome for the Portuguese language by specifying a minimum length for any stem;

even so, avoiding over-stemming was difficult. For example, although the suffix ‘-inho’ might indicates

diminutive forms, ‘golfinho’ means ‘dolphin’, rather than a smaller form of ‘golf’. In that case, it would

be wrong to treat ‘-inho’ as a suffix (Orengo & Huyck, 2001).

In order to alleviate that problem, lists of exceptions were created to specify words that are not, in fact,

directly related by any given stem. The following entry for ‘-inho’ stipulates such exceptions:

inho, 3, {caminho, carinho, cominho, golfinho, padrinho, sobrinho, vizinho}.

The first part of the entry is the suffix ‘-inho’, while the number 3 dictates the minimum number of

letters allowed in any stem resulting from removing that suffix. Words enclosed within braces {. . . }

were treated separately from words reliably suffixed by ‘-inho’. Employing such exceptions reduced over-

stemming mistakes by 5%. Conversely, under-stemming occurs when a true suffix is not removed, meaning

that related words will not be fully conflated (Orengo & Huyck, 2001).
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Shortcomings of Language-Specific Stemmers

Algorithms such as the Porter stemmer, though, suffer the serious drawback of being language-specific.

Stemming any novel language will require new linguistic rules, which in turn demands a detailed knowledge

of any language under investigation. In contrast, concentrating on n-grams of letters overcomes any

reliance on embedded linguistic knowledge, and allows a language-neutral stemmer. That approach

should work over a wide variety of languages (Mayfield & McNamee, 2003).

To that end, words were parsed to see if they contained n-grams that occur naturally. Those known

n-grams were compared with sub-strings from words in question; each letter within any word was treated

as the start of a new sub-string. Any words that contained a particular n-gram were conflated in that

way. Such derived stems were further checked for over-stemming by means of a measure called the inverse

document frequency (IDF). That reflected how many words would be conflated by any particular stem;

those having high IDF were discarded as too general (Mayfield & McNamee, 2003).

That approach based on n-grams proved viable for eight European languages, of which no knowledge

was built into the algorithm. The Wilkinson test of significance showed it to perform equally well as

a language-specific stemmer, for some languages. The sole adjustment for any given language involved

selecting a suitable length for the number of letters, that is, of ‘n’ for any n-gram. There was, though,

an important prerequisite: a pre-compiled list of n-gram frequencies. All the same, calculating such

frequencies was seen as a straightforward task. A more serious drawback concerned the performance

penalty incurred by the high number of string comparisons required (Mayfield & McNamee, 2003).

4.2.2 Accounting for Context during Stemming

The Porter stemmer, then, is a rule-based algorithm that removes suffixes from words to reveal underlying

stems; problems, though, arise from employing such programmes. Notably, what seems to be a suffix

might in fact be part of a stem. Such over-aggressive stemming yields stems that conflate words having

little shared meaning, such as ‘pol’ for ‘policy’ and ‘police’. Conversely, lenient stemming risks the

opposite effect, under-stemming, which fails to conflate truly related words such as ‘matrix’ and ‘matrices’.

Such under- and over-stemming might lead to serious failures in information retrieval (Xu & Croft, 1998).

Corpus-Based Stemming

A noted problem with the Porter stemmer concerns a failure to reflect actual language usage. Although

rules in that algorithm are specific to English, that is not seen as a built-in linguistic model. Rather,

such rules are designed to handle specific aspects of isolated words within a body of text, while neglecting

any wider knowledge existing in such texts. An alternative approach of corpus-based stemming might

rectify that shortcoming, by using what is called the co-occurrence of word variants. Put another way,
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word forms that should be conflated for a given corpus will occur together in the very documents from

that corpus. Unrelated words, on the other hand, should co-occur rarely (Xu & Croft, 1998).

To that end, a metric called EM, a variation of the Expected Mutual Information Measure (EMIM),

measures the degree to which any word a co-occurs with word b within any corpus. Although the actual

meaning of EM was left unclear, the following expression shows how it was calculated. Variables na and

nb are the respective occurrences of words a and b, and nab is the frequency with which a and b appear

together. That actual frequency is compared with the expected number of co-occurrences, En(a, b). The

function max() avoids negative results arising from the subtraction term:

em(a, b) = max(nab −
(
En(a, b)

na + nb

)
, 0) (Xu & Croft, 1998).

My interpretation of that metric is that the expected co-occurrence of two words is divided by the sum of

independent frequencies from the corpus. That ratio will be lower should two words’ isolated occurrences

exceed any expected co-occurrence. Conversely, higher ratios reflect isolated occurrences that are less

frequent than are predicted co-occurrences. Subtracting the resulting ratio from actual co-occurrences

gives a value for EM. In that way, higher ratios diminish any value for EM. Overall, relatively high EM

values arise when two words often co-occur. Any given EM value, though, is reduced should such words

appear by themselves relatively more than they do together.

In fact, the corpus in that study comprised text windows on a desktop machine. In that restricted environ-

ment, co-occurring word variants were seen to enhance the performance of stemming algorithms without

a need for expert linguistic knowledge. Notably, that approach successfully avoided over-stemming the

words ‘company’ and ‘computer’ to yield ‘com’. That result, though, did not arise from applying the EM

measure; rather, ‘company’ and ‘computer’ were assigned a value of em = 0 from the outset. Although

‘company’ and ‘computer’ share the same prefix, adjacent n-grams ‘pan’ and ‘put’ differ. Because of that,

those words were deemed to be unrelated (Xu & Croft, 1998).

Statistical Approaches to Stemming

The Porter stemmer, then, might be criticised for its reliance on rules. Even so, such a rule dictated

permissible n-grams in the co-occurrence approach of Xu and Croft (1998). In a similar way, Larkey,

Ballesteros, and Connell (2002) note that designers of stemmers often build linguistic expertise into

algorithms. In contrast, statistical methods promote conflation without resort to linguistic rules. Related

words might be grouped purely by measuring the similarity of n-grams. So-called equivalence classes can

be formed solely from words that share a particular n-gram of letters; the challenge lies in setting an

appropriate threshold for the proportion of any related words that such n-grams must comprise (Larkey

et al., 2002).
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Although removing suffixes works well for English, that approach is less effective for languages such

as Arabic. The problem there is that suffixing is just one so-called inflectional process that results in

related word forms. Arabic words are additionally subject to in-fixing, which alters particular n-grams

within words. For example, the word ‘kitaab’ means ‘book’, while ‘kutub’, ‘katabaand’ and ‘naktubu’

respectively mean ‘books’, ‘he wrote’ and ‘we write’. The lack of any common sub-string in those words

argues against n-gram analyses of Arabic text (Larkey et al., 2002).

Further difference between Arabic and English arose from a distributional analysis of newspaper text,

in that more words occurred just once in the former. In addition, more distinct Arabic words appeared

than did English words in a comparable sample. A dedicated Arabic stemmer removed just non-letters,

weak vowels, and a few prefixes and suffixes. Such light initial stemming produced stems that conflated

words into broad classes. Such preliminary stems were refined by means of the co-occurrence metric, EM,

devised by Xu and Croft (1998). The resulting statistical stemmer depended on co-occurrence rather

than on patterns of n-grams (Larkey et al., 2002).

4.3 Extracting Stems from GRiST Mind Maps

The Porter Stemmer, then, embodies linguistic rules about English. Although such rules aid stemming,

Porter (1980) notes that rules for improving stemming in one area of a vocabulary might cause equal

degradation elsewhere, and that successive layers of rules make analyses unnecessarily complex. In fact,

the word ‘rules’ might overstate the role of linguistic knowledge in stemming. Rather, Xu and Croft (1998)

prefer the word ‘heuristics’: looser common-sense rules that raise the probability of success. Determining

such heuristics for stemming GRiST mind maps is the aim of this chapter.

Keeping Apart Unrelated Words

Rules in the Porter algorithm, then, drive a process of removing suffixes; prefixes, though, are not removed,

in order to avoid inappropriate stems (Porter, 1980); although precisely how was left unclear, leaving

prefixes attached to stems was seen as an advantage. The opposite view is vigorously taken here: prefixes

and suffixes alike are seen as strings that do not belong in any stem. Should the prefix ‘un’, say, be the

sole variation between any two words, they should be conflated by exactly the same stem. Indeed, whole

words sometimes act as fixes on otherwise unrelated words, For example, the word ‘fully’ suffixes both

‘carefully’ and ‘forcefully’, despite ‘care’ and ‘force’ being unrelated. Any information base of GRiST

mind maps must keep such words separate, while continuing to reflect that more distant relationship.

In fact, Orengo and Huyck (2001) overcame that problem by maintaining lists of exclusions that kept

separate, for example, unrelated form of words suffixed ‘-inho’. Such exclusion lists will similarly separate
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words from GRiST mind maps; that will involve records based on tuples of intensional knowledge, held

apart from those mind maps. Those lists will, though, be compiled automatically, in contrast to the

manually imposed exclusions specified by Orengo and Huyck (2001). In turn, that will facilitate queries

made to any information base; as Xu and Croft (1998) showed, noted, users might subsequently choose

what word variants to use in any particular query.

All the same, Xu and Croft (1998) disagree with the Porter Stemmer’s conflation of ‘addition’ and

‘additive’. Such Porter-like behaviour, though, is desired of stems for GRiST words, in that ‘abuse’ and

‘abusive’, like ‘addition’ and ‘additive’, are closely related. That the first word in each pair is a noun

while second ones are adjectives is irrelevant, at least in terms of stemming. In that respect, analyses

will be restricted to word-forms rather than accounting for any roles that words fill.

Degrees of Automation in Approaches to Stemming

Additional concern with reviewed approaches to stemming arises over degrees of automation, both in

preparing to extract stems and in the process itself. A prerequisite for Xu and Croft (1998), for example,

was the expected number of co-occurrences En(a, b) calculated in advance by researchers. In a similar

way, work by Mayfield and McNamee (2003) depended on a pre-compiled list of n-gram frequencies. In

contrast, the approach here is to derive from scratch any important stems for GRiST concepts, in a fully

automated way.

Accounting for Context during Stemming

A further key aspect of stemming considered by Xu and Croft (1998) and Larkey et al. (2002) was context,

in the form of co-occurring word variants. In a similar way, GRiST mind maps will be researched to

evaluate the coverage of stems. Rather than frequency of co-occurrence, though, any similarity between

stems and conflated words will be assessed; should that indicate wide variation, stems will be rejected in

favour of longer ones that conflate fewer, more closely related, word-forms. Indeed, Xu and Croft (1998)

note that such sets might be huge: 165 stems in that study conflated more than 100 members; such stems

are so general as to be useless, and will be avoided by the means just described.

A Linguistically Neutral Approach to Stemming

The proposed approach to stemming for GRiST Mind Maps, then, follows the linguistically neutral

approach to spelling correction taken in Chapter 3. There seems little advantage in such additional

complexity, given that Xu and Croft (1998) consider n-gram approaches to perform equally well as do

stemmers imbued with linguistic rules. Indeed, Larkey et al. (2002) and Mayfield and McNamee (2003)

note that stemmers are commonly specific to particular languages. Although studies reviewed in Section

4.2 covered various languages, they were treated in isolation according to differing syntactical rules. In

contrast, the stemmer used here aims to be more generic, in considering words as strings of characters
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rather than as linguistic entities. From that minimalist approach, though, will arise linguistic atoms such

as prefixes and suffixes, regardless of any particular alphabet.

Rather than the n-grams employed by Porter (1980), Xu and Croft (1998), and Larkey et al. (2002), the

Edit Distance will measure any similarity between strings. That, in turn, treats letters as n-grams just

one character long in calculating the cost of turning one word into another. Words from GRiST mind

maps will first be grouped by means of the adjusted Edit Distance L′; such words will be similar, having

allowing for inserted letters. In fact, stems arise from inspecting matrices from calculating L, by means

of the diagonal runs that Chapter 3 showed to reveal shared sub-strings between words.

The best stem for any group of words arises from checking for excessive variation between conflated

words. Stems that conflate too wide a variety of words will be rejected, so as to avoid over-stemming.

The opposing problem of under-stemming will be less troublesome, though; using L to group together

words in the first place will ensure that just similar words are conflated. The real problem lies in avoiding

stems that are too short. Having described how stems are to be retrieved from GRiST mind maps, then,

attention now turns to experiments that were performed to test the approach.

4.4 Experiments in Extracting Stems

This section describes five experiments that assess L and L′ as a means of stemming. First of all comes

a general method that applied to all of those experiments, and a correspondingly generic overview of

results. Following that come specific experiments that identify and refine stems from GRiST mind maps.

Method

Unique words extracted from GRiST mind maps in Chapter 3 further form the basis of stemming. Here,

though, any spelling corrections from earlier experiments were applied during retrieval. Each unique word

from that spell-checked list was compared by means of L against remaining members. Pairs of words were

processed further should matrices from such comparisons yield a shared sub-string; comparisons giving

no such sub-string were ignored, regardless of L or L′.

Any selected word-pairs were held as Java objects of the bespoke class SortedL, which implemented the

Comparable interface to render them sortable. Such objects held pairs of words under comparison, any

shared sub-string, and corresponding values of Edit Distance L, difference in word lengths d, and adjusted

distance L′. In that way, SortedL objects constituted tuples of inputs to, and outputs from, calculating

L. The actual sort order, then, was:
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Sort field 1: l the length of any shared sub-string,

2: L′ the refined Edit Distance,

3: d any difference in word lengths,

4: L the standard Edit Distance.

After sorting by means of the Java method Array.sort(), tuples were ordered primarily by ascend-

ing length of any shared sub-string. Within such groups of potential stems, successive tuples reflected

increasing values of L′. Tuples having identical sub-string lengths and L′ were further ordered by d,

reflecting growing differences in length between source and target words. Further sorting by the standard

L made absolute Edit Distance the most minor sub-division, for tuples having source and target words

of identical length.

Categories of Tuples to be Processed

Tuples might occur by themselves, or along with further tuples for related stems. In fact, such numbers

of tuples will fall into three categories, according to the numbers of words and candidate stems detected.

Those categories are as follows:

Category 1: singleton tuples, reflecting solitary pairs of potentially related words,

2: groups of tuples that share a common stem, and

3: groups of tuples that suggest multiple stems.

Cases from category 1 reflect solitary pairs of possibly related words. Such cases were refined by means of

L′, the Edit Distance adjusted for string lengths. Acceptance criteria of L′ 6 maxL′ 6 2 were applied to

source and target words from sole tuples, in successive increments. Note was made of both appropriate

and inappropriate stems accepted or rejected in that way, as was the case for subsequent categories. Lists

of tuples from category 2 reflect multiple comparisons that yield a common stem. Such cases were refined

by means of L′; potential stems were checked for L′ 6 maxL′ 6 2 that applied to singleton tuples.

Whereas categories 1 and 2 comprise sole candidates, category 3 reflects competing stems. In such

cases, a sole representative tuple was taken for each stem. Breaks in the main ordering, sub-string length,

grouped together tuples bearing any given stem. Choosing the first member of such groups reduced lists

of tuples to representative comparisons, which yielded any candidate stem. Lists of such representatives

were processed sequentially until excessive L′ arose between consecutive tuples. Should processing halt

prematurely, stems were taken either from the arresting tuple, or from the one preceding. That depended

on further checking LS .
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The Average Length of Stems across Tuples: LS

In fact, LS had two applications; the first considered absolute values of LS for any tuple that might halt

processing. The second application involved differences in LS between consecutive representative tuples.

Tests that consider aspects of L appear in the pseudo-code in Figure 4.1. Input comprises a list of one

or more tuples, which are processed sequentially until reaching a tuple with excessive L′ between given

source and target words, as shown by pseudo-code in Figure 4.1 for a function called getBestStem():

Pseudo-code for getBestStem(i, tuples) Comments

int index = 0 Index of the selected tuple

for i from 1 to tuple count AND index < 0 Process tuples for a given source word s

if tuple[i].L′ > maxL′ Excessive variation between source & target:

index = getIndex(i, tuples) get index of tuple offering the best stem

end-if

end-for

return tuple[index].stem Take the stem from the selected tuple

Figure 4.1: Pseudo-code for the getBestStem() function used by Java class MindmapStemmer.

By default, the getBestStem() function from Figure 4.1 takes stems from the first tuple in any list, unless

a better one emerges subsequently. For that reason, the loop commences at the second tuple, at index 1

in a zero-based array. If started at all, looping continues until reaching a tuple with excessive L′ between

given source and target words. Permitted distance is specified by the constant maxL′, which was varied

from 0 to 2. The index of the tuple offering the best stem depends on a function called bestStem().

Accepting and Rejecting Stems by means of L

Measures related to L and L′ determine whether stems should be accepted, and if so, from what tuple.

Tuples having L′ within acceptable limits, specified by the constant maxL′, are not processed further;

rather, the loop seeks to refine instances that suggest termination. The first stem to fail those tests causes

remaining tuples to be ignored. The aim is to determine how far down a list of tuples should the process

continue, before stems become too vague. To that end, MindmapStemmer calls the getIndex() function

to determine what tuple holds the best stem.
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The function getIndex() called by bestStem() from Figure 4.1 appears next as Figure 4.2, which refines

stems arising from tuples that halted processing. Three checks applied there; the first involves checking

standard L between source and target words from the current tuple. The second test checks for excessive

variation between a particular stem and any conflated words, LS , while the third test compares that

value on consecutive tuples. In those cases, stems are taken from preceding tuples at index i− 1, instead

of any arresting tuple at index i:

Pseudo-code for getIndex(i, tuples) Comments

int index = i Default to the row that halted processing

if L 6 maxL Actual L for the current tuple

index = i− 1

else if LS 6 max avg LS Average L between stemmed words

index = i− 1

else if |Li − Li−1| 6 max ∆ L Difference in L between ajdacent tuples

index = i− 1

return index Exit with the appropriate index

Figure 4.2: Pseudo-code for the getIndex() function called by bestStem() from Figure 4.1.

Any stems identified by implementing the pseudo-code from Figures 4.1 and 4.2 subsequently populated

records from the tuple nodeID → concept, associating specified nodes with stemmed concepts. Further,

records from tuple concept→ concept kept separate distantly any insufficiently related words arising from

over-stemming. Attention turns next. then, to results from experiments in assessing successive stages

from that pseudo-code, implemented in the MindmapStemmer Java class.
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Results

In subsequent sections, the method, results and discussion for each experiment are presented together,

before an overall discussion at the end of this chapter. All of those experiments involved running the

Java MindmapStemmer class that implemented pseudo-code from Figures 4.1 and 4.2. Results from six

experiments, then, are to be reported:

Part I : applying L′ to singleton tuples,

Part II : applying L′ to multiple tuples for a sole stem,

Part III : refining stems by standard L,

Part IVa : refining stems by absolute values of LS ,

Part IVb : refining stems by ∆LS between consecutive tuples.

Supplementary results for prefixes and suffixes revealed by L′.

Subsequent results tables will follow a standard format. Columns headed Source Word list words that

drive any comparisons, being words against which ostensibly related ones are judged. Those latter words,

which share sub-strings with corresponding source words, appear under Target Word columns. Three

further columns respectively show standard L between pairs of source and target words, differences in

word lengths d, and adjusted distance L′, that is, L − d. Following those numerical columns comes one

for any sub-strings arising from comparisons. To preserve space, groups of such results may appear side

by side, separated by a double vertical line. Additional columns, when needed, will show averages that

reflect variation between stems and words, LS .
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Method I for Applying L′ to Singleton Tuples

Sole tuples, then, reflected solitary pairs of potentially related words. Stems from such tuples were refined

by means of L′, the Edit Distance adjusted for string lengths. Stems were rejected should L′ between

source and target words from any sole tuple exceed the constant maxL′. Conditions of L′ 6 maxL′ 6 2

were applied in successive increments. Because looping starts at 1 in the function getIndex(), sole tuples

would fail to enter that loop. Rather, such tuples were specifically checked for L′.

Results Ia for Applying maxL′ = 0 to Singleton Tuples

Separate results arose from runs having the constant maxL′ set to 0, 1 and 2, and are presented in that

order. In each case, both appropriate and inappropriate stems arose from sole tuples. To start, then,

with examples of acceptable stems arising from tuples having L′ = maxL′ = 0, in Table 4.3:

Source Target L d L′ Stem Source Target L d L′ Stem

amphet-
amines

amphet-
amine 1 1

0

amphet-
amine

hopeless-
ness hopeless 4 4

0

hopeless

police policeman 3 3 police marital
extra-
marital 5 5 marital

before
before-
hand 4 4 before

hetero-
sexual sexual 6 6 sexual

Table 4.3: Appropriate longer stems from sole tuples, by means of L′ = 0.

Although L varies from 1− 6 in Table 4.3, adjusted distances under column L′ are identically zero; all of

those cases yielded L′ = L− d = 0. In addition, stems varied in length from 6 for ‘sexual’ and ‘police’ to

11 for ‘amphetamine’.

Discussion Ia of Applying maxL′ = 0 to Singleton Tuples

Sole tuples in this section, then, reflected stems from solitary pairs of words: any such candidate stem

conflated just two morphological variations. Lacking competitors, such stems had just to be accepted or

rejected. Cases having L′ = 0 were special, though, in indicating word variants arising from just inserted

characters. Examples from Table 4.3 showed such stems to be generally suitable. For example, ‘before’

and ‘beforehand’ are adequately related as to be conflated by ‘before’, as is ‘hopelessness’ by ‘hopeless’

and ‘policeman’ by ‘police’.

Various prefixes arose from applying maxL′ = 0 to negate insertions. For example, ‘extramarital’ yields

the prefix ‘extra-’, while ‘hetero-’ arose from ‘heterosexual’. In a similar way came the plural suffix ‘-s’

from ‘amphetamines’, in addition to ‘-ness’ from ‘hopelessness’. Further, fixes identified by means of

L′ = 0 revealed shorter words that expressed more basic forms of related ideas.
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Results Ib for Applying maxL′ = 1 and maxL′ = 2 to Singleton Tuples

Raising maxL′ from 0 to 1 gave further acceptable stems, which are listed on the left-hand side of Table

4.4; the right side of that table shows additional stems arising from incrementing maxL′ to 2:

Source Target L d L′ Stem Source Target L d L′ Stem

adolesc-
ence

adolesc-
ent 2 1

1

adolesc-
en disabling disability 3 1

2

disab

negative negativity 3 2 negativ literature literacy 4 2 litera

bereave-
ment bereaved 4 3 bereave retarded

retard-
ation

5 3 retard

Table 4.4: Appropriate longer stems from sole tuples, by means of L′ = 1 and L′ = 2.

Tuples from the left side of Table 4.4 have L′ = 1 as a result of d being always one less than corresponding

values of L. In a similar way, tuples from the right have L′ = 2. In contrast, standard L from that table

ranged from 2 to 5. Further, stems varied in length from 5 for ‘disab’ to 9 for ‘adolescen’. Such stems,

though, did not arise from using, say, L and d to indicate any shared sub-string; rather, stems comprise

diagonal ‘runs’ in matrices that resulted from calculating L. In that way, the stem ‘negativ’ arose from

the shaded run of zero-costs shown in Figure 4.3:

n e g a t i v i t y

0 1 2 3 4 5 6 7 8 9 10

n 1 0 1 2 3 4 5 6 7 8 9

e 2 1 0 1 2 3 4 5 6 7 8

g 3 2 1 0 1 2 3 4 5 6 7

a 4 3 2 1 0 1 2 3 4 5 6

t 5 4 3 2 1 0 1 2 3 4 5

i 6 5 4 3 2 1 0 1 2 3 4

v 7 6 5 4 3 2 1 0 1 2 3

e 8 7 6 5 4 3 2 2 1 2 3

Figure 4.3: A run of zero-costs in the matrix for L between ‘negative’ and ’negativity’.

The matrix from Figure 4.3 describes a path of zero-cost for the first seven letters, ‘negativ’. That cost,

though, changes to 1 in cell C8,8 on replacing ‘e’ by ‘i’, and again to 2 in C8,9 to reflect the insertion

of ‘t’. Cell C8,10 subsequently detects the inserted ‘y’; being the bottom right-most cell, C8,10 further

carries the ultimate value of L = 3.
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Discussion Ib of Applying maxL′ = 1 and maxL′ = 2 to Singleton Tuples

Moving on to instances having L′ = 1 revealed words having a further deleted or substituted letter, in

addition to any inserted characters; that led to differences in lengths of d = 1. In that way, stems arose

such as ‘bereave’ for ‘bereaved’ and ‘bereavment’, where ‘e’ was deleted before appending ‘ment’. That

deletion accounted for an extra edit operation, in addition to those that inserted a suffix. Rather than an

insertion and a deletion, transforming ‘adolescence’ into ‘adolescent’ involved replacing ‘c’ by ‘t’, before

deleting the terminating ‘e’, accounting for L = 2. Similar reasoning explains converting ‘negative’ into

‘negativity’ by replacing the trailing ‘e’ with ‘i’, before adding ‘ty’; those operations add up to L = 3.

By means of the matrix for comparing ‘negative’ and ‘negativity’ from Figure 4.3, a machine determined

the shared sub-string ‘negativ’ of seven letters, even though comparisons were restricted to individual

characters. In fact, of those examples of stems from sole tuples having L′ = 1, just ‘bereave’ comprised

a valid word. Otherwise, stems were strings of letters that were not words in themselves, a tendency

noted by Xu and Croft (1998). Stems of any composition, though, serve to fill the concept field of tuples

identified by abstraction, and do not need to be recognisable words. It is, rather, words that are conflated

by such tuples that will be seen by humans.
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Applying a More Lenient Limit for L′

Incrementing maxL′ to 2 covered words having two deleted or substituted characters, after allowing for

insertions. For example, changing ‘disabling’ into ‘disability’ required changing the terminating letters

‘ng’ into ‘ty’, at a cost of two substitutions. Now, although those suffixes in full are ‘-ing’ and ‘-ity’,

L′ = 2 arose because the first letter of both, ‘i’, required no change. Note further that d = 1 reflects the

insertion of ‘i’ after ‘disab’. Together, L′ = 2 and d = 1 account for the standard Edit Distance, L = 3.

In a similar sense to ‘disab’, the stem ‘litera’ for ‘literature and ‘literacy’ is not a real word; conversely,

the stem for ‘retarded’ and ‘retardation’ reveals a novel word, ‘retard’.

The suffix ‘-ity’ that arose from L′ = 1 between ‘negative’ and ‘negativity’ recurs on comparing ‘disabling’

and ‘disability’, which gave L′ = 2. The latter, though, required inserting an ‘i’, that is, ‘disab-i-lity’,

reflecting an additional edit operation. In addition, novel suffixes from comparisons yielding L′ = 2

comprised ‘-ing’, ‘-ed’ and ‘-ation’, respectively from ‘disabling’, ‘retarded’ and ‘retardation’.

Results Ic for Inappropriate Stems from Applying maxL′ to Singleton Tuples

While sole tuples have offered suitable stems so far, various less apposite ones arose from lower values of

L′. A selection of less appropriate stems follow as Table 4.5, all but one arising from maxL′ = 0:

Source Target L d L′ Stem Source Target L d L′ Stem

relying lying 2 2

0

lying wellbeing being 4 4 0 being

sources resources 2 2 sources taking
under-
taking 5 5 0 taking

towards wards 2 2 wards
omni-
potence potent 6 5 1 poten

Table 4.5: Inappropriate longer stems from sole tuples, by means of L′.

Just a sole stem from Table 4.5 was due to L′ greater than zero; that was, ‘potent’, with L′ = 1. In

contrast, values of L itself from Table 4.5 ranged from 2 to 6, which in all but that last case equalled

corresponding values of d, giving L′ = 0. Resulting stems varied in length from 5 for ‘wards’ and ‘lying’

to 7 for ‘sources’.

Discussion Ic of Inappropriate Stems from Applying maxL′ to Singleton Tuples

Stems from source and target words separated by L′ 6 2, then, successfully conflated words relevant

to mental health. Exceptions from Table 4.5, though, show the difficulty of stemming in the absence

of ‘real world’ knowledge. All the same, just 6 inappropriate stems arose from considering L′ 6 2 for

sole tuples. Of those, it could be argued that ‘omnipotence’ and ‘potent’ are related etymologically; the

same might be said of ‘sources’ and ‘resources’, and to a lesser extent of ‘being’ and ‘wellbeing’. Such is

the difficulty in automating stemming: L′ considers just morphological, rather than semantic, distance
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between words. Even were L′ so equipped, automated decisions would continue to require an appropriate

acceptance threshold.

In fact, all but one unacceptable stem came from applying maxL′ = 0. Those cases revealed whole words

and corresponding pre- and suffixes; the problem remained of what constitutes a true fix. The word

‘relying’, for example, does not mean ‘re-lying’, as in repeating untruths, or returning to bed; neither

does ‘towards’ mean ‘in the direction of wards’. On the other hand, ‘sources’ and ‘resources’ might share

a relatively distant meaning, as might ‘taking’ and ‘undertaking’. The point, though, is in making mind

maps make sense; in that respect, under-stemming raises a real danger of conflating less related words,

which would detract from GRiST mind maps acting as an information base.

Method II for applying L′ to Multiple Tuples for a Sole Stem

Comparisons revealed so far yielded a sole tuple between solitary pairs of words. In contrast, comparing

any source word against more than one target word yielded accordingly more tuples. Such lists reflect the

latter categories introduced in the main method. Specifically, category 2 comprises multiple comparisons

that yield a common stem; handling such cases, though, depended on the length of any stem. Short stems

of 4 characters are considered shortly; for now, just longer stems are addressed. Potential stems of 5 or

more characters, then, were subjected to the criterion L′ 6 maxL′ 6 2 that was applied to singletons.

Results IIa for applying L′ to Multiple Tuples for a Sole Stem

Results presented here, then, reflected several tuples that bore a common stem. In fact, few such cases

arose; multiple tuples for longer stems more commonly yielded competing candidates, which are addressed

in subsequent parts of these results. Of stems that had just to be accepted or rejected, then, examples

of appropriate choices from applying maxL′ = 0 appear next as Table 4.6:

Source Target L d L′ Stem Source Target L d L′ Stem

hospital

hospitals 1 1

0 hospital schizo

schizophrenia 7 7

0 schizohospitalise 3 3 schizophrenic 7 7

hospitalisation 7 7 schizophrenics 8 8

Table 4.6: Appropriate longer stems from multiple tuples for a single stem.

The stem ‘hospital’ from Table 4.6 was 8 characters long, and arose from comparisons having Edit

Distances from L = 1 to L = 7. Corresponding differences in lengths between source and target words

gave L′ = 0 in all three cases. The six-letter stem ‘schizo’ was derived in a similar way: values of L = 7

to L = 8 were negated by respective corresponding values of d = 7 to d = 8. Note further that the source

word and stem in that latter case are identically ‘schizo’.

Certain stems derived by checking L′ for multiple tuples, though, were less acceptable. Comparisons
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that led to such inappropriate sole stems follow as Table 4.6, which shows that the stem ‘place’ arose

from L′ = 0, and further, ‘appro’ from L′ = 2:

Source Target L d L′ Stem Source Target L d L′ Stem

place

placed 1 1

0 place approach

appropriate 5 3

2 appro
places 1 1 appropriately 7 5

replaced 3 3 inappropriate 7 5

complacent 5 5 inappropriately 9 7

Table 4.7: Inappropriate longer stems from multiple tuples for a single stem.

The two stems from Table 4.6 were both, as it happens, 5 characters long, and further conflated 4 words

each, though respectively by means of L′ = 0 and L′ = 2. L itself ranged from 1 to 9 inclusively.

Discussion IIa of applying L′ to Multiple Tuples for a Sole Stem

The reason for using L′ rather than standard L is evident from Table 4.6. Considerably higher values of L

were permitted than the maximum of 3 that Petkovic et al. (2005) took to indicate word variants. Indeed,

the suitable stem ‘hospital’ was accepted despite having L = 7 when compared to ‘hospitalisation’. The

difference in those words’ lengths, d = 7, explained any variation to be solely due to insertions. Appending

the letters ‘isation’ to ‘hospital’ gave an adjusted distance of L′ = 0, which was well within maxL′ 6 1.

Similarly large values of L were, in turn, negated by d to give the stem ‘schizo’. That stem was, in

addition, the source word on corresponding tuples, and therefore appeared in GRiST mind maps as an

actual word. In contrast to the suffixes ‘-s’, ‘-ise’ and ‘-isation’ appended to ‘hospital’, the whole word

‘schizo’ appeared to act as a prefix. That, though, was not truly the case; strings remaining after stripping

that prefix, such as ‘phrenic’, are obscure words1. Although valid, such words would not reflect the core

idea of schizophrenia. That problem will be revisited when discussing supplementary results later in this

chapter.

Clearly undesirable stems, though, were accepted by applying L′ = 0. Note, though, that while three

target words were compared in Table 4.6 to give reliable stems, those from four comparisons in Table 4.6

were better rejected. Such increasing conflation might warn against judging any stem as optimal.

1The phrenic nerve is in the head, where schizophrenia arises: see http://en.wikipedia.org/wiki/Phrenic nerve.
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Results IIb for applying L′ to Multiple Stems

A further key concept of ‘suicide’ recurs throughout GRiST mind maps. Two stems, though, arose from

words expressing morphological variations on that idea: ‘suicid’ and ‘suicide’, as Table 4.8 shows:

Source Target L d L′ Stem Target L d L′ Stem

suicide

suicides 1 1

0 suicide

suicidal 2 1

1 suicidsuicidecan 3 3 suicidality 5 4

parasuicide 4 4 suicidally 4 3

parasuicidal 6 5

Table 4.8: The stem ‘suicid’ from an acceptably low L′ = 1.

Competing stems ‘suicid’ and ‘suicide’ from Table 4.6 were respectively 6 and 7 characters long, and

arose from comparisons having Edit Distances from L = 1 to L = 6. Corresponding differences in lengths

between source and target words gave L′ = 0 for the three cases on the left-hand side, and L′ = 1 for a

further four to the right.

Discussion IIb of applying L′ to Multiple Stems

To a human eye, words from tuples in Table 4.8 were clearly related, although ‘suicidecan’ was a spelling

error that escaped correction; that was because it rendered two words. Allowing a slightly higher Edit

Distance of L′ = 1 gave the better stem ‘suicid’, which further conflated related words from the longer

stem ‘suicide’. That was allowed by removing the letter ‘e’ to allow for suffixes such as ‘-al’ that start

with vowels. Indeed, that ideally depicts the advantage of L′ over L, in that a relatively high L obscured

the underlying stem. Allowing for differences in word-lengths by means of L′ revealed various forms of

an extremely important concept. Having shown success in applying L′ to multiple stems, attention turns

now to overcoming under-stemming, whereby candidate stems conflated too wide a range of words.

Method III for Considering Standard L

Tuples that yielded the stem ‘suicide’ had either L′ = 0 or L′ = 1. In contrast, multiple stems might

carry varying values of L′ that required further refinement. In such cases, a sole representative tuple was

taken for each candidate stem. After sorting, breaks in the main ordering of sub-string length grouped

together tuples bearing any given stem. Subsequently, finding the best stem from lists of representative

tuples involved detecting the first unacceptable comparison between source and target words.

Representative tuples, then, were processed sequentially until encountering a tuple having L′ > 1. Further

checking values of standard L, as in the pseudo-code from Figure 4.2, showed whether processing should

stop, or continue past any offending tuple. To that end, tuples showing L > maxL = 4 halted the loop,

a stem being taken from the preceding tuple. Conversely, processing was allowed to continue should
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L < maxL.

Results III for Considering Standard L

First of all, then, comparisons between a given source word and any similar target words yielded a list of

tuples. As an illustration, Table 4.9 presents those from comparisons with the word ‘abusing’:

Source Target L d L′ Stem Target L d L′ Stem

abusing

using 2 2 0 using abuse 3 2 1

abusabusive 2 0 2 abusi abused 3 1 2

abuser 3 1 2

Table 4.9: The stem ‘abus’ from an acceptably low L = 2.

The 5 tuples from Table 4.9 were condensed into the 3 representatives that follow as Table 4.10. In that

table, and in following ones, values of L′ that suspended processing are highlighted in italics; correspond-

ing values of L that were consulted appear in bold type, as does any subsequently accepted stem. Using

that notation, Table 4.10 depicts a value of L = 2 between tuples for ‘abusing’ and ‘abusive’, where the

tuple at index 1 suspended the loop:

Source Word Target Word L d L′ Stem

abusing

using 2 2 0 using

abusive 2 0 2 abusi

abuse 3 2 1 abus

Table 4.10: Tolerate L′ = 2, due to L = 2 between ‘using’ and ‘abusive’.

The value of L′ = 0 between ‘abusing’ and ‘using’ in Table 4.10 allowed consideration of the second tuple,

between ‘abusing’ and ‘abusive’. Although L′ = 2 on that tuple exceeded maxL′ = 1, the corresponding

L = 2 fell below the constant maxL = 4, which allowed processing to continue. The stem ‘abus’, then,

came from the last tuple in the list; that was the shortest stem on offer, due to sorting the list.
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In contrast, results that follow in Table 4.10 have L > maxL. The given example shows words that

shared a sub-string with ‘unpredictable’ to yield 11 tuples:

Source Target L d L′ Stem Target L d L′ Stem

unpredictable

predict 6 6 0

predict

predictable 2 2 0 predictable

predicts 6 5 1 unpredictability 4 3 1 unpredictab

predictive 5 3 2 tablet 9 7 2 table

predictor 6 4 2 dictates 8 5 3 dicta

prediction 6 3 3

predictors 6 3 3

Table 4.11: Tuples arising from comparisons with ‘unpredictable’.

The 10 entries from Table 4.11 were refined into representative tuples that were sorted into the order

described in the method. That yielded the 5 tuples presented as Table 4.12:

Source Word Target Word L d L′ Stem l

unpredictable

predictable 2 2 0 predictable 11

unpredictability 4 3 1 unpredictab 11

predict 6 6 0 predict 7

tablet 9 7 2 table 5

dictates 8 5 3 dicta 5

Table 4.12: Best stem ‘predict’ for ‘unpredictable’ selected, due to excessive L = 9 for ‘tablet’.

In a similar way as for words expressing ‘abuse’, the 5 representative tuples from Table 4.12 were processed

sequentially until excessive L′ arose between ‘unpredictable’ and ‘tablet’. Because L = 9 on that tuple

so greatly exceeded maxL = 4, the stem ‘predict’ arose from the preceding tuple; in addition, the target

word ‘predict’ was, in itself, a valid word. Further, the prefix ‘un-’ was detected, as were the suffixes

‘-able’ and ‘-ability’.

Discussion III of Considering Standard L

By further checking comparisons having excessive L′, standard L sufficed to select the appropriate stems

‘abus’ and ‘predict’. Having identified candidates by means of L′, which allowed for word-lengths, stan-

dard L succeeded in refining such stems. Given that L′ = L− d, the difference in word-lengths d, rather

than the Edit Distance L, might have been used to indicate excessive variation. Either measure would

identify stems that conflate less target words in the corresponding group than would any preferred stem.

Halting on tuples having excessive L rejected stems arising from unacceptably dissimilar source and

target words. Selecting the stem ‘abus’ involved choosing between three such alternatives. Competing

stems for ‘abus’ were ‘abusi’, and ‘using’ that was in addition a mind-map word. In fact, ‘using’ appeared
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as a stem on just a sole tuple, which might further detract from taking it as a stem. The reliable stem

‘abus’ was last in the corresponding list of tuples due to sorting representatives, ensuring that shortest

acceptable stem was taken. By optimising stems in that way, MindmapStemmer found a balance between

the twin dangers of under- and over-stemming.

The stem ‘predict’, though, arose from a more challenging six possibilities. All target words other than

‘tablet’ and ‘dictates’, though, contained the stem ‘predict’, making that the best choice. In addition, a

representative tuple for ‘predict’ offered ‘-un’ as a prefix, and ‘-able’ and ‘-ability’ as suffixes. Words from

the full list of tuples showed further suffixes ‘-’s, ‘-ive’, ‘-or’, ‘-ors’ and ‘-ion’; words having those suffixes

would be conflated by the resulting stem ‘predict’, despite being absent from the analysis which yielded

that stem. Having presented stems refined by means of L, then, attention turns to cases requiring a more

discerning technique.

Method IVa for Considering Absolute LS

In further cases of excessive L′ between source and target words, L could not differentiate between stems

from the arresting tuple and the one preceding. Instead, MindmapStemmer checked any variation between

words conflated by candidate stems. Should such variation exceed the maximum allowed, a stem was

taken from the tuple preceding the one that halted processing.

To that end, MindmapStemmer calculated average Edit Distance in the following way. The first step was

to combine source and target words from any tuple into single set. Using that set of n words, the Edit

Distance LS was calculated between stem S and any word w from list index i as follows:

LS = L(S,wi).

For any list of n words, dividing summed LS values by n gives the average distance between a given stem

and any words that it conflated. Accordingly, that average distance LS is expressed as:

LS =

∑n
i=0 L(S,wi)

n
.

As a result of that calculation, individual tuples carried LS values that measured variation between a

given candidate stem and any conflated words. Subsequent sorting gave representative tuples that, by

means of that extra field, reflected variation between such a tuple’s stem and any corresponding full list

of conflated words. Should any tuple arrest processing because of L′ > maxL′ = 1, corresponding values

of LS were compared against the constant maxLS = 4.0; stems from any such tuple at index i having

LS > maxLS were rejected in favour of stems offered by the immediately preceding tuple i− 1.
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Results IVa for Considering Absolute LS

The following results reflect the second test from pseudo-code in Figure 4.2, invoked for tuples that,

although having possibly excessive L′, showed acceptable values of L. In such cases, LS between stems

and any source and target words was considered instead. An example of applying that measure comes

from the word ‘assess’, for which Table 4.13 presents initial comparisons. Tables that follow have an

additional column for Ls, with values from arresting tuples highlighted in bold:

Source Target L d L′ Stem LS Target L d L′ Stem LS

assess

assessed 2 2

0 assess 4.25

classes 3 1 2
asses 4.50

assessor 2 2 eyeglasses 6 4 2

assessors 3 3 assertions 5 4 1

asse 5.33
assessing 3 3 assertive 5 3 2

assessment 4 4 harassed 5 2 3

assessments 5 5 embarrassed 8 5 3

Table 4.13: All tuples arising from comparisons with ‘assess’.

12 initial tuples from Table 4.13 gave rise to the 3 representative tuples in Table 4.14. The value of

L′ = 2 between ‘assess’ and ‘classes’ that halted processing appears in italics; further important values

are highlighted in bold. A value of L = 3 < maxL on the tuple for ‘classes’ did not justify rejecting the

stem ‘asses’; subsequently, LS = 4.50 on that tuple meant taking a stem from the preceding representative

tuple, for the target word ‘assessed’:

Source Word Target Word L d L′ Stem LS

assess

assessed 2 2 0 assess 4.25

classes 3 1 2 asses 4.50

assertions 5 4 1 asse 5.33

Table 4.14: Whole-word stem ‘assess’ selected, due to excessive LS = 4.5 for stem ‘asses’.

Having suspended processing due to L′ between ‘assess’ and ‘classes’, the first extra check for L < maxL

failed to indicate excessive variation. Further inspection of the offending tuple from Table 4.14 revealed

that LS = 4.50 exceeded the constant maxLS = 4.0. Consequently, the preceding representative tuple

for comparing ‘assess’ and ‘assessed’ yielded the stem ‘assess’, in preference to ‘asses’.

Discussion IVa of Considering Absolute LS

Excessive L′, then, indicated that stems were becoming too vague, and processing was duly halted,

leaving a machine to decide whether to take a stem from any arresting tuple, or from the immediately

preceding representative. Although standard L has been shown to work in some cases, comparisons for

words deemed similar to ‘assess’ showed no such glaring difference. Indeed, the tuple from Table 4.13 that
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arrested processing due to excessive L′ failed to exceed the maximum L allowed. That first supplementary

check clearly needed refining.

In cases where L could not determine an appropriate stem, further analysis by LS revealed what

tuple bore the best one. Larger values of LS reflected stems that conflated too wide a variety of words,

leading to under-stemming; instead, an immediately preceding stem was taken in preference. In that way,

obtaining the stem ‘assess’ involved reducing 12 initial tuples from Table 4.13 to the 3 tuples of Table

4.14. That well demonstrates the efficacy of using representative tuples to emphasise boundaries between

competing stems.

While processing representatives from Table 4.14, values of L as large as 5 were allowed to pass because

they reflected solely insertions, indicated by L′ = 0. The first tuple with L′ = 2 arose from comparing

‘assess’ with ‘classes’. Although that tuple had an acceptable L = 3, the stem ‘asses’ was rejected due to

excessive LS = 4.50. Put another way, the average distance between ‘asses’ and any words it conflated

was too great. Though LS = 4.25 on the preceding tuple, for ‘assess’, was not that much smaller, the

corresponding value of L′ = 0 on that tuple meant accepting it without reference to LS .

Considering absolute values of LS , then, successfully determined optimal stems such as ‘assess’. That

relied on detecting excessive variation between a particular stem and any conflated words. Further cases,

though, passed that test, and threatened to promote over-stemming by conflating too widely. The next

experiment overcame that problem by way of differences in LS , rather than individual values.

Method IVb for Considering Differences in LS

Should no excessive value of LS appear in any list of representative tuples, those that halted processing

by having excessive L′ were subjected to a further check based on LS . Rather than values from individual

tuples, MindmapStemmer compared the spread of words conflated by stems from consecutive representa-

tives. In short, LS for a stem from tuple i was compared to that from preceding tuple, i − 1. Absolute

differences in LS , then, are represented by ∆LS , calculated as:

∆LS = |LSi − LSi−1|

Stems from tuples having LS > maxLS = 1.0 were rejected in favour of a stem from any preceding tuple.
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Results IVb for Considering Differences in LS

The application of ∆LS is well depicted by comparisons involving ‘depressants’. In fact, 10 tuples

carried target words such as ‘depression’, ‘pressure’ and ‘present’; to preserve space, though, just the 4

resulting representatives are shown in Table 4.15. A value of L′ = 2 on the arresting tuple for comparing

‘depressants’ with ‘depressed’ appears in italics; further relevant cells are shown in bold type. The value

L = 4 matched, but failed to exceed, the allowed maximum, which led to taking the difference between

LS = 4.00 in the arresting tuple and LS = 3.72 in the preceding row:

Source Word Target Word L d L′ Stem LS

depressants

depressant 1 1 0 depressant 3.72

depressed 4 2 2 depress 4.00

press 6 6 0 press 3.81

presence 6 3 3 pres 4.64

Table 4.15: Tolerate L′ = 2 and ∆L = 3, due to ∆LS = 0.28 between stems ‘depressant’ and ‘depress’.

A difference of 0.28 between highlighted values of LS from Table 4.15 was much smaller than the limit of

1.0 specified by max Delta LS . Consequently, the stem ‘depress’ was taken from the tuple that halted

the loop, rather than from the one preceding it. Although full results were not presented, one unrefined

tuple was worthy of note: that for the stem ‘depress’, between ‘depressants’ and ‘depressive’. That tuple

bore L = 4, d = 1 and L′ = 3, which exceeded the maximum of maxL′ = 2 for singleton tuples. A final

point from these results concerns the novel suffix ‘-ant’ arising from ‘depressant’, further to the recurring

‘-ed’ from ‘depressed’.

An example of correctly rejecting a stem by the means just described comes from comparisons for

‘emotions’. In that case, 5 tuples yielded just the 2 representatives in Table 4.16, which highlights cells

in the way described for Table 4.15:

Source Word Target Word L d L′ Stem LS

emotions
emotion 1 1 0 emotion 2.33

motive 4 2 2 moti 4.00

Table 4.16: Best stem ‘emotion’ for ‘emotions’ selected, due to difference in LS = 1.67.

In a similar way as for the stem ‘depress’, L′ = 2 from comparing ‘emotions’ against ‘motive’ from

Table 4.16 was unacceptable; L = 4 on that tuple, though, failed to exceed the maximum specified by

the constant maxL = 4. Highlighted values of LS , though, gave a difference of 1.67 that exceeded the

limit specified by max∆LS = 1.0. As a result, the stem ‘emotion’ arose from the preceding comparison

between ‘emotions’ and that whole word, ‘emotion’. In addition, the suffix ‘-s’ recurred in ‘emotions’.
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Discussion IVb of Considering Differences in LS

The measure termed LS , then, reflects the degree to which stems conflate words. Stems were rejected

should they differ too greatly, on average, to any words that were conflated. Conversely, low LS indi-

cates such variation to be limited. Rather than relying on discrete comparisons reflected by L and L′,

considering averages encouraged more appropriate stemming.

The first example of considering ∆LS involved ‘depressants’. A tuple with L′ = 2 from a comparison

with ‘depressed’ suggested excessive distance between those words. Taking the stem ‘depressant’ from

the preceding tuple, though, would have missed the better stem ‘depress’. Indeed, that epitomises under-

stemming, which was avoided by a relatively low value of LS = 0.28. That showed the stems ‘depressant’

and ‘depress’ to conflate word variants having overall low edit distances. Further, had tuples been treated

in isolation, L′ = 3 between ‘depressants’ and ‘depressive’ would have been excessive. Considering average

variation across the corresponding group, though, made ‘depressive’ suitably conflated by ‘depress’.

Comparisons involving ‘emotions’ resembled those for ‘depress’, up to a point. As for that earlier set,

a value of L′ − 2 halted processing, in this case, for the stem ‘moti’ arising from comparing ‘emotions’

and ‘motive’; L = 4 from that tuple was further accepted. A difference in LS of 1.67, though, meant

that the stem ‘moti’ conflated considerably less similar words than did the preferred stem ‘emotion’.

In combination with adjusting for word-lengths by means of L′ = 2, stems were successfully refined by

means of the average edit distance, LS , separating them from any conflated words.

Throughout this section, various prefixes and suffixes have arisen from applying measures based on

the Edit Distance, L. The following supplementary results present a fuller review of such fixes, which

brings together results from preceding experiments.
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Supplementary Method for Fixes Arising from Calculating L′

Stems presented so far arose from shared sub-strings revealed by diagonal runs in matrices. Letters

represented by cells preceding any such run were, in that way, potential prefixes; conversely, cells further

down diagonals might have constituted suffixes. Instances of such candidate fixes were counted during

the experiments described here. Frequencies in double figures, exceeding 9, indicated likely fixes.

Supplementary Results for Fixes Arising from Calculating L′

Preceding experiments yielded the prefixes that appear next as Table 4.17. The first row gives prefixes

themselves; those shown in italics failed to qualify as common fixes. Frequencies on which that decision

depended appear in the second row. Further, a double-bar column separator shows the division between

rejected and accepted prefixes:

Prefix ac ad wi as be im ir no pr di re dis de ex un in

Count 4 4 4 5 5 5 5 6 7 10 12 13 14 15 25 36

Table 4.17: Frequencies of prefixes arising from stemming.

Further prefixes arose from whole words that attached to longer words from GRiST mind maps. Examples

follow as Table 4.18, with whole-word stems in the first column, and conflated words in the second one:

Stem Contained in

after afterlife, aftermath and afterwards

fully carefully, forcefully and successfully

where nowhere, anywhere, elsewhere and somewhere

Table 4.18: Whole-word prefixes arising from stemming.

Those same stemming experiments yielded the suffixes in Table 4.19. Rows appear as two pairs; the

first pair comprises suffixes that were rejected, as does the first entry in the second pair. Remaining

entries on the second row, though, were accepted as true suffixes:

Suffix ally atic cy ors st ty nd or tic us ent es ity rs

Count 4 4 4 4 4 4 5 5 5 5 6 7 7 9

Suffix te ic ness able er ies ce ive ion al ly ed ing s

Count 9 10 10 11 12 12 17 19 27 32 49 58 76 117

Table 4.19: Frequencies of suffixes arising from stemming.

Accepted suffixes from Table 4.19 show high frequencies of occurrence, particularly ‘-ing’ and ‘-s’, found

respectively on 76 and 117 different words.
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Supplementary Discussion of Fixes Arising from Calculating L′

Insisting on double-figure frequencies before accepting fixes, then, separated incidental ones from those

that regularly appeared in GRiST mind maps. That said, ‘di-’ is questionable; remaining prefixes, though,

were appropriate. Note further the relatively low counts for prefixes compared to those for suffixes that

follow shortly. Although prefixes were generally less frequent than were suffixes, reliable prefixes such as

‘un-’ emerged. The most frequent, ‘in’, arose from words such as ‘inability’, ‘inevitability’ and ‘informally’.

For ‘inevitability’, though, that is inappropriate; people do not commonly speak of ‘evitability’.

Whole-word prefixes pose a further problem, in that they might conflate words that are too distantly

related. Take, for example, the stem ‘fully’ that would identify ‘carefully’, ‘forcefully’ and ‘successfully’.

Without a semantic component to stemming, such groups of words will appear similar to machines. All

the same, the benefit arises of having revealed such words. Indeed, tuples of the form concept→ concept

might serve both to bring related concepts together or to keep them separate. That would entail a

type field to indicate that relationship: a minor addition. In that way, users of the GRiST mind-map

information base might at least be offered a choice in the treatment of such words.

Suffixes, on the other hand, reached higher frequencies than did prefixes. The highest count of all was

for the single-letter suffix ‘s’, although ‘ed’, ‘ing’ and ‘ly’ were similarly reliable due to high frequencies of

occurrence. In contrast, less frequent suffixes such as ‘ally’, ‘atic’ and ‘ors’ actually reflected the shorter

suffixes ‘-ly’, ‘-ic’ and ‘-s’ appended to words ending respectively in ‘al’, ‘at’ and ‘or’. Those longer

strings, then, are not true suffixes, and were correctly rejected. That positive note concludes experiments

that derived stems by means of L in various forms. There now follows an overall discussion of those

experiments, and what they suggest in respect of identifying atomic concepts from GRiST mind maps.

4.5 Qualitative & Quantitative Comparison with Porter

What improvements, then, accrue from using L for stemming, rather than the Porter stemmer? To

determine the answer to that question, both stemmers were run against a list of 3,989 unique words

extracted from GRiST mind maps. Whereas the Porter stemmer extracted 2,834 unique stems, the

L-based approach developed in this thesis found just 1,504.

In addition, secondary outputs from that latter purely textual approach included a list of English

prefixes and suffixes, as Section 4.4 has just shown. The Porter stemmer, on the other hand, left prefixes

intact to yield distinct stems such as ‘unpredict’ and ‘unsafe’. In contrast, the new technique developed

here gave the stems ‘distinct’ and ‘safe’ that conflated related words that were prefixed with ‘un’. A

similar result arose for the Porter stems ‘appropri’ and ‘inappropri’ that carried the prefix ‘in’, with the

126



4.5. QUALITATIVE & QUANTITATIVE COMPARISON WITH PORTER

new L-based technique giving just ‘appropriate’.

Table 4.20 gives examples of differences in stems from those two approaches; on the left hand side are

those from the Porter stemmer, with those arising from variants of L to the right:

Porter Stems L Stems

alcohol, alcoholicsdrug alcohol, drug

aphetaminescannabi aphetamine, cannabis

medic, medical, medicin medic

parasuicid, suicid suicid

parano, paranoia, paranoiac, paranoid paranoi

violenc, violent violen

withdraw, withdrawn withdraw

young, younger, youngster young

Table 4.20: Porter stems compared with those arising from L and L′

.

In all but the first two results from Table 4.20, several stems were extracted by the Porter stemmer for

words that, in fact, were directly related. In contrast, single stems arose from applying L and L′ that

conflated the various forms found by the Porter stemmer.

The novel stemmer produced here, then, showed both qualitative and quantitative improvements over

the Porter stemmer. Fewer stems arose from applying L than from the stemmer provided by Porter

(2006), and those that were produced proved more accurate in conflating related words. By offering

fewer stems, the approach based on L helped to avoid over-stemming, where too narrow a set of words

is conflated. Indeed, the Porter stemmer did just that, surprisingly giving distinct stems that were

morphologically very close, such as ‘young’, ‘younger’, and ‘youngster’.

The first entry from Table 4.20, though, was a non-word caused by a missing space character. While

the Porter stemmer took ‘alcoholicsdrug’ as a separate stem to ‘alcohol’, the new approach derived two

distinct words, ‘alcohol’ and ‘drug’, that conflated related words such as ‘alcoholic’ and ‘drugs’ in further

GRiST mind maps.

Note too how the Porter stemmer assumed that the ‘s’ on the end of ‘aphetaminescannabis’ indicated

the plural of ‘aphetaminescannabi’. In such cases, linguistic knowledge embedded in the Porter stemmer

actually had an adverse effect. In contrast, L successfully separated those conjoined words to generate

the desired stems. Having split the original non-word, the missing ‘m’ from ‘aphetamines’ gave a spelling

error; spell-checking any resulting words ensured the correct stem ‘amphetamine’, which conflated that

word itself, as well as the plural ‘amphetamines’.
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4.6 Chapter Discussion

There are, in fact, two discussions that follow now. The first compares the approach assessed here by

experiments against contrasting techniques reviewed in Section 4.2. The second discussion highlights

stronger and weaker aspects of using L′. To begin, then, by considering that approach in relation to

other work.

Stemming by Means of L′ in Contrast To Reviewed Approaches

Extracting stems from GRiST mind maps reflected a process called feature extraction, whereby Aas

and Eikvil (1999) transformed knowledge into a more manageable state. To that end, stemming revealed

groups of words that expressed a particular underlying concept. That stemming produced strings of letters

that were not themselves words was unimportant; rather, stems serve to improve access to knowledge

from GRiST mind maps. The challenge, as Xu and Croft (1998) pointed out, lay balancing opposing

tendencies of under- and over-stemming.

To an extent, applying L′ resembled the inverse document frequency (IDF) described by Mayfield and

McNamee (2003). That measure reflected the numbers of words that would be conflated by any particular

stem; those having high IDF were discarded as too general. That was achieved here by means of the

average distance between stems and any conflated words, LS . Excessive values of that average variation

led to rejecting stems that conflated too wide a range of words. Further, the performance penalty said

to arise for IDF from high numbers of string comparisons was not a problem; experiments processed an

entire list of unique words from GRiST mind maps in matters of seconds.

The Porter Stemmer used by Aas and Eikvil (1999) relied largely on removing suffixes, and further

embedded knowledge about English. In contrast, the approach used here measured variation between

words by means of the Edit Distance, L. Having rejected removing suffixes as a means of stemming, such

fixes actually arose from that process, in addition to several common prefixes. Identifying such fixes, then,

required no linguistic rules. In turn, reliable fixes might further seed a second pass of MindmapStemmer

armed with knowledge about fixes arising from this first pass. Fixes would be valuable in assessing stems

by indicating sub-strings that might well be inserted. Further, combining stems with fixes would generate

words which, checked by Jazzy, would provide further evidence about any stem’s coverage.

Further divergence from the stemmer invented by Porter (1980) lay in treating individual letters, rather

than recurring n-grams of several characters. On the other hand, context in the sense of co-occurring word

variants used by Xu and Croft (1998) was not considered, here. Even so, measures based on L avoided

the over-stemming that a consideration of context sought to avert. Notably, that approach avoided
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over-stemming the words ‘company’ and ‘computer’ to ‘com’, due to the differing respective n-grams

‘pan’ and ‘put’. Rather using, say, co-occurring word variants, measures based on L used here avoided

over-stemming in such cases as ‘asses’ which, while stemming words such as ‘assessor’ and ‘assessment’,

further included ‘harassed’. The slightly longer stem ‘assess’, selected by means of L, proved ideal.

As Orengo and Huyck (2001) point out, over-aggressive stemming might remove strings that, although

treated as suffixes, are actually parts of words. That was seen for, say, the suffix ‘ally’, of which the letters

‘al’ were, in fact, an integral part of words such as ‘formal’. Such longer false suffixes were successfully

rejected due to low rates of occurrence. Deriving fixes rather than relying on dictionaries of such strings,

then, proved more accurate, and therefore more useful. In just what ways that might be for GRiST mind

maps is considered next.

Stemming Mind Map Concepts by Means of L and L′

The overall aim of this chapter was to identify and organise concepts from GRiST mind maps, which

were seen as belonging to a wider set of related representations known as semantic networks. Mind maps,

though, stand apart from other types of semantic network by lacking any mechanism for controlling what

is recorded; put another way, no intensional knowledge exists that might dictates specific forms to which

knowledge must conform. Intensional knowledge, in turn, results from a process of normalisation, which

usually precedes creating any actual data. In contrast, the approach taken here was to derive intensional

knowledge from existing GRiST mind maps, in order to map any concepts from that collection. Just as

for other types of semantic network, that intensional knowledge was stores separately, leaving any original

mind maps unchanged.

Intensional knowledge from stems identified in this chapter comprise a first step towards a more formal

network. Indeed, GRiST mind maps served that purpose for Buckingham and Adams (2006), who ex-

tracted concepts manually for a more formal Galatean semantic network. Although mind mapping is seen

as little more than a brainstorming tool, though, those mind maps themselves constitute an information

base. Intensional knowledge from normalisation makes mind maps a valuable body of knowledge that

machines might research. Further, techniques demonstrated here could readily be applied to mind map-

ping in general. Providing intensional knowledge would help users to organise mind maps from whatever

domain was represented. By reducing related words to a common stem, nodes expressing whatever form

of a particular concept will be grouped together.

Adjusted versions of L successfully identified three such important GRiST concepts: abuse, depression,

and suicide, by means of respective stems ‘abus’, ‘depress’, and ‘suicid’. Tuples made up of a unique

node identifier and a stem plot instances of those concepts within GRiST mind maps. The standard form

of L could not have achieved such success; differences in word lengths raised relatively high values of L
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between, say, ‘suicide’ and ‘parasuicidal’. Allowing for word length, though, revealed that what might

have constituted excessive variation was due, in fact, to adding fixes. Having automatically determined

frequently occurring fixes, future research might consider a second pass that further refines stems in

light of those fixes. Although automated approaches are unlikely ever to be wholly accurate, L provided

relatively few unsuitable stems. Even those might improve on making more discerning adjustments to L.

4.7 Chapter Summary

After introducing the idea of stems, various approaches to that process were reviewed before presenting

a technique for stemming the forty six mind maps that Buckingham and Adams (2006) created for the

GRiST project. By means of L′, the adjusted Edit Distance, key concepts of abuse, depression and

suicide resulted from cross-comparing words found in GRiST mind maps. By holding concepts as stems,

related words might be mapped between mind map nodes. In that sense, stems contributed towards a

repository of intensional knowledge by reflecting what Mayfield and McNamee (2003) call the morpho-

logically invariant portions of words. Having introduced that approach based on L′, experiments followed

that identified and refined stems by allowing for words of differing lengths. Subsequently, qualitative

and quantitative improvements over the Porter stemmer were presented. Following an overall discussion

of those experiments in relation to an information base of GRiST mind maps, this summary closed the

chapter.
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Resolving Ambiguity in GRiST Mind Maps
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5.1 Introduction

Chapter 1 showed GRiST mind maps to diverge from the ideal proposed by Buzan (1996), particularly in

regard to the rule demanding single-word nodes that was dismissed as excessive. Reducing ideas to such

a Bag-Of-Words (BOW) would require humans and machines alike to reconstruct any original meaning,

during which nodes and, and hence ideas, might be recombined incorrectly. Permitting more expressive

nodes avoids that problem of interpretation for humans, and faithfully represents intended ideas. In fact,

approaches based solely on classes discard many useful words, destroying semantic relations between any

that remain (Bekkerman & Allan, 2005).

The richness of mind maps from GRiST, then, contrasts with other semantic networks such as concept

maps, which employ tangible constructs, as did ontologies created in OntoEdit. Nodes from those latter

networks were derived from nouns that represent concrete things. In a similar way, Knowledge Bases

formulated in Description Logics are based on unary predicates, or classes. Subsumption is a further

important aspect of such formal knowledge structures, as in the given example of a concept D that

subsumed a further concept C, indicating that all C are specific types of D (Nardi & Brachman, 2002).

In contrast, galateas from GRiST do not reflect strict subsumption hierarchies. Rather, GRiST in-

troduced Membership Grades (MGs) to reflect degrees of association between concepts. That allowed

the galatean model to treat concepts as members of sets, rather than as a strict subsumption hierar-

chy. In that way, galatean hierarchies decompose concepts such as self-neglect into constituent elements

(Buckingham et al., 2004). It is important to note that high-level concepts could share constituents: this

would not be allowed in a subsumption model. Further, less formal hierarchies allow complex concepts,

using several words. That tendency is far more marked in GRiST mind maps. As nodes branch from a

central idea, concepts become increasingly more specific and detailed (Hegazy & Buckingham, 2008).

That more relaxed approach to galatean and mind map structures yields nodes that do not stand for

discrete objects. For example, prepositions and conjunctions indicate relationships between more specific

concepts. The need arises, then, for machines to distinguish between words that express concepts, and

other words that tie them together. That process builds on the stemming described in Chapter 4, which

identified the word forms taken by core concepts. This chapter focuses on what mind map authors

meant when using such words to compose nodes that constitute sentences. To that end, a popular tool

called WordNet (Miller, Beckwith, Fellbaum, Gross, & Miller, 1990) is employed here. After an overview

of WordNet, two challenges are shown to arise in using it. Overcoming those challenges will involve

processing prepositions, in particular. Specifically, patterns of preposition usage will provide valuable

clues as to the meaning of ambiguous words. First, though, here is an overview of WordNet
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5.2 An Overview of WordNet

Chapter 2 introduced the Jazzy spelling checker as a useful store of lexical data, that is, of information

about words. The creators of WordNet, though, see algorithms such as Jazzy as mere rapid page-

turners, which ignore ways in which humans organise lexical knowledge. WordNet, in response to that

shortcoming, arose from psycholinguistic studies that revealed a mental lexicon comprising four Parts Of

Speech (POS): nouns, verbs, adjectives and adverbs. Those four POS are content words, while remaining

POS-types are function words. WordNet, then, emulates lexical memory by using separate stores (Miller

et al., 1990). Because WordNet’s design so influences any application, justification follows for fashioning

it in that way.

The Organisation of WordNet

Justification for isolating nouns in WordNet came from patients suffering from anomic aphasia. Strokes

in the left-hemisphere of the brain had left sufferers unable to name objects, suggesting a discrete physical

location for nouns (Miller, 1990). Further, that discrete lexical memory for nouns describes a semantic

network, in which nodes represent superordinate terms, or hypernyms, shown by the symbol @→ (Collins

& Quillian, 1969). In that way, a branch concerning canaries was represented as:

canary @→ finch @→ passerine @→ bird @→ vertebrate @→ animal.

(adapted from Collins & Quillian, 1969).

Those hypernym relationships suggest that all canaries are finches, and ultimately, animals. Rather than

a BOW, then, memory for nouns forms a hierarchy of progressively more specific hypernyms. A selected

branch from that network forms Figure 5.1 overleaf, which further depicts attributes such as ‘Has Skin’

and ‘Can Fly’ as arrows emerging from nouns at each level:
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Figure 5.1: A semantic network of nouns and attributes, adapted from Collins and Quillian (1969)
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By means of the semantic network from Figure 5.1, responding to assertions such as ’a canary can

sing’ involves descending the network as far as ’canary’, then taking the attached attribute ’Can Sing’.

However, deciding that ’a canary can fly’ involves moving up one level from ’canary’, having identified

that concept, to ’bird’ which holds the attribute ’can fly’. Indeed, experiments showed response times

for answering ’true’ or ’false’ to such assertions increased with the number of levels traversed, supporting

the view of nouns as a semantic network (Collins & Quillian, 1969).

In fact, nouns are the sole POS that characterise discrete objects; conversely, verbs have no concrete

existence. In further contrast to nouns, verbs exhibit lexical entailment rather than inheritance. Entail-

ment means that one verb necessarily involves another. For example, ’snoring’ entails ’sleeping’: to truly

snore, one must be asleep, although the opposite is not true. That difference in lexical relationships led

to holding verbs separately in WordNet (Fellbaum, 1990; Miller et al., 1990).

WordNet collectively treats remaining POS, adjectives and adverbs, as modifiers that qualify nom-

inal and verbal concepts expressed, respectively, by nouns and verbs. Unlike nouns, modifiers have no

synonyms, that is, words of equivalent meaning; such differences in usage justify holding apart modifiers

from other POS (Fellbaum, Gross, & Miller, 1990). Further support comes from the bi-polar nature of

modifiers, that is, how they might express opposed extremes such as ’hot’ and ’cold’ (Fellbaum, 1990).

Whether partitioning POS in that way was justified is not an issue, here; rather, it is the various

theoretical influences on WordNet’s designers that is of interest. While Jazzy uses distinct dictionaries

just for convenience, WordNet applies psycholinguistic principles to justify separating POS. Although

Jazzy adequately corrected spelling errors from GRiST mind maps, WordNet will build on that by

eliciting connections between concepts. To that end, attention turns next to the mechanism by which

WordNet holds related words.

WordNet as a Semantic Network

Having portrayed mind maps as semantic networks in Chapter 2, then, the WordNet tool for further

refining GRiST mind maps holds lexical knowledge in a similar way. In fact, WordNet covers both the

forms and the meanings of words, respectively known as morphology and semantics. The relationship

between form and meaning is many-to-many: specific words might have multiple meanings, while several

words might express a sole meaning. The word ‘board’, say, might mean a plank of wood or a group of

executives, a phenomenon called polysemy. Further, so-called senses reflect differing meanings for any

given word (Miller et al., 1990).

In contrast to polysemy, synonymy arises from varying word forms having similar meanings; exchang-

ing such words does not alter so-called truth values. Changing ‘plank’ to ‘board’, though, retains truth
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value, albeit in the specific context of carpentry. Further, substituting one POS for another would change

the meaning of a sentence; that verbs, say, cannot be synonyms of nouns further justifies considering those

two POS as discrete networks (Miller et al., 1990).

In practice, WordNet represents synonymy by means of synonym sets, or synsets, that enclose words

in braces. By that means, synsets {board, plank} and {board, committee} depict alternate interpretations

of ‘board’ (Miller et al., 1990). As semantic networks, though, synsets might further be depicted as nodes

connected by lines, as Figure 5.2 shows for detail from WordNet’s semantic network of nouns. Individual

synsets appear as ellipses, which are connected by arrows that link related synsets; in that way, pointers

between synsets result in a highly interconnected network (Miller, 1990). Here, then, is detail from that

semantic network, which depicts human body parts and inter-relationships:

Figure 5.2: Detail of WordNet’s semantic network of nouns, from Miller (1990)

Solid arrows from Figure 5.2 act as pointers to hyponyms, which express more specific forms of any given

concept; for example, ‘brother’ is a particular type of ‘relative’. Conversely, ‘relative’ is a hypernym of

both ‘brother’ and ‘sister’. Meronyms, on the other hand, reflect part-whole relations. For example, the

meronym ‘relative’ is part of a ‘family’, which makes ‘family’ a holonym of ‘relative’. The final semantic

relationship, antonymy, addresses opposing concepts such as ‘brother’ and ‘sister’. In the absence of such

relationships, though, synsets hold a short gloss in parentheses; in that way, a further sense of ‘board’

appears in the synset {board, (a person’s meals, provided regularly for money)} (Miller et al., 1990).

Note, though, that pointers from Figure 5.2 depicting hyponyms might be double-headed to reflect a

reflexive relationship with hypernyms, as might meronyms further dictate holonyms. In addition, arrows

from ‘bone’ point to both ‘arm’ and ‘leg’; although such sideways links are forbidden in mind mapping, the

semantic networks underpinning WordNet are far more interconnected. Aspects of WordNet’s network,

though, will be reflected in records based on intensional knowledge from GRiST mind maps. In turn, that

intensional knowledge will enrich extensional knowledge already available from hierarchical relationships

in those mind maps. That will depend on WordNet’s coverage of word usage, addressed next.
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The Coverage of WordNet

WordNet offers wide coverage of the four POS that it does consider. In illustration, table 5.1 presents

statistics from references cited in this overview. The column headed Count gives the number of words held

for each POS covered from the preceding column. The column headed Synsets indicates the corresponding

number of synsets, while the last column reveals the source of those statistics1:

POS Count Synsets Source

All POS 95,600 70,100 Miller et al. (1990)

Nouns 57,000 48,800 Miller (1990)

Adjectives 19,500 10,000 Fellbaum et al. (1990)

Verbs 21,000 8,400 Fellbaum (1990)

Adverbs - - Miller et al. (1990)

Actual Totals 97,500 67,200

Table 5.1: Statistics provided by the WordNet team.

Note, though, the lack of statistics for adverbs in Table 5.1, which Miller et al. (1990) admit but do not

explain. Another point to heed is that specific POS have fewer synsets than words. That is taken as due

to synsets that contain several variations on a particular word, for example, plurals of nouns. Verbs show

the greatest difference, likely due to holding infinitives along with conjugated forms.

Similar reasoning might explain why overall published figures from first row of Table 5.1 disagree with

the totals in the last row, obtained by summing those for specific POS. That might reflect the evolving

content of WordNet, or could be due to polysemy, whereby different senses of a particular word might be

counted more than once. For example, nouns sometimes act as modifiers (Fellbaum et al., 1990). Such

ambiguity is but one of the drawbacks of WordNet to be discussed next.

1References from The WordNet team at Princeton University (2005) appear together as ‘Five Papers about WordNet’.
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5.3 Challenges Raised by WordNet

Although stemming identifies nodes that express morphological variants of words, determining POS

might uncover additional knowledge in GRiST mind maps. Nouns, for example, suggest possible subjects

and objects for phrases, while verbs are actions performed by or on those nouns. Such an analysis would

establish relationships between atomic concepts within any given node, and between separate nodes. That

would turn to advantage the relative verbosity of those nodes in comparison with the norm proposed by

Buzan (1974, 1996, 2003).

Nodes such as [abusing substances] might, in that way, reveal to machines that something called

‘substances’ is the object of the action ‘abusing’. In a similar way, the node [abuse to client] draws

together two concepts, ‘client’ and ‘abuse’, that are both nouns. While the stem ‘abus’ from Chapter 2

relates morphological variants from those nodes, machines might further differentiate between words as

actions and as concrete objects. That process is hampered, though, by ambiguity within WordNet that

raise difficulties in determining any most likely POS for words.

Further, WordNet covers just content words, choosing to omit stop words. One particular type of stop

word though, prepositions, hint at what might constitute a subject of any action, and what an object.

For example, the preposition ‘to’ in [abuse to client], though, shows ‘client’ to be the object of that

phrase. By means of the word ‘to’, machines might render the equivalent phrase ‘persons unknown abuse

the client’, where ‘abuse’ has been transformed into a verb. In that way, subjects, actions and objects of

phrases might be held in a standard form by intensional knowledge. That absence of stop words, though,

will be addressed shortly; before that comes the problem of ambiguity in WordNet.
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Ambiguity in WordNet

GRiST mind maps comprise a modest corpus of 4242 unique words, of which 4112 are content words.

Table 5.2 presents statistics gathered about those content words from WordNet, for unambiguous to the

left, and ambiguous ones to the right. For each group, a column lists combinations of POS reported by

WordNet, the total words so classified, nw , and those totals as a percentage the 4112 content words:

POS Combinations nw % POS Combinations nw %

Adverb only 188 4.6 Adverb + other 17 0.4

Adjective only 447 10.9 Not in WordNet 184 4.5

Verb only 507 12.3 Adjective + other 834 20.3

Noun only 1029 25.0 Noun + verb 906 22.0

Subtotals (of 4112) 2171 52.8 - 1941 47.2

Table 5.2: WordNet statistics for content words from GRiST mind maps

Left-hand subtotals from the last row of Table 5.2 reveal that around half of the words researched were

reliably categorised, while remaining words had at least two possible POS. Most noticeable is the large

number of words appearing both as nouns and as verbs. Of further note is the number of adjectives that

could be taken for various other POS. Further, 4.5% of content words from GRiST failed to find an entry

in WordNet; Chapter 3 took those as novel words rather than as spelling errors.

Percentages for words unknown to WordNet, or that might be construed as nouns or verbs, are reproduced

next as a pie chart in Figure 5.3. Although many words are definitely nouns or verbs, a considerable

proportion might be either, and are ambiguous:

Figure 5.3: WordNet POS statistics I for words in GRiST mind maps.
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Figure 5.3 re-emphasises the 4.47% of words from GRiST mind maps that were unknown to WordNet. The

main feature of that graph, though, is the degree of confusion between nouns and verbs. To complement

that chart, Figure 5.4 presents statistics for combinations involving adjectives and adverbs:

Figure 5.4: WordNet POS statistics II for words in GRiST mind maps.

The lack of distinction between adjectives and adverbs in Figure 5.4 is of no consequence: those POS

will be treated collectively as modifiers. Of greater impact is that modifiers may be confused with nouns

and verbs. In extreme cases, words could be used as any of the four POS supported by WordNet. The

overlap between POS demonstrated by Figures 5.3 and 5.4 emphasises the need to resolve ambiguity.

Extracting reliable knowledge from GRiST mind maps demands finding intended meanings for words

used by mental health experts. In fact, WordNet itself helps to a degree by means of a measure called

familiarity, which reflects frequency of use. Indeed, WordNet employs polysemy - the number of senses

for a given word - because polysemy and word frequency are correlated: more frequent words tend to have

more distinct meanings that, all the same, are easily read, understood, and recalled. In that way, noun

hypernyms were refined by removing less popular words. Take, for example, the hierarchy for ‘bronco’;

the words ‘ungulate’ and ‘cordate’ were removed due to having just one sense, while the more familiar

words ‘horse’ and ‘pony’ were retained (Beckwith, Miller, & Tengi, 1993).

Familiarity, then, will help to find likely interpretation for words from GRiST mind maps. For example,

the word ‘house’ has twelve noun senses but just two as a verb; the more familiar noun proves appropriate

most of the time (Beckwith et al., 1993). That approach, though, fails for words such as ‘abuse’, which has

three senses as a noun and three as a verb. In such ambiguous cases, familiarity alone cannot determine

a most likely intended meaning. Overcoming such ambiguity has been the aim of various studies that,

in a similar way to spelling correction, consider the context in which words are used. One approach to

accounting for context employs word n-grams, as is shown next.
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Using N-grams to Reflect Context

The process of disambiguation, then, might improve by considering words’ context. That means treating

ambiguous words in relation to other words, rather than in isolation (Brants, 2003). In that respect, the

term n-gram describes any group of words to be taken together, with unigrams, bigrams and trigrams

respectively holding 1, 2 and 3 words (Basili, Marziali, Pazienza, & Velardi, 1996; Bekkerman & Allan,

2005). There now follow examples of work that captured context in terms of n-grams.

Bigrams have helped to determine appropriate interpretations of nouns. Doctors, nurses and lawyers,

for example, are all professional people; lawyers, though, work in a different profession than do doctors

and nurses. That is evident from the hypernym relationships in Figure 5.5, where the ‘@→’ symbol

introduced in Section 5.2 shows successive levels in a noun hierarchy, with relevant entries in bold type:

person

@→ professional @→ lawyer

@→
professional @→ health professional @→ doctor

PhD. @→ doctor

@→
professional @→ health professional @→ nurse

nanny @→ nurse

Figure 5.5: Hypernym relationships for ‘lawyer’, ‘doctor’ and ‘nurse’ (Resnik, 1995)

Figure 5.5 shows that doctors and nurses share the general concept of ‘professional’ with lawyers. Doctors

and nurses, though, are more closely related via ‘health professional’. Further ambiguity arose because

‘doctor’ could mean someone with a PhD, while ‘nurse’ might refer to a nanny.

Appropriate senses of ‘doctor’ and ‘nurse’, when appearing together, were determined by a measure

called the most informative subsumer. That measure involved researching words from bigrams in Word-

Net, whose noun hierarchies denote successively more specific concepts. At some point, any two such

hierarchies will diverge; until that point, words from a bigram share a common ancestry. The most in-

formative subsumer, then, was the lowest-level common ancestor, which denoted the most specific parent

concept of words held in any bigram.

In that way, the most informative subsumer between ‘doctor’ and ‘nurse’ was ‘health professional’, which

appeared lower down the two hierarchies than ‘professional’ (Resnik, 1995). To clarify further, the words

‘PhD.’ and ‘nanny’ defined different concepts, and subsumed just ‘doctor’ or ‘nurse’. Conversely, the less

informative subsumer, ‘person’, appeared higher in the hierarchy than did ‘health professional’. Using

bigrams rather than individual words, then, helped to avoid less appropriate senses (Resnik, 1995).
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Clustering as a Means of Overcoming Ambiguity

A further example of using bigrams examined text from 20 categories of news reports. Although that study

did not specifically address ambiguity, it showed the importance of considering context. The aim was to

identify words that characterised particular news categories. To that end, lists were compiled of words

that appeared both discretely as unigrams, and together as bigrams. The distribution of those n-grams

across the 20 news categories was analysed by a technique called distributional clustering (Bekkerman

& Allan, 2005). Because the next chapter deals with clustering in detail, attention here focuses on the

benefits of analysing bigrams in that way.

In fact, the input to distributional clustering comprised the frequencies for 20,000 bigrams. By drawing

together bigrams having similar frequencies, resulting clusters reflected the distribution of bigrams across

types of news reports. That, in turn, revealed bigrams comprised of words more likely to be found

together than apart in any particular text category (Bekkerman & Allan, 2005).

Importantly, bigrams proved especially good at distinguishing between news categories, due to a lack of

overlap between sets of bigrams from each category. Conversely, unigrams were less discriminating, being

more likely to occur across categories. Further, bigrams reflected associated words such as ‘human rights’

and ‘operating system’, showing tight interconnection between bigram components. In contrast, a BOW

approach would separate such words, even should they appear together in stable phrases. Pairs of nouns,

for example, would be reduced to isolated concepts, and any special meaning lost (Bekkerman & Allan,

2005). That is the view taken here: emergent knowledge from word-pairs in GRiST mind maps is not

evident when such words are taken separately.

Applying Trigrams to Resolving Ambiguity

An example of overcoming ambiguity by means of trigrams comes from work on the 500,000-word LD

corpus. That study employed dependency relations such as noun-preposition-noun to specify POS for

words in trigrams. An initial learning phase processed trigrams from just unambiguous WordNet results,

yielding trigrams that reflected reliable patterns of POS around any given preposition. Subsequently, a

testing phase compared ambiguous cases, which had earlier been ignored, against reliable trigrams from

the learning phase. Distributional clustering of dependency relations arranged such trigrams into reliable

patterns of POS co-occurring with any preposition. In that way, ambiguous POS were assigned the type

from the equivalent position of such a reliable trigram (Basili et al., 1996). The best interpretation of

any ambiguous word, then, arose from the context of POS for words from well-founded trigrams.

Issues Arising from Studies of N-grams

The approaches just described, then, used n-grams to reflect the context of ambiguous words. In particu-

lar, Basili et al. (1996) applied trigrams to resolving ambiguity; unambiguous trigram components helped
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to determine POS for ambiguous parts of further trigrams. In that sense, trigrams acted as templates that

indicated dependable patterns of word usage, suggesting POS for ambiguous words from unambiguous

ones used in similar contexts. A like approach will shortly be introduced for handling ambiguous words

from GRiST mind maps. For now, though, attention turns to issues with studies of n-grams.

The first issue concerns an emphasis on nouns, and on subsumption relationships between them.

Indeed, Basili et al. (1996) specifically restricted attention to WordNet’s noun hypernyms that represent

subsumption. Take further the word ‘nurse’ from work by Resnik (1995). In fact, ‘nurse’ is more likely

to be a verb: WordNet reports five verb senses, compared with just two as a noun. Despite that higher

familiarity, ‘nurse’ was not treated as a verb. Indeed, neither was ‘doctor’; that word, though, is less well

differentiated in WordNet, having four verb and three noun senses. While Basili et al. (1996) considered

‘nurse’ and ‘doctor’ as nouns when they appeared together, both might just as well have been verbs..

A second issue from studies of n-grams concerns degrees of human intervention. The most informative

subsumers of Resnik (1995), for example, relied on human judges that chose most likely WordNet senses

for over a hundred ambiguous words. Resulting confidence values between 0 and 4 identified instances

having low confidence levels of 1 or 0; such cases were excluded from ensuing analyses. Human intervention

was further evident in the approach of Basili et al. (1996) that, although said to be unsupervised, in fact

entailed training the system on manually compiled trigrams. Further, both of those studies addressed

just words having entries in WordNet. Having showed in Table 5.2 that WordNet lacked 184 content

words from GRiST mind maps, such an approach would risk missing important concepts.

Ambiguity, then, might be overcome by applying distributional clustering to word n-grams that con-

tain prepositions. Chapter 6 will deal with the particular clustering algorithm proposed for resolving

ambiguity in GRiST mind maps; attention now, though, turns to a further shortcoming of WordNet: a

lack of the very stop words, such as prepositions, that are seen as vital to that effort.

WordNet’s Lack of Stop Words

While constituting an important source of knowledge about the form and meaning of words, WordNet

coverage is limited to just content words: nouns, verbs, adjectives and adverbs. Various other important

POS are missing from WordNet. Indeed, function words, often called stop words, are commonly ignored,

or removed from texts under investigation (Yang & Pedersen, 1997; Brants, 2003). Even Yang and

Pedersen (1997), who claimed to examine all degrees of feature selection, give the exception of removing

stop words. That, though, risks discarding useful information (Bekkerman & Allan, 2005).

That view, though, contrasts sharply with those encountered in approaches to spelling correction: words

that appeared in pre-compiled lists of stop words were removed from text, on the basis that they carry no
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information (Aas & Eikvil, 1999; Dolamic & Savoy, 2008). While that might be justified in the context

of refining non-words, it is not the case concerning ambiguity. A further reason for ignoring stop words is

to expedite IR; response times in such applications generally improve should stop words be removed prior

to processing documents (Yang & Pedersen, 1997; Brants, 2003). Performance reasons aside, semantic

networks comprise concepts that denote ‘things’; DL, in particular, stress subsumption relationships

between unary predicates, or classes, suggested by nouns (Horrocks, Sattler, & Tobies, 2000; Nardi &

Brachman, 2002; Tsarkov et al., 2007). That arises from the importance placed on hypernym-based

subsumption relationships, which are a property of nouns alone (Miller, 1990).

The view of Bekkerman and Allan (2005) is heartily endorsed, here: ignoring stop words discards useful

information. While atomic concepts might form class hierarchies, stop words such as prepositions reflect

relationships between those concepts. In that respect, neglecting stop words would deny the richness of

GRiST mind maps, the combination version of which, after all, Buckingham and Adams (2006) saw as an

optimal representation of knowledge about mental health risks. To illustrate words that WordNet would

ignore, Table 5.3 presents stop words taken from those mind maps:

POS Stop Words from GRiST mind maps

Articles a, an, the

Prepositions about, at, by, for, in, like, near, now, of, on, over, to, with

Pronouns anybody, he, her, himself, me, she, some, them, this, us, what, you

Table 5.3: Non-WordNet parts of speech from GRiST mind maps.

Prepositions are the most important POS from Table 5.3, in that they govern relationships between

concrete concepts. Pronouns and articles might further represent such specific classes; indeed, implicit

references to ‘things’ will shortly elevate certain stop words to that status. One particular type of stop

word from Table 5.3, prepositions, will play important roles in exposing relationships suggested by mind

map nodes. Before that, though, come examples of studies that recognised the importance of stop words.
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Recognising the Importance of Stop Words

WordNet, then, distinguishes between content words, comprising nouns, verbs, adjectives and adverbs,

and stop words, which include prepositions. Automated analyses of text, though, commonly ignore stop

words as a source of knowledge. A notable exception comes from work on Recognising Textual Entailment

(RTE). Two similar sentences with opposing meanings demonstrate the difficulty that machines have

with RTE: ‘Slow down so that you do not hit riders’ compared with ‘Do not slow down so that you hit

riders’. The same words express very different outcomes associated with slowing down. The key word for

expressing entailment in those sentences was the preposition ‘so’ (Blake, 2007).

Difficulty with RTE was overcome by having machines identify roles for words in sentences. Such knowl-

edge was couched in the dependency grammar of Figure 5.6, which reflects the wrapping of the German

Reichstag building in aluminised fabric by Christo, the artist. Labelled arrows in that diagram describe

dependencies between words:

Figure 5.6: An example of dependency-grammar, after Blake (2007)

The left side of Figure 5.6 shows a dependency labelled ‘det’ for ‘determinant’, that is, the relationship

between ‘the’ and ‘Reichstag’. More important dependencies exist between ‘by’ and ‘the Bulgarian artist

Christo’, and between ‘in’ and ‘1995’. The former denotes that Christo did the wrapping, while the latter

indicates when (Blake, 2007). The core idea from Figure 5.6, then, was summarised as in Figure 5.7:

Figure 5.7: Derived dependencies for the sentence from Figure 5.6, after Blake (2007)

Figure 5.7 shows dependencies labelled ‘nsubj’ between ‘Christo’ and ‘wraps’, and ‘dobj’ between ‘wraps’

and ‘Reichstag’, respectively indicating a subject and an object for the action ‘wraps’. Such combinations

of subject, action, and object constitute triples, which were the primary means of determining RTE. The

subject and object of any action inferred what that action entailed (Blake, 2007).
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In addition to content words, then, prepositions in triples well indicated dependencies in RTE. In the

absence of explicit subjects or objects, those roles were implied by a process called collapsing preposition

paths. The preposition ‘by’ was removed, and the passive verb ‘was wrapped’ replaced by the active

form, ‘wraps’ (Blake, 2007).

A further study that considered prepositions employed a technique called chunking, which reduced

sentences to more manageable phrases. Square brackets show how the sentence ‘The red car is parked

on the sidewalk’ yielded the chunks [The red car] [is parked] [on the sidewalk]. Prepositions offered

important clues to identifying chunks in reference texts. In that way, the Swedish Parole corpus provided

16 million chunks, while the KTH News Corpus gave 10 million. Those chunks constituted n-grams of

varying size, including bigrams and trigrams. On subsequently comparing chunks from novel texts with

those reference n-grams, rare chunk sequences were reported as possible errors (Sjöbergh, 2005).

Points of Note from Reviewed Studies

The above studies demonstrated the utility of stop words, especially prepositions, in resolving ambiguity.

Those works re-state the importance of context, but for deriving relationships between words rather

than for disambiguating them. Another point of note concerns so-called modifying nouns, which were

important in RTE (Blake, 2007). That supported the idea of treating one component of any noun pair as

an adjective. Further, triples of the type subject-action-object offered a normalised form for representing

relationships.

The issue of human intervention, though, arises once again from that study of chunking, which was

claimed to aid unsupervised processing. In fact, human coders adjudicated decisions about rare chunk

sequences reported as potential errors. All such reports were checked manually to see if they were genuine

errors, or false alarms (Sjöbergh, 2005). On the other hand, work on RTE by Blake (2007) showed an

exemplary, albeit rare, level of automation. Prepositions, then, prove useful should they be considered at

all; such an approach of applying stop words to resolving ambiguity in GRiST mind maps is given next.

5.4 Stop Words and Ambiguity in GRiST Mind Maps

Section 5.3 demonstrated two shortcomings of WordNet that must be addressed. The first difficulty

concerned assigning POS to ambiguous words. Ambiguity arose when a particular word had several

senses, say as a noun or as a verb. The second drawback of using WordNet, and of approaches to machine

learning reviewed earlier, was a lack of attention to stop words. Overcoming one of those challenges will

help to resolve the other, as described next.

Completely unambiguous words have just one POS, and a single sense for that POS. In other words,
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unambiguous words are monosemous (Mihalcea & Moldovan, 2000). That seems excessive for the earlier

example of ‘house’, where the noun could be used in many more ways than the verb. Considering ‘house’

as a noun should give the correct interpretation, in most cases. For that reason, a particular POS will be

treated as predominant when it outranks the next most likely type by a given number of senses. That,

though, does not help when possible POS have similar numbers of senses. By itself, WordNet can offer

no clues as to the most likely meaning of such words.

The reviewed approaches to resolving ambiguity stressed the importance of context. Ambiguous words

were considered in relation to neighbouring words, rather than in isolation. For example, medical senses

of ‘doctor’ and ‘nurse’ were taken when those words occurred together. By themselves, it was unclear

whether respective possibilities of ‘PhD. holder’ or ‘nanny’ were appropriate (Resnik, 1995). N-grams of

two or more unambiguous POS encoded reliable patterns of usage.

In that way, several n-grams arose from an unambiguous appearing next to an ambiguous word.

Unambiguous POS were identical across such a set, while individual n-grams held a specific candidate

POS for the ambiguous word. Reliable, unambiguous n-grams indicated likely patterns of usage from

which to choose the best candidate in any such set. Novel n-grams that had no reliable counterpart were

discarded. Of the remaining n-grams, the most frequent one gave the best interpretation. Accordingly,

trigrams will be used here to resolve ambiguity in GRiST mind maps. Trigrams formed from unambiguous

words will reveal reliable patterns of meta-types around prepositions. Subsequently, reliable trigrams act

as templates for resolving trigrams that have ambiguous components. Trigrams, though, are not composed

directly from POS reported by WordNet, as is shown next.

Deriving Meta-Types from POS

The proposed approach, then, uses trigrams based on prepositions. The remaining two components reflect

POS for words found immediately before or after any preposition. Using POS reported by WordNet yields

trigrams such as N-P-N, which Basili et al. (1996) used to represent a preposition between two nouns.

In fact, POS will not be used directly. Instead, trigrams will reflect what roles words might take in a

phrase. In that respect, nouns represent things, while verbs express actions. Adjectives and adverbs are

collectively treated as modifiers, as suggested by Miller et al. (1990). Trigrams will reflect prepositions

surrounded by ‘t’ for things, ‘a’ for actions, or ‘m’ for modifiers. Those letters will be called meta-types,

to reflect how they come from actual types reported by WordNet.

Many words have implicit meta-types: articles and pronouns, for example, denote things. In contrast,

conjunctions and prepositions will be taken as modifiers, because they do not depict firm concepts1. That

1Prepositions are treated as modifiers should they comprise either of the two associated words in a trigram.
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approach permits more words into the analysis than if actual POS were considered. In that way, patterns

in meta-type usage will emerge, rather than affinity between specific words such as ‘doctor’ and ‘nurse’.

A Stop Word Adjunct to WordNet

WordNet’s lack of stop-words is often overcome by using a ‘stop list’. Such lists are used to avoid what

are seen as irrelevant words (Murtagh, Mothe, & Englmeier, 2007). In contrast, such a list from Pedersen

(2001) will be used to build an adjunct to WordNet. Inspecting that list yields the corollary of a synset

that reports POS for stop words. No pointers exist in such pseudo-synsets, just an indication of a main

category, with an optional sub-category. All the same, that WordNet adjunct allows stop words to return

synsets that resemble those for content words supplied by WordNet.

Table 5.4 lists just the main categories of stop words. Sub-categories of stop words were for information

only, and are omitted here; further, the main category has been assigned an appropriate meta-type, M-T:

Category M-T Stop Words

article
t

a, an, the

pronoun him, her, I, it, somebody, something, this, that, what

conjunction
m

and, after, although, before, but, or, so, unless, when, while

preposition as, at, before, by, down, during, from, like, since, to, with

Table 5.4: Examples from a stop word adjunct to WordNet, after Pedersen (2001)

Synsets based on Table 5.4 serve two purposes. The most important of those is to identify prepositions,

from which to build trigrams. In addition, those synsets allow stop words to contribute meta-types for

other trigram components.

Clustering

The method conceived by Bekkerman and Allan (2005) was an alternative to BOW approaches that rely

on algorithms trained by supervised learning. A particular advantage of clustering was that it reduced

the need for human supervision, which was restricted to specifying the number of clusters required. A

further advantage was in overcoming ‘statistical sparseness’ in the underlying data, namely, the low ratio

of bigrams to unigrams (Bekkerman & Allan, 2005). Indeed, GRiST mind maps might be seen as sparse

in comparison with the relatively large LD corpus. That commends clustering as a technique for analysing

n-grams from those mind maps, as the next section will show.

The problem remains of determining reliable, unambiguous patterns of words around prepositions.

The earlier review of resolving ambiguity showed a way of doing that for bigrams. A technique called

distributional clustering revealed groups of semantically related n-grams. That, in turn, reflected the

distribution of n-grams over particular categories of text (Bekkerman & Allan, 2005). Although trigrams
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will be used, clustering suggests a way of detecting patterns of word usage. Specifically, clustering will

show associations between particular prepositions and specific flanking meta-types.

The clustering algorithm used here is called Correspondence Analysis (CA). That technique has been

applied in various studies of word usage in text. The primary output from CA is a graph, which shows

clusters of related points. From such clusters, researchers deduce patterns of words that characterise

genres of text. Interpreting CA graphs was up to those researchers. Humans had to decide what particular

words were associated with different genres. A review of such studies follows shortly. For now, it is the

manual nature of CA that is important.

Instead of involving humans, machines will be made to interpret CA graphs by means of retaining

CA results after completion. Raw results that would normally be discarded will be available for further

analysis by machines. In that way, parameters derived from an initial CA allow a more detailed run to

ensue, again automatically. From that subsequent run, machines will reveal patterns in how meta-types

interact with prepositions. Any reliable trigrams that result will help to resolve ambiguous cases; when

found next to a preposition, ambiguous words will take the POS indicated by predominant meta-types

for that preposition.

Clusters of prepositions at the edges of graphs raise another aspect of automating CA. So-called

outlier clusters may be removed, to improve models of any underlying data (Bullen, Cornford, & Nabney,

2003). Outliers are indeed removed, but only after assessing their contribution to any graph. Instead of

seeing outliers as disruptive, they are taken here as very strong associations between prepositions and

meta-types. Repeatedly identifying and removing outliers will yield a more graded analysis, which will

allow machines to report a degree of certainty about any automated decision.

Relationships between Words that Surround Prepositions

Studies discussed in Section 5.3 revealed a focus on nouns. That reflected a need for tangible concepts

when building semantic networks. Stop words represent less concrete ideas, and were largely removed

from text prior to analysis. Chapter 2 dismissed that BOW approach because it destroys relationships

between words. In contrast, such relationships will be treated as important knowledge in GRiST mind

maps.

Rather than seeking to create a concept hierarchy, this thesis emphasises the roles that words fulfil

in phrases. In that respect, nouns represent things, verbs describe actions, and adjectives and adverbs

act as modifiers (Miller et al., 1990). Deriving meta-types from words allows roles to be assigned, say,

to things as the subjects or objects of actions. Assigning roles to trigram components yields triples, of

the type subject-action-object; in that way, triples might describe relationships in GRiST mind maps.
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Additional metadata attach modifiers to the two other meta-types.

CA will associate certain propositions with specific meta-types. The arrangement of those meta-types

suggests ways of rearranging them. Trigrams of the type A-P-N, for action-proposition-thing, might be

rearranged as A-N, as Blake (2007) did for Christo. N-P-N trigrams, for propositions surrounded by

things, might be rewritten as just the things, in reverse order. That stems from the way nouns sometimes

act as modifiers (Fellbaum et al., 1990). The final form would be M-T, for a modifier followed by a thing.

Further novel clauses might arise from mutually opposed propositions, indicated by CA. For machines,

that ability arises from analysing the axes of CA graphs; the order of meta-types established for one

proposition might be reversed for opposing proposition. That suggests that trigrams of the form X-P-Y

might be rearranged as Y-P-X, where X and Y represent any permitted meta-type. Rearranging words

in that way is by no means assured of success: results might well be inappropriate. To check the validity

of such transformations, examples of actual usage are sought in GRiST mind maps. Any single instance

would not, by itself, constitute enough evidence for such novel clauses. Backed by results from CA,

though, such sole examples are more indicative of a general rule.

5.5 Chapter Summary

The first part of this chapter gave an overview of WordNet, one of the principle tools for this thesis. After

describing the psycholinguistic origins of that lexical database, two challenges were noted concerning its

use. The first of those drawbacks arose from ambiguity in WordNet, while the second involved a lack of

attention to stop words. Of the various approaches used to resolve ambiguity, distributional clustering of

trigrams proved the most applicable to this thesis. That use of clustering was shown be applied here in

the form of CA. After an overview that revealed CA’s origin in classical mechanics, various studies were

introduced to illustrate how it has been used to analyse text.

Following that, a new approach based on stop words, which involves deriving meta-Types from POS

reported by WordNet. A stop word adjunct to WordNet was introduced to facilitate that process.

Performing CA on matrices derived from those meta-types reveals patterns of word usage associated with

prepositions. Clusters of corresponding prepositions and meta-types will help to resolve ambiguity, and

derive relationships between words from GRiST mind maps. All stages of CA were shown amenable to

machines, in a proposal for automating CA. Having suggested clustering as a means of compensating

for WordNet’s shortcomings, attention turns next to the specific tool proposed here: Correspondence

Analysis.
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6.1 Introduction

Previously, Chapter 5 revealed a technique called distributional clustering used by Bekkerman and Allan

(2005) to analyse bigrams from news reports. Accordingly, this chapter introduces Correspondence

Analysis (CA) as the specific clustering technique employed in this thesis. The chapter starts with an

overview of CA, and the means by which it explains patterns in underlying data. Following that comes

an overview of studies that have applied CA to researching text, after which CA will be shown as useful

for analysing trigrams arising from researching words in WordNet.

In respect of full automation, machines will face various challenges, such as building input for CA,

and then running it. More demanding challenges, though, will arise in interpreting unaided any resulting

graphs.

6.2 An Overview of Correspondence Analysis (CA)

CA is a form of multivariate data analysis amenable to both quantitative and qualitative data. Applica-

tions of CA range from analysing the X-ray emissions of astronomical bodies, to stock market movements

in economics. Whatever the domain of study, CA identifies factors that explain patterns in underlying

data. Input to CA comprises the frequencies of occurrence for variables within certain categories from

a domain. Those counts reflect a specific variable’s presence in, or absence from, particular categories;

from such categories arises a cross-tabulation between a set of attributes and set of observations made

on those attributes. The main output from CA consists of graphs that aid humans in visualising any

emerging patterns (Murtagh, 2005; Murtagh, Ganz, & McKie, 2008).

Given a matrix of observations across various categories, then, CA derives factors that explain vari-

ation between those categories. Subsequently, CA determines interactions between factors, from which

clusters of related results arise; such clusters highlight trends in the underlying input data. Borrowing

from classical mechanics, CA endows each point on the resulting graph with a proportionate mass. Sub-

sequently, the inertia of any cluster indicates the strength of relationships between points on a graph.

Successive factors F1...Fn explain ever smaller proportions of the total inertia. Resulting graphs describe

a complex web of relationships between variables and categories from any domain of interest (Murtagh,

2005, 2008; Murtagh et al., 2007). Those basic principles underlying CA will now be treated in more

detail, as described by Benzécri (1992).
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The Input Matrix for CA

Input to CA, then, consists of a set of observations and a set of attributes, respectively called sets I

and J. Set I comprises rows from the input matrix, while set J represents columns. Each column in the

matrix represents a particular variable from any domain of study, while rows reflect measurements such

as occurrences of those variables over various categories. Together, sets I and J yield a rectangular table

of positive numbers. The first step in CA, then, calculates various totals from sets I and J. The index

i specifies particular rows in the set I, while index j depicts columns from set J; intersecting values of i

and j identify an individual cell k(i, j) in the matrix body. From that follow three important totals:

the total ki for row i: ki = Σ {k(i, j) | j ε J}

the total kj for column j: kj = Σ {k(i, j) | i ε I}

the grand total k: k = Σ {k(i, j) | i ε I; j ε J}.

In deriving the first totals, ki for each row, CA holds constant the row index i while summing successive

cell values by varying j for as many columns as exist in J. In a similar way, the second total, kj , sums

cells under a particular column by adjusting i for any given value of j. The third expression, in contrast,

sums all cells in the matrix by varying both i and j. Those three totals are annotated in Figure 6.1,

which shows a matrix from the first phase of CA. Note, though, the extra row and extra column at the

margins of the raw data table. A cell at index j of the marginal row holds the column total k(j), while

the marginal column holds the total k(i) for row i. The grand total k appears in the bottom-right cell:

Figure 6.1: An extended input table for CA (Benzécri, 1992).

Totals from Figure 6.1 are important to the next stage of CA, where they contribute towards profiles

that normalise values from the initial matrix.
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Profiles

Correspondence between sets I and J might not be obvious from raw observations: cells having widely

varying values yield marginal totals that obscure underlying trends. Normalising those totals reveals rows

or columns having similar proportions, regardless of absolute values. The first step is to divide cells of

any row i by the marginal total k(i). A particular cell k(i, j) receives that weighted value f ij as follows:

f ij = k(i, j) / k(i).

The weighted value f ij , then, reflects a proportion of the row total k(i). Because of that, weighted values

for any row or column add up to 1. Subsequently, profiles arise from such normalised values. The profile

for row i is the set of f ij for all elements from J, the table columns. In other words, that is the set of all

f ij for j taken over J. Accordingly, the profile f iJ for row i is expressed as:

f iJ = {f ij | j ε J}.

In a similar way, the profile f Ij for an entire column j comprises weighted values over all rows:

f Ij = {f ij | i ε I}.

Sets I and J, then, are depicted by respective profiles f Ij and f iJ . Identical profiles, though, offer just a

baseline for comparison with later analyses; rather, it is dissimilar profiles, where f Ij 6= f iJ , that reflect

particular correspondences between elements of sets I and J.

Figure 6.2 demonstrates how row profiles, for example, help to elucidate patterns within raw obser-

vations. That matrix comprises three sets of observations for two variables, giving a matrix of three rows

by two columns. The additional marginal column shows totals for each row. Weighted values for each of

those columns appear to the right-hand side of that figure:

Figure 6.2: Deriving row profiles for a CA matrix (Benzécri, 1992).

Note that the first and last rows from Figure 6.2 have identical profiles of {0.65, 0.35}, despite differences

in actual values held as k(i, 1) and k(i, 2). That is important to the next topic of spatial representation.
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Spatial Representation of Sets

Graphs arising from CA depict correspondences between profiles, which in turn reflect any interaction

between attributes from sets I and J. Any CA graph shows sets of points as clouds in a multidimensional

space. CA permits any number of dimensions, the actual number depending on the number of columns,

that is, on the cardinality of set J. For a table of two columns, that space is a 2-dimensional plane. Three

columns give a 3-dimensional volume. In generic terms, points from a table of n columns will always lie

within a n-dimensional space.

Within any CA space, coordinates for individual points reflect values from profiles in set I or set J. Single

profiles comprise a tuple of values that, together, specify a point’s coordinates. Rows that have identical

profiles designate the same point on a graph. Increasing differences between profiles yield correspondingly

distant points on the graph. In that way, CA produces separate clouds of points, which give a spatial

representation of diversity between rows and columns from a data table.

Points drawn from profile values, though, occupy just a portion of any CA space; in fact, points fit

within a simplex, that is, a n-dimensional triangle. For a matrix of two columns, the space is a triangular

area on a plane. In three dimensions, the shape is a tetrahedron. More than three dimensions, though,

make it hard for humans to visualise the CA space, due to difficulty in imagining four or more axes at

mutual right angles. CA eases comprehension by producing a faithful, though simplified, representation

in a space of lower dimensions. That raises the issue of identifying the more important dimensions, which

is done by considering points as having mass.

Imbuing Points with Mass

Rather than treating points as equally important, CA considers some points as more influential than

others. To that end, CA assigns according masses to points within a cloud. Imbuing points with mass

stems from applying classical mechanics to points on a graph, which means that points mutually attract

or repel in proportion to their masses. Accordingly, any cloud of points might be reduced to a spatial

mean, depicted as a single point that reflects that cloud’s overall mass. To demonstrate, consider a cloud

of n points on a graph. The x-coordinates of those points comprise the numbers xi. . .xn. For the cloud

as a whole, the mean of those x axis components is expressed as x:

x = (x1 + x2 + . . .+ xn)/n.

Treating each axis of the CA space in that way yields coordinates for the spatial mean1. Note, though,

that averaging coordinates creates points of equal relevance within a cloud. In contrast, assigning masses

to components along each axis accounts for points of varying importance. To illustrate, the above x-axis

1In that way, coordinates for a spatial mean within a 2-dimensional space might be expressed as {x, y}.
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components x of points 1. . .n are weighted by masses m1. . .mn to give a weighted mean xw:

xw = (m1x
1 +m2x

2 + . . .+mnx
n)/(m1 +m2 + . . .+mn).

In short, the sum of weighted components is divided by the total mass. Treating all dimensions in the CA

space in that way yields coordinates for an alternative spatial mean that constitutes any cloud’s centre

of gravity, which acts as if the total mass were concentrated there2. More precisely, the term barycentre

emphasises how that centre of gravity arises from unequal masses.

In practice, CA derives the barycentre by means of row profiles, and of the CA matrix in Figure 6.2.

Values from individual profiles are weighted by masses calculated from the matrix3. Consider the mass

of a point i from set I, the matrix rows. That mass depends on the marginal total k(i) from the row for

that point. In addition, all masses depend on the grand total k from the matrix. In those terms, the

mass fi for row i arises from dividing the row total by the grand total:

fi = k(i)/k.

In a similar way, the mass of any column j from set J is:

fj = k(j)/k.

Masses shown as fi and fj are used as the masses m1. . .mn in the earlier calculation of xw. Values from

profile i, which specify coordinates along various axes, have associated masses fi. Within a cloud, the

resulting point for profile i plays a role proportional to its mass. In a similar way, the mass fj indicates

the importance of the point for column profile j.

2For example, an original spatial mean {x, y} becomes the weighted mean {xw, yw}.
3Note that unweighted values from the original matrix reflect the relative importance of rows.
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Forces between Masses

From mass stems a mutual force between points on a graph. As an example, take the points for row i

and for column j in a matrix. Those points depict the profiles f iJ and f Ij respectively. Each value within

those tuples specifies a position on a particular axis. Along those axes, the row and column components

either attract or repel one another.

In order to determine the direction of any force on a particular axis, CA considers the value k(i, j) at

the intersection of row i and column j. That value k(i, j) is compared with the product of respective row

and column masses fi and fj , which are multiplied by the grand total k from the matrix. Points repel one

another should the cell k(i, j) be smaller than that combined product; conversely, points are mutually

attracted should k(i, j) exceed that product. The direction of any interaction, then, is summarised as:

k(i, j) = kfifj : no force acts between i and j;

k(i, j) > kfifj : components i and j are mutually attractive;

k(i, j) < kfifj : components i and j are mutually repulsive.

The product of masses, shown as fifj , accounts for absolute differences in mass. That product will be

unchanged as long as differences in the row mass fi are balanced by changes in the column mass fj .

To the right of the equals sign in those expressions, the grand total k is multiplied by the product of

masses, fifj . Note that dividing both sides of those expressions by k shows that k(i, j)/k = fifj . In

other words, the product of masses equals the cell’s proportion of the grand total. That shows a lack of

affinity between components i and j: no force acts between them. In such cases, masses merely reflect

the raw observations, and have no effect.

A force arises when combined masses differ from any cell’s proportion of the grand total. Should the

product exceed that proportion, components i and j attract one another. In such cases, the product

of masses exceeds what would arise from using standard masses; effectively, the raw observation k(i, j)

has such a standard mass. Extra mass arises when, together, marginal totals i and j notably contribute

to the grand total, increasing attraction between components i and j. Low combined masses, on the

other hand, reflect relatively small marginal totals for i and j; the product of masses is less than what

would arise from using a standard mass. Relative reductions in mass lessen any attraction between such

components, which act as if mutually repelled.

The actual force acting on any point, then, reflects combined interactions across n dimensions. In that

way, CA groups together related points, while separating them from others. Resulting forces deform

clouds, which will soon be shown to reflect factors in CA. In the absence of any force, components i and j
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will not contribute to those factors. In addition to generating a force, though, imbuing points with mass

permits allusion to a further property from mechanics: inertia, which is discussed next.

Inertia

Inertia reflects the shape of a cloud, that is, the dispersion of points around the barycentre. Inertia for

any given point with respect to point P is shown as IP. Further, any point of interest is shown as Mimi

to depict a point Mi having mass mi. The inertia of that point with respect to P depends on the mass

mi and on the squared distance between P and Mi, shown as d2(P,Mi) in the following equation:

IP(Mi,mi) = mi d2(P,Mi).

The inertia of any point with relation to point P, then, is the product of that other point’s mass, and the

squared distance from P. Squaring the distance means that inertia increases sharply as points become

more widely separated. Subsequently, the inertia of entire cloud N in relation to P arises from summing

the inertias of points in the cloud, with respect to P. In that way, the overall inertia IP(N) becomes:

IP(N) = IP(M1,m1) + IP(M2,m2) + . . .+ IP(Mn,mn).

Although the above works well for individual points, the inertia of the entire cloud N is best considered in

respect of its barycentre. Specifically, the inertia IG(N) arises with respect to a point G, at the centre of

gravity for cloud N. Rather than summing IP across points in a cloud, IG(N) arises from adding together

IG for those points.

Cloud N, then, has inertia IG(N) with respect to the centre of gravity of that cloud. From that inertia,

CA calculates the total variance of cloud N as Vartot(N), reflecting the degree of spread away from the

barycentre. In other words, Vartot(N) reflects the dispersal of points in cloud N around its centre of

gravity. CA obtains that measure by dividing inertia IG(N) by the mass of the cloud, mtot:

Vartot(N) = IG(N)/mtot (where mtot = m1 + m2 + · · ·+ mn).

In that way, the variance Vartot(N) measures mean squared distance from the centre of gravity, weighted

by the mass of the cloud. Having derived variance, the end is in sight; all that remains is to derive the

factors depicted by any CA graph.

Factorial Axes

The shape of any cloud, then, reflects distortions arising from forces between points; for that reason, the

barycentre may be offset from the spatial mean. In addition, points around that barycentre may stretch

further in particular directions. CA uses such deformities to project lines through any cloud, describing

the principal axes of inertia known as factorial axes. Those axes are mutually perpendicular lines passing
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through any cloud’s centre of gravity. Inertia is at a maximum along the first axis, which connects the

most widely dispersed points, and constitutes the principal factorial axis ∆1.

Subsequently, axis ∆2 arises at right angles to ∆1 between the next most widely dispersed points. Ul-

timately, a system of axes arises on which to plot coordinates from profiles; the complete set of axes is

called ∆α, where α depicts the number of columns in the matrix. Successive values within profile f iJ for

row i dictate a position on the corresponding axis j from ∆α.

Summary

Input to CA, then, consists of observations made on attributes taken from any domain of interest. Set

I comprises rows from such a matrix, while set J represents columns; intersections between respective

indices i and j identify individual cells. Three totals are calculated for rows, columns, and the matrix as a

whole: respectively, ki, kj and k. From those totals arise profiles, which adjust raw observations to identify

rows or columns having similar proportions. In addition, profiles yield coordinates for representing sets

I and J spatially, on a graph.

Graph points are further imbued with masses proportionate to the contribution of ki and kj to the grand

total k. In that way, points exert forces relative to their mass, in a direction that depends on the product

of masses for corresponding rows and columns. Further, the inertia of any cloud reflects the overall mass

of individual points, in addition to the distance between points and the cloud’s centre of gravity. Inertia is

lowest near any cluster’s centre of gravity, increasing with distance away from that point. Consequently,

widely spread points reflect a high degree of underlying variation. Having determined the shape of clouds

in the CA space, factorial axes follow as lines between bulges on that space. Starting with the most

pronounced, successive factors explain correspondingly less variation between sets I and J, the respective

matrix rows and columns. That, then, is all one needs to know in order to understand CA, and to

interpret any results (Benzécri, 1992).

Indeed, I would argue that to be more than one needs to know, and that an appreciation of profiles,

along with masses and forces from secondary school Physics, is enough. In a similar way that psychologists

might be unaware of the intricacies of the Analysis of Variance (ANOVA), yet use that tool widely, CA

is seen here somewhat as a ‘black box’ whose machinations one trusts to greater mathematical minds. In

that way, CA overcomes the problem that Buckingham et al. (2004) see in statistical tools demanding a

strong numerate background, and provides what Murtagh (n.d.) describes as a multi-modal, multi-faceted

analysis toolbox. Attention turns next to using that toolbox for analysing text.
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6.3 Correspondence Analysis for Researching Text

Applying CA to discerning patterns in text is not a novel idea; indeed, it has been used to investigate

literary style in various genres of written work. Bodies of text under scrutiny have ranged from the

Christian Gospels to 19th Century fiction, in addition to various standard research texts.

The following review starts with an analysis of word usage across various genres of text, by means of

CA. Then comes an example of superimposed graphs from sets I and J that aids human interpretation.

Further studies reveal the importance of positive and negative sides of axes, and of the way in which CA

graphs are split into quadrants. Then comes a study of trigrams, and further one that used WordNet

alongside CA; those latter studies in particular inspire a novel approach to resolving ambiguity.

Analysing Word Usage across Genres of Text

The first example of applying CA to textual analysis offers relatively clear graphs, which serve as good

illustrations. The domain of that study was the Lancaster-Oslo/Bergen Corpus (LOB), which comprises

four million words from literary works, newspapers, and academic texts; it further covers fifteen categories

that range from religion to science fiction.

Results from CA revealed groups of words that corresponded to particular genres: authors were more

or less likely to use certain words in any particular genre. In addition, CA identified groups of genres

that employed similar words (Nishina, 2007). In terms of the sets I and J that form the basis of any CA,

various genres constituted set I, while words of interest comprised set J.

The first step, then, was to count occurrences of relevant words in the LOB. That yielded a matrix

of 100 columns by 15 rows, to reflect word frequencies within text categories. For simplicity, categories

were denoted as types A - R. Table 6.1 shows the first few columns and rows of that matrix:

etc.

Table 6.1: Detail from a CA matrix of word frequencies by text category (Nishina, 2007)

Table 6.1 shows, for example, 2,018 occurrences of the word ‘said’ in texts from category A, Press

Reportage. CA on that matrix produced the graph overleaf in Figure 6.3, which plots word frequencies

against genres. Ellipses have been added to highlight particular categories, or groups of categories:
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Figure 6.3: Plot of text categories based on word frequencies (Nishina, 2007).

Figure 6.3 shows points for categories J and A that appear outside the central cloud. Those categories

were Learned and Scientific Writing and Press Reportage, respectively. In addition, a distinct group of

points for categories K, L, N and P showed those genres to be quite similar. In fact, categories in that

smaller cloud were some form of fiction1. In contrast, genres that congregate around the graph’s origin

had less well defined patterns of word-usage. All the same, the point for category R, Humour, is closer

to the group of fiction genres than to other points. Humorous writing more resembled fiction than it did,

say, academic journals in class J (Nishina, 2007).

1Fiction genres were K: general, L: mystery & detective, N: adventure & western, and P: romance & love story
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Although CA identifies related genres in set I, words that characterised those groups do not appear

in Figure 6.3. That information comes from Figure 6.4, which plots set J:

Figure 6.4: Plot of word frequencies based on text categories (Nishina, 2007).

The top-right quadrant of Figure 6.3 depicts the words ‘different’, ‘form’ , ‘used’ and ‘system’ as slightly

removed from the central cloud. In the bottom-right quadrant, the words ‘government’, ‘national’ and

‘year’ comprise a more distinct group. Those groups constitute words that are likely to appear together,

though in what genres is not clear. Just as the graph for genres lacked information about specific words,

the graph for those words lacks information about genres. Those graphs must be compared in order to

find correspondences between words and genres (Nishina, 2007).

Corresponding quadrants of the graphs from Figures 6.3 and 6.4 reveal relationships between words and

genres. Take, for example, the top-right quadrant in the graph of genres, which contains an isolated

point for category J, Academic Journals. The corresponding quadrant in the graph of words holds the

group containing ‘form’ and ‘system’. In a similar way, the bottom-right quadrants reveal a correspon-

dence between category H, Government Documents and Industrial Reports, and the words ‘government’,

‘national’ and ‘year’. Comparing graphs indeed showed that particular genres, or groups of genres, were

characterised by different vocabularies (Nishina, 2007).

Issues Arising from the Study of Genres by Nishina (2007)

An issue with that study concerns categories A and J, academic texts and press reportage respectively.

Those points appeared near the extremes of separate quadrants in Figure 6.3, leading to the conclusion

that categories J and A are totally different. The word ‘totally’ suggests that words from one category
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of text never appear in the other. It would be better to say that some correspondences between words

and genres are stronger than others.

A further issue involves various labels on graphs, which reveal an important aspect of CA that received

little attention. Headings and axes from Figures 6.3 and 6.4 bear percentages of any overall variation

explained by resulting factors, reflecting their relative importance. The x-axis label, then, shows the first

factor from CA to account for 59.04% of the total inertia. Factor two, on the y-axis, explained a further

15.10%. Summing those figures yields the total of 74.14% in the headings. Although both of those factors

are important, the first was far more so. In addition, nearly a quarter of the inertia remains unexplained,

which might point to further research.

In addition, note that axis labels on the graphs from that study use the word ‘Dimension’. In fact,

dimensions reflect the cardinality of set J in any analysis (Benzécri, 1992). Put another way, the space

that CA creates has as many dimensions as it has matrix columns. The word ‘factor’ would be more

accurate, as that is what CA actually projects on graphs (Murtagh et al., 2007). A further misconception

arise as criticism of CA for failing to consistently divide genres into specific groups (Nishina, 2007).

Rather than any fault in CA, though, it is the researchers’ input matrix that failed to capture the desired

patterns; indeed, Murtagh (n.d.) shows that data encoding is an important part of CA.

A final issue with the study by Nishina (2007) concerns text categories A and J; those points appeared

near the extremes of separate quadrants in Figure 6.3, leading to the conclusion that academic texts in

J and press reportage in A are totally different from the remaining types of text. The word ‘totally’,

though, suggests that words from those categories never appear in other text genres. It would be better,

then, to say that certain correspondences between words and genres are stronger than others. Having

raised issues with that study of genre, then, attention now turns to approaches that addressed those

issues. The first apparent improvement is in visualising CA results; rather than comparing graphs for

sets I and J in isolation, superimposed graphs aid interpretation. That is permitted because CA maps

both sets into the same space (Murtagh et al., 2008).

Superimposing Graphs from Sets I and J

A good example of superimposing graphs comes from a study of the synoptic gospels: Mark, Matthew,

and Luke. CA analysed frequencies of occurrence for types of subordinate clause, such as comparative

and conditional clauses, in Greek versions of those gospels. In addition to particular gospels and clauses,

a third measure reflected variations in discourse. The narrative form, for example, does not report direct

speech, whereas parables contain quotes from participants in a story (Unmans, 1998).

Because CA processes just two sets, discourse could not be addressed directly. Overcoming that constraint
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meant compressing three measures into a two-way contingency table that CA could use. To that end,

gospels were split into sections; each section reflected a specific type of discourse, and contributed a row

to the CA matrix. Columns in that matrix stood for types of subordinate clause, while individual cells

held the frequency of a particular type of clause in specific source (Unmans, 1998).

Figure 6.5 shows the resulting superimposed graphs, for the first two factors arising from CA. Points for

the gospels appear in bold face, and end in a letter that reflects a specific type of discourse. Subordinate

clauses are shown in normal type. The exact meaning of those labels is unimportant, here; rather, it is

how overlaid graphs help to reveal correspondence between sets. Particular types of clause can be seen

to congregate around groups of gospels. Some such clusters have been highlighted in ellipses:

Figure 6.5: Stylistic analysis of the synoptic gospels (Unmans, 1998)

Although little interpretation of Figure 6.5 was offered, it demonstrates the benefit of plotting CA graphs

together. In addition to showing clear clusters of gospels and clauses, superimposed charts make obvious

any correspondence between the two categories.

Take, for example, clusters that span the upper and lower left-hand quadrants. There, narrative

sections from all three synoptic gospels form a well-defined cluster of points LkN, MtN and MkN. Clauses

of type Pga, Pc1 and Pc2 cluster together in a similar way, respectively associating clauses having absolute

participles with those having various conjunctive participles. Superimposed graphs make obvious the

specific correspondence between those sections and clauses.

Although Figure 6.5 gives no percentages of inertia, the first two dimensions actually represented
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78.1% of the total information content. Further to investigating subordinate clauses, further graphs

plotted, for example, correspondence between gospels and certain Greek words. In all cases, attention

was paid to the importance of factors arising from CA. Proportions of inertia attributable to the first two

factors from those analyses ranged from 45.8% to 99.2%. The latter figure, in particular, showed that

higher dimensions of the CA space held most of the essential information (Unmans, 1998).

Another aspect of note from that study of the gospels concerns the distances between points. While

quadrants on a graph reflect major differences between sets, distances between points reflect the extent of

any resemblance. Mutually close points reflect a high degree of correspondence, whereas points that are

widely separated are very dissimilar. That applies to distances between row points and between column

points1. Although particular points may not be close in the first two dimensions, they might well be

so in higher dimensions. For that reason, unequivocal clustering must sometimes account for additional

factors, not just the two most important ones (Unmans, 1998).

1It is important to add that CA allows comparisons both between and within those sets of points.
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Using CA to Analyse Trigrams

Rather than counting individual words, the CA matrix for the next study comprised frequencies for

trigrams; in fact, those trigrams came from essays by students of English as a Foreign Language (EFL),

at five levels of education. Trigrams components were assigned POS by the TOSCA tagger; for example

the trigram ADJ-N-PREP represented an adjective, followed by a noun, then a preposition (Tono, 1999).

Resulting correspondence between age and patterns of trigram usage, then, appear as Figure 6.6, which

in particular shows junior school children to use mainly nouns, while university students accounted for

most trigrams involving prepositions. Those two clusters have been circled in blue:

Figure 6.6: Plot of the relationship between trigrams and age (Tono, 1999)

Points for junior school children from Figure 6.6 cluster at the outskirts of diagonally opposed quadrants;

between those extremes, the three remaining age groups were alike in employing largely verb-related

trigrams (Tono, 1999).

Introducing WordNet into CA

The last study under review combined WordNet and CA, to investigate any effect on intelligibility of

replacing words in sentences. The similarity of replacements to original words was assessed, in part,
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using WordNet’s measure of semantic distance, which reflected degrees of separation between words from

underlying semantic networks. For example, the distance between ‘car’ and ‘gasoline’ was smaller than

that between ‘car’ and ‘bicycle’.

Students at various levels of ability in English had to substitute words in sentences. Human annotators

judged the suitability of replacements, using categories ranging from ‘clear’ to ‘unintelligible’. Figure 6.7

shows the interaction between proficiency, and the semantic distance that gave clear substitutions:

Figure 6.7: CA graph showing semantic distance of acceptable word substitutions, by age (Izumi et al., 2007)

Figure 6.7 clearly separated students at level 9, in the top-right quadrant, from those having lower levels

of proficiency. Very able students tolerated the greatest semantic distances, and appeared near the edge

of the graph. Low ability students, on the other hand, showed a corresponding intolerance: substituted

words had to be closely related to any original word. Remaining groups understood reasonably distant

substitutions, and clustered around the centre of the graph.

In fact, WordNet was just one of several measures of semantic distance that was employed. Separate

runs of CA were needed to assess the effect of any specific measure of distance. That was due to the need

for simple contingency tables, which was seen as a clear limitation of CA (Izumi et al., 2007).

While demonstrating a notable combination of trigrams, WordNet and CA, that study raises a dif-

ficulty with interpreting graphs. Points for ability in English between levels 3 and 8 clustered around

the origin, separating them from the lowest and highest levels. The problem arises of deciding just how
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many clusters are reflected, and what points belong to each cluster. If asked for just three clusters, CA

might show the central points as a single group. Four clusters would most likely split levels 7 and 8 into

a separate cluster. Assessing the optimum number of clusters, then, poses a challenge to humans, and

more so to machines.

Summary of CA for Analysing Text

Common threads emerged between applications of CA to researching text that will close this section. In

general, the distribution across categories of one set were used to explain the spread in a second set, and

the same in reverse. Graphs from CA largely plotted one factor on the x-axis against a second factor

on the y-axis. The coarsest measure of correspondence was the split between positive and negative sides

of a particular axis. The next level of detail arose from interactions between the two axes, giving four

quadrants that reflected major sub-categories; further specific correspondences arose on inspecting the

distances between points (Unmans, 1998; Nishina, 2007).

With the exception of Nishina (2007), the reviewed studies overlaid graphs to aid comparisons between

sets I and J, which occupied comparable CA spaces. Another area of agreement lay in noting any

contribution made by specific factors to any overall variation. The two factors normally shown in a CA

plot, though, might account for just a proportion of that variation; a certain amount of variation will

remain unexplained, should just a few dimensions be considered. That said, any first two factors generally

accounted for an acceptably large percentage of overall variation.

Work on analysing trigrams showed the benefit of considering n-gram frequencies rather than counting

individual words. Given the importance to this thesis of trigrams that contain prepositions, the study

by Tono (1999) was of particular interest. Combined with WordNet, as in work by Izumi et al. (2007),

CA offers a powerful tool for discerning patterns of preposition usage in GRiST mind maps. Rather than

as an end in itself, though, such patterns will further aid in disambiguating important words from those

mind maps, in turn enhancing the emerging information base.

A unanimous aspect of CA in analysing text, though, concerned degrees of human intervention.

Indeed, all of the reviewed studies ran CA manually, with humans inspecting any results. Maximising

automation in processing GRiST mind maps, though, requires machines to perform all aspects of CA

unaided. While building matrices and running CA are easy enough, reading graphs will be more of a

problem, as will be selecting optimum numbers of factors and clusters. Further, machines must collate

row and column clusters, and interpret points towards the edges of graphs, whose axes must further be

analysed. All of those functions are normally done by eye; what follows, then, is a proposed approach to

automating CA for GRiST mind maps.
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6.4 Automating CA for GRiST Mind Maps

The primary output from CA, then, comprises a pair of graphs that represent separate, though related,

analyses: one for rows from the CA matrix, and a further one for columns. Due to that correspondence,

superimposed graphs were commonly used to aid interpretation by humans. For CA to process GRiST

mind maps automatically, machines must emulate that ability to interpret graphs. Rather than treating

graphs as images, though, underlying tables of results are more readily processed by machines; indeed,

those tables reflect the profiles that contributed graph coordinates in the first place. Retaining CA results

in memory makes them available after actual runs are complete, allowing machines to perform subsequent

analyses. The tasks that machines must perform unaided, then, are:

1. build an input matrix, and run the analysis;

2. determine optimum numbers of factors and clusters;

3. establish mappings between row and column clusters;

4. identify outlier points or clusters at the edges of graphs;

5. interpret the X and Y axes.

Apart from building an input matrix, those tasks are generally done by humans; retaining results tables

arising from CA, though, will allow machines to emulate humans. One such table holds factor values

for rows and columns, which explain various proportions of any overall variation. Further tables reflect

any inertia attributable to those factors, while a third holds any clusters emerging from CA. The first of

those tasks, then, demands that machines build an input matrix, and run CA, by means revealed next.

Building an Input Matrix, and Running CA

Columns for the CA matrix comprise pairs of meta-types fused into a single string. The first meta-type

in such pairs represents a word that immediately preceded any particular preposition, while the second

meta-type is for words that followed that preposition. The three meta-types ‘a’, ‘m’ and ‘t’, respectively

standing for ‘action’, ‘modifier’ and ‘thing’, yield nine permutations that constitute matrix columns:

aa, am, at, ma, mm, mt, ta, tm, and tt.

Given the dependence of any results on those meta-type pairs, understanding exactly what they portray

is vital. The first pair, ‘aa’, means that words immediately preceding and following a given preposition

were both reported to be actions, that is verbs, by WordNet. In contrast, the second pair, ‘am’, indicates

a modifier as the word that followed any preposition; in turn, modifiers constitute both adjectives and

adverbs. Those nine pairs, then, reflect all permutations of meta-types around prepositions.
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In contrast, rows record the frequencies of specified meta-types appearing around particular preposi-

tions in text from GRiST mind maps. Consider, for example, the preposition ‘to’ that might be preceded

by a noun and followed by a verb; that would be reflected by incrementing the value of the corresponding

cell, at the intersection of that row and column. Individual cells, then, record how many times a specific

preposition appeared between two given meta-types.

As for running CA itself, the algorithm provided by Murtagh (2005) was amended to retain results on

completion, allowing machines to run CA and to subsequently process any results. Further enhancements

were applied to allow results from an initial run to seed a further run, having determined optimum numbers

of factors and clusters; that process is explained next.

Determining Optimum Numbers of Factors and Clusters

The next task, then, is to determine optimum numbers of factors and clusters for CA. Those settings

are invariably set by humans, perhaps guided by a preliminary analysis. Having judged what numbers of

clusters are likely to emerge, a subsequent run might produce more desirable correspondences based on

those settings. To mimic that process, an initial CA allows machines to determine optimum numbers of

factors and clusters for a second run, which produces a more discerning analysis.

Relatively unimportant factors from that initial CA will be subsequently ignored, should they account

for less than a specified proportion of the total variation; that information is readily available from

resulting CA tables of percentages of inertia explained. In contrast, deriving the best number of clusters

requires more work, starting with a minimum number of clusters expressed as cldefault. Additional clusters

shown as clextra are justified by inspecting results tables from CA; clextra is incremented on encountering

large differences in factor ∆1 between consecutive row results from set I. Summing the number of default

and extra clusters, then, gives the optimum number of clusters clopt shown in the following expression:

clopt = cldefault + clextra.

In fact, a value of cldefault = 2 is used in all cases, which assumes enough variation to exist as to identify

at least two sub-divisions; otherwise, CA would largely be a waste of time.

Values for clextra, then, arise from identifying major differences in factor ∆1, henceforth simply termed

F1, within row results from set I. In fact, tuples from such results hold a label along with values for each

factor. Sorting row results on F1, then, forces tuples having the lowest and highest F1 to opposite ends

of the resulting list; row labels allow machines to keep track of particular tuples. From those extremes,

termed rmin and rmax respectively, comes the absolute range of F1 values RF1:

RF1 = |rmax.F1− rmin.F1|.
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Armed with that absolute range of F1 values, the next step compares consecutive row results. Any

absolute difference in F1 between such successive results is divided by the absolute range for the entire

list. Subsequently, the difference dF1 between any two row results expresses the proportion of the overall

range separating them. The number of extra clusters is incremented when dF1 exceeds a given percentage.

In that way, large F1 differences between consecutive rows reflect boundaries between clusters; adding

any extra clusters to the default of two yields an optimum number of clusters for a further CA. Emerging

graphs, though, depict two discrete, though related, analyses. That, in turn, raises the problem of creating

mappings between row and column clusters, which humans do so easily when inspecting overlaid graphs.

Mapping Between Row and Column Clusters

The task of establishing mappings reflects why graphs are usually overlaid: humans easily discern related

row and column clusters in combined graphs. Machines, though, must derive such mappings from retained

CA results, in order to relate clusters from sets I and J, the respective rows and columns. To that end,

the average F1 for any particular cluster will be taken as a spatial mean, depicting clusters from sets I

and J as single points.

Reducing clusters to single points simplifies the challenge to machines; all that is needed is to sort CA

results for sets I and J. Sorting those results on the first factor, F1, reflects the position of associated points

along the X-axis. F1 generally explains larger proportions of total inertia, and is the major influence

on where clusters appear. Sorting results, then, aligns them on F1 values, and in that way, by relative

position on the X-axis.

In fact, two CA runs are needed; the first uses prepositions as rows and meta-type pairs as columns,

while a subsequent run uses those same observations, but with rows and columns interchanged. Columns

for that second analysis, then, constitute prepositions, while meta-type pairs become matrix rows. Sorting

both sets of results on F1 aligns corresponding clusters from two such analyses. Further discrimination,

should it be required, arises from treating F2 in a similar way.

By the means described, machines might emulate humans in interpreting CA graphs, so as to reveal

affinities between meta-types and prepositions. One aspect of CA graphs, though, will prove particularly

useful in analysing GRiST mind maps, in that points and clusters near the edges of CA graphs reveal

extremes of variation; such outliers are addressed next.

Outlier Clusters

Outliers, then, appear at extreme positions on any CA graph. In fact, such extremes might be removed,

to improve any data model (Bullen et al., 2003). That view, though, sees outliers as a disruptive influence;

in contrast, I take outliers as strong correspondence between certain prepositions and meta-types. Points
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within corresponding outliers for sets I and J are highly attracted, while remaining points on the graph

are accordingly repelled. That influence of classical mechanics on CA suggests interpreting outliers as

particularly large masses in a state of equilibrium with smaller ones, arising from balancing forces between

points. Removing any outlier, then, would demand reconfiguring the graph in order to restore equilibrium.

Having noted any strong correspondence between outliers, removing them will spread remaining points

more evenly. To that end, a further run is performed on removing outlier rows from the matrix; meta-

type pairs in set J, though, are left to realign with remaining prepositions from set I. Eliminating highly

influential row outliers encourages interactions between weaker forces. Meta-type pairs will change alle-

giance, once free of that stronger force. Repeatedly removing outliers until none emerge will yield graded

associations between points on a CA graph. Points agglomerated in that way, though, are less strongly

associated with a given cluster than were any original members.

Mapping clusters between sets I and J, in fact, will further identify outliers; peripheral clusters will

have large mean F1 values. Further, extreme clusters become more obvious on requesting just two clusters

from CA. The larger of two such resulting mean F1 values identifies the centre of that more distant cluster,

which is deemed an outlier should its average F1 exceed a given limit. Removing outlier row clusters

further returns corresponding column points to a pool; running CA on a reduced matrix realigns those

meta-types with the next most attractive preposition. That will permit graded associations between

prepositions and meta-types, and provide a measure of certainty for resulting decisions that resolve

ambiguity. Having shown a means of identifying outliers, attention turns next to interpreting CA axes.

Interpreting Axes

Outlier clusters, then, reflect strong correspondence between members of sets I and J, and in addition

distinguish them from other clusters. Further, splitting composite column labels back into pairs of meta-

types reveals specific types within such clusters, one of which might dominate any outlier. That, in turn,

suggests one extreme on any axis to reflect either things, or actions, or modifiers. In a similar way,

corresponding prepositions at opposite ends of any axis will be opposed in what meta-types commonly

surround them. Note, though, that such interpretations do not reflect concrete ideas; rather, an axis

might be thought of a continuum expressing, say, ‘thing-ness’ at one extreme and ‘modifier-ness’ at the

other.

A further way of contrasting prepositions is to locate symmetrical column labels, which record identical

meta-types on either side of specific prepositions. In a similar way to any dominant meta-type within a

cluster, the symmetrical labels ‘aa’, ‘tt’ and ‘mm’ respectively indicate extreme affinity for things, actions

or modifiers. Should axes successfully distinguish between prepositions, such symmetrical labels might

be found in mutual opposition along the X and Y axes.
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A final point of interest concerns column labels that are mutually inverse, for example, ‘at’ and ‘ta’.

Rather than a specific overall meta-type, such points place two meta-types in opposition, particularly

when they appear as outliers. That, in turn, further places in opposition prepositions that correspond to

those meta-types.

6.5 Chapter Summary

This chapter about Correspondence Analysis started with an introduction, which reviewed reasons for

using clustering of any sort. A subsequent overview of CA revealed a form of multivariate data analysis

having a wide range of applications. Input to CA was seen to comprise frequencies of occurrence within

certain categories; such counts reflect specific variables’ presence in, or absence from, those categories.

From such a matrix of observations, CA identifies factors that explain patterns in underlying data, and

in addition, any interactions between those factors. Graphs, the main output from CA, aid humans in

visualising any such emerging patterns.

Of particular importance were profiles, which reveal matrix rows having similar proportions. Further,

values from profiles constitute coordinates for points on a graph, in a spatial representation of sets I and J

that respectively reflect rows and columns. Imbuing points with mass followed from classical mechanics,

which in turn led to forces between those masses; that, in turn, gives rise to inertia, which measures

variation within any matrix. Subsequent interpretation of factorial axes was shown to further help in

understanding output from CA.

Following that overview of CA came a review of studies that used it to research text, first in relation to

analysing word usage across genres. Those studies emphasised that graphs are commonly superimposed,

to aid identifying corresponding points from sets I and J. Further, specific quadrants of any CA graph

were shown to make important distinctions between genres. Following that, CA was seen be useful in

analysing trigrams that introduced WordNet into CA, suggesting a means of resolving ambiguity.

In respect of full automation, machines were shown to face various challenges; building an input matrix

and running CA were the least of those problems. More demanding tasks involved obtaining optimum

numbers of factors and clusters, and subsequently mapping between row and column clusters. That was

shown to allow machines to identify and analyse outliers, which in turn, suggested interpretations of X

and Y axes on resulting graphs. Finally, this summary closes the chapter, in order to present experiments

in applying CA to resolving ambiguity in WordNet, and in GRiST mind maps.
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Experiments in Resolving Ambiguity
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7.1 Introduction

Chapter 5 described prepositions as function words, or stop-words, that are often removed before analysing

text. Rather than ignoring stop words, though, the proposed approach uses one particular type, prepo-

sitions, to resolve ambiguity in GRiST mind maps. To that end, reliable patterns of word usage around

prepositions will subsequently act as templates for resolving ambiguous cases. Clearly, machines must be

able to process stop-words, particularly prepositions.

Therein, though, lies a problem: WordNet does not hold information about stop words. To overcome

that problem, the ‘stop list’ provided by Pedersen (2001) was used to build an adjunct to WordNet,

which provides the corollary of a synset for words from that stop-list. Although no pointers exist in such

pseudo-synsets, they do indicate a main POS type and an optional sub-category. That WordNet adjunct,

then, will allow machines to research stop words as if they existed in WordNet.

There are, in fact, six steps in analysing mind maps, for which an important distinction must be made;

that is between the words ‘triple’ and ‘trigram’. For current purposes, triples comprise a preposition and

two actual words; trigrams, on the other hand, arise from transforming the POS for those words into

meta-types. The required six steps are, then:

1: Identify triples of the form {word1, preposition, word2} in GRiST mind maps.

2: Of the triples from step 1, select just those that contain unambiguous words.

3:
Using POS reported by WordNet, transform unambiguous triples from step 2 into

trigrams of the form {meta-type1, preposition, meta-type2}
.

4: Perform CA on the frequencies of occurrence of unambiguous trigrams from step 3.

5:
Select triples from step 1 that contain ambiguous words, transforming them into

trigrams as in step 3.

6: Use CA clusters for unambiguous trigrams from step 4 to resolve ambiguous triples.

The above steps were implemented in a bespoke Java class called MidmapPOSAnalysis that performed

CA on trigrams centred on prepositions. The remainder of this chapter presents experiments that assess

that class in respect of resolving ambiguity in GRiST mind maps.
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7.2 Identifying Triples Centred on Popular Prepositions

The MidmapPOSAnalysis class, then, detected prepositions by means of an extension to WordNet, which

processed stop words from lists created by Yang and Pedersen (1997) and by Pedersen (2001). The

resulting adjunct was a new Java class called AstonWordNet, which encapsulated researches for stop

words in WordNet, be means of a further class called WNet1. That sub-class held senses for the various

POS found, as well as a gloss, if available. In addition, AstonWordNet created pseudo-synsets for stop

words, mimicking WordNet’s own results for POS from content words2.

That new facility for stop words, then, allowed MidmapPOSAnalysis to identify prepositions. In fact, just

triples having one of the ten most frequent prepositions were selected. Further, just one instance of any

specific triple was processed, although separate full counts were kept for comparison. Triples, then, com-

prised a particular preposition, and the words immediately preceding and following it. Because WordNet

was not yet consulted, resulting triples contained both reliable and ambiguous words. Any adjacent words

in triples will be addressed shortly; for now, attention focuses on the preposition components.

Method I for identifying prepositions

The first step, then, was to identify in GRiST mind maps any triples centred on prepositions. Because

any specific triple might be embedded in text from various nodes, just the first occurrence of any given

triple was processed. In practice, then, a particular order of words around a specific preposition was

counted just once.

The MidmapPOSAnalysis class started by retrieving a full list of mind map nodes from the database.

Those nodes were processed sequentially, with text from any particular node held in the variable nodeText,

which shows the formatting style for Java code, here. For each node, individual words were obtained by

means of the split() method of the String class. In that way, the following Java code yielded an array

of words from the nodeText variable:

String[] wordArray = nodeText.split(\\W);

The regular expression ‘\\W’ dictated that words should be alphabetic strings, separated by non-alphabetic

characters such as spaces and punctuation marks; special characters, though, were stripped away, as Java

uses such separators just to identify boundaries between words.

Subsequently, AstonWordNet detected prepositions in arrays of words from mind map nodes. Should

a preposition appear at index i of any array, words on either side of that preposition lay at respective

1The new AstonWordNet class was based on code from Beckwith et al. (1993).
2The number of senses in such pseudo-synsets from MidmapPOSAnalysis was always given as 1.
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indices i− 1 and i+ 1. Misspelled words were corrected, where necessary, by spelling corrections arising

from Chapter 2. Resulting triples took the form {word1, preposition, word2}. Counts for unique triples,

and for all triples, were then accumulated across the collection of GRiST mind maps.

Results I of identifying prepositions

Table 7.1 shows the ten most frequently used prepositions from GRiST mind maps. The first row shows

full counts for nodes having a specific preposition, whereas the second row shows unique occurrences:

Counts
Prepositions

about as by for in like of on to with

All Triples 91 82 42 140 311 42 626 225 951 178

Unique Triples 82 75 41 124 276 38 507 119 660 156

Table 7.1: Ten GRiST Prepositions for analysis.

Frequencies from Table 7.1 varied greatly, from as low as 41 unique triples centred on ‘by’ to 660 for ‘to,

with ‘of’ closely behind with 507. Duplicate triples, though, were ignored; Table 7.2 gives such a triple,

which occurred in several different nodes:

Triple Examples from GRiST mind map nodes

{history, of, abuse}
{history of abuse} potentially important factor

often people with a {history of abuse}
2 kids under 5 and a partner they don’t get on with
and a {history of abuse}

Table 7.2: Multiple occurrences of the triple {history of abuse}.

In practice, the first such node encountered supplied a representative tuple. Just the first tuple from

table 7.2, then, was used in the main analysis.

Discussion I of identifying prepositions

The greatest variation between full and unique counts from Table 7.1 arose for the preposition ‘to’. That

was due in part to the template mind map used in GRiST, which led to particular nodes repeating

across the 46 resulting mind maps. Repeated occurrences of the node [abuse to client] are a good

example; counting that node just once for the preposition ‘to’ gave a more representative figure. The

preposition ‘of’ gave the next greatest difference in counts. In that case, the node [state of mind] was

over-represented.

In addition, certain nodes occurred under several risks within GRiST mind maps. For example, the node

[abuse to client] appears under both [life history] and [personal details]. Accounting for just

a sole representative of any particular node, then, normalises frequencies for the CA matrix.
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7.3 Identifying Unambiguous Triples

Triples comprising a preposition and two unambiguous words, then, indicate reliable patterns of usage.

Those patterns will later act as templates for helping to resolve ambiguous cases. The problem is that

WordNet often reports several POS for any given word; completely unambiguous results, though, must

just one POS. By that definition, many words remain potentially ambiguous; in such cases, machines

must examine the number of senses reported by WordNet for each candidate POS, in order to reveal the

most likely one by means of familiarity.

Method IIa for collating unambiguous triples

Words that appeared around each of the top ten prepositions were researched in WordNet. Words with

several POS were considered unambiguous, should one have two more senses than did any remaining

candidates. To that end, the new AstonWordNet class uses the JWNL Java package, which comes with

WordNet. That package provides a Dictionary class that allows any Java program to research words. A

further JWNL class called IndexWord retrieves synsets from WordNet. Instances of IndexWord represent a

particular POS, and carry fields such as the number of senses. That information is retrieved by using the

getSenseCount() method in the IndexWord class. The following code, then, shows how AstonWordNet

researches a word:

Dictionary dictionary = Dictionary.getInstance();

IndexWord indexWord = dictionary.lookupIndexWord(pos-type, word);

int senses = indexWord.getSenseCount();

Having created an instance of the Dictionary class, the lookupIndexWord() method retrieves informa-

tion for a specified POS; although the subsequent call to getSenseCount() has no arguments, the instance

of that method pertains just to the retrieved IndexWord object for a specific POS. The getSenseCount()

method, then, was invoked separately for each of the four POS held in WordNet. Should all four attempts

fail to identify a word, the stop-word adjunct in AstonWordNet provided a pseudo-synset, if possible. All

results were stored as instances of WNet. Any specific preposition, along with results for the two associated

words, were stored in a further bespoke Java class called Triple.

Any specific Triple object, then, held a particular preposition, two words from GRiST mind maps, and

a unique key, nodeID, of any associated node used to retrieve associated node texts. Further, two WNet

objects represented each of any triple’s content words, along with those words’ familiarity: the sum of all

of the senses reported by WordNet for a specific POS. Should several candidate POS arise, the preferred

one had a familiarity of two or more senses greater than any remaining POS. Further, all POS held a

ratio of the highest sense count and the next highest.
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Results IIa of collating unambiguous triples

Figure 7.1 shows an example Triple object created by MidmapPOSAnalysis; that triple carried two

unambiguous words, ‘known’ and ‘culture’, respectively reported as a verb and a noun. The first line in

that triple holds a unique identifier for the representative node. Subsequent indented lines show the two

WNet objects associated with that triple:

Figure 7.1: Unambiguous instances of the new WNet class.

The two WNet instances from Figure 7.1 report unambiguous POS for ‘known’ and ‘culture’. Indeed,

the WNet instance for ‘culture’ holds just a sole POS, which was accepted without further analysis. The

word ‘known’, though, had two candidates, as a verb and as an adjective; the large difference in senses

of 10 preferred the verb, which was duly assigned a meta-type of ‘action’1. Remaining entries in square

brackets show alternative interpretations that were declined, in this case, just the adjectival POS for

‘known’ that had just one sense; that, in turn, gave an overall familiarity of 11 + 1 = 12. Accordingly,

the ratio of senses for ‘known’ was 11 : 1 = 0.09, when rounded to two decimal places.

Table 7.3 next presents triples that were treated as unambiguous in that way. Even though some

words had several candidate POS, one form was predominant; examples in the first column depict such

words in italics, with the associated preposition in bold2. The next column restates those words, for

clarity. After that come the POS reported for any word, as adjective, adverb, noun, or verb. The column

∆s gives the difference between the highest sense count and the next highest. The final column shows

the selected POS, which had two more senses than the next most likely interpretation:

Examples from GRiST mind maps
Ambiguous POS Senses Best

Word Aj Av N V ∆s POS

[felt like battering ] wife battering - - 1 3

2

V

[focussed on specific] thing specific 4 - 2 - Aj

constant [smell of urine] smell - - 5 3 N

how surprised / not surprised [still with us] still 6 4 4 4 Aj

rq : SH if it provides some [kind of release] release - - 11 9 N

Table 7.3: Correctly identified unambiguous words, for senses difference = 2.

POS for ambiguous words from Table 7.3 were deemed appropriate, yielding triples centred on the

prepositions ‘like’, ‘on’, ‘of’, and ‘with’. A difference of 2 senses arose from subtracting low counts, such

1In fact, just the meta-type ‘a’ was stored on any WNet, in a normalised way.
2Henceforth, that use of square brackets, italics and bold type for triple components in nodes will be adopted.
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as 3 − 1 = 2, through to higher values, such as 11 − 9 = 2. Indeed, that is why the preposition ‘of’ has

two entries: the latter example was just to show high sense counts. In that way, the word ‘release’ that

followed ‘of’ was interpreted as a noun, due to having two more senses than as a verb. Note that the

word ‘still’ from Table 7.3 might have been any of WordNet’s four POS, although it was in preference

seen as an adjective.

In contrast to such appropriate choices, Table 7.4 lists some incorrect ones that arose from a sense

difference of 2, which in turn arose from relatively low sense counts. Prepositions in the following triples

were, then, ‘for’, ‘in’, ‘of’ and ‘as’:

Examples from GRiST mind maps
Ambiguous POS Senses Best

Word Aj Av N V ∆s POS

less [services for women] with children services - - 1 3

2

V

get [feeling in objective] & subjective way objective 4 - 2 - Aj

depends on their past [experiences of ser-
vices]

experiences - - 3 5 V

what see the [future as holding] future 5 - 3 - Aj

Table 7.4: WordNet results incorrectly identified as unambiguous by senses difference = 2.

Note that choices from Table 7.4 were either between an adjective and a noun, or between a noun and a

verb. Both triples from that former category were taken as adjectives, while those from the latter emerged

as verbs. Such ambiguous results accordingly reduced the number of unambiguous triples. While a senses

difference of 2 yielded 1601 unambiguous triples, a difference of 3 gave 1345 unambiguous triples: 256

fewer than with the less stringent test for a difference of 2.

Discussion IIa of collating unambiguous triples

The unambiguous triple from Figure 7.1 showed the word ‘culture’ to have 8 verb senses. That word was

perfectly specific: WordNet suggested no other POS. In that same triple, the word ‘known’ had 11 verb

senses, but just one as an adjective. A large difference of 10 senses made the verb much more likely.

In contrast, words in triples from Table 7.3 had several POS, although they were treated as unam-

biguous due differences of 2 senses between competitors. Choices were largely between nouns and verbs;

in all but one of such cases, the noun was preferred. The exception was the word ‘battering’, which was

correctly treated as a verb. Of the remaining triples from Table 7.3, two correct distinctions between

nouns and adjectives arose. The word ‘release’ did indeed act as noun rather than as a verb, while

’specific’ really was an adjective for ‘thing’.

A final point about unambiguous triples from Table 7.3 concerns the word ‘still’, which could have been

any of the four WordNet POS. The adjective had 6 senses, whereas each remaining POS had 4 senses.
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That meant treating ‘still’ as an adjective, although it was really an adverb; the predominant POS

proved inaccurate in that case. In fact, that did not matter: adjectives and adverbs were treated jointly

as modifiers, so eliminating the noun and verb senses sufficed.

Triples from Table 7.4, though, revealed inappropriate choices between candidate POS, arising from

relatively low sense counts. For example, the word ‘future’ was treated as an adjective, when it was in

fact a noun. Although that will contribute an incorrect POS to subsequent CA, Fellbaum et al. (1990)

note a tendency for nouns to act as adjectives in the English language. That, though, applies just to

contiguous nouns, rather than those separated by prepositions. Further research might take into account

such heuristics, although they would be better determined by machines that imposed by humans.

Although triples from Table 7.4 were treated as unambiguous, then, inappropriate POS were selected.

The word ‘services’ had 1 noun sense and 3 verb senses. Although the predominant verb was selected,

‘services to women’ clearly intended the noun. Indeed, the idea of servicing women has a distinct and

unwarranted sexual connotation. In a similar way, the word ‘experiences’ had 3 noun senses and 5 for

the verb, which was chosen incorrectly. Further, the nouns ‘objective’ and ‘future’ were wrongly treated

as adjectives. All of the errors described, though, arose for words having low sense counts: particular

POS for such words had relatively few distinct meanings.

In fact, using absolute differences in senses might be too coarse a measure. Future research might

apply ratios between sense counts, instead; for the moment, that is calculated but not used. That

said, differences of 2 senses proved largely adequate, as opposed to the approach taken by Mihalcea and

Moldovan (2000) that insisted on monosemous words: just those having a single POS were considered as

unambiguous. Indeed, removing triples having multiple POS that yet have a predominant type would

risk discarding an appreciable portion of the data. Any affect on ensuing analyses will be made clear in

Section 7.6, when CA will be run for sense differences of both 2 and 3.
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7.4 Identifying Ambiguous Triples

Unambiguous words, then, preferably have just a single POS. Words having several interpretations,

though, might be adequately specific should one POS be particularly familiar. That, in turn, depends

on the relative sense counts of competing POS; those having similar sense counts lead to ambiguity.

Section 7.3 gathered unambiguous triples of the form {word1, preposition, word2} in which both word

components were unambiguous. The next step was to build a separate list of triples that hold ambiguous

words, which will subsequently be resolved by reference to unambiguous cases.

Method IIb for collating ambiguous triples

The method here resembles that described in Section 7.3 for unambiguous triples. The sole difference is

the actual test applied: that was for words having a difference of less than 2 senses between likely POS.

As before, an instance of the Triple class held two WNet objects from the new AstonWordNet class.

Results IIb of collating ambiguous triples

Figure 7.2 shows a Triple object for representative node number 4735. In that triple, both content words

were ambiguous. Consequently, associated WNet objects held no preferred POS:

Figure 7.2: Ambiguous instances of the new WNet class.

The first WNet object, for ‘high’ from Figure 7.2 shows identical noun and adjective sense counts of 7,

with the adverb having just 4. The second such object, for ‘drugs’, showed similarly ambiguous sense

counts of 1 as a noun and 2 as a verb. In both of those WNet objects, insufficient differences in senses

meant that no predominant usage arose.

183



7.4. IDENTIFYING AMBIGUOUS TRIPLES

Accordingly, Table 7.5 shows results for the ambiguous word ‘drugs’ that appeared in triples comprising

prepositions ‘in’, ‘of’, ‘on’ and ‘to’, with examples from GRiST moved to the right side of the table:

Word
POS Senses

Prep Examples from GRiST mind maps
Aj Av N V ∆s

drugs - - 1 2 1

in alcohol and [drugs in significant] amounts

of their [use of drugs]

on rq : number one [high on drugs]

to individuals [response to drugs]

Table 7.5: Examples of GRiST nodes having the ambiguous word ‘drugs’.

The word ‘drugs’ had a just 1 sense as a noun, and 2 as a verb, giving a difference of 1 sense. Note further

that in two triples, the content words ‘use’ and ‘high’ associated with ‘drugs’ were likewise ambiguous.

Finally, ambiguity sometimes arose due to WordNet’s lack of coverage. An example was the words

‘carer’ and ‘carers’. Table 7.6 shows that no POS at all were suggested for that word:

Word
POS Senses

Prep Examples from GRiST mind maps
Aj Av N V ∆s

carer(s) - - - - -
of [carers of any] kind

with where possible [collaboration with carer ]

Table 7.6: The lack of WordNet results for ‘carer’ and ‘carers’.

Discussion IIb of collating ambiguous triples

Results from Table 7.5 show the difficulty for machines in deciding best interpretations of words having

similar numbers of senses. By itself, WordNet is uncertain about such words. In fact, examples from

GRiST of the word ‘drugs’ all used the noun sense, rather than the verb. While humans might clearly

see that no object for the verb ‘drugs’ is apparent in any of those nodes, machines encounter difficulties.

A similar problem arose for the word ‘high’ that appeared along with ‘drugs’. The fact that those words

were separated by the preposition ‘on’, though, allows humans to determine ‘high’ as a modifier of a

particular state, with the noun ‘drugs’ as the cause.

In contrast, Table 7.6 revealed that WordNet had no entry at all for ‘carer’. While surprising, that

well reflects the basic problem with WordNet: it gives very useful information about words that it does

contain, but offers no help at all should words be absent from the underlying synsets. Fortunately,

CA offers a way of resolving those problems by detecting patterns in words used in association with

prepositions. That, though, depends on first deriving meta-types from POS, in a way that is shown next.
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7.5 Deriving Meta Types from Parts-of-Speech

In line with WordNet, POS were reduced to ‘actions’ for verbs, ‘things’ for nouns, and ‘modifiers’ for

adjectives and adverbs; those POS were assigned respective meta-types of ‘a’, ‘t’ and ‘m’. In that way,

lists of triples became lists of trigrams, of the form {meta-type1, preposition, meta-type2}. A sole trigram

arose for each unambiguous triple, while several trigrams were needed to express ambiguous triples. Any

particular trigram carried a specific permutation of meta-types around a specific preposition.

Treating adjectives and adverbs collectively as ‘modifiers’ rendered certain words unambiguous; words

having just those two POS were simply given a meta-type of ‘m’. In addition, certain stop words were

treated as nouns. In that way, unambiguous triples might arise despite lacking support from WordNet.

Method III for deriving meta-types from POS

Unambiguous triples from Section 7.3 were processed sequentially, and the WNet objects for any individual

Triple object examined independently. For each WNet object, preferred and candidate POS alike were

given corresponding meta-types. In the absence of a predominant POS, WNet objects were examined for

adjectives and adverbs; a meta-type of ‘m’ was assigned, should no further POS exist for the associated

word. In addition, the augmented AstonWordNet class revealed certain articles and pronouns. Demon-

strative and personal pronouns such as ‘I’ and ‘she’ became ‘things’, as did the expletive pronoun ‘it’;

along with articles such as ‘the’, a meta-type of ‘t’ was duly assigned.

Results III of deriving meta-types from POS

Table 7.7 shows articles and pronouns that were treated as things. For these examples, stop words appear

in italics within triples, and prepositions in bold:

POS Words Examples from GRiST mind maps

articles a, an, the
[intentions for the ] future

clear [evidence of a ] mental health problem

pronouns

it haven’t [thought about it ]

her, him, she, them,
they, you

absolutely out of blue well [planned by her ]

what [had on him ]

anybody, anyone, ev-
erybody, everything

often become [counsellors for everybody ]

[rare for anyone ] to bleed to death

Table 7.7: Pronouns and articles that were treated as things.

Should assigning meta-types in that way resolve any ambiguity, such results were transferred to the

list of unambiguous triples. That was the case for the triple ‘rare for anyone’, where WordNet reliably

determined ‘rare’ as an adjective; further treating the indefinite pronoun ‘anyone’ as a noun made that

triple unambiguous.
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In addition to the ‘things’ in Table 7.7, reliable modifiers arose from words having just adjective and

adverb POS. Table 7.8 gives examples of words treated in that way; no difference in senses appears, as

that was irrelevant in such cases:

Word
Senses

Examples from GRiST mind maps
Aj Av

all 2 1 [all about extents] and continuums

likely 4 1 women [are as likely ] to be violent

just 4 5 i’ts [just as serious] to me

Table 7.8: Words that were safely treated as modifiers.

Discussion III of deriving meta-types from POS

Rather than treating words as POS, assigning meta-types stresses roles that words fulfil. That reflects the

distinction WordNet makes between actions, things and modifiers. In addition, the new AstonWordNet

class identified stop words such as articles and pronouns that reflect unambiguous ‘things’. In addition,

words that could be just modifiers, whether as adjectives or as adverbs, were treated as unambiguous.

Overall, the pool of unambiguous trigrams for subsequent stages grew. Having transformed triples into

trigrams, attention turns next to how CA found patterns within those trigrams.
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7.6 CA on Unambiguous Trigrams: Pass 1

The sole automated stage of studies reviewed in Chapter 6 involved gathering observations, which com-

prised frequency counts that further constituted the bodies of any CA matrices. Observations arose from

trawling thorough text corpora for given words or n-grams, where the sizes of various bodies of text

used made that impractical for humans. Having created a contingency table of frequencies across certain

categories, interpreting CA results was a purely human affair. In contrast, automating CA involves the

following steps:

1. build an input matrix, and run the analysis;

2. determine optimum numbers of factors and clusters;

3. establish mappings between row and column clusters;

4. identify outlier points or clusters at the edges of graphs;

5. interpret the X and Y axes of graphs.

In conjunction with the MidmapPOSAnalysis class introduced earlier, a further new Java class, AutoCA,

performed those steps automatically. Retaining results tables allowed machines access to them after CA

itself completed; such CA results guide all of the above tasks.

In fact, AutoCA runs separate analyses for rows and columns, meaning that any resulting clusters must

be mapped onto one another. Indeed, humans do that with little need for conscious thought. Another

task to be automated is the identification of outliers, which express strong correspondence between certain

prepositions and meta-type pairs. Any skew in analyses caused by outliers is eliminated by removing them

prior to subsequent phases. Once mappings have been established, the analysis determines meta-types

that correspond to the X and Y axes. All of the above tasks will ultimately help to revolve ambiguity in

GRiST mind maps by providing reliable templates of word usage.

The first phase of CA

CA takes as input a matrix of rows and columns. In this section, labels for columns comprise pairs of

meta-types. The first meta-type in such a pair represents a word coming before any particular preposition,

while the second meta-type stands for the word following that preposition. Nine permutations exist for

the three meta-types ‘a’, ‘m’ and ‘t’, namely:

aa am at ma mm mt ta tm tt.

The above pairs constitute the matrix columns for all analyses reported here. On the other hand, matrix

rows have labels that denote prepositions. Individual rows record how many times a specific preposition
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appeared between meta-types from the column labels. The contingency table compiled automatically by

MidmapPOSAnalysis forms the basic matrix for CA. Matrix headers required by the Java implementation

from Murtagh (2005) were added to control any analysis. That free-ware formed the basis of the AutoCA

class invoked by MidmapPOSAnalysis to perform the required steps in CA.

In fact, CA was run twice on any given matrix. The first pass was for just 2 clusters of prepositions,

and 2 clusters of meta-types. That was to identify outliers on resulting graphs, and further to suggest

optimum numbers of factors and clusters for a second pass. In addition, text-based graphs from software

by Murtagh (2005) were replaced by improved versions from new Java classes based on the JFreeChart

shareware package (Object Refinery Limited, 2005–2009).

Method IV for a preliminary CA

Trigrams from unambiguous triples were processed sequentially, so as to accumulate counts of associated

meta-types. The two meta-types in any individual trigram were joined, to form a pair that was counted

for the preposition from the trigram. Having accumulated the required frequencies, adding a header gave

the following matrix:

Figure 7.3: CA matrix for phase 1

The matrix header begins with the numbers of rows and columns: 10 and 9 respectively. The next part,

SUPNO, means that no supplementary rows were examined after the main analysis. After SUPNO, 2

factors are specified for the analysis. The last two numerical entries specify numbers of clusters required

for rows and columns respectively. Last come the actual column labels, which are pairs of meta-types.

The matrix body in Figure 7.3 shows counts of meta-types across ten prepositions. A value of 4 in the

bottom-right cell, for example, means that four instances of ‘with’ had words corresponding to actions

on either side, shown by the column label ‘aa’. Two CA runs were performed on that matrix, with the

first giving optimum numbers of factors and clusters for a second pass. Just the two ‘clusters’ fields in

the matrix header need be updated for that second CA: actual observations were left untouched. Raw
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results tables for row and column, and associated clusters, were retained for further analysis of factors

F1, F2. . . Fn that arose from CA.

Results IVa for a contingency matrix using 2 senses difference

Results from CA comprised factors for rows and columns, and a graph that plotted F1 against F2; an

additional graph comes from a further analysis that uses optimum numbers of factors and clusters arising

from that first CA. Because such runs used a matrix from any preliminary CA, just the resulting CA

graphs are shown for such further analyses. Accordingly, Table 7.9 shows row results from the first pass

of CA on the matrix of prepositions and pairs of meta-types from Figure 7.3. The first row lists the row

labels, that is, the prepositions under analysis. Subsequent rows give F1 and F2 values, though results

are sorted primarily on F1; columns appear, then, from the lowest F1 value to the highest. The last

column gives the absolute ranges for factors F1 and F2:

Prep of with in for on like as about by to RFn

F1 -538 -392 -377 -369 -299 -247 -225 -194 -27 852 1390

F2 -486 375 335 46 595 215 198 169 694 -74 1180

Table 7.9: CA results for prepositions from pass 1, sorted on F1

The prepositions ‘of’ and ‘to’, respectively at the extreme left and at the far right of Table 7.9, had

relatively large values of F1, although the value for ‘of’ was negative, while ‘to’ showed the sole positive

value. Between those extremes, prepositions had successively larger negative F1s, from left to right.

Apart from ‘of’, F2 values had the opposite sign to corresponding F1 values.

In a similar way as for row results, Table 7.10 depicts column results from the CA of prepositions

against meta-types, sorted by ascending F1. Note that column results showed a similar distribution to

the corresponding row results:

Pair tt tm mt mm at am ta aa ma RFn

F1 -503 -420 -306 -118 -64 -6 552 1087 1179 1682

F2 -306 -39 104 321 521 708 -392 -104 -94 1100

Table 7.10: CA results for meta-types from pass 1, sorted on F1

The meta-type pairs ‘tt’, ‘tm’, and ‘mt’ at the extreme left of Table 7.10 had relatively large negative F1

values that gradually became less negative, before rising sharply to high positive values for ‘aa’ and ‘ma’

on the right side of the table. F2 values reflected similar variations in sign and magnitude, indicating

coordinates for all four quadrants.

The graph of F1 and F2 from CA of prepositions against meta-types from Table 7.9 are superimposed

in Figure 7.4. Points for prepositions appear as squares, while points for meta-types are dots. Scales
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on the axes reflect coordinates taken from the CA software from Murtagh (2005). Note the marked

separation of ‘to’ on the right of the X-axis origin:

Figure 7.4: CA graph of F1 x F2 for pass 1

In addition to appearing to the right of the X-axis in Figure 7.4, the point for ‘to’ further inhabits the

bottom quadrant on that side of the graph. Corresponding meta-types ‘ta’, ‘aa’ and ‘ma’ congregate in

that same quadrant. Remaining prepositions and meta-types, in contrast, group together on the left-hand

side of the graph, overlapping the upper and lower quadrants.

Discussion IVa of a contingency matrix using 2 senses difference

The graph for pass 1 exhibits obvious trends to a human viewer, such as the preposition ‘to’ being

separated from remaining prepositions. A positive F1 meant that ‘to’ appeared to the right of the X-axis

origin, while a large F1 value further forced that point towards the edge of the graph. In contrast to the

X-axis, ‘to’ appears close to the origin on the Y axis, due to a relatively small F2. In fact, ‘for’ had a

similar F2 value. Accordingly, ‘to’ and ‘for’ are barely separated on the Y-axis, while being far apart on

the X-axis.

Apart from ‘to’, prepositions had negative F1s, and fell to the left of the X-axis origin. The word ‘of’ had

large negative F1 and F2, so appears in the bottom left-hand corner. In contrast, a large positive F2 sent
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‘by’ to the top of the graph. In fact, the result for ‘by’ was almost the opposite of that for ‘to’, in having

a small negative F1 and a large positive F2, separating ‘by’ and ‘to’ into diagonally opposed quadrants.

Medium F1 and F2 values put remaining prepositions nearer to both axis origins, though largely in the

upper-left quadrant.

In comparison, meta-type pairs ‘ta’, ‘aa’ and ‘ma’ are clearly associated with ‘to’. In fact, all of those

four points had similar patterns of F1 and F2: a positive F1 value, and a negative F2. Due to that, those

row and column points occupy the same quadrant. Further, those meta-type pairs for ‘to’ all ended in

‘a’; as a result, ambiguous words immediately following ‘to’ will be treated as verbs. On the other hand,

words coming directly before ‘to’ could take any meta-type, which does not help in deciding the best one.

In practice, just ambiguous words that follow ‘to’ stand a chance of resolution.

On the left-hand side of the graph, ‘tt’ seems to correspond with ‘of’, as reflected by the relatively

large negative values for both F1 and F2. None of the remaining column labels correspond so obviously

with a specific row point. Given that difficulty for humans, machines face a serious challenge in identifying

such correspondence. Before addressing an approach to that problem, though, results are presented for a

supplementary CA that applied a stricter criterion of 3 to differences between senses for candidate POS.

Results IVb for a contingency matrix using 3 senses difference

The graph from Figure 7.5 shows that the effect of the criterion for determining predominant POS was

having 3 or more senses than the closest competitor, rather than just 2:

Figure 7.5: CA of F1 x F2 graph for pass 1, with WordNet senses difference = 3
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Certain differences arose between the above graph and the one from a difference of 2 senses. Points

for ‘by’ and ‘for’ moved towards the Y-axis origin, slightly south of their original positions. That was

particularly pronounced for ‘by’. As for the column points, ‘aa’ and ‘ma’ moved slightly closer together

around ‘to’.

Discussion IVb of a contingency matrix using 3 senses difference

The graph for that stricter criterion produced superimposed graphs that closely resembled those from

the more lenient 2 senses difference. Despite small movements, points continue to be sharply split on the

X-axis, with ‘to’ retaining identical meta-types as before. It appears, then, that a difference of 2 senses

between competing POS adequately determines the most likely choice, for the purpose of this thesis.

Having shown that to be the case, attention turns next to an experiment that identified outliers.

Identifying outliers

The initial phase of CA showed the strong influence of ‘to’, which skewed the entire graph. That preposi-

tion, along with corresponding column labels, was the sole occupant of the right-hand side of the graph,

while remaining points bunched together on the left-hand side. That proved useful in identifying meta-

type pairs corresponding strongly with ‘to’; correspondence between remaining row and column points,

though, was obscured.

Having noted that outlier ‘to’, removing it would force a new configuration of points; just because

the meta-type pair ‘ta’, say, corresponded strongly with ‘to’ does not preclude it appearing around other

prepositions. Removing just row outliers, then, leaves corresponding column points available to the next

most attractive preposition.

To that end, requesting just two clusters from CA reveals any outlier. Remaining points form a

cluster that might be marked ‘others’: they are of no interest, at this point. Which of those clusters was

the outlier depended on the associated F1 values. In fact, F1 values were averaged across the two row

clusters, and across the two column clusters, so as to reflect the overall inertia of any cluster. Sorting

those clusters on average F1 aligned corresponding row and column clusters, as shown next.

Method V for identifying outliers

Row outliers were identified by means of CA for just two clusters; parallel runs were performed with

the standard matrix, then with rows swapped with and columns in a second run. Subsequently, labels

for prepositions from points in those clusters were matched with those from row results. In that way,

prepositions were split into two sets corresponding to row clusters on the overlaid graphs. An average

F1 value was calculated for each of those sets, and the process repeated for clusters from the second run.

Further, averages for the two row clusters from each graph were divided by the absolute range of F1
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values, which was calculated as follows. Row results were sorted on F1, forcing the lowest and highest

results, respectively termed rmin and rmax, to opposite ends of the list. From those results, the absolute

range of F1 values, RF1, is calculated as:

RF1 = |rmax.F1− rmin.F1|.

In a similar way, minimum and maximum results from the second run, with a revered matrix, gave the

absolute F1 range for set I. Clusters were deemed outliers should the average F1 exceeded 50% of those

absolute ranges from either run of CA.

Results V of identifying outliers

Table 7.11 shows clusters and factors from the first phase of CA, for 2 clusters; the left-hand side is for

prepositions, and the right-hand side for meta-types from the second run. For prepositions, ClR shows

the order in which clusters appeared from CA. The absolute range in F1 values comes next, headed RF1,

followed by the average F1 for any cluster, F1. The absolute ratio of those two values comes immediately

afterwards in the column headed |F1/RF1|. Labels of points, depicting prepositions in any cluster, are

shown in the last column of the rows section. Similar headings depict parallel meta-type results from the

second run of CA, in the right-hand part:

ClR RF1 F1 |F1/RF1| Prepositions ClC RF1 F1 |F1/RF1| Meta-Types

0
1390

852 0.62 to 0
1180

939 0.80 ta, ma, aa

1 -296 0.21
of, by, on, in, with,
for, about, as, like

1 -245 0.21
at, mm, am,
tt, mt, tm

Table 7.11: Detecting outliers by means of CA results

The outlier ‘to’ appeared at index 0 in the sorted array of CA results, and had average F1 that constituted

62% of the overall F1 range, taking the value from column |F1/RF1| as a percentage; that ratio was 21%

for the cluster of remaining prepositions. Corresponding average F1 for column cluster 0 was 80% of the

associated range, and 21% for cluster 1, coincidentally the same value as for cluster 1 of prepositions. In

that way, corresponding meta-type outliers for ‘to’ were aligned at the same index, 0, in the sorted array.

Discussion V of identifying outliers

The results of automatically identifying outliers emulates humans in reading CA graphs: the point for

‘to’ was at an extreme edge, corresponding to similarly extreme meta-type pairs ‘ta’, ‘aa’ and ‘ma’. In

terms of the mechanics that underpin CA, a strong attractive force existed between those preposition

and meta-type points. In turn, a strong mutual repulsion arose between outliers and remaining points

from both sets, forcing them aside into a separate large cluster.
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The skew in CA graphs introduced by outliers is both a drawback and an advantage. On the down-

side, bunching of remaining clusters in opposing quadrants makes interpreting such points difficult, for

humans and machines alike. For that reason, subsequent phases of CA will be run after removing outlier

prepositions; that will allow graphs to reconfigure once any over-strong forces are removed. On the other

hand, outliers reflect strong correspondences that are more indicative than weaker ones that might emerge

from subsequent analyses. Outliers, then, are welcomed when they arise, but are removed to reveal finer

gradations in remaining points. A further use of outliers, though, is in determining optimum numbers of

factors and clusters for those runs of CA, as shown next.

Determining optimum numbers of factors and clusters

The first pass of CA requested 3 factors, F1, F2 and F3. Upon completion, factors having low rates

of inertia that accounted for relatively little variation were omitted from subsequent analyses. In a

similar way, the minimum number of clusters for any analysis was 2. Large differences in F1 between

CA row results suggested a need for extra clusters; to that end, individual F1 values were expressed as a

proportion of the overall F1 range. Large differences between consecutive row results led to incrementing

the number of extra clusters. Adding that extra to the default of 2 gave the optimum clusters for a

subsequent analysis.

Method VI for determining optimum factors and clusters

Input comprised the rates of inertia for CA factors, which were retained after CA was complete. A count

was incremented for each factor whose inertia explained 10% or more of the total inertia, to yield an

optimum number of factors for a subsequent analysis. In a similar way, an optimal number of clusters

arose from CA that requested 2 clusters. Consecutive row results were compared, and the absolute

difference in F1 between adjacent results, dF1, divided by the absolute F1 range, RF1. In that way,

differences in F1 that separated neighbouring results were expressed as a proportion of the overall range.

The number of extra clusters was incremented should that proportion exceed 50%. Any resulting extra

clusters were added to the default of 2; should none arise, that default provided the minimum for CA.

Results VI of determining optimum factors and clusters

Figure 7.6 summarises the rates of inertia for factors F1 to F3 from the first pass of CA. That output

came from a method called getFactors(), which further decided whether to include successive factors:

Figure 7.6: Rates of inertia from CA of 10 prepositions
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The F1 value from Figure 7.6 accounted for nearly 70% of the total inertia, with around 23% explained by

F2. In contrast, F3 reflected a relatively tiny 4%, and was ignored. In a similar way, an optimum number

of clusters arose from row results sorted on F1, as shown in Table 7.12. The first row of that table shows

labels of points on the CA graph: the names of prepositions. Subsequent rows show F1 values, and those

values as an absolute proportion of the F1 range. The value for ‘to’ exceeded the criterion of 50% of the

range, and is highlighted in bold:

Prep of with in for on like as about by to RFn

F1 -538 -392 -377 -369 -299 -247 -225 -194 -27 852 1390

|F1/RF1| 0.39 0.28 0.27 0.27 0.22 0.18 0.16 0.14 0.02 0.61 -

Table 7.12: CA row results for pass 1, sorted on F1

The single highlighted value for ‘to’ in Table 7.12 meant adding just one cluster to the default of 2, giving

3 clusters in all. The next highest proportions were at the left-hand side of the table, where ‘of’, ‘with’,

‘in’ and ‘for’ yielded values ranging from 27% to 39%.

Discussion VI of determining optimum factors and clusters

In contrast to factors F1 and F2, then, factor F3 accounted for a very small proportion of the overall

inertia within the CA space; for that reason, subsequent phases of CA use just 2 factors. Indeed, it is

safe to do that because further factors will explain yet less inertia. The exact meaning of such factors,

though, remains unclear, it can, in fact can be derived from optimised results, as will be seen from a later

experiment. For now, note that large differences in F1 between consecutive rows indicated boundaries

between clusters. Just one such boundary was detected; adding that to the default of 2 gave 3 as the

best number of clusters. The next set of results reveals how that affected a subsequent run of CA.

A second pass of CA using an Optimum Number of Clusters

The initial pass of CA determined that 2 factors and 3 clusters would best suit a second pass. The matrix

header was changed to reflect those values, and CA re-run. That produced clusters that a human might

well discern. Two further automated processes were applied to the ensuing clusters. The first involved

mapping clusters of prepositions to clusters of meta-types, to show correspondence between the two sets.

That problem is overcome in a similar way as taken for outliers, which involved averaging and sorting

results to reveal corresponding clusters. The second task faced here is in identifying what meta-types

are associated with particular axes. First, though, to an experiment in mapping between clusters of

prepositions and clusters of meta-types.
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Results VII of mapping between row and column clusters

Table 7.13 presents mappings between the three clusters from pass two. Columns ClR and ClC give the

indices of clusters in respective lists. Prepositions and meta-types were taken from labels of points in

those clusters, and results sorted on the mean F1 for row clusters:

ClR F1 Prepositions ClC F1 Meta-Types

0 -538 of 1 -410 tt, mt, tm

2 -266 by, on, in, with, for, about, as, like 0 -81 at, mm, am

1 852 to 2 939 ta, ma, aa

Table 7.13: Mappings between 3 clusters from pass 2 of CA.

The cluster at index 0 for the preposition ‘of’ to the left side of Table 7.13 aligned with meta-type

cluster 1 from the right-hand side that comprised meta-types ‘tt’, ‘mt’, ‘tm’. Of those. Remaining

preposition clusters 1 and 2 respectively mapped to meta-type clusters 2 and 0. Note that F1 values

between corresponding preposition and meta-type clusters, though different, are of similar magnitude.

Take, for example, the meta-type F1 value of -410 from the first row of Table 7.13; that value was closer

to of -538 for the preposition value from index 0 than it was to -266 from index 1.

Discussion VII of mapping between clusters

Abandoning factor F3 due to a relatively small amount of overall inertia meant that little remained

to be explained after assessing F1 and F2. In other words, the graph for pass 1 from Figure 7.4 was

very nearly a complete depiction of interactions between prepositions and meta-types. Subsequently,

mappings arising from that CA reflected the positions of corresponding clusters in sets I and J, and allow

machines to emulate humans in interpreting CA graphs. In fact, success in using mean F1 from results

for prepositions was due partly to few clusters arising. Should more clusters emerge, taking F1 and F2

together might offer a more discerning approach; the relative signs of F1 and F2 would help to resolve

cases where F1 alone could not determine appropriate mappings.

Corresponding clusters from parallel runs of CA, then, revealed affinities between given meta-types

and prepositions. In that way, the preposition ‘to’ was strongly associated with meta-types dominated

by ‘a’ for ‘action’, as was explained in the discussion for outliers. Further, using an optimum number

of 3 clusters revealed similar strong affinity between ‘of’ and meta-types heavy in ‘t’. The preposition

‘by’, in contrast, had as many ‘m’ meta-types as ‘a’ and ‘t’ combined. Having allowed machines to detect

such patterns, attention turns next to using them in interpreting X and Y axes from CA graphs. That,

in turn, will formalise such relationships between prepositions and things, actions, and modifiers, and

ultimately raise important intensional knowledge about GRiST mind maps.
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Method VIII for interpreting X and Y axes

Note that the following CA involved just the standard matrix of prepositions against meta-types, rather

than comprising separate parallel runs. Labels from resulting column clusters for set J were split into

individual meta-types, and frequencies of occurrence compiled for those discrete meta-types within any

column cluster. A particular meta-type dominated if it accounted for 50% or more of any cluster’s

meta-types. In such cases, the F1 and F2 values of those CA results indicated the relevant axis.

Results VIII for interpreting X and Y axes

Table 7.14 presents CA results for 3 clusters that arose from the second pass of CA. The first group of

columns show prepositions from the labels of points in row clusters. After those labels come the average

F1 and F2 values for any row cluster. The second part deals with column clusters: first, the labels, then

counts for individual meta-types within those composite values. The highest count for each meta-type

appears in bold face, with the percentage of any entire cluster shown in the last column:

Row Clusters F1 F2 Col Clusters
Meta-Types

a m t %

of -538 -410 tt, mt, tm 0 2 4 67

by, on, in, with, for, about, as, like -266 939 at, mm, am 2 3 1 50

to 852 -81 ta, ma, aa 4 1 1 67

Table 7.14: Cluster mappings for phase 1

The last three columns of Table 7.14 show dominant meta-types, highlighted in bold type, that accounted

for 50% or more of any cluster. Further, minimum and maximum values for mean row F1 of -538 and

+852 put respective prepositions ‘of’ and ‘to’ at opposite ends of the X-axis. Corresponding meta-types

for ‘of’ were dominated by ‘t’ for ‘thing’, while ‘to’ strongly attracted points having ‘a’ for ‘action’; in

that way appeared X-axis meta-types of ‘t’ at the negative extreme, and ‘a’ at the positive end.

In a similar way, minimum and maximum values of mean F2, for column clusters on the Y-axis, were

-410 and +939. That revealed corresponding axis meta-types of ‘t’ at the negative extreme occupied by

‘of’, and ‘m’ at the positive end that contained ‘by’. Figure 7.7 shows output from MidmapPOSAnalysis

that summarises the automated interpretation of axes:

Figure 7.7: Axis mappings from phase 1 of CA.
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The final result, then, was that the negative extreme of the X-axis reflected things, while the positive end

of that axis tended towards actions. In contrast, ascending the Y-axis depicted a transition from things

to modifiers.

Discussion VIII for interpreting X and Y axes

Using the average F1 of clusters is reminiscent of the spatial mean, introduced in Chapter 6, that depicted

entire clusters as single points. That was the case for all of the column clusters from this CA, and for

the row cluster that contained ‘by’; prepositions ‘of’ and ‘to’, though, formed singleton clusters having

mean values equal to the associated F1 values themselves. The extreme positions of prepositions ‘to’ and

‘of’ on the X-axis suggested that axis to reflect a continuum between things and actions. In contrast,

‘by’ and ‘of’ at Y-axis extremes suggested a transition from things to modifiers. To emphasise those axis

meta-types, superimposed graphs seen earlier in Figure 7.4 are reproduced here as Figure 7.8:

Figure 7.8: CA graph of F1 x F2 for pass 1 (reprise).

The bottom-right quadrant of Figure 7.8 shows ‘of’ at the ‘thing’ end of the X-axis, while ‘to’ lies towards

the ‘action’ end. In contrast, prepositions ‘of’ and ‘by’ respectively occupy the ‘thing’ and ‘modifier’ ends

of the Y-axis. Indeed, those results for automatically interpreting axes further validate the optimum

three clusters derived from the preliminary CA. That number faithfully reflected the three main clusters

in differing quadrants of the resulting graph.
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Note further that symmetrical meta-type pairs ‘aa’, ‘mm’, and ‘tt’ appear in quadrants that express

those types most strongly. In addition, symmetrical pairs ‘mt’ and ‘tm’ are separated across the X-axis,

where they might be seen as belonging to the group around ‘for’, just above the Y origin. CA, rather,

determined that they belonged with ‘of’; in that respect, a machine performed at least as well as a human,

if not better. Symmetrical meta-type pairs ‘at’ and ‘ta’ are similarly separated, though diagonally across

bottom-right and top-left quadrants. That goes in addition for ‘ma’ and ‘am’, although that latter point

is partially obscured by the preposition ‘by’.

Results from CA, then, produced valuable intensional knowledge for the emerging information base

of GRiST mind maps. Corresponding row and column clusters, along with the derived axis extremes,

will shortly be seen to determine meta-types for ambiguous or missing words from WordNet. That will

be inhibited, though, by the strong influence of ‘to’ that skewed the graph, and made remaining clusters

less obvious. In order to develop a better model of the left-hand side of the CA graph, for all prepositions

but ‘to’, that involves a subsequent pass of CA, after having removed that outlier row.

7.7 CA on Unambiguous Trigrams: Pass 2

The first phase of CA identified the preposition ‘to’ as outlier that was, in addition, a singleton cluster

that contained no further points. Although singletons are not necessarily outriders on a graph, they are

sufficiently removed as to contrast sharply with remaining clusters. Having noted such strong correspon-

dences, outlier row clusters are removed in order to allow any released meta-types to reconfigure around

the next most strongly attracting preposition.

Indeed, the next most extreme outlier from any pass is likely to be the one removed on the following

pass. In that way, graded correspondences arise: the later they appear around any preposition the weaker

the attraction between them. All the same, useful trigrams might arise that were not available from earlier

passes, as will be seen from experiments presented next.

Method V for subsequent phases of CA

The MidmapPOSAnalysis class identified outliers for each phase. After noting any corresponding column

points, matrix rows for outliers were removed before the succeeding phase, though remaining observations

were untouched. In all, 5 phases of CA were performed, in paired runs: the first run in any phase identified

optimum numbers of clusters for a second pass, which re-ran CA with an updated matrix header. That

process was repeated for successive row outliers, gradually reduced the number of prepositions, while

leaving intact all columns of meta-type pairs.
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Results for all phases of CA

Figure 7.9 summarises the clusters and outliers from phases 1 to 5 of CA:

Figure 7.9: Summary of clusters and outliers from CA phases 1 - 5.

The number of clusters varied between 3 and 4, and an outlier was detected in all phases. By phase 5,

just four prepositions remained. Any fewer rows would stand no chance of filling the quadrants of a CA

graph. For that reason, processing stopped at phase 5.

The composition of clusters changed from one phase to the next. In phase 2, the outlier ‘of’ paired up

with meta-type pair ‘aa’, once that pair was free of the strong attraction exerted by ‘to’. For phase 3, the

preposition ‘as’ corresponded strongly with modifiers: 3 out of 4 pairs contained the meta-type ‘m’. The

symmetrical pair ‘mm’ further bound ‘as’ to modifiers. Phase 4 gave an outlier that comprised several

points; note, though, that outliers for all other phases were singletons. After the clusters themselves, the

other main output from CA comprised axis meta-types. Figure 7.10 shows how axes were interpreted in

the five phases of CA:

Figure 7.10: Axis mappings from CA phases 1 - 5.

Phase 2, then, gave meta-types of action and modifier for the positive X-axis. That was in opposition to

‘things’ at the negative end. Subsequent phases all gave single axis meta-types. Note, though, that the

types for the X-axis in phase 4 are reversed for the Y-axis.
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Results from Phase 2 of CA

Figure 7.11 shows the overlaid plots from phase 2 of CA, having removed the outlier preposition ‘to’ that

skewed the first, full CA:

Figure 7.11: CA graph of F1 x F2 for phase 2

Removing the outrider ‘to’ from the matrix had a dramatic effect. The point for ‘of’ moved away from the

bottom of the phase 1 graph, ending up slightly above the Y-axis origin. In addition, the preposition ‘as’

moved diagonally downwards, from the top-left quadrant to the bottom-right. Respective corresponding

pairs ‘tt’ and ‘mm’ underwent a similar transformation. Remaining row and column points largely moved

sideways, and were more evenly distributed than when the full CA matrix was used.

The singleton cluster for ‘as’ formed a distinct cluster in the second phase, rather than being amalga-

mated with various other prepositions in phase one. In a similar way, ‘for’ and ‘in’ seem to be associated

with pairs ‘mt’ and ‘mm’, set apart from other points. To refute or confirm those associations, Table

7.15 (overleaf) presents mappings from the second phase of CA. In the same way as for the first phase,

results were sorted on the mean F1 for row clusters, of which four arise after removing ‘to’:
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ClR F1 Prepositions ClC F1 Meta-Types

1 -520 of 1 -488 tt, ta

2 145 for, in 0 90 aa, mt, tm

0 187 as 2 531 ma, mm, am

0 410 with, about, like, by, on 2 559 at

Table 7.15: Mappings between 4 clusters from the second phase of CA.

Those results show that column points ‘mt’ and ‘tm’ did indeed correspond with ‘for’. In addition, that

preposition attracted the pair ‘aa’ that previously corresponded with ‘to’; remaining meta-types ‘ma’ and

‘ta’ from that cluster respectively congregated around ‘as’ and ‘of’.

Discussion of Phase 2 of CA

Removing row outliers encouraged new configurations of any associated column points. In all but phase

5 of CA, outliers were singleton clusters, which obviated the need to view such clusters as a spatial mean.

Specific correspondence between single prepositions and meta-types, though, were less clear in a single,

all-inclusive run. In contrast, successive phases of CA forced meta-type pairs to join new clusters. At

each phase, the attraction between row and newly attracted column points was less than in preceding

phases. That gave a graded analysis that will find use shortly in resolving ambiguous words from GRiST

mind maps.

Corresponding row and column results helped to interpret graphs from CA. A human might have

associated the meta-type pair ‘aa’ pair with ‘like’, ‘about’ and ‘with’. In fact, the automated process

assigned that point to the cluster comprising ‘for‘ and ‘in’. That recalls a similar situation between points

for the prepositions ‘for’ and ‘of’ in phase 1, where a machine performed at least as well as might humans.
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7.8 Using CA Results to Resolve Ambiguous Trigrams

This section applies the results from CA to resolving ambiguous trigrams. Two forms of ambiguity arose,

in fact: the first type concerned words being absent from WordNet, while the second type involved POS

having similar numbers of senses. Those forms of ambiguity were, in fact, handled differently.

The first type of ambiguity arose due to words missing from WordNet; because meta-types could not

be assigned, corresponding parts of trigrams were left unfilled. In those cases, meta-types came from the

axes of CA graphs. Locating points on the graph involved factors F1 and F2, which dictated respective

positions on the X and Y axes. The most extreme of the X and Y coordinates suggested a meta-type,

depending on the signs of those coordinates. Figure 7.12 reviews the axis meta-types from the first pass

of CA:

Figure 7.12: Axis mappings from pass 1 of CA (reprise).

Applying axis meta-types, then, involves using F1 and F2 values from retained CA results. In that way,

the locations of prepositions on any graph suggest meta-types for ambiguous parts of triples; the exact

meta-type depends on which quadrant of a graph holds the associated preposition.

Conversely, words that did exist in WordNet allowed a more detailed analysis by way of reliable

triples from Section 7.3. Those triples were further transformed into trigrams of the form {meta-type1,

preposition, meta-type2}, and the same done for ambiguous triples from Section 7.4. While a sole trigram

represented any unambiguous triple, several were needed to express ambiguous triples, in order to reflect

permutations of particular meta-types.

The challenge, then, was to select the most appropriate combination, in context of the preposition in

any specific trigram. To that end, unambiguous trigrams showed the meta-types commonly found with

particular prepositions, which was reflected in the clusters of meta-types found by CA. Those CA clusters

guided the selection of most likely meta-types, in the context of a particular preposition. Points nearer

to the edge of any graph were judged to reflect the corresponding axis meta-type. That was assessed by

the ratio of such F1 and F2 values to the overall range for respective sets I and J.
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Method I for words unknown to WordNet

Triples containing unknown words were selected from the list created in Section 7.4; CA results for the

preposition in any given triple were retrieved from tables retained from analyses. The row result for any

specific preposition bore F1 and F2 values that dictated respective positions on the X and Y axes. To

that end, the four quadrants of a CA graph were reflected in the signs of X and Y coordinates, against

which particular F1 and F2 values were compared.

The row result corresponding to any particular preposition was retrieved, and its F1 value divided by

the total F1 range RF1. That was repeated for F2 using the F2 range RF2. Further, signs on F1 and F2

values showed to which sides of the X and Y origins points fell. Generally, the X-axis meta-type at the

corresponding F1 extreme was taken; exceptions were Y-axis outliers having relatively large F2. In fact,

the Y-axis meta-type was used when the ratio F2/RF2 was three or more times that of F1/RF1.

Results I for words unknown to WordNet

Figure 7.13 shows partial output from the MidmapPOSAnalysis class, for three unknown words. The first

line in each group shows a triple that contained such a word, which is highlighted by asterisks. Line two

gives the CA row result for the preposition in the triple. That result holds F1 and F2, the corresponding

ranges, and the resulting ratios. The last line shows which side of the X or Y axes yielded a meta-type,

along with the accepted interpretation:

Figure 7.13: Treatment of unknown words by the Java class MidmapPOSAnalysis.

The first group from Figure 7.13 was for the word ‘impulsivity’ that did not exist in WordNet. The row

result for the preposition ‘of’ gave respective F1 and F2 ratios of 0.39 and 0.44; those ratios were barely

different, which led to taking a meta-type of ‘t’ from the negative end of the X-axis.

The second entry from Figure 7.13, for ‘reconnect’, had the preposition ‘to’; the corresponding row

result held respective F1 and F2 ratios of 0.61 and 0.07; the large F1 ratio on that result suggested

a meta-type of ‘a’, from the positive end of the X-axis. In contrast, the last triple from Figure 7.13
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for ‘disinhibited’ applied the CA row result for ‘by’, which gave ratios of 0.02 and 0.63 for F1 and F2

respectively. As a consequence, the meta-type ‘m’ was taken from the positive end of the Y-axis.

Meta-types for words unknown to WordNet, then, arose from referring to axes on CA graphs; the

next set of results from that process deals with further omissions from WordNet: ‘carer’ and ‘carers’.

Table 7.16 presents the results for assigning axis meta-types to ‘carer’ and ‘carers’. Note that the first

entry shows the word ‘kind’ in brackets, after ‘any’, to provide context for that phrase:

Word 1 Prep Word 2
X-Axis Y-Axis

Use M-T
F1 F1/RF1 F2 F2/RF2

carers of any (kind) -538 0.39 -486 0.44
–ve X-axis thing

collaboration with carer -392 0.28 375 0.34

Table 7.16: Disambiguation of ‘carer’ and ‘carers’ that were unknown to WordNet.

Words from Table 7.16 appeared around two different prepositions: ‘of’ and ‘with’. Row results for both

of those prepositions had relatively large negative F1 values, reflecting points well towards to the left side

of the graph. Signs for the F2 values, while of similar magnitude to F1, had different signs. That reflects

the point for ‘with’ above the X-origin, and below it for ‘of’. Together, those F1 and F2 values specify

the bottom-left quadrant for ‘of’, and the top-left quadrant for ‘with’. In neither case did the F2 ratio

sufficiently exceed that for F1, so meta-types of ‘t’ for ‘thing’ were taken from the X-axis.

Considering axis meta-type further helped with the unknown word ‘rq’, which co-occurred with the

proposition ‘as’; the location of that proposition on the graph correctly suggested the meta-type ‘t’ for

‘rq’. In a similar way, ‘cjs’ was deemed a noun by the corresponding preposition ‘in’. The main helpful

preposition, though, was ‘of’, which led to treating further abbreviations ‘cnr’ and “cmht’ as nouns. In

a similar way, non-words such as ‘derealisation’, ‘affectivity’ and ‘parasuicide’ were deemed nouns by

applying axis mappings for ‘of’. The word ‘avoidant’, though, was seen as a noun in that way, when in

fact it is a modifier.

As opposed to nouns, words such as ‘disinhibit’ and ‘sh’, were interpreted as verbs by means of the

preposition ‘to’. Modifiers, on the other hand, included the non-word ‘disinhibited’ that was correctly

classified in relation to the preposition ‘by’. The related word ‘disinhibiting’, though, was further treated

as a modifier. That, then, concludes results for words having no entry in WordNet; a discussion of those

results now follows.

Discussion I for words unknown to WordNet

Words that failed to find entries in WordNet, then, were assessed in relation to axes from associated CA

graphs. From that analysis arose various abbreviations, such as ‘rq’ for ‘risk quotient’, ‘sh’ for ‘self harm’,
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and ‘cjs’ for the Criminal Justice System, all being correctly deemed nouns. In addition, medical terms

such as ‘parasuicide’ were further seen as nouns. In fact, interpreting ‘sh’ as a noun arose from the node

[acts of sh]. In contrast, the node [now started to sh again] used ‘sh’ as a verb, which was correctly

determined by correspondence with the preposition ‘to’. A further appropriate verb arising from ‘to’ was

the word ‘disinhibit’. In fact, unknown words appearing with ‘to’ were invariably seen as actions; that

proved wrong for the words ‘insightless’, ‘prequel’ and ‘rejector’.

Words that were unknown to WordNet, though, were treated largely as nouns, which in most cases

reflected intended meanings. Exceptions were ‘avoidant’ and ‘disinhibiting’, which were actually modifiers

that were falsely interpreted by reference to ‘of’, the sole occupant of the bottom-left quadrant. Because

the X-axis meta-type ‘t’ corresponded strongly with ‘of’, those words were treated as nouns.

An interesting exception concerned the word ‘disinhibited’ that was determined to be a modifier, due

to the associated preposition ‘by’ having a strong F2 component. That correctly gave the meta-type

‘m’ from the positive extreme of the Y-axis. The results presented here, then, show CA to resolve POS

for words that were absent from WordNet. A slight problem, though, arose from strong correspondence

between ‘to’ and verbs, leading to classifying several ‘things’ as ‘actions’. The problem is inherent in CA,

in that it measures overall trends in data; occasionally, such patterns can be misleading. All the same,

ambiguity was resolved in the sense that words absent from WordNet were assigned POS; attention turns

now to words that are found in WordNet, but have similar numbers of senses.

Method II for ambiguous words in WordNet

This step compares ambiguous trigrams from Section 7.4 with unambiguous ones from Section 7.3. The

latter list provided reliable trigrams of the form {meta-type1, preposition, meta-type2}. Now, novel

trigrams were created that held constant any prepositions and unambiguous meta-types; in that way,

each novel trigram represented a candidate meta-type for any particular ambiguous word. The best of

those novel trigrams was determined by consulting CA clusters from unambiguous ones.

Results II for ambiguous words in WordNet

Before presenting details of how CA resolving ambiguity, Table 7.17 presents just a single example that

demonstrates how subsequent tables should be interpreted. In fact, that table comprises four parts. The

first part has two columns: the one headed Word 1 holds words that preceded particular prepositions, and

the associated M-T column holds one or more meta-types. Unambiguous words will have a single, reliable

meta-type, whereas ambiguous words have several candidate meta-types shown as a comma-separated

list. The second part of the table has a sole column headed Prep to indicate the preposition from any

triple. Following that, the third part of the table comprises two columns for the words following any

preposition, and any corresponding meta-types reported by WordNet.
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The fourth part of Table 7.17 comprises four columns that concern meta-type clusters corresponding

with any given preposition. The first of those columns, headed Meta-Type Permutations, shows possible

combinations of meta-types for Word 1 with those for Word 2, with the pair that was ultimately selected

shown in bold face. That selected pair arises from comparison with labels from the column cluster, which

appears in the last column. Between those permutations and clusters, the column headed N shows the

pass from which any cluster emerged, while column S shows whether the corresponding row cluster was

a singleton, containing just a sole preposition. Details of a single trigram, then, occupy one line in the

table as for the given example of ‘drugs’ that WordNet reported might be a verb or a noun, respectively

shown by meta-types ‘a’ and ‘t’:

Word 1 M-T Prep Word 2 M-T
Meta-Type Column Cluster

Permutations N S Labels

drugs a, t in significant m am, tm 2 N aa, mt, tm

Table 7.17: Example of disambiguation by means of CA.

The column headed Word 1, then, holds the ambiguous word ‘drugs’ that might be a verb or a noun;

accordingly, ‘drugs’ appears in italics to reflect that a decision is required. In a similar way, associated

meta-types under the M-T column lists candidate meta-types ‘a’ for ‘action’ and ‘t’ for ‘thing’. Further

highlighting in bold type notes that the meta-type ‘t’ was the one ultimately selected.

The second part of the table, comprising just the Prep column, holds the preposition for that triple;

in this case, the word ‘drugs’ preceded the preposition ‘in’. The third part lists words and meta-types for

words that followed prepositions, and are formatted in the same way as were the first two columns for

words preceding any preposition. In the current example, the preposition ‘in’ was followed by ‘significant’,

which was an unambiguous modifier.

Finally, the fourth group of columns reveal details of the column cluster corresponding to ‘in’. The

column headed Meta-Type Permutations shows possible combinations of meta-types between entries from

columns Word 1 and Word 2. In that way, candidates of ‘a’ and ‘t’ for ‘drugs’ combined with the meta-

type ‘m’ from ‘significant’ to give permutations of ‘am’ and ‘tm’, which are shown in italics to note that

a decision is required. That decision depends on labels from the last column , headed Column Cluster,

where the candidate pair ‘tm’ was indeed found. The meta-type preceding ‘in’ from that label is ‘t’,

which appears in bold to reflect the POS of the ambiguous word ‘drugs’.

The column headed N shows that the meta-type ‘t’ was chosen due to a cluster from pass 2 of CA,

after having removed the row for ‘to’. The column headed Singleton, though, shows that ‘in’ shared a

cluster with other prepositions. Having described the format of tables that follow, here are the remaining

results for disambiguating the word ‘drugs’.
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Disambiguating ‘drugs’

In preparation for presenting CA results related to ‘drugs’, Table 7.18 reviews research in WordNet from

which ambiguity arose. Examples are given of nodes from GRiST mind maps. In those nodes, ‘drugs’

could be either a noun or a verb; sense counts of 1 and 2, though, make that distinction hard to discern:

Word
POS Senses

Prep Examples from GRiST mind maps
Aj Av N V ∆s

drugs - - 1 2 1

as not [same as drugs]

in alcohol and [drugs in significant] amounts

of their [use of drugs]

on rq : number one [high on drugs]

to individuals [response to drugs]

Table 7.18: Review of the ambiguous word ‘drugs’.

The word ‘drugs’, then, could either a noun or a verb. Table 7.19 shows how CA resolved that

ambiguity, using corresponding clusters of prepositions and meta-types. Note that although the earlier

example for ‘drugs’ and ‘significant’ is not included, it was the sole instance of that ambiguous word

following a preposition. Further note that the result for ‘of’ has a further ambiguous word, ‘use’, as does

‘on’ with the word ambiguous word ‘high’:

Word 1 M-T Prep Word 2 M-T
Meta-Type Column Cluster

Permutations N S Labels

same m as

drugs

a, t
ma , mt 2 Y ma, mm, am

response t to ta , tt 1 Y ta, ma, aa

use a, t of
a, t

aa, at, ta, tt 1 Y tt, mt, tm

high m , t on ma, mt , ta, tt 3 N aa, mt, tt

Table 7.19: Disambiguation of ‘drugs’ by means of CA.

Column N from Table 7.19 shows that relevant clusters arose from passes 1 to 3 inclusive; the Singleton

column further shows row clusters for ‘of’ and ‘to’ as singletons from pass 1, as was the preposition ‘as’

in pass 2. In contrast, ‘on’ from pass 3 shared a cluster with additional prepositions. The M-T column

shows that in the first two results, ‘drugs’ was interpreted as a verb, while remaining results gave nouns.

The first result from Table 7.19 showed the modifier ‘same’ preceding the preposition ‘as’. The

sole matching permutation demanded that ‘drugs’ be a verb, to form ‘ma’; that decision, though, was

incorrect: ‘drugs’ is a noun in all of those examples. That result for ‘as’ was both a singleton and an

outlier in pass 2 of CA; the second result, for ‘to’, was further the outlier from pass 1. With ‘response’

being reliably deemed a noun by WordNet, the possible permutations were ‘ta’ and ‘tt’. Just the former,

though, existed in the corresponding column cluster, which led to wrongly interpreting ‘drugs’ as a verb.
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Remaining examples, though, see ‘drugs’ as a noun due to the prepositions ‘of’ and ‘on’. Further, the

remaining word on those triples were ambiguous: ‘use’ might have been a verb or a noun, while ‘high’

acts both as an adjective and as a noun. The corresponding meta-type cluster for ‘of’ comprised pairs

made from just ‘a’ and ‘t’; the sole matching column meta-type was ‘tt’ that interpreted both ‘use’ and

‘drugs’ as nouns.

Candidate meta-type pairs for ‘high’ and ‘drugs’, though, matched two corresponding permutations:

‘mt’ and ‘tt’. While that made ‘drugs’ a noun, ‘high’ remained ambiguous. In fact, ‘by’ appeared at

the ‘modifier’ extreme of the Y-axis of the graph from pass 1 of CA, and remained above the Y-origin

after removing ‘to’. That was due to the strong F2 component for ‘by’: F2 was 678, compared with -299

for F1. At over twice the size, F2 indicated that the Y-axis should be used. Because the positive end

of that axis represented modifiers, the pair ‘mt’ was preferred over ‘tt’; that made ‘high’ as a modifier,

and ‘drugs’ a noun. Having shown CA in disambiguating the word ‘drugs’, attention turns to a further

important GRiST concept: ‘abuse’.

Disambiguating ‘abuse’

The method for refining ‘abuse’ resembled that applied to ‘drugs’, and will not be repeated. Further, no

specific prepositions or corresponding meta-type clusters are shown; rather, just candidate meta-types

are shown for ambiguous words. Examples of nodes from GRiST mind maps show triples enclosed in

square brackets, with ambiguous words in italics, and prepositions in bold type:

Word 1 M-T Example from GRiST

abused
a,m [abused as children]. . . ending in psychiatric system

a,m [abused by friends]

abuse a,t

often people with a [history of abuse]

[history of abuse] potentially important factor

2 kids under 5. . . and a [history of abuse]

tranquillisers as a [method of abuse]

Table 7.20: Disambiguation of ‘abuse’ by means of CA.

The first entry of Table 7.20 shows ‘abused’ to be interpreted as a verb, though it might have been

a modifier. Indeed, that was the preferred meta-type for the second entry, ‘by’. The latter part of that

table shows ‘abuse’ as a noun due to the preposition ‘of’. Three of those results involve the reliable noun

‘history’ in various contexts; the remaining result has the similarly unambiguous noun ‘method’.

Discussion II for ambiguous words in WordNet

The ambiguous word ‘drugs’, then, arose from just 1 sense as a noun, and 2 as a verb; that ambiguity

was resolved by trigrams comprising the prepositions ‘as’, ‘in’, ‘of’, ‘on’ and ‘to’. Indeed, ‘of’ proved
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particularly accurate in such cases; a strong correspondence with ‘things’ gave that interpretation for

words that truly were nouns. In a similar way, the word ‘in’ justified treating ‘drugs’ as a noun, when it

preceded that preposition. The modifier ‘significant’ following ‘in’ led to that decision; in fact, ‘in’ tended

to expect a preceding noun and a following modifier; given that unambiguous modifier ‘significant’, ‘drugs’

was most likely a noun in that context.

Further justification for ‘drugs’ as a noun came from trigrams bearing ‘on’, which corresponded with

preceding modifiers and trailing nouns. In that way, ‘on’ being followed by ‘drugs’ meant taking that

ambiguous word as a noun, rather than as a verb. In the trigram from that case, though, both words were

ambiguous: the word ‘high’ might further have been a modifier, in that a person might be described as

‘high’, or a noun, as in the ‘high’ that drugs give users. In fact, ‘high on drugs’ describes a state; because

the preposition ‘on’ corresponded with preceding modifiers, that was correctly taken as the preferred

POS for ‘high’.

Correct choices, then, were made for both of the ambiguous words from that triple. In fact, the decision

for ‘high’ relied on a meta-type cluster from pass 3 of CA; had outliers not been successively removed,

and CA re-run, stronger attractions elsewhere in any graph would have masked that correspondence.

Further, the Y-axis meta-type of ‘m’ discouraged selecting ‘use’ as a verb should it appear before ‘on’.

In that case, that decision arose from F2 rather than F1, which well demonstrated the utility of having

machines ‘read’ superimposed graphs, and interpret X and Y axes.

In contrast to reliable patterns revealed for ‘of’, trigrams for ‘on’ and ‘to’ were somewhat misleading;

‘drugs’ was incorrectly seen as a verb, rather than as a noun. That was because of strong correspondence

between ‘to’ and actions; in fact, any word that followed ‘to’ would be seen as a verb. Conversely, the

relatively central position of ‘as’ on the CA graph from pass 1 suggested relatively small correspondence

with any particular meta-types. On removing the outlier ‘to, the point for ‘on’ moved sharply towards

the bottom of the graph from pass 2. The resulting singleton cluster, though, was strongly associated

with actions and modifiers, but contained no instances of the meta-type ‘t’ for ‘thing’, which precluded

taking ‘drugs’ as a noun.

The last set of results for ambiguous entries in WordNet concerned the key concept of ‘abuse’, which

is of great importance in GRiST mind maps. Two forms of that concept, ‘abuse’ and ‘abused’, met with

varying degrees of success in determining the best POS. Of those words, ‘abused’ might be a verb or a

modifier; although the verb was chosen, ‘abused’ was really a modifier. So similar are those two usages,

though, as to make the distinction pedantic. Indeed, those phrases might be re-written in a standard

form, using parentheses to denote unknowns; that might yield ‘(They were) abused as children’ and

‘friends abused (them)’. That the verb was given precedence in fact reflects a more useful relationship,
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in terms of a subject, a verb, and an object.

The remaining word ‘abuse’ was correctly deemed a noun in all cases, by means of strong corre-

spondence between ‘of’ and ‘things’. In that way, the information base of GRiST mind maps receives

important intensional knowledge about roles that ‘abuse’ plays in mind map nodes as a concrete concept,

rather than a participle of the verb ‘to abuse’. The relationship between noun and verb forms, though,

will allow machines to infer such relationships, which in turn demands further analysis in order to find

subjects and objects for such actions.

Supplementary Method for Bigrams arising from Trigrams

Having analysed triples of the form {word1, preposition, word2} from nodes in GRiST mind maps, a

further trawl of those mind maps revealed novel combinations of words involved. Rather than triples,

though, it was bigrams of the form {word1, word2} and {word2, word1} that were sought. In the first type

of bigram, words appearing immediately before or after any preposition were researched as contiguous

words, that is, with the intervening preposition removed. In the latter type, though, words were further

reversed; in that way, the word preceding any preposition, say, became the second word of a novel bigram.

Words from mind map nodes were reduced to an array by using the split() method, as in earlier

experiments. Given a preposition at index i of any resulting array, indices i−1 and i+ 1 identified words

to either side of that preposition. Bigrams of the first type, then, comprised words at respective indices

i − 1 and i + 1, whereas in the latter, that order was i + 1 and i − 1. In addition, words conflated by

stems were included in that process.

Supplementary Results for Bigrams arising from Trigrams

Table 7.21 shows nodes having words originally separated by the prepositions ‘for’, ‘in’, ‘to’, and ‘with’;

such nodes appear to the left-hand side of the table. Removing those prepositions yielded novel bigrams

that maintained words in their original order. Prepositions themselves appear in the middle column,

while examples of nodes bearing such novel bigrams are shown on the right. Bigrams and triples appear

in square brackets, and any prepositions highlighted by italics. Longer nodes have been edited in order

to save space, although important parts remain intact:

Words Separated by Prepositions Prep Contiguous Words in Identical Order

rq : thats [cause for concern] for [causes concern]

[situations in which] drinking in [situation which] prompted. . . current problems

lack of [access to services] to [accessing services]

brought into [contact with services] with avoid [contact services]

Table 7.21: Supplementary Results of Bigrams arising from Trigrams.
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Due to including stemmed words, the first entry from Table 7.21 shows the unambiguous noun ‘cause’

transformed into a verb on removing the preposition ‘for’; in fact, ‘cause’ had 5 noun senses but just 2 as

a verb. A similar situation arose in the third entry, for the preposition ‘to’; the noun ‘access’ in that case

became the verb ‘accessing’. In contrast, words associated with ‘in’ retained their original POS, although

the intended meaning of last novel pair, on the right-hand side of the last entry, is unclear.

In a similar format to Table 7.21, results in Table 7.22 depict nodes containing words that were

separated by ‘of’, which was removed to yield novel bigrams; the redundant column for prepositions has

been removed. The right-hand column, then, shows nodes that contained words contiguously, but with

their order in the original node reversed:

Words Separated by ‘Of’ Contiguous Words in Reverse Order

[pattern of behaviour] change in [behaviour patterns]

uniforms..[figures of authority] relationship to [authority figures]

[dynamics of family] is very complex [family dynamics]

increasing the [risk of suicide] high [suicide risk]

Table 7.22: Supplementary Results of Reversed Bigrams arising from Trigrams.

All of the results from Table 7.22, then, contained the word ‘of’ in previously identified nodes. Further

nodes contained words from those triples contiguously, but in reverse order; all such words were, in fact,

reliable nouns.

Supplementary Discussion of Bigrams arising from Trigrams

The word ‘causes’ that should be interpreted as a verb in the phrase ‘causes concern’ is, in fact, more

likely to be a noun; because WordNet reports three more noun than verb senses, it would be deemed a

reliable ‘thing’ by the criterion used here. Indeed, that leads WordNet to treat the suffix ‘-s’ as a plural,

rather than as the third person singular of ‘to cause’. Although demanding that any dominant POS have

two or more senses than remaining candidates was largely successful, that measure of familiarity clearly

needs refinement.

With respect to the preposition ‘in’, the phrase ‘situations in which’ denotes a context for ‘ drinking’;

in contrast, the phrase ‘situations which’ suggests a more concrete relationship, as the immediate subject

of ‘prompted’. The difficulty raised in that example was reflected in results from CA on meta-types,

where ‘in’ appeared well away from any axis extreme, indicating little distinction from fellow members of

the associated cluster. The opposite, though, was found for the preposition ‘to’. In that case, a concept

of ‘access to services’ was found in the related form of ‘accessing services’. The strong correspondence

between ‘to’ and ‘actions’ reflects that the noun phrase ‘access to’ might further be seen as ‘accessing’.
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All the same, that approach failed when intended meanings would be obscure even to humans; such

was the case for the phrase ‘avoid contact services’ [sic.] that made more sense in the form ‘contact with

services’. Indeed, that phrase might justify machines transforming nouns into verbs when accompanied

by ‘with’, as was done for the preposition ‘to’. Unfortunately, ‘with’ showed less strong correspondences

with meta-types, and further shared a cluster with other prepositions. HC analyses, might, though,

enable more discerning approach to handling larger clusters arising from CA.

Following the pass of CA that isolated ‘to’ as an outlier, the subsequent pass revealed ‘of’ to be the

next most distinctive preposition. The high correspondence between ‘of’ and ‘things’ was reflected in

nodes containing adjacent words, but in reverse order to that in originating triples. Indeed, examples

showed that nouns flanking the word ‘of’ might be swapped, once that preposition is removed. In that

way, ‘pattern of behaviour’ was synonymous with ‘behaviour patterns’, as were the phrases ‘authority

figures’, ‘family dynamics’, and ‘suicide risk’. Nodes containing such phrases might be rewritten, with no

loss of truth value. That will, indeed, be done in experiments to be reported shortly in Chapter 8.

7.9 Chapter Discussion

CA, then borrows from classical mechanics in endowing graph points with proportionate masses. In

turn, those masses exhibit inertia, which indicates the strength of correspondences between sets I and

J: the respective matrix rows and columns. Successive factors arise that explain variation between

categories from column headings, and observations on those categories in matrix rows. Indeed, Chapter

6 described various approaches to analysing text by means of CA; accordingly, the first of the following

two discussions revisits those approaches in light of experiments presented here. Subsequently, a further

discussion assesses the benefits and pitfalls of this novel approach to resolving ambiguity. To begin, then,

by assessing that approach in relation to existing work.

Automated CA in Contrast To Reviewed Approaches

The first reviewed application of CA was to analysing word usage across genres of text. To that end,

Nishina (2007) used CA to reveal words that authors were more or less likely to use in particular genres.

That study, failed to superimpose graphs from sets I and J from the associated CA. A further study by

Unmans (1998) showed overlaid graphs to be far more informative, which is why that format was adopted

here. Further note was made of that study’s use of quadrants from resulting graphs, as a more detailed

view of correspondences; that approach was further taken here.

That study, though, did not consider the proportions of variation explained by particular factors.

In contrast, information retained here after CA had finished identified weak factors that were removed

213



7.9. CHAPTER DISCUSSION

prior to subsequent runs. That said, Unmans (1998) did show the importance of considering distances

between points, which reflect the extent of any correspondence. That was adopted here, in particular for

identifying outliers, interpreting axes, and deriving optimum numbers of clusters. In addition, Unmans

(1998) overcame CA’s limitation of allowing just two measures by compressing three into a two-way

contingency table. In a similar way, meta-types from before and after prepositions were amalgamated in

to pairs, for use as column headings.

Indeed, Tono (1999) noted that humans have difficulty in deciding just how many clusters are depicted

in any graph, and what points comprise those clusters. Despite that problem, the automated approach

taken here successfully identified optimum numbers of clusters; further, corresponding row and column

clusters were aligned by machine, rather than by eye. All the same, that study suggested applying CA to

trigrams, although comprising actual POS, rather than the meta-types employed here; by transforming

stop words such as pronouns into meta-types, my analysis was less limited by WordNet’s lack of coverage,

and better reflected the roles that such words fill.

Further inspiration for the approach proposed here came from Izumi et al. (2007), who introduced

WordNet into CA. That, though, was to measure any semantic distances between words, in deciding

acceptable word substitutions. Here, in contrast, WordNet contributed POS for both ambiguous and

unambiguous words. In addition to helping to build a CA matrix, deficiencies in WordNet itself were

subsequently rectified by CA of further, ambiguous trigrams. In that respect, words missing from Word-

Net were assigned POS, while ambiguous ones were interpreted in the context of prepositions.

The overwhelming difference between those studies and the one described here is the degree of au-

tomation. Graphs from those studies were read by humans, while here, all steps of CA, from building the

matrix to interpreting graphs was done fully automatically. In addition, removing outliers after having

noted such strong correspondences allowed subsequent more discerning runs of CA.

Disambiguating Mind Map Concepts by Means of CA

Chapter 5 described prepositions as function words, or stop-words, that are often removed before analysing

text. Rather than ignoring such words, an adjunct based on lists of stop words yielded WordNet-like

synsets for prepositions, articles, pronouns and so on. In that way, occurrences of the ten most popular

prepositions from GRiST mind maps contributed to a CA matrix. Patterns of word usage around those

prepositions, it was thought, might help to resolve ambiguous words appearing in similar contexts.

Indeed, that was so for the preposition ‘of’, which corresponded strongly with nouns. Conversely,

modifiers tended to group around the word ‘by’, while verbs were strongly associated with things. Those

patters, in fact, described the axes of the CA graph, which were very useful in determining any best

214



7.9. CHAPTER DISCUSSION

POS. In fact, such strong correspondence was sometimes a problem; the preposition ‘to’, for example,

so strongly reflected verbs as to mask any alternative interpretation. That was due to the dual role

played by ‘to’, as a normal preposition, and as the standard way of expressing infinitives in English. The

challenge for future research is to distinguish between nodes such as [wife about to leave] that uses

the infinitive ‘to leave’, and [as opposed to the day before] where ‘to’ is just an ordinary preposition.

The automated CA presented here, then, goes further than humans usually do with that technique;

using CA’s own output to refine subsequent runs has proved very beneficial. In particular, repeatedly

removing outliers brought out patterns that were masked in earlier runs. Thinking in terms of physical

bodies under the influence of gravity gives insights into how CA might be manipulated into depicting the

best correspondences. That analogy, though must not be taken too far, as gravity does not repel points

as might clusters within a CA space.

The weakest point of this approach concerns points that congregate around the origin of any graph,

revealing that little exists in the underlying matrix to differentiate between such observations. Even

having removed outliers and re-run CA, novel correspondences that arose were accordingly weaker than

any preceding ones. In that sense, the problem lies not in CA but the very measurements that it analysed:

there simply was insufficient information recorded in the matrix. Using a larger number of mind maps

might help in that respect, but is impossible due to the mind mapping phase of GRiST being over. Indeed,

the problem is that English does not employ those propositions in ways that differentiate between them.

Although automating CA was generally beneficial, there were areas that need further work, such as

the problem with ‘to’. The outstanding success arising from trigrams centred on ‘of’, though, proved the

efficacy of this approach. Further, aspects of that automation might be improved, such as the mapping

algorithm between row and column clusters; that will prove less reliable for larger numbers of clusters,

though it worked adequately here. In addition, it might prove useful to measure distances between points

on graphs directly, by means of JFreeChart Point objects that hold X-Y coordinates.

Reconfiguring Phrases that Contain Prepositions

Supplementary results from CA of prepositions and meta-types showed the words ‘to’ and ‘of’, in partic-

ular, suggested respective ‘actions’ and ‘things’. Those distinctions, in turn, suggest addressing the roles

that words play in nodes. In a similar way to reflecting antonyms and hypernyms as separate groups,

tuples based on intensional knowledge allow researchers to contrast, say, ‘abuse’ as an ‘action’ as op-

posed to as a ‘thing’. Having determined what roles words play, subjects and objects of verbs arise from

co-occurring words. That would greatly improve the psychological knowledge structures about forms of

mental-health risk said to be at the heart of GRiST (Buckingham et al., 2004; Buckingham, Adams, &

Mace, 2007).
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CA combined with stemming and WordNet, then, supplements any hierarchical associations inherent

in GRiST mind maps, which are enriched with cross-links that Novak and Cañas (2006) thought absent

from concept maps, and by implication, from mind maps. Further, the normalisation process that

yielded intensional knowledge rectifies mind mapping’s lack of formalism that Cañas and Carvalho (2004)

criticised. All such extra knowledge will shortly be shown by means of extensions to FreeMind; for now,

attention turns to refining the structure of GRiST mind maps, after a summary of this chapter.

7.10 Chapter Summary

The introduction to this chapter stressed that responses from WordNet are sometime ambiguous, or even

non-existent. A further lack of stop words in WordNet hampers any approach based on such words.

Experiments were reported that assessed the application of CA to resolving ambiguity. Specifically, that

involved identifying reliable patterns of word usage around prepositions, which subsequently acted as

templates for resolving ambiguous cases. To that end, an adjunct to WordNet allowed machines to

research stop words as if they existed in WordNet.

Following that introduction, an experiment was reported that identified triples of the form {word1,

preposition, word2} in nodes from GRiST mind maps. The resulting list was subsequently split into un-

ambiguous and ambiguous triples. Unambiguous triples comprised words having either a single WordNet

entry, or a clearly dominant POS. Transforming such triples yielded trigrams of the form {meta-type1,

preposition, meta-type2}, which were subjected to CA. The matrix for that analysis, though, was sup-

plemented by deriving meta-types from POS, to allow, for example, words that represented ‘things’ to

participate as nouns.

The first phase of CA compared results for considering both 2 and 3 senses, to assess any differences in

changing the criterion for accepting predominant POS; in fact, little difference was found. Following that,

an experiment in identifying outliers clusters was reported, which further helped to determine optimum

numbers of factors and clusters for a second, finer analysis. In addition, X and Y axes on the graph

from that first pass reflected continuums of varying degrees of ‘things’, ‘actions’ and ‘modifiers’. In that

way, axes indicated POS for words missing from WordNet. A further aspect of that first run of CA

concerned outliers; those identified in any particular run were removed, prior to subsequent runs of CA

that realigned points on resulting graphs. In that way, finer distinctions arose that were earlier obscured

by such strong forces.

Having determined patterns of proposition usage, ambiguous trigrams were compared against clusters

that arose from successive passes of CA. Should a generated trigram of the form {meta-type1, preposition,
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meta-type2} match the label on a point from the CA graph, the corresponding meta-type was taken.

Although that proved useful for words having ambiguous entries, certain problems associated with that

approach, along with its advantages, were covered in a more general discussion. This summary now closes

the chapter, in order to further consider CA as a means of refining the structure of GRiST mind maps.
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Refining the Structure of GRiST Mind Maps
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8.1. INTRODUCTION

8.1 Introduction

Knowledge at the heart of GRiST arose from interviews with a multidisciplinary panel of mental-health

experts. Forty-six such interviews were recorded as mind maps, which were subsequently integrated into

a single, combined mind map; the resulting node hierarchy comprehensively represented knowledge about

risk-assessment. By means the GRiST web-site, experts gave feedback for refining that combined mind

map, to reveal associations between specific risk factors and cues exhibited by service-users. Refining the

combined mind map in that way, though, demanded great effort and forbearance by GRiST researchers:

in particular, getting experts to fulfil their tasks was a struggle. Even so, agreement of over 90% arose

between two independent reviewers who checked correspondence between individual and combined mind

maps; that considerable manual effort was further ratified by a focus group (Buckingham & Adams, 2006;

Buckingham, Ahmed, & Adams, 2007).

Refining the initial tree of GRiST knowledge into a final hierarchy involved savage pruning, inspired by

the rules of normalisation for relational databases. Although that process was automated, human experts

monitored the suitability of any cuts. In the resulting combined mind map, higher-level nodes reflected

a greater number of concurring experts than did less vital concepts, further from the root node. That

process of refinement, though, was hindered because the template for individual mind maps evolved over

time (Buckingham & Adams, 2006; Buckingham, Ahmed, & Adams, 2007).

A combined mind map, then, reflected consensus between forty-six mental health experts. In that

respect, GRiST researchers faced the challenge of reconciling various representations of key ideas from

individual mind maps. Take, for example, differences in hierarchical structures that concerned forms of

self harm. Figure 8.1 shows examples from mind maps created by experts designated numbers 2 and 3,

with relevant nodes shaded grey:

Figure 8.1: Structural differences in representing self harm and suicide, from GRiST experts 2 and 3.

Figure 8.1 shows that expert number 2 separated the concepts of self harm and suicide; in contrast,

expert number 3 combined both of those concepts into the single node [self harm/suicide], while

omitting entirely the node [self neglect]. Both of those specialists, though, included the nodes [RTO]

and [Generic], respectively for Risk To Others and for less specific risk factors. Yet another specialist,

number 12, repeated nodes for the combined concept [self harm/suicide] at two levels; Figure 8.2
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shows that node was represented as a child of itself:

Figure 8.2: Repeated nodes for self harm and suicide, from GRiST expert 12.

Figure 8.2 shows that expert 12 concurred with expert number 2, in that both used the node [self

neglect]. Variation arose, though, in that as well as the combined concept [self harm/suicide],

expert 12 further used separated versions in the nodes [self harm] and [suicide]. Indeed, that node

hierarchy might be seen as appropriate in terms of mind mapping, in that a higher-level concept branches

into two more specific concepts. There was, though, little to be gained: that arrangement encapsulated

no additional knowledge, but merely repeated an existing association.

A final example of divergence between experts in describing concepts appears in Figure 8.2. Specifi-

cally, the concepts ‘drugs’ and ‘alcohol’ were represented in different node structures, though all in relation

to substance abuse and suicide. Note that the identities of experts are shown in brackets, following the

words in any node1:

Figure 8.3: Structural differences in representing ‘alcohol’, from various GRiST mind maps.

The three examples from Figure 8.2, then, exemplify variations between individual GRiST mind maps.

Whereas specialist number 68 combined three concepts of ‘drugs’, ‘alcohol’ and ‘abuse’ in a single node,

expert 12 combined just two of those concepts, ‘alcohol’ and ‘abuse’. Expert 62, while omitting ‘drugs’

in the same way as did expert 12, represented ‘abuse’ as branching from the more general concept of

‘alcohol’.

Originally, such differences were resolved by pruning away less commonly used nodes; although a

software algorithm suggested nodes for removal, a panel of experts ratified any such cuts (Buckingham,

Ahmed, & Adams, 2007). In contrast, this thesis allows machines to account, unaided, for such variations

1Originally, those IDs were removed during refinement, and stored separately (Buckingham, Ahmed, & Adams, 2007).
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in expression without discarding knowledge. Dealing with such structural differences will, in fact, be a

two-step process which starts by gathering together nodes that express related concepts. Subsequently,

appropriate overall hierarchies must be determined. To that end, CA’s facility for clustering will be

applied slightly differently to the way that helped in resolving ambiguity.

From the examples in Figures 8.1 and 8.2, humans might easily spot related concepts of ‘alcohol’, ‘drugs’

and ‘substances’; that those words bear no resemblance hides such relationships from machines. Further,

that GRiST experts associated those concepts is no guarantee that they are, in fact, related; that arises

from the lack of control imposed by mind mapping in general. Now, although stems from Chapter 4 will

conflate words that express specific forms of some overall concept, such as ‘abus’ for ‘abuse’ and ‘abusing’,

related words from the given examples bear no resemblance. For that reason, WordNet will be needed to

reveal relationships between morphologically different words that express similar meanings. Accordingly,

the proposed roles for WordNet and CA in refining mind map structures are addressed next.
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8.2 Tools for Refining Structure: CA and WordNet

Chapter 4 showed that CA produces clusters of points on graphs; mappings between row and column

clusters revealed patterns in the type of words surrounding specific prepositions. In a similar way, CA

clusters will reveal candidates for re-structuring. In fact, it is not single nodes which participate in that

process. Rather, it is entire paths, from the root node to any node of interest. That analysis will use

an aspect of CA that has not yet been covered, namely, Hierarchical Clustering (HC). As Chapter 4

showed, the required number of clusters was coded in any matrix header; requesting a higher, optimum

number of clusters further split those emerging from a preliminary run. In fact, CA has the necessary

information to hand, regardless of the number of clusters actually requested. That is because CA clusters

are hierarchical in nature (Murtagh, 2005). Any particular cluster might comprise several smaller ones,

as shown next.

8.2.1 The Hierarchical Nature of CA Clusters

A previous example of CA will serve to describe HC, namely, the study by Nishina (2007) that applied

CA to identifying genres of text that employed similar words; various genres constituted set I, while

words of interest comprised set J. Figure 8.4 reproduces that graph, on which ellipses highlighted clusters

of categories in opposing quadrants. For example, widely separated clusters for Learned and Scientific

Writing in category J and Press Reportage in category A showed those genres to use very different styles.

A further well-defined group for fiction, comprising categories K, L, N and P, revealed relatively similar

language usage. Genres congregated around the graph’s origin, though, had less distinct styles:

Figure 8.4: Plot of text categories based on word frequencies (Nishina, 2007).
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In fact, clusters from Figure 8.4 were further analysed by HC, which is commonly shown as a dendro-

gram that depicts larger clusters made up from numbers of smaller ones (Murtagh, 2005). In that way,

Figure 8.5 depicts a hierarchical breakdown of genres as a dendrogram, with three main clusters dividing

repeatedly into more specific text categories (Nishina, 2007):

Figure 8.5: Hierarchical clusters within 15 categories of text, adapted from Nishina (2007).

Although HC was used in that study of genres, scant interpretation of the resulting dendrogram was

given; a more detailed discussion is offered here, to make up for that omission. The first main cluster

from Figure 8.5, then, comprised genres M, R, L, N, K and P. In fact, the last four of those genres, L,

N, K and P, were highlighted in the graph from Figure 8.4 as a discrete cluster of fiction genres. Nearby

points for categories M and R, though, appeared in the same quadrant as did that former group of four,

which justifies clustering all six points together. Indeed, points M and R respectively covered Science

Fiction and Humour, which might well belong with other genres of fiction.

Points for categories M and R, on the other hand, were closer together near the origin, somewhat removed

from the remaining four points. Although all six points appeared in the same quadrant of Figure 8.4,

points M and R might be seen as a separate cluster; that well demonstrates the need for human judgement

in interpreting CA graphs. Even so, such decisions are open to doubt. It is important to note, though, that

the number of clusters must be specified in advance (Murtagh, 2005). In fact, a mere three clusters was

too coarse a measure; had more been requested, points M and R might well have constituted a top-level

cluster by themselves. Thankfully, HC allows such conflicting interpretations to be held simultaneously,

regardless of any specified number of clusters.

A better use of HC was evident in a study of texts taken from Wikipedia; that work aimed to create

an ontology, similar to the one presented in Chapter 2 that was created by Sure et al. (2002); remember

that such ontologies express subsumption relationships between atomic concepts. To that end, 405 nouns

from 13 Wikipedia texts were treated as successive triples. Notably, stemming was not applied, and a

stop list avoided so-called irrelevant words. Rather than processing all permutations of nouns, though,

triples reflected a time-series over which changes in meaning were sought. That was done by considering
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triangles within the CA space described by points from any triple; in particular, isosceles triangles revealed

subsumption relationships in favour of dominant points within triples (Murtagh et al., 2007).

Rather than that process itself, though, it is the application of HC that is important here. In fact,

a concept hierarchy arose directly from HC; branches in the resulting dendrogram indicated a complete

concept hierarchy for the associated ontology. In that way, CA led to an ontology based on subsumption

relationships between terms (Murtagh et al., 2007). That suggests using CA to cluster together similar

paths from GRiST mind maps, and further generating a combined mind map by means of HC.

Generating Mind Maps from Hierarchical Clusters

Before addressing entire paths of nodes, the utility of hierarchical clusters will be demonstrated by means

of CA between prepositions and meta-types, from Chapter 7; the first experiment reported there arose

from CA on a matrix of 10 prepositions and 9 meta-type pairs. Tables retained from CA gave the HC

matrix shown as Table 8.1. The first column clrow shows the order of emergence of row clusters for set

I, followed by a column for corresponding prepositions. The right-hand side of Table 8.1 shows internal

labels generated by CA. Even from these raw data, a hierarchy of clusters is discernible; the first HC

column holds the value 19 for all rows, whereas the second column has two unique values: 9 in the first

row, and 18 in remaining rows. Subsequent columns show successively larger numbers of subdivisions:

clrow Prep HC Labels

0 to 19 09 09 09 09 09 09 09 09 09

1 of 19 18 07 07 07 07 07 07 07 07

2 by 19 18 17 14 14 14 03 03 03 03

3 on 19 18 17 14 14 14 08 08 08 08

4 in 19 18 17 16 13 13 13 05 05 05

5 with 19 18 17 16 13 13 13 10 10 10

6 for 19 18 17 16 15 04 04 04 04 04

7 about 19 18 17 16 15 12 12 12 01 01

8 as 19 18 17 16 15 12 12 12 11 02

9 like 19 18 17 16 15 12 12 12 11 06

Table 8.1: HC matrix from pass 1.
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The cluster hierarchy from Table 8.1 becomes more evident on removing duplicated cells, as in Table 8.2,

in which rows are shaded to emphasise cells that are common to consecutive entries:

clrow Prep HC

0 to 19 09

1 of 19 18 07

2 by 19 18 17 14 03

3 on 19 18 17 14 08

4 in 19 18 17 16 13 05

5 with 19 18 17 16 13 10

6 for 19 18 17 16 15 04

7 about 19 18 17 16 15 12 01

8 as 19 18 17 16 15 12 11 02

9 like 19 18 17 16 15 12 11 06

Table 8.2: Refined HC matrix from pass 1.

An immediately apparent trend from Table 8.2 is that paths grow longer for successive groups of preposi-

tions. Entries for ‘to’ and for ‘of’, though, are distinct from the remainder in that they comprise specific

rows in the table; those rows correspond to the outlier point ‘to’, and to the next most extreme point,

‘of’, that was the outlier from the very next pass of CA. In contrast, subsequent rows for ‘by’ and ‘on’ had

identical values under the first four columns, before diverging in the last cells for those rows; entries for

‘in’ and ‘with’ showed a similar trend. From the row containing ‘for’, values of 15 appear in the column

where, earlier, ‘by’ diverged from ‘on’; that shared value indicated a cluster comprised of ‘for’, ‘about’,

‘as’, and ‘like’. In the subsequent column, a common cell holding 12 depicted a smaller cluster of the last

three of those prepositions, which further branched into a yet smaller cluster for ‘as’ and ‘like’.

In fact, such embedded clusters are evident from the second HC column onwards; the first column, though,

does not differentiate clusters. Repeated values of 18 in the subsequent column make ‘to’ distinct from

remaining prepositions, which form a separate cluster. Should just two clusters be requested, then, that

latter cluster would contain all but ‘to’. Requesting larger numbers of clusters would force divisions at

successively smaller clusters indicated by HC. In that sense, the actual number demanded is irrelevant,

as clusters may be addressed at whatever granularity by means of the HC matrix. All the same, deriving

optimum numbers of clusters remains useful for indicating the best level of detail. Indeed, taken too far,

HC would yield single-row clusters that would not be very helpful.

Such sub-divisions within CA clusters, then, are commonly represented as dendrograms. Note, though,

that dendrograms comprise nodes separated by branching lines, an so qualify as semantic networks just

as do mind maps. That relationship suggests that nodes from dendrograms might simply be re-coded as

mind map nodes, in a hierarchy determined by HC. Transforming results for prepositions and meta-type

pairs in that way gave the two mind maps in Figure 8.6:
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Figure 8.6: Cluster hierarchies of prepositions and meta-type pairs from pass 1 of CA.
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Clusters of prepositions from the left-hand side of Figure 8.6 show ‘to’ and ‘of’ as singleton clusters, while

remaining words form a large cluster that gradually reduces to several smaller ones. Note that ‘in’ and

‘with’ form a distinct sub-group, just as the HC matrix dictated; further, ‘as’ and ‘like’ correspond more

closely with one another than they do with ‘about’, and even less so with ‘for’.

The right-hand side of Figure 8.6 shows three main clusters of meta-type pairs that correspond to prepo-

sition clusters of to the left of them. Meta-type pairs for ‘to’ show the correspondence with ‘actions’

noted in Chapter 7. Further, the point for ‘tt’ is somewhat separated from the remaining meta-type

pairs for the preposition ‘of’, which corresponded so strongly with ‘things’. In fact, the three clusters

in each of the mind maps from Figure 8.6 bear little sub-division, due to the small numbers of points

involved. Paths to related concepts in GRiST mind maps, on the other hand, are more plentiful; such

larger clusters might be amenable to further analysis by HC.

In addition to HC, further information from retained CA results will reflect the relative importance of

concepts in any resulting knowledge structures. The first such information concerns correlations between

factors and particular points on graphs; further, CA reports the contribution that points make to the

overall inertia within any CA space (Murtagh, 2005). Together, correlations and contributions indicate

the relative importance of nodes within any cluster; that should not, though, be confused with the MG

measure that Buckingham et al. (2004) used to reflect the relative importance of particular cues to specific

risk factors. Rather, high correlations indicate rows from any CA matrix that particularly correspond to

given factors; even highly correlated points, though, might contribute little inertia, due to a scarcity of

data in any underlying matrix.

Hierarchical clusters from CA then, will be transformed into novel mind maps. The matrix for that

analysis will comprise normalised paths from Chapter 2; reducing duplicated nodes to a sole representative

means processing just unique paths from the collections of GRiST mind maps. Paths to related ideas,

though, might differ; accordingly, the aim here is to create a single, idealised version of all such paths.

Further, spelling corrections and stems, as presented in Chapters 5 and 6 respectively, will contribute to

identifying related words. The problem remains, though, of identifying distinct word forms that yet have

related meanings. The tool for addressing that problem is WordNet, as will be shown next.

8.2.2 Drawing Related Meanings from WordNet

The overview of WordNet in Chapter 5 described separate semantic networks comprising the four main

POS: nouns, verbs, adjectives, and adverbs. In particular, WordNet’s network of nouns supports re-

lationships such as hypernymy that embodies subsumption relationships. Pointers between synsets in

that network lead to more or less specific nouns, depending on the direction of any search. In addition,

antonyms express opposing concepts that will, in turn, place certain mind map nodes in opposition.
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Hypernyms, though, arise predominantly from nouns; verbs, on the other hand, form verb-groups that

reflect related actions, while glosses provide short sentences as examples of word usage. All of those

facilities will help to identify words from GRiST mind maps that have related meanings.

A further WordNet facility reflects the degree to which any two words are related, in the form of a

semantic distance. A problem arises, though, that is analogous with the Edit Distance, L, in that large

distances mean relatively low similarity. Indeed, all nouns would ultimately be sub-concepts of ‘Thing’ at

the top of the hierarchy. Relationships, then, must be kept within sensible bounds, which in turn means

imposing an upper limit on such distances. Similar to the way that excessive L avoided inappropriate

spelling corrections in Chapter 3, distantly related words will be not be used. Even in cases of acceptable

semantic distances, words from mind map nodes might have so many different uses as to be too general.

In fact, WordNet has facilities that will help to overcome those problems. The first of those is the distance

reported by WordNet, in terms of the number of levels between words in the network’s hierarchy. Further,

a measure called familiarity reflects the various senses that words might have; more frequently occurring

words tend to have higher numbers of distinct meanings (Beckwith et al., 1993). In that way, relationships

offered by WordNet will be declined should words in any comparison be over-familiar.

8.2.3 Combining Hierarchical Clustering and WordNet

The overview of CA in Chapter 6 revealed that input to any analysis was a matrix of observations on

certain categories; in this chapter, categories comprise the stems arising from Chapter 4. Observations,

then, will be made of nodes that contain specific stems. In that way, any particular matrix row reflects

whatever stems were found in a given representative node. Subsequent CA on that matrix will reveal

clusters of nodes that contain related word forms such as ‘abuse’ and ‘abusive’.

Using just morphological similarities, though, will miss connections between dissimilar words having

related meanings. Accordingly, hypernyms, antonyms, verb groups and glosses from WordNet will reveal

such semantic links. Any word found by means of stemming will further be researched in WordNet to

yield a list of sufficiently related words. Nodes containing any word from that list will be counted as

occurrences of the stemmed word that drove research in WordNet. In that way, words of similar form

and of related meanings will form matrix rows. Particular cells from any row indicate what stems, and

further, what related words, were found in a given node. Indeed, more than one column might be set for

that row, which will draw together nodes that express any number of concepts.

A further complication is that nodes which express a given concept might occur at any level. Because

the analysis that follows aims to find related paths, rather than discrete nodes, the level at which any

concept arises must be recorded. CA, though, allows just two measures; information about levels will,
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then, be encoded in row labels. In that way, row labels will depict any given path’s order of appearance

in the collection of GRiST mind maps, and in addition, the level at which any node of interest occurred

within that path. Subsequent CA of such matrices will reveal clusters of paths having nodes that express

related concepts, as will be shown by experiments in refining mind map structure.

8.3 Experiments in Refining Mind Map Structure

Experiments presented here will, in fact, be restricted to the upper levels of GRiST mind maps; that is

due to the tendency noted by Buckingham and Adams (2006) for key ideas to be formulated close to the

root node of any given mind map. Specifically, nodes will come from immediately under any root node,

and a further two levels down any hierarchy; those levels will be termed 0 - 2 inclusive. A subsequent

CA will address nodes from between levels 4 and 5 inclusively.

Further, two stages are reported here, firstly from using just stems to identify morphologically related

words. That analysis will use a simple contingency table, where cells record ‘0’ by default, and ‘1’ should

a given stem be detected. A more discerning approach, though, will adjust cells according to whatever

stems occur in nodes from any particular path. That will give a matrix of decimal values, rather than of

integers, which will reveal more detailed correspondences between paths from GRiST mind maps.

In addition to morphologically related nodes from mind map paths, a further CA will be supplemented

by semantic relationships suggested by WordNet. That will yield clusters of nodes related both by words

conflated by stems, and by words that have similar meanings, despite taking differing forms. Regardless

of the manner in which related words are detected, HC nodes will be transformed into mind maps that

reflect the hierarchy derived from CA. Further, the important concept of abuse, conflated by the stem

‘abus’, was chosen to demonstrate the current approach. All of the following experiments involved a

further bespoke Java class called MindmapPathsAnalysis that gathered nodes for analysis, researched

WordNet, performed CA, and generated novel mind maps.

8.3.1 Deriving Clusters of Nodes Related by Stems

The following experiments, then, use stems to identify morphologically related words from GRiST mind

map nodes. The first of those experiments retrieved nodes from just levels 0 - 2 in paths to the stem

‘abus’, using a simple contingency table of cells containing a default value of 0, or 1 to record the presence

of a particular stem in any node. After that experiment comes one which improved on such basic matrices,

by means of weighted observations recorded as decimal numbers. That approach was applied to nodes

from levels 0 - 2 in any resulting paths, and further at levels 3 and 4. The first stage, then, was to gather

nodes for analysis by CA, as described next.
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Method I for retrieving nodes from levels 0 - 2 in paths to ‘abus’

The first step identified nodes containing the stem ‘abus’; that was done in the same way as for the CA of

prepositions in Chapter 4, which applied the Java method split() to node texts. Corresponding paths

to such nodes were extracted by traversing successive parent nodes until reaching the corresponding mind

map’s root node. In fact, Chapter 9 will show the exact mechanism; for now, suffice to say that a list of

paths to nodes expressing some form of abuse was compiled across the 46 GRiST mind maps. Spelling

errors in any such nodes were corrected on retrieval, by means of results reported in Chapter 3.

Further, tuples of the form nodeID → nodeID from Chapter 4 dictated sole representatives for any

duplicated nodes. Normalising paths in that way sometimes yielded entire paths that were identical but

for differing instances of particular nodes. Such duplicates were removed by compiling lists of Comma

Separated Values (CSV) from any paths retrieved; in that way, each path was transformed into a string

of node keys separated by commas, with no intervening white space. Loading such strings into a Java

TreeSet object, which stored just unique entries, easily eliminated duplicated paths.

Although paths in this experiment were to nodes that expressed some form of abuse, words conflated

by further stems were identified in nodes from any paths retrieved. Indeed, just those stems comprised

columns for a CA matrix: the stem ‘abus’ was not itself used, because all nodes at the end of such paths

contained it. With those stems as columns, then, matrix rows recorded instances of particular stems in

specific nodes. Initially, all cells were set to a default of ‘0‘. For any cell Ci,j at the intersection of row i

and column j, the default of ‘0’ was changed to ‘1’, denoting a specific stem in a particular node.

Two measures, then, made up the matrix: node IDs and stems. A third factor was introduced by means

of composite row labels, which included the position of any node from a particular path. Accordingly,

labels of the form P -i-j broke down into P for ‘path’, i for the position of that path in the list of unique

paths retrieved from GRiST mind maps, and j for the node index within the containing path1. For

example, the label P-5-2 was generated for a node from path number 5, at level 2. That can be seen in

Figure 8.7, which presents detail for the first few rows and columns of the resulting matrix; pertinent

cells for row P-5-2 appear in bold type:

Figure 8.7: Detail from an integer matrix for CA of paths to nodes containing ‘abus’.

1The CA implementation from Murtagh (2005) required the first character of any label to be alphabetic, hence the ‘P’.
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The header of the matrix from Figure 8.7 specified 22 rows of paths to nodes containing ‘abus’, against

10 columns of stems from nodes in those paths. Further, three factors and three row and column clusters

were specified; those optimum numbers arose from a preliminary CA in exactly the same way as for the

CA of prepositions and meta-type pairs in Chapter 7. Subsequent column headings show some of the 10

stems other than ‘abus’ found in nodes from those 22 paths. Highlighted values show that stems ‘alcohol’,

‘drug’ and ‘history’ arose in the node at index 2 of path number 5; although cells in the row P − 1 − 1

are all ‘0’, that is due to omitting columns for clarity; any row would have at least one cell set to ‘1’.

The resulting cluster hierarchy from that optimal CA was retained after completion, and any row labels

replaced by text from corresponding nodes. To that end, labels were split into constituent parts by using

the Java method split(), with ‘-’ as a delimiter, giving the path number i and level j of any node in the

original list of unique paths. Those original node texts were subsequently re-coded automatically into

the format used by FreeMind, which will be described fully in Chapter 9.

Results Ia for retrieving nodes from levels 0 - 2 in paths to ‘abus’

These results show the benefit of representative nodes in normalising mind map structures. In fact, the

node [self harm/suicide] appeared near the root of 22 GRiST mind maps. Further, 12 instances

of the atomic node [suicide] arose, while [substance misuse] occurred 8 times. The process of

normalisation introduced in Chapter 2, then, was furthered by substituting such duplicated IDs with

that of the first occurrence. For example, the first of twenty two [self harm/suicide] nodes, in paths

to nodes containing ‘abus’, was node 11156, which represented the remaining instances. In addition,

nodes such as [suicide/self harm] having the same words in different order were deemed equivalent.

Because the current approach works between specific levels within node hierarchies, duplicates arose

on discarding lower levels. Two full paths might be unique, but the first three levels, say, might be the

same. That was the case for the earlier example of alcohol abuse, which is reproduced here as Figure 8.8:

Figure 8.8: Structural differences in representing ‘alcohol’, from various GRiST mind maps.
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Nodes for [suicide] from Figure 8.8 actually branched from [self harm/suicide]; three such paths

were identical up to and including the node [substance misuse]. That shared path is better shown in

Table 8.3, which gives the levels in those hierarchies and the keys of any representative nodes:

0 1 2 3 4

11156 11176 10355 11293 -

11156 11176 10355 12002 3123

11156 11176 10355 1366 -

Table 8.3: Duplicate path keys between levels 0 and 2, for paths to nodes containing ‘abus’.

Paths from Table 8.3, then, diverged at level 3. Because just the first three levels participated in CA, a

sole representative of that sub-path sufficed.

Discussion Ia of retrieving nodes from levels 0 - 2 in paths to ‘abus’

Although reducing the number of paths participating in CA will lead to quicker processing, that is not

the main point of removing duplicated paths. Rather, it is to reflect what Date (1975) called putting one

thing in one place. Any information base benefits from such normalisation, in that it makes information

easier to understand, both for humans, and more importantly, for machines. By identifying representative

nodes and removing any duplicates that arise, an important first step has been made towards a combined

mind map for the concept of abuse. Results from the next step, of applying CA to such paths, now follow.

Results Ib for CA on nodes from levels 0 - 2 in paths to ‘abus’

A preliminary CA on a full version of the matrix from Figure 8.7 showed that at least three factors should

be requested. That was due to the almost identical amounts of variation explained by those factors, as

shown by the rates of inertia in Figure 8.9:

Figure 8.9: Rates of inertia from CA of the integer matrix from Figure 8.7.

Further to the factors identified in Figure 8.9, the algorithm for detecting major differences in F1 between

successive members of set I gave just one extra cluster over the default of two, making three in all. Details

of a subsequent optimised CA produced results such as those in table 8.4. The first column of that table

shows row labels from the original matrix; three sets of values then follow for each factor:

In fact, several results bore identical factor values, so just representative rows were shown. The three

sets of results for each factor comprise Fn, the factor values themselves, the correlation CO2 with any
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Example
Label

Factor 1 Factor 2 Factor 3

F1 CO2 CTR F2 CO2 CTR F3 CO2 CTR

P-1-1 0 0 0 0 0 0 0 0 0

P-2-2 0 0 0 0 0 0 1969 574 125

P-0-0 0 0 0 768 87 19 0 0 0

P-5-1 0 0 0 2892 896 270 0 0 0

P-0-2 3937 1069 500 0 0 0 0 0 0

Table 8.4: Selected row results from an integer matrix for paths to ‘abus’.

factor, and the contribution of any result to the overall inertia explained by that factor, CTR.

Table 8.4 shows just one major subdivision for factor F1, where it jumps from 0 to 3937; the optimum

number of clusters, then, was cldefault + clextra = 2 + 1 = 3. Indeed, such large differences appeared

throughout those results; values of F1, F2 and F3 were either zero or positive four-digit integers. Further,

representative results from Table 8.4 were repeated several times, with just row labels changing. Values

for correlations from the CO2 columns were similarly zero or large positive integers; the exception was

a relatively low CO2 of 87 for path ‘P-0-0’. Although values for CTR were smaller than corresponding

CO2s, a similar pattern emerged: CTR was either zero or a positive value of the same magnitude as

corresponding CO2s. Further note that the first entry from Table 8.4 comprised solely zero values.
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The three clusters suggested by F1 from Table 8.4 appear in Table 8.5. The first column shows the

order in which clusters were produced by CA. Path numbers and levels in those paths occupy the next two

columns, P and N . Following those come nodes that contained stems from the matrix column headings,

which appear in bold type. The last column, headed Main Risk, shows the node directly under any mind

map root that led to a particular path, should the node in question not itself be one of those main risks:

Row clusters
Main Risk

n P N Text

0
0 2 client presentation self neglect
8 2 client episodes rto

1

5 2 past history of drug/alcohol abuse rto
25 2 history self harm/suicide
16 2 drugs self harm/suicide
15 2 alcohol self harm/suicide
2 2 life history rto
8 1 history rto

2

20 2 substance misuse self harm/suicide
5 1 substance misuse rto
6 2 strong concordance with substance abuse rto
1 1 personal details rto
19 2 personal details self harm/suicide
28 2 personality disorder self harm/suicide
10 1 mental/cog/personality disorders rto
23 2 mental/cog/personality disorders self harm/suicide
19 1 suicide self harm/suicide
29 0 suicide -
14 0 self harm/suicide -
0 0 self neglect -
24 1 self harm self harm/suicide
30 0 self harm -

Table 8.5: Clusters from an integer matrix for paths to ‘abus’.

Note that certain nodes recur in Table 8.5 due to appearing at various levels; the node [history], for

example, arose both at level 1 and at level 2. The main risk categories for those nodes, though, differed.

The first cluster from Table 8.5 arose from the sole stem ‘client’, which was a cue for two risk factors: RTO

and self-neglect. The next cluster, number 1, reflected the stems ‘history’, ‘drug’ and ‘alcohol’, which

corresponded to RTO and the combined concepts of self-harm and suicide. Indeed, the third cluster had

those same risk categories, and accounted for several corresponding stems: ‘subst’, ‘person’, ‘disorder’,

‘suicid’, ‘self’ and ‘harm’.

Discussion Ib of CA on nodes from levels 0 - 2 in paths to ‘abus’

The first cluster from table 8.5 comprised two nodes related by the stem ‘client’, at the same level. That

discovery suggests a normalised hierarchy based on a new node, [client], which would branch into child

nodes [episodes] and [presentation]. Corresponding risk categories, though, are not included in any

such idealised path; that would violate normal forms that serve to eradicate duplication. Accordingly, a
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normalised hierarchy centred on ‘client’ should appear just once, rather than being repeated under both

[self harm/suicide] and [rto]. A later experiment, though, will demonstrate that process; it is the

clusters arising from an integer matrix that are of concern here.

The second cluster from table 8.5, then, was less well defined than was the first one; all the same, the

longer node [past history of drug/alcohol abuse] contained several stems, around which congregated

nodes expressing just one of those stems. In terms of a combined mind map, those concepts are well

enough related to justify treating them together. That cannot be said of the last cluster, though; nodes

that contained the stem ‘subst’ for ‘substance’ appear in the same cluster as nodes conflated by ‘self’,

‘harm’, or ‘suicid’. Further, the stems ‘personal’ and ‘disorder’ constitute a third possible group within

that cluster. Clearly, integer matrices reflect insufficient variation for CA to resolve the required clusters.

Indeed, factor values from row results in table 8.4 are extremely polarised, in that they are either large

positive values, or zero. The lack of negative values means that just two of the possible four quadrants of

any graph would be occupied. A further problem is that the first entry from Table 8.4 lacked correlation

with any of the three factors requested. In fact, considering factors F2 and F3 might help to determine

optimum numbers of clusters; F2 showed three sub-divisions, while F3 reflected two. That approach,

though, would ignore the underlying problem of a general lack of variation. Although HC might further

allow finer distinctions, it would be better if the main analysis gave an optimal starting point.

Improving on Simple Contingency Matrices

In order to introduce additional variation into CA matrices, two adjustments were made to formulating

cells. The first of those adjustments involved calculating observations to six decimal places, instead of

using integers1. The second adjustment was to apply weightings in proportion to the column under which

any stem-containing node was recorded. Such weightings will yield gradually decreasing column values,

from left to right in the matrix. Although that might be seen as diminishing the importance of successive

stems, the required outcome of generating more discerning clusters was achieved, as reported next.

Method III for decimal matrices

In fact, the Java implementation of CA by Murtagh (2005) looped endlessly should matrices comprise

predominantly zeroes in a decimal form. For that reason, a default observation of 0.000001 was used,

rather than zero to six places. Cells set to 1.000000, indicating that nodes contained particular stems,

were adjusted in the following way. First of all, an interval I was calculated as 1/n, where n was the

number of columns in any CA matrix. Using zero-based indices, an adjustment for the cell at index j in

any particular row was calculated as j ∗ I, which was then subtracted from the raw observation.

1Initial experiments with four decimal places proved little better than with just the integers 0 and 1.
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For cell Ci,j then, in row i under column j, an observation was calculated by the formula:

Ci,j = 1− (j ∗ I)

= 1− (j ∗ (1/n)).

A zero-based index means that j∗(1/n) will always be zero for the first column, where j = 0; observations

under that column, then, were unaffected. In that way, the integer matrix for paths involving abuse from

Figure 8.7 was recalculated as the decimal matrix in Figure 8.10. The ten columns of that matrix yielded

an interval of 1/10 = 0.1. Observations highlighted by a border demonstrate the resulting gradation of

values; note, though, that columns were removed for reasons of space, meaning that particular adjustments

might not reflect any exact position in the portion of the matrix shown here:

Figure 8.10: Decimal CA matrix of nodes between levels 0 and 2, in paths to nodes containing ‘abus’.

Having performed CA on the full version of the matrix from Figure 8.10, hierarchical row clusters were

derived by the process described in Section ??. Cluster mappings drew together corresponding row and

column clusters, to show what stems corresponded to which nodes. Further, HC clusters were transformed

into mind map format, and viewed in FreeMind.

Results IIIa for a decimal matrix from levels 0 - 2 in paths to ‘abus’

Selected results from CA on a full version of the matrix from Figure 8.10 are given in table 8.6. Labels

printed in bold type had associated F1 values that contributed to an optimum number of clusters:

Example
Label

n
F1 F2 F3

F1 CO2 CTR F2 CO2 CTR F3 CO2 CTR

P-0-2 2 -867 99 44 -2541 849 375 612 49 22

P-25-2 6 -867 111 24 847 106 23 612 56 12

P-19-1 6 -110 0 0 0 0 0 -1885 70 23

P-20-2 3 -72 0 0 0 0 0 -415 7 2

P-1-1 5 1511 338 59 0 0 0 469 33 6

Table 8.6: Selected row results from a weighted decimal matrix for ‘abus’.
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Each of the last three results in table 8.6 revealed a sub-division of F1, which caused clextra to be

incremented. Accordingly, the optimum number of clusters, expressed as cldefault+clextra, was 2+3 = 5.

Those clusters are apparent from Figure 8.11, although two appear very close together, even though just

a sole label from each column cluster is displayed; row labels are omitted completely for further clarity:

Figure 8.11: CA graph resulting from the matrix in Figure 8.10.

Points for row and column results in Figure 8.11 were so similar that they often overlapped; indeed, the

sole visible column label is ‘disorder’. Remaining column labels are hidden by the corresponding row

result points1. The five clusters themselves were well differentiated, and showed variation along both

the X and Y axes, for factors F1 and F2 respectively. Clusters containing the labels ‘subst’ and ‘suicid’

appeared as a more central cluster, in sharp relief to remaining points. For the stem ‘disorder’, that

was reflected in a wide separation on just the X-axis, with Y coordinates being almost identical. Points

for the stems ‘client’ and ‘history’, though, lay at similarly large distances along the negative X-axis,

although separated at the far extremes of the Y-axis.

1In fact, the labels ‘subst’ and ‘suicid’ had to be separated slightly in KolorPaint, an Ubuntu Linux image editor.
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Mappings between row and column clusters are shown in table 8.7, where node IDs have been replaced by

the corresponding text. In this case, row labels are omitted, as they merely point to rows in the original

array of path keys; the level i of nodes in any path, though, is retained. Further, table 8.7 has two extra

columns for the associated CA clusters of stems from set J:

Row Clusters Col Clusters
Main Risk

n i Text n Text

0
2 client presentation

0 client
self neglect

2 client episodes rto

1
2 substance misuse

1 subst
self harm/suicide

1 substance misuse rto

2 strong concordance with substance abuse rto

2

1 personal details

2
disorder
per-
son

rto

2 personal details self harm/suicide

2 personality disorder self harm/suicide

1 mental/cog/personality disorders rto

2 mental/cog/personality disorders self harm/suicide

3

2 history

4

history
alco-
hol
drug

self harm/suicide

2 life history rto

1 history rto

2 drugs self harm/suicide

2 past history of drug/alcohol abuse rto

2 alcohol self harm/suicide

4

1 suicide

3
suicid
harm
self

self harm/suicide

0 suicide -

1 self harm self harm/suicide

0 self harm -

0 self neglect -

0 self harm/suicide -

Table 8.7: Clusters from a decimal matrix for ‘abus’ between levels 0 and 2.

In contrast to the three clusters from CA on an integer matrix, Figure 8.7 reveals five clusters that arose

from using decimal observations. While clusters for ‘client’ and for ‘history’, ‘alcohol’ and ‘drug’ remain

unchanged, three clusters arose from sub-dividing what was formerly a single large cluster. As a result,

row clusters 1, 2 and 4 respectively hold three, five and six nodes. The corresponding cluster of six stems

was broken into separate clusters of one, two and three stems in respective clusters 1, 2 and 4. The

largest of those novel clusters, number 4, was no larger than row cluster 3 from using an integer matrix.

238



8.3. EXPERIMENTS IN REFINING MIND MAP STRUCTURE

The mind map generated from row clusters in Table 8.7 appears next as Figure 8.12, in which nodes

containing the identity of corresponding HC clusters branch into clusters of actual nodes from GRiST

mind maps. Stems from corresponding column clusters were marked automatically with an asterisk in

the text of matching nodes. The root node shows the stem ‘abus’ capitalised in a shaded node, to reflect

the stem that drove CA:
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Figure 8.12: Text clusters from CA of nodes between levels 0 and 2, in paths to nodes containing ‘abus’.
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Figure 8.12 shows cluster number 0 for the stem ‘client’ as a clear outlier, depicting a major sub-division

in the overall HC hierarchy. Remaining clusters under the opposing branch from the root node all show

internal hierarchies to some degree. Note, for example, the sub-hierarchy for cluster number 2, in which

the node [personal details] came from both levels 1 and 2 in respective paths. That small cluster is

somewhat separate from nodes that, in addition to the stem ‘person’, held the further stem ‘disorder’. A

similar arrangement arose in cluster number 3, where ‘history’ was kept separate from nodes containing

‘drug’ and ‘alcohol’. The cluster for ‘history’ was further differentiated by the word ‘life’. Overall, though,

nodes from cluster 3 are closely related, as are those from remaining clusters.

Discussion IIIa of a decimal matrix from levels 0 - 2 in paths to ‘abus’

Results for an integer matrix, shown in table 8.5, included a large cluster in need of refinement; comparable

results from table 8.7 for a weighted decimal matrix show that aim to have been met. Clusters numbered

1, 2 and 4 in table 8.7 did indeed result from splitting cluster 2 of table 8.5 into three smaller clusters.

The lack of resolution arising from an integer matrix was reflected in the polarisation of F1 values from

table 8.4. Conversely, results for a decimal matrix showed an adequately wide range from large negative

F1 values to similar sized positive values. Further, gradations within that range showed sub-divisions

that were absent before; a mixture of high and low negative and positive factor values from table 8.6

make better use of the axes plotted by CA.

The cluster hierarchy from Figure 8.12, though, had less suitable aspects. Take, for example, cluster

3 for nodes that contained ‘history’; a better arrangement would have been the two nodes for [history]

together, regardless of a difference in levels, with the node [life] history] as a further branch. In

contrast, instances of the node [personal details] from levels 1 and 2 formed a cluster by themselves,

with the nodes for [mental/cog personality disorders] in a related group; two stems, though, were

involved in that case, rather than the sole stem ‘person’ in the cluster for [personal details]. In a

similar way, cluster number 4 showed an appropriate separation of nodes for [suicide] and [self harm],

with a further small group after that. Again, that was because those sub-clusters respectively reflected

one, two and three stems. Overall, though, suitable clusters resulted from levels 0 - 2 in paths to ‘abus’;

results presented next came from a similar CA of lower levels 3 and 4.
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Results IIIb for a decimal matrix from levels 3 - 4 in paths to ‘abus’

Results that follow arose from CA of paths to nodes containing the stem ‘abus’; that matrix was assembled

in exactly the same way as was the one just reported, except that nodes had to appear at either level 3

or level 4 in paths from any GRiST mind map. That CA produced the clusters that appear in Table 8.8:

Row Clusters Col Clusters
Main Risk

n i Text n Stem

0
4 violent milieu

1 violen
rto

3 violence rto

1
4 . . . clearer if there is an identified person

3 person
rto

3 personality disorder self harm/suicide

2
3 dramatic event

0 event
generic

4 influential events self harm/suicide

3
4 tranquillisers as a method of abuse

2 method
self harm/suicide

4 method self harm/suicide

4
4 voice

5 voice
self harm/suicide

4 voices self harm/suicide

5

4 they’re not abusing alcohol or drugs. . .

6
alcohol
drug

generic
3 drugs alcohol abuse self harm/suicide
3 alcohol abuse self harm/suicide
3 alcohol self harm/suicide

6

4 history of domestic violence or abuse

1 history,
violen

rto
3 life history self harm/suicide
4 2 kids under 5. . . and a history of abuse rto
3 history of abuse potentially important factor self harm/suicide

7

3 typical example

7
client
typi-
cal

rto
4 typical client generic
3 client episodes self harm/suicide
3 abuse to client rto
4 abuse to client self harm/suicide

Table 8.8: Clusters from CA of nodes at levels 3 and 4, in paths to nodes containing ‘abus’.

The CA for nodes from levels 3 and 4, then, led to the 8 clusters from Table 8.8. Those clusters ranged in

size between 2 and 5 paths. Further, clusters 0 to 4 inclusively represented just one stem, while remaining

clusters contained two stems. Note, though, that clusters 0 and 6, which were highlighted in Table 8.8,

both refer to the stem ‘violen’.

Discussion IIIb for a decimal matrix from levels 3 - 4 in paths to ‘abus’

CA matrices that comprised weighted decimal entries, then, proved more discerning than did matrices of

integer observations. That was because adjusting cells according to what column they occupied introduced

additional variation into CA. The actual weighting used, though, was perhaps not quite appropriate, as

the dual clusters for the stem ‘violen’ show. Indeed, clusters relied more on the number of separate stems

conflating any group of nodes. All the same, it might have been hoped that the cluster for ‘violen’ would

have appeared as a sub-cluster of the one for stems ‘violen’ and ‘history’. In fact, they were completely

242



8.3. EXPERIMENTS IN REFINING MIND MAP STRUCTURE

separated, raising a problem for any mind map based on that HC hierarchy. That said, remaining clusters

were distinct in whatever stems were reflected.

In a similar way as for results from levels 0 - 2, several risk categories correspond to stems that

represented cues in GRiST mind maps. Rather than branching from root nodes, then, such risks will

form a discrete node structure to which other nodes might refer. The actual mechanism will be presented

soon; for now, though, CA remains tied to just stems, and lacks any indication of dissimilar words that

are yet related. Experiments that aimed to improve that situation are reported next.

8.3.2 Deriving Clusters of Semantically Related Nodes

So far, mind map nodes that share any stems identified in Chapter 4 have been conflated by CA. That

approach, though, ignores dissimilar words that have related meanings. Fortunately, WordNet has facil-

ities that alleviate any reliance on morphology alone. As the review in Chapter 5 described, WordNet

was implemented as semantic networks composed of synsets. Pointers between those synsets allow var-

ious types of relationships to be discerned, such as hypernymy for words having similar meanings, and

antonymy, for words with opposed meanings. In order to exclude more tenuous relationships, words

with high number of overall senses were omitted from the analysis. Further, relationships that reflect

large semantic distances across those networks will be ignored. The experiments that follow, then, forge

additional links between mind map nodes by means of a CA matrix enhanced with word meanings.

Method IV for semantically related words

Accordingly, the MindmapPathsAnalysis class was supplemented by a further bespoke Java programme

called WordPair that stored results from researching pairs of words in WordNet. In fact, that was done

by means of the list of unique words from GRiST mind maps; each word in that list from Chapter 7

was successively paired with all remaining entries. Words from such pairs were researched in WordNet

for specific relationships. For nouns, those relationships concerned hypernyms1 and antonyms, while

so-called verb-groups indicated further relationships that were not, in fact, just for verbs.

The separate Java class AstonWordNet performed that WordNet research, in the following way. The

first step was to look up each word from any pair, storing results in an array of two IndexWord objects;

such classes came as part of the WordNet Java package from Beckwith et al. (1993). Note that having re-

trieved a Dictionary object by using the static getInstance() method, the method lookupIndexWord()

demands a specific POS.

1Note that synonyms are, in fact, hypernyms separated by just one level in WordNet’s noun network.
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Accordingly, the following code had to be repeated four times, once for each of the POS stored by

WordNet for content words. That specific POS was held in a variable called wNetPos:

indexWords[0] = Dictionary.getInstance().lookupIndexWord(wNetPos, word1);

indexWords[1] = Dictionary.getInstance().lookupIndexWord(wNetPos, word2);

Having retrieved a pair of IndexWord objects, the further WordNet class RelationshipFinder sought out

desired relationships. An instance of that class was obtained in a similar way as for the above Dictionary

class, by using the getInstance() method. Subsequently, the findRelationships() method reported

relationships between given senses of any two words, for a specified type of relationship. In that way, the

following code retrieved hypernyms for the first sense of each word from a given pair, by means of the

WordNet constant PointerType.HYPERNYM:

relationshipList =

RelationshipFinder.getInstance().findRelationships(indexWords[0].getSense(1),

indexWords[1].getSense(1),

PointerType.HYPERNYM);

The above code, then, retrieved hypernyms for particular senses of two specified words, and stored them

in the variable relationshipList; that process was repeated for remaining senses of those words. Any

relationships arising between two specific words were stored as a single WordPair object. In addition

to the words themselves was stored the semantic distance reported by WordNet, and the familiarity in

terms of the number of senses for each word. Relationships separated by semantic distances in excess of

5 were discarded. In a similar way, relationships between over-familiar word pairs were taken no further.

To that end, the numbers of senses from each word in any pair was summed, and the corresponding

WordPair object discarded should that total exceed 15 senses.

That process was applied to words conflated by stems from column headings of the matrix. For rela-

tionships deemed close enough, cells for particular node and stem combinations were recorded as if any

semantically related word contained a given stem. In that way, additional rows entered the matrix for

nodes that, while not referring to any given stem, reflected a word that was related to one of those

stems. In the same way as for CA on stemmed words alone, nodes from levels 0 - 2 from paths to nodes

containing ‘abus’ were analysed first. Subsequently, levels 3 and 4 were analysed in a separate CA. In all

cases, though, results from HC were transformed automatically into mind maps for viewing in FreeMind.

All of the four main POS might further carry a gloss comprising a short sentence, given by WordNet

as an example of actual word usage. Glosses were reduced to discrete words by the Java method split();

subsequently, content words from such lists were compared against, say, hypernyms of any stemmed word,
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by calling the lookupIndexWord() method used to populate WordPair objects. That gave a list of related

words for any word conflated by a stem from the matrix header. Those related words were compared with

words from the gloss of the associated stemmed word. Should, say, a hypernym of any stemmed word

appear in the corresponding list of gloss words, then a fresh WordPair object was created, and subjected

to the process described above, to determine if such words were sufficiently close in meaning.

Results IV for semantically related words

The left-hand side of Table 8.9 lists hypernyms reported by WordNet, with relationships from verb-groups

to the right-hand side. Within each of those sections appears a column for the WordNet relationship

researched, followed by the POS reported. After those columns come the contents of specific WordPair

objects, followed by corresponding semantic distances. Note, though, the need to research POS separately

led to nouns and adverbs being reported in the verb-group section:

Relation P Word 1 Word 2 d Relation P Word 1 Word 2 d

Hypernym N

ideas thought 0

Verb-
Group

Av likely probably

0

drug medication

1 N

component element

paranoid psychotic degree level

care treatment harm injury

frequency incidence 5 need want 4

Table 8.9: Accepted word-pairs related by WordNet hypernyms and verb-groups.

All of the relationships from Table 8.9 were accepted due to semantic distances of 5 or less. In a similar

format, Table 8.10 lists word-pairs that were related by antonyms at acceptable semantic distances:

Relation P Word 1 Word 2 d Relation P Word 1 Word 2 d

Antonym N

chronic acute

0 Antonym

N health illness

0
dead living

Aj
mental physical

different same other same

females male V start stop

Table 8.10: Accepted word-pairs related by WordNet antonyms.

Relationships from Table 8.10 were, in fact, all noun antonyms that were accepted due to having semantic

distances of zero. In contrast, comparisons between stemmed words and those from glosses yielded larger,

yet acceptable, semantic distances, as depicted in Table 8.11:

Relation P Word 1 Word 2 d Relation P Word 1 Word 2 d

Gloss N

belief thought

2 Gloss N

anxiety disorders
2

belief ideas intent thought

therapies treatment disorder schizophrenia

5alcohol substances 3 disorder paranoia

Table 8.11: Accepted word-pairs related by WordNet glosses.
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All of the entries from Table 8.11 were, in fact, nouns that were separated by semantic distances of between

2 and 5. Regardless of any specific type of relationship, though, cases having semantic distances in excess

of 5 were rejected. That can be seen in table 8.12, which depicts more distant WordNet relationships:

Relation P Word 1 Word 2 d Relation P Word 1 Word 2 d

Hypernym V

feel think
7

Verb-
Group

N

continuum degree
6

bother getting amphetamines substances

anger feel

9

disease psychosis 7

have lead disorders health 8

plan think calorie degree 9

Table 8.12: Rejected word-pairs related by WordNet.

Relationships between words from Table 8.12 were, then, rejected due to excessive semantic distances of

up to 9. Notably, rejected hypernyms from Table 8.12 were verbs, while verb-group entries were nouns.

Discussion IV of semantically related words

Results of experiments combining CA and WordNet, then, covered relationships from hypernyms, verb-

groups, antonyms and glosses. Glosses, though, were reduced to Bags Of Words (BOW) before entering

the main analysis. From such BOW, gloss words closely related to stemmed words revealed interesting

relationships. Take the word pairs ‘belief’ and ‘thoughts’, ‘belief’ and ‘ideas’, and ‘intent’ and ‘thoughts’;

those words are indeed related, although just how closely is debatable. At a general level, GRiST panellists

might well be interested in such nodes as a group; in fact, the concept of ‘ideation’ used by those experts

well covers such cognitive activities. At a more detailed level, though, ‘beliefs’ in particular might be seen

as distinct from ‘ideas’ and ‘thoughts’, while related to ‘intent’. Such contrasting views might in fact,

be offered to users; such is the power of intensional knowledge, in allowing analyses at whatever level of

detail, without affecting existing mind maps.

More definite relationships arose between ‘disorder(s)’ and ‘anxiety’, and between ‘paranoia’ and ‘schizophre-

nia’. Although anxiety might seem a light affliction compared to schizophrenia, it is more serious from a

mental health perspective. Remember, though, that intensional knowledge arose from what Date (2003)

termed the lossless process of normalisation; in the same way as for the example of ‘belief’, then, all of the

disorders grouped by WordNet and afterwards by CA continue to exist separately. In practice, that might

allow a series of mind maps to offer a zooming capability, ranging from an overview to a detailed repre-

sentation of any specific concept. Remaining gloss relationships depicted both a very close relationship,

between ‘therapies’ and ‘treatment’, and a more distant one between ‘alcohol’ and ‘substances’.

In contrast to glosses, remaining WordNet relationships arose directly from comparing pairs of words.

Hypernyms, in fact, raised a relationship between ‘ideas’ and ‘thoughts’ that could be inferred from

the group resulting from glosses. Remaining examples were closely related; ‘drug’ is indeed a form of
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‘medication’, while ‘care’ will often involve ‘treatment’. A further important link arose between ‘paranoid’

and ‘psychotic’ that collectively reflect personality disorders (ONS, 2000). Further, the word ‘frequency’

is closely related in meaning to ‘incidence’, especially in a medical sense.

Verb-groups were a further source of relationships between words, for example, in drawing together

the words ‘component’ and ‘element’, ‘degree’ and ‘level’ and ‘harm’ and ‘injury’. The second word from

those pairs might indeed be used in place of the first, with little affect on truth values. That might not

be the case for the words ‘want’ and ‘need’, though; we are taught from childhood that those words

have different meanings. Although node hierarchies from GRiST mind maps might support or negate

such relationships, it is important to remember that mind mapping offers no mechanism for ensuring the

veracity of such structures. While it is unlikely that Buckingham and Adams (2006) would have admitted

serious misconceptions into the pruned mind maps, support from WordNet ratifies any such groups.

Whereas related words addressed so far will congregate mind map nodes, antonyms from WordNet will

keep nodes apart. All the same, it will denote opposing concepts that will further enrich the knowledge

base of GRiST mind maps. Experiments reported here revealed good coverage by WordNet of antonyms

for verbs, nouns, and modifiers. For example, the verbs ’start’ and ‘stop’ reflect boundaries in time,

though of what is unstated. That raises a further reason for keeping such nodes apart, in that whatever

starts or stops might be completely unrelated: perhaps stopping taking drugs, as opposed to starting a

car. Using such knowledge to generate novel mind maps, though, remains an option, thanks to knowledge

held separately. In addition to those verbs, the noun antonyms ’health’ and ‘illness’ revealed a valuable

contrast, as did the modifiers ’mental’ and ‘physical’. Conversely, the modifier ‘same’ was an antonym

both for ’other’ and for ’different’; despite semantic distances of zero, those words are but vaguely related.

Similarly tenuous relationships were ‘feel’ and ‘think’, ’bother’ and ‘getting’, and ’have’ and ‘lead’; those

were correctly rejected. Although slightly better, the words ’anger’ and ‘feel’, and additionally ’plan’

and ‘think’, might be worth noting. Unfortunately, excessive semantic distances led to declining infor-

mative connections between ’disease’ and ‘psychosis’, ’disorders’ and ‘health’, and ’amphetamines’ and

‘substances’. Further, the rejected relationship between ’calorie’ and ‘degree’ suggests that senses re-

ported by WordNet might be important; that example shows the inappropriate verb-group that arose

from related senses of energy and temperature. A more suitable interpretation appeared between ‘degree’

and ‘continuum’.

Clearly, further refinement is needed before accepting or rejecting WordNet relationships; the measures

of familiarity and semantic difference are not completely adequate. All the same, the majority of such

decisions were appropriate; sufficient reliable relationships arose as to record appreciable new information

in CA matrices. That is assessed next by mind maps resulting from such a matrix, for nodes related both
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morphologically and semantically.

8.3.3 Generating Combined Mind Maps from HC Clusters

Experiments reported next relate mainly to the stem ‘abus’, although examples are given of ‘suicid’ and

for ‘depress’. Due to the depth of GRiST mind map hierarchies, experiments use an incremental approach

that addresses specific levels. Accordingly, results are reported for taking nodes from levels 0 - 2 inclusive,

from levels 2 and 3, and from levels 3 and 4. Overall, that range of levels 0 - 4 address key concepts that

Buckingham and Adams (2006) saw as formulated close to mind map root nodes.

Matrices for CA were built as for earlier experiments in this chapter. Any specific cell in a matrix,

then, recorded that a particular node contained either a stemmed word, or a word having related meaning

to any such stemmed word. Further, spelling corrections from Chapter 3 were applied on retrieving nodes.

Subsequent to CA, novel mind maps were generated from HC clusters. Labels from such clusters were

mapped back to the labels of rows in the original CA matrix, and corresponding texts used in place of

HC labels.

The paths of nodes containing related words were reduced to sole representatives, which were combined

automatically into novel mind maps for each stem investigated. Resulting mind maps, then, contained

just a single instances of paths that might have recurred throughout individual mind maps. The first

experiment, then, dealt with related nodes from levels 0 - 2 in paths to nodes having the stem ‘abus’.

Method V for related nodes from levels 0 - 2 in paths to ‘abus’

The first step, then, was to identify nodes that contained the stem ‘abus’. Associated stems from such

nodes became column headings for a CA matrix. Rows in that matrix recorded whatever stems were

found in any particular node, while row labels recorded the level at which those nodes appeared within

any path. Using the methods described in Sections 8.3.1 and 8.3.2, CA was run and the resulting HC

structure re-coded as FreeMind nodes.

Further, stemmed words were marked automatically with a single asterisk in resulting mind maps; words

related by WordNet hypernyms, verb-groups, or glosses were annotated with a double asterisk, while

antonyms were given three. Mind maps were opened in FreeMind, and screen-shots taken to show any

resulting node clusters. Detail from resulting mind maps are shown for the stem ‘abus’ from between

levels 0 - 2, from levels 2 and 3, and from levels 3 and 4, in that order. A further set of results reports

mind maps that arose for the stems ‘depress’ and ‘suicid’.

Results Va for related nodes from levels 0 - 2 in paths to ‘abus’

Figure 8.13 presents detail from a mind map generated automatically from an HC matrix. In fact, just

clusters 2 and 3 appear, showing respective clusters of drug abuse and of personality disorders:
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Figure 8.13: WordNet-related clusters between levels 0 and 2, in paths to nodes containing ‘abus’.
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The stemmed word ‘history’ from Figure 8.13 is annotated by a single asterisk; remaining related words,

though, have two asterisks to show that they arose from WordNet hypernyms, verb-groups, or glosses.

Outlier cluster number 2 shows that WordNet reported ‘paranoid’ and ‘psychotic’ to have similar mean-

ings. In addition, nodes containing the words ‘substance’, ‘alcohol’ and ‘drug(s)’ were drawn together.

Discussion Va for related nodes from levels 0 - 2 in paths to ‘abus’

Figure 8.13, then, shows that nodes expressing forms of drug abuse were grouped together. Although

relationships between those nodes were recorded in the node hierarchies of existing GRiST mind maps,

WordNet further justified such knowledge structures.

Results Vb for related nodes from levels 2 and 3 in paths to ‘abus’

At slighter lower levels 2 and 3, the combination of stems, CA and WordNet produced six clusters for

‘abus’, of which four appear in Figure 8.14:
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Figure 8.14: WordNet-related clusters at levels 2 and 3, in paths to nodes containing ‘abus’.
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Nodes for personality disorders at level 2 in Figure 8.13 were related by WordNet; those nodes were

augmented in Figure 8.14 by level-3 nodes. Those novel cases, though, took different forms, for example,

[psychotic] at level 2 was joined by the level-3 node [psychosis]. In a similar way, a level-2 node

contained the singular ‘event’, while the plural ‘events’ appeared at level 3. The further important concept

‘family’ grouped together nodes from those two levels. Cluster number 4, further to grouping nodes by

means of the stem-word ‘person’ that conflated ‘personality’, reflected a WordNet relationship between

‘absence’ and ‘disorder’.

Discussion Vb of related nodes from levels 2 and 3 in paths to ‘abus’

Although largely suitable nodes congregated as a result of CA on stems and WordNet relationships, the

link between ‘absence’ and ‘disorder’ was actually inappropriate. Remaining clusters, though, are useful

both to humans and to machines. In those respects, generated mind maps respectively constitute useful

end products in themselves, and further as structures that contribute to a normalised information base.

In fact, clusters expressing similar concepts arose in a mind map representing levels 3 and 4 to those

at levels 2 and 3. Those mind maps, then, are not reproduced here; all the same, a graded approach to

node paths from GRiST mind maps yielded structures that might further be fused into a single hierarchy,

if needed. Mind maps presented so far, though, arose from trawling mind maps for the stem ‘abus’;

the next set of results present similar experiments for the stems ‘depress’ and ‘suicid’, further important

concepts in assessing mental health risks.

Results Vc for related nodes in paths to ‘depress’ and ‘suicid’

Results for this experiment arose from processing nodes that contained the stem ‘depress’. That analysis

was limited to levels 0 - 2 of any resulting paths. Detail of clusters 2 and 3 from the ensuing mind map

are shown in Figure 8.15:
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Figure 8.15: WordNet-related clusters at levels 0-2, in paths to nodes containing ‘depress’.
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Cluster number 3 from Figure 8.15 shows nodes conflated by the stem ‘psych’, in the form of ‘psychi-

atric’, and by ‘person’ for ‘personal’ and ‘personality’. WordNet further contributed relationships between

‘epilepsy’ and ‘disorders’, marked by two asterisks. Further, the antonyms ‘mental’ and ‘physical’, which

were annotated by three asterisks, marked mental disorders as opposed to physical health. Although all

contained within cluster 3, HC separated those nodes into two distinct clusters. Cluster number 2, on

the other hand, was the outlier from that CA; in addition to nodes expressing ‘therapy’ and ‘therapies’

that were conflated by the stem ‘therap’, WordNet determined that the words ‘medication’, ‘alcohol’ and

‘substance’ had closely related meanings.

Moving on to results for the stem ‘suicid’, outlier cluster number 2 and the further cluster number 13

are presented in Figure 8.16:
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Figure 8.16: WordNet-related clusters at levels 3 and 4, in paths to nodes containing ‘suicid’.
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In addition to the opposing concepts of ‘mental’ and ‘physical’ from the mind map for ‘depress’, Figure

8.16 shows the further antonym pair ‘illness’ and ‘health’ within cluster number 13. In fact, those nodes

formed an identifiable sub-cluster, while remaining nodes congregated due to the stem ‘personal’, and

to the related words ‘anxiety’ and ‘disorder’. In addition, the stems ‘servic’ and ‘severe’ were detected,

though just in single nodes. Outlier cluster number 2, on the other hand, drew together the WordNet-

related words ‘psychosis’, ‘psychotic’ and ‘schizophrenia’.

Discussion Vc of related nodes in paths to ‘depress’ and ‘suicid’

Results from nodes expressing forms of depression and suicide re-stated the validity of clustering nodes

by means of weighted CA matrices. That one of the clusters from CA of nodes containing ‘suicid’ was

numbered 13 means that many more clusters arose compared with the mere three from an integer matrix

for ‘abus’. That, in turn, underlines the improvement made by decimal matrices, which introduced a

more useful amount of variation. That was reflected in the 12 sizeable differences in F1 values detected

by the algorithm for determining optimum numbers of clusters, which, when added to the default of two,

gave a total of fourteen.

Although the word ‘substance’ might be seen as a word well suited to the upper echelons of the Tree

of Porphyry discussed by Sowa (1992), it has a more precise meaning in terms of medication and illegal

drugs taken by users of mental health services. Further, antonyms were particularly evident in the mind

map for ‘suicid’. That relationship failed to arise for the other two stems reported here, because relevant

nodes did not appear in paths to the corresponding nodes. Although those antonyms were combined into

the generated mind map, they might just as well be omitted, and referenced in the way that will shortly

be shown for the main risk categories. Thanks to the way that intensional knowledge is stored separately

to the GRiST mind maps themselves, both options remain available.

Of further note is that resulting mind maps for those two stems resembled the one for ‘abus’; that was

due to way that risk factors repeated across the main categories specified by Buckingham and Adams

(2006). Indeed, it is that repetition of risk factors that led to the main categories being omitted from any

generated mind maps. For example, the concept of ‘abuse’ was recorded as a precursor to various forms

of self-harm, including suicide, in addition to posing a Risk To Others (RTO) and further, a generic risk

factor. Rather, generated mind maps put the stem of any concept of interest at the root, which obviates

the need to duplicate nodes across those main categories. The approach taken to indicating relevant risk

categories while avoiding duplication is addressed by the final experiments in this chapter.

8.3.4 Generating Normalised Mind Maps

The first part of this Chapter showed that a combination of stemming, WordNet, and Correspondence

Analysis generated clusters of related nodes. In that way, representative paths were combined into a single
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knowledge structure in FreeMind format. Those mind maps, though, were just the first step towards a

normalised information base; nodes were reassembled as they existed in GRiST mind maps, with no

attempt made at refinement. The next step, then, transforms clusters from CA into normalised mind

maps, to give a single, idealised node hierarchy for any concept under investigation. While succinct nodes

might be used as they stand, the process of normalisation raised in Chapter 2 means splitting complex

nodes into more definite ideas. As a result, novel nodes might arise; further, nodes might contain words

that did not participate in CA, yet must be accommodated in any normalised hierarchy.

A further problem of representation concerns risks such as self harm and suicide that appeared directly

under the root nodes of GRiST mind maps, in line with the template that Buckingham and Adams (2006)

provided. Along with further categories such as RTO and a generic risk, that template led to panellists

repeating lower-level concepts under such top-level categories. Normalisation, though, aims to remove

such duplication; it follows, then, that sole instances of mind map concepts must reflect associations with

several possible risk categories. Further, resulting mind maps must be amenable to interpretation both

humans and by machines.

In fact, an existing facility of FreeMind helps to resolve those difficulties, by means of arrows between

nodes. Links may be unidirectional or bidirectional, with the latter having arrow heads at both ends.

In short, arrows links act as pointers between mind map nodes in a way that resembles links between

WordNet’s synsets; pointers in WordNet, though, are for use by machines, whereas arrows in mind maps

further denote related concepts for human viewers. As a result, risk categories will be held as a separate

group of nodes branching from the root of any generated mind map. All the same, correspondence with

lower-level risks will be maintained by means of FreeMind’s arrow pointers.

The problem remains, though, that top-level risk factors sometimes comprised more than just a sole

idea; such was the case for the nodes [self harm/suicide] and [mental/cog/personality disorders].

Indeed, discrete nodes already exist in GRiST mind maps for [self harm] and [suicide] as separate

risks. The node [self neglect] further augmented that group. Although previous experiments grouped

those nodes together, the problem remains of determining optimal node hierarchies for such conjoined

and partially matching concepts. While not wishing to reduce nodes to bags-of-words, nodes that share

important words might be re-written with that linking word branching into nodes for associated words.

For a similar reason, lower-level nodes such [client episodes] and [client presentation] might be

split into a node for [client] that branches both to [episodes] and to [presentation]. There were,

though, nodes that already expressed such atomic concepts; all the same, a problem arose due to such

nodes appearing at various levels in paths. Take, for example, the node [history] that occurred at both

levels 1 and 2 in paths to nodes conflated by ‘abus’; that arrangement exemplified the structural variation
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described in Section 6.1 of this chapter. The first normal form, though, requires that node to occur just

once; in such cases, the node at the highest level superseded those at lower levels.

Further knowledge available for any idealised node structures came from relationships reported by

WordNet. Nodes related by hypernyms, say, might introduce novel words that force existing configu-

rations to be re-assessed. Antonyms, though, will not be used, here; rather, they will be presented by

means of an interface to be revealed in Chapter 10. It is vital, though, that generated mind maps reflect

any WordNet relationships in a way that makes clear their origin in the experiments described here. A

solution lies in so-called anonymous nodes that carry no text. Such empty nodes should not, though,

be confused with blank nodes that currently exist in GRiST mind maps; rather, anonymous nodes are

formal components of semantic networks.

Anonymous nodes, according to Berners-Lee (1998), act as conjunctions. In normalised mind maps, then,

the children of any such node are deemed to be related by an implicit conjunction; as Berners-Lee (1998)

puts it, any anonymous node

‘. . . implies an implicit variable existentially qualified in the scope of the conjunction.’ (p.1.)

In other words, children of anonymous nodes express related sub-concepts by means of ‘and’. Although

mind map nodes of whatever type fulfil that purpose, anonymous nodes allow a more formal representation

of any derived relationships. Whereas blank nodes from GRiST mind maps reflected just that mind map

authors neglected to add text when creating nodes in FreeMind, formal anonymous nodes offer an explicit

way of representing nodes related by knowledge from WordNet, both to human viewers, and to machines

treating those mind maps as an information base. The origin of such arrangements, though, will be

retained as justification; machines and humans alike will be able to draw on such knowledge, rather than

assuming any empty node to be formally anonymous.

Further assistance in remodelling GRiST mind map nodes comes from experiments on prepositions

reported in Chapter 7. In particular, the word ‘of’ revealed an interesting property, in that words to either

side of that preposition were sometimes found reversed and contiguously. These final experiments, then,

show the culmination of experiments in spelling correction, stemming, and the CA of both prepositions

and of mind map paths. In fact, two mind maps are generated for any given stem; the first displays node

paths exactly as found in GRiST mind maps, but combined into a single hierarchy, while the second type

results from applying knowledge gathered here. Such pairs of mind maps, then, constitute ‘before’ and

‘after’ versions in the process of generating normalised mind maps about mental health risks.
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Method VI for generating combined mind maps

This experiment shows the creation of a combined mind map from paths to nodes that contained ‘abus’.

As previously in this chapter, representative paths were obtained by loading CSV strings into a Java

TreeSet object; the resulting unique paths from mind maps were processed sequentially. Novel nodes

were created on the first encounter of any key; subsequently, child nodes were created or appended at

appropriate levels.

Results VI for a combined mind map of paths to ‘abus’

Figure 8.17 shows the result of combining the top three levels of all forty six GRiST mind maps, for paths

that led to nodes expressing concepts related to ‘abuse’:
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Figure 8.17: Summary of paths between levels 0 and 2, to nodes containing ‘abus’.
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The generated mind map from Figure 8.17 shows paths that led ultimately to nodes which contained the

stem ‘abus’. Main risk nodes branch from the root node, which was labelled to reflect the stem under

investigation. For each of those main risks stems a further level of nodes that indicate related narrower

mental health risk factors.

Discussion VI of a combined mind map of paths to ‘abus’

The combined mind map in Figure 8.17 is primarily meant for human use, in that it depicts the domain

of knowledge to be normalised for the concept ‘abuse’. That in itself, though, might prove a useful end to

these experiments: GRiST researchers and panellists could absorb such summaries at a glance. Further,

the problem of nodes repeating under various main risks is well demonstrated by the mind map from

Figure 8.17. For example, the node [mental/cog/personality disorders] appears under both [rto]

and [self harm/suicide]. In addition, the node [personal details] occurs under all main risks except

[self harm] and [self neglect].

Indeed, text from nodes expressing various forms of self-harm overlapped; in addition, the related,

though separate, concept of suicide was embedded in a longer node. That was further the case for

[mental/cog/personality disorders]; one of those words, ‘personality’ was conflated by the stem

‘personal’ that appeared as an actual word in the node [personal details]. That suggests breaking up

that longer node, and moving ‘personality’ to a novel node group centred on the stem ‘personal’. The

normalisation process imposed here alleviates that problem, and generates mind maps that act both as a

useful aid to human interpretation of mental health risks, and further as an information base for machines.

Generating such combined and normalised mind maps is addressed by the following experiments.

Method VII for generating normalised mind maps

The first step was to identify fully and partially contained concepts in mind map nodes. That was done by

means of a bespoke Java class called NormalisedMindmap that was responsible for building the knowledge

structures reported here. The main input to that programme was a list of clusters derived from the HC

matrix produced by CA. Rather than just re-combining paths, though, clusters from CA were inspected

for nodes having words in common, and results stored in a further novel Java class called SplitNode.

Individual SplitNode objects, then, were compiled as follows. First of all, words from any two nodes

under comparison were reduced to individual words by means of Java’s Split() method, as was done in

previous experiments. Within those lists, the positions of prepositions were noted, as were those of any

additional stems to the one under scrutiny. Should any node-pair have one or more stems in common,

the positions of those stemmed words were recorded, and from there, the indices of words that preceded

or followed them. Further, the keys of the nodes concerned were stored, with the first identifying the

longer node of any pair, and the second key for the shorter node.
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In addition, SplitNode objects were made sortable by implementing Java’s Comparable interface, and by

further overriding the compareTo() method; that allowed the static method Arrays.sort() to arrange

lists of SplitNode objects into the following order:

1. the concept that was common to any pair of nodes,

2. the number of words in any shared concept,

3. any words that preceded such shared concepts, and

4. any words that followed them.

Sorting lists of SplitNode objects allowed subsets of results to be identified; nodes from such subsets

held a stemmed concept in common. In addition, sorting on the number of words per concept forced

shorter ones to the top of each subset. In that way, shorter or atomic concepts were processed first.

Results VII for a normalised mind map of paths to ‘abus’

Figure 8.18 presents the SplitNode objects that arose from comparing nodes 11176, 11616, 10209 and

11156, that is, [suicide], [self harm], [self neglect] and [self harm/suicide] respectively:

Figure 8.18: SplitNode objects for related nodes.

The first SplitNode object in Figure 8.18 arose from comparing the nodes [suicide] and [self

harm/suicide]. Bracketed entries at the end of the first two objects show what stems conflated the

concepts of ‘suicide’ and of ‘self-harm’. In such cases, no words remained after accounting for those

embedded concepts: shorter nodes were fully contained in a combined version. In contrast, the partially

overlapping nodes [self harm] and [self neglect] came next in Figure 8.18. The final entries in that

figure show the two existing concepts that were further found combined into a single node; remember,

though that the second of those, [self harm], partially overlapped with [self neglect].

Sorted SplitNode objects from the top three levels of all forty six GRiST mind maps were combined

into the mind map shown as Figure 8.19:
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Figure 8.19: Normalised mind map for paths between levels 0 and 2, to nodes containing ‘abus’.
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The nodes [substance abuse] and [substance misuse] from the top-left of Figure 8.19 gave a common

parent of [substance] branching into the child nodes [abuse] and [misuse]. An intervening anonymous

node depicted a reliable WordNet relationship between hypernyms. Although anonymous nodes are hard

to discern in FreeMind, the one in question occurred at the same level as did the branch from [substance]

to [type(s)]. Conversely, the [history] node branched directly into [life] and [past] in the absence

of any dependable WordNet relationship between those child nodes.

In fact, the arrangement of a parent node [substance] branching into the child [type(s)] arose from

the node [types of substances]; an heuristic gleaned from experiments in Chapter 7 allowed that

node to be automatically reconfigured. Specifically, words to either side of the preposition ‘of’ might be

reversed, and the preposition itself removed. In that way, the phrase ‘types of substances’ was rewritten as

‘substance type(s)’, using the singular forms conflated elsewhere in GRiST mind maps by corresponding

stems. That was further justified by the suffix ‘-s’ that arose from experiments reported in Chapter 4.

As a result, the word ‘type’ was automatically appended with that suffix enclosed in parentheses. The

resulting format bore comparison with existing nodes that started with the word ‘substance’, giving the

final sub-hierarchy.

At the top-right of Figure 8.19 appears a group headed by the node [client] that reflected structures

from separate GRiST mind maps. On one hand, [client] had the child [assessment], while on the

other, [history] appeared as the child. The resulting hierarchy arose from simply joining those paths,

and eliminating the duplicated [client] node. The next group down the right-hand side reflected

the morphological relationship between ‘personal’ and ‘personality’ found in Chapter 4, which resulted

in a further anonymous node. As a whole, that sub-hierarchy arose from automatically stripping the

word ‘personality’ from [mental/cog/personality disorders] to leave [mental/cog disorders]. The

removed word was joined with ‘disorder’, the stem of ‘disorders’ from the parent node’s original text, to

give the novel node [personality disorder].

The bottom-right of Figure 8.19 further shows a single hierarchy of risk categories, with an anonymous

node above the nodes [suicide] and [self harm] to show their origin in splitting the longer node [self

harm/suicide]. In turn, the nodes [self harm] and [self neglect] were rationalised in the same was

as was the group headed by [client]. The risks [rto] and [generic], on the other hand, branch

directly from the [risk(s)] node, and were otherwise unaltered. Relationships between top-level risk

factors and those at lower levels were shown by arrow pointers, generated automatically. For human

viewers, coloured arrows reflected particular main risk categories; in that way, related risks of substance

abuse and misuse were related to the top-level [rto] node by means of red arrows; that main risk factor

was at the top of corresponding paths which yielded the novel group.
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In a similar way, both children of [history] pointed to [rto]. Of child nodes for [client], though,

just [presentation] pointed to [rto]; that pointer is shown in yellow to identify a group that related to

multiple main risk factors. The remaining child [episodes] was related to the structure for ‘self harm’

by means a further yellow arrow. Additional arrows from Figure 8.19 were coloured green to indicate

related main risks of suicide and self-harm, while remaining pointers to a generic risk factor were shown

in blue. Note, though, that the risk of self-neglect has no arrows leading to it; that was in order to

improve clarity by showing just selected pointers.

Discussion VII of a normalised mind map of paths to ‘abus’

A combination of spelling correction, stemming, CA and WordNet, then, culminated in a combined mind

map for the concept of ‘abuse’; indeed, any of the stems identified in Chapter 4 might drive that process.

For the stem in question, additional stems such as ‘alcohol’ and ‘suicid’ arose in nodes from paths to

those containing that driving stem. Further, WordNet indicated relationships between nodes by means

of shared meanings, instead of by conflated stems. Rather than discrete nodes, though, entire paths

were related in that way; further reducing such paths to CSV strings of representative keys eliminated

duplication, in the spirit of the second normal form, 2NF.

Although the aim was not to reduce mind map concepts to a BOW, certain nodes were reconfigured

in that way. That happened, though, just when shorter nodes shared a particular word, which justified

moving any remaining words to child nodes. Importantly, the combined node of [self harm/suicide]

was reduced to separate nodes [self harm] and [suicide] as children of the inserted [risk(s)] node.

The resulting [self harm] node was further decomposed into the parent node [self] and its children

[harm] and [neglect]. That was further the case for the word ‘personality’ in the combined concept of

[mental/cog/personality disorders]. Rather than splitting words, though, the removed word in that

case was combined with ‘disorder’ to yield a novel node. Although the stem ‘person’ conflated ‘personal’

and ‘personality’, those differing words were kept in their respective nodes, rather than generating further

children as was done for the connecting word ‘self’. By means of splitting multiple concepts, then, resulting

nodes conformed to the first normal form, 1NF, that eliminates repeating groups from tuples, rather than

from relations.

Normalising GRiST mind maps further demanded a way of representing lower level risks that repeated

across several main categories. That problem was overcome by means of arrow pointers that are allowed

by FreeMind. In addition to colour-coding such links for human viewers, arrows are encoded in a format

amenable to machines, details of which will appear in Chapter 9; for now, it suffices that machines have

a way to interpret such links, and in turn, any related nodes from separate sub-hierarchies. Indeed, that

facility provides the cross-links that Novak and Cañas (2006) claimed to be lacking from mind maps. In
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addition to providing a visual aid for humans, though, pointers here furthered the use of GRiST mind

maps as a normalised information base1.

8.4 Chapter Discussion

The first experiment in this chapter involved retrieving representative paths to nodes from GRiST mind

maps; the resulting subset of paths reflected sole occurrences of particular paths. Those unique paths

fed the subsequent experiment that applied CA to GRiST mind maps. To that end, clusters of related

paths were revealed by using a matrix of columns representing any stems from those paths, and of node

identifiers as rows. That analysis, though, proved just partly successful; although clusters were produced,

humans viewing those results would see one large cluster in particular as comprising several smaller ones.

That was due to a lack of variation in the underlying matrix, which was overcome by using weighted

decimal values instead. As a result, that large cluster was successfully split into three separate, smaller

clusters.

In practice, a slight problem arose from the actual weightings employed. The approach was to adjust

raw observations by a proportion derived from the column index of any cell; that, though, led to clusters

that reflected the numbers of stems contained in participating nodes, in addition to the identity of any

particular stem. Further research, then, is needed in order to refine weightings in a way that emphasises

the values of stems, rather than the numbers of them. All the same, just a sole unsuitable cluster arose

in the examples reported; that was for the stem ‘violen’, which appeared in two clusters from the same

CA. Rather than too little variation, that case reflected excessive amounts introduced by weightings.

Although GRiST mind maps contained deep paths in excess of 10 levels, just the top three levels were

addressed by those first two experiments; that was to restrict analyses to any key ideas that Buckingham

and Adams (2006) saw as formulated close to mind maps’ root nodes. A further experiment, though,

performed CA on the lower levels 3 and 4. That analysis revealed nodes that repeated at both of those

levels; in such cases, the highest-level instance contributed to the resulting normalised mind map. In that

way, hierarchical variations between individual mind maps were resolved. Future research will combine

overlapping groups from successively lower levels into a single, normalised mind map. A possible approach

might be to run further CA on levels to either side of each main group, to reveal normalised structures

by which to join consecutive sub-hierarchies from the main analyses.

In addition to paths to nodes that were conflated by stems, WordNet supplied further related words for

which no stem existed. While that approach successfully identified additional related nodes, the means of

1In future research, problems caused by colour-blindness in humans suggest using arrows of more suitable hues.
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recording such knowledge in CA matrices might be improved. Experiments reported here treated words

related by WordNet as if they were conflated by a corresponding stem, which came from one of the words

of any pair under comparison. In the future, it would be preferable to seek a separate representation of

such additional knowledge; that, though, is hindered by CA’s restriction to just two variables. Existing

and new research has shown that extra variables might be encoded in row and column labels; even so,

any more than one such variable might raise difficulties in interpreting CA results.

Results from CA augmented by WordNet showed a need for further refinement, in that large semantic

distances led to declining informative relationships that would have contributed greatly to the resulting

mind maps. Conversely, occasional inappropriate relationships would better have been rejected. The two

measures applied, familiarity and semantic difference, were not completely adequate in such cases. Paying

more attention to particular WordNet senses suggests one additional source of information; further, a

later version of WordNet might offer more current word usage.

In addition to variations on the concept of ‘abuse’, the stems ‘depress’ and ‘suicid’ yielded further

combined mind maps. In fact, those generated mind maps closely resembled the one for ‘abus’, due to all

three concepts repeating across the main risk categories. There were, though, slight differences between

results from those three stems. For example, the antonyms ‘illness’ and ‘health’ arose just from analysing

‘suicid’; results from this approach, then, depended on the particular nodes, and from there, the paths

that were processed for any given stem. That, in turn, suggests pooling knowledge gleaned for individual

stems, once those analyses are complete.

Having combined CA with stemming and WordNet, further experiments created normalised knowledge

structures as mind maps. The first such experiment, though, produced a combined mind map directly

from representative paths isolated in previous analyses; that un-normalised mind map gave an overall

view of the concept ‘abuse’. Particular concepts, though, continued to spread across the top-level risk

categories, in the same way as in individual mind maps. In contrast, a normalised form of that mind map

removed those main risks to a separate group, referenced by FreeMind’s pointers. The resulting cross-links

enriched the emerging information base with knowledge over and above local hierarchical associations. In

that sense, rather flat mind map structures evolved into semantic networks more resembling WordNet’s

verb network, which Fellbaum (1990) reports to be richer in such sideways connections than is the network

of nouns. Rather than POS, though, pointers here depict related mind map concepts.

Of particular importance in this approach was the role of HC in providing a precursor to mind

maps encored in FreeMind format. Although that entailed a degree of justified reconfiguration, node

hierarchies in the resulting combined mind maps largely reflected those from HC. In fact, more detailed

consideration of successive sub-clusters merits further research, as does accounting for the correlations
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and contributions reported by CA. For examples, correlations indicate the degree of association between

paths and corresponding concepts, which might be reflected in, say, the colour or style of nodes. Such

gradations might further help in identifying dominant concepts within any cluster, and from there, in

deriving appropriate novel nodes from combined concepts.

Overall, then, the process that culminated here started in Chapter 3 by correcting spelling errors, and

identifying valid novel words that augmented the list of GRiST concepts. After that, Chapter 4 identified

stems in GRiST mind maps in a way that depended solely on morphological similarities, rather than

on linguistic rules. Subsequently, Chapter 7 revealed POS that congregated around certain prepositions,

which helped here in reconfiguring nodes into a simpler, standardised format. In that respect, the way

in which FreeMind stores mind maps was helpful; accordingly, that is the topic of the next chapter.
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8.5 Chapter Summary

The introduction to this chapter described variations between forty-six GRiST mind maps that recorded

interviews with mental-health experts. Those individual mind maps were subsequently integrated into a

single, combined version; that demanded great manual effort, due to variations in representing key ideas.

The chapter went on to describe CA and WordNet as the tools for refining those GRiST mind maps

automatically, by means of Hierarchical Clustering (HC) from which novel, combined mind maps were

generated.

To that end, CA matrices reflected nodes that contained stems from Chapter 4. Subsequently, such

CA matrices were supplemented by relationships suggested by WordNet. From that combination of HC

and WordNet arose mind maps that reflected paths to related concepts. That was demonstrated by

two sets of experiments in refining mind map structures, starting with nodes related in terms of words

conflated by stems. Simple contingency tables, though, failed to yield appropriate clusters; that was

rectified by introducing further variation by means of weightings and decimal observations. Subsequent

experiments showed that approach to be more discerning.

Paths to nodes that contained the stem ‘abus’ were analysed between various levels in paths from

GRiST mind maps. Although main risk categories were noted, they did not appear in any generated

mind maps, so as to satisfy normal forms that weed out duplication. Supplementing matrices by means

of WordNet relationships such hypernymy and antonymy yielded mind maps that drew together paths to

concepts related by meaning rather than by any stems. In addition, glosses identified further relationships.

The last experiments reported in this chapter involved generating normalised mind maps from such

combined versions. Relationships between nodes from those mind maps were indicated by FreeMind’s

arrow pointers; main risk nodes appeared as a separate sub-hierarchy of nodes, to which remaining nodes

referenced by means of such pointers. Resulting knowledge structures revealed an overall picture of the

concept of ‘abuse’ in those mind maps. In addition to benefiting human mental health experts and GRiST

researchers, those mind maps constituted a normalised information base of cues and risk factors. Finally,

an overall discussion of experiments reported here was offered, before this summary closed the chapter.
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9.1 Introduction

The thread for this chapter is the eXtensible Mark-up Language (XML) that FreeMind uses to hold mind

maps. In fact, that format has become a standard way of storing and transmitting digital information;

any machine able to process XML can, in turn, communicate easily with other machines. Indeed, XML

offers a very straight forward route to such inter-operability. That benefit, and any further advantages,

are presented first section of this chapter. Following that comes a discussion of ‘metadata’ that comprise

data about data, rather than raw information in its own right1.

Following that overview, the problem of storing knowledge as XML is addressed; specifically, a so-

called native XML Database permits an approach based almost entirely on XML. That database will

hold both GRiST mind maps and any metadata collected during experiments reported earlier. The mind

maps partition of the database will enable single GRiST nodes or even complete paths to be retrieved by

machines. Metadata held in a separate area of the database will, in a similar way, be conveniently stored

and readily queried and updated, without the need for a ‘traditional’ relational database. Subsequently,

the implementation of such a sub-system for GRiST is considered, before the chapter closes with a

summary. Firstly, then. to an overview of XML and of its role in GRiST.

1Note that the singular form of ‘data’ is reluctantly used, for compatibility with references to that plural noun.
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9.2 The Advantages of XML

XML has emerged as a standard for holding information in a machine-readable format, which has recon-

ciled diverse computer platforms. XML promotes such interoperability by allowing machines to readily

exchange information, in the form of elements that provide a standard format for holding data. Files of

such elements allow machines to share information freely, particularly over the Internet. Indeed, the word

‘extensible’ refers to tags that might be defined for any particular dataset; novel tags would be created

for whatever elements are required. In addition to elements themselves, tags specify names for attributes

attached to such elements.

Together, elements and attributes within so-called XML documents describe a flat-file database. However,

the very flexibility of XML hinders attempts any automatic modelling of ideas expressed by such elements.

Even in simple record-orientated files, differing element names often obscure relationships that are obvious

to humans. Document type descriptions (DTDs) and XML Schemata remedy that problem by specifying

valid element names and combinations (Fischer, 1998). In other words, DTDs and schemas provide

intentional knowledge about what form records might take in any given XML document. FreeMind does

not apply such restrictions to mind maps, other than to ensure conformity to just a sole XML element,

which is allowed a small number of attribute types. In fact, Polansky and Foltin (2010) do provide a DTD

for FreeMind; that DTD, though, governs largely the display of mind maps, rather than any content.

XML further provides a means of storing the variety of data found, say, on the Internet. That poses

a problem for highly-structured formats; relational tables, for example, are strict in their specification of

data types and column names. The Internet, though, lacks such a regular structure; formats in which

data are stored might differ greatly, although with a degree of overlap. Such differences in the structure

of information mean that XML represents semi-structured data (Thuraisingham, 2002).

The Format of FreeMind XML

In fact, FreeMind stores mind maps as XML. Accordingly, mind maps can be parsed by programs other

that FreeMind, in order to extract data structures. Although FreeMind stores node hierarchies in files

suffixed ‘.mm’, changing that suffix to ‘.xml’ allows mind map to be processed as pure XML. In fact,

GRiST did not use such XML directly, due to FreeMind’s focus on ways of displaying mind maps. Instead,

various programs stripped away any formatting instructions, with the resulting XML files reflecting just

the tree structure of GRiST mind maps. Indeed, any base XML file might be displayed in various ways,

depending on the particular requirements of human viewers. In that way, interoperability was achieved

between components of GRiST (Buckingham & Adams, 2006; Buckingham, Ahmed, & Adams, 2007).
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FreeMind, though, stores text not in elements themselves, as is the norm, but in attributes; that format

does not directly reflect mind map concepts and sub-concepts, as would a hierarchy of differentiated,

meaningful elements. Rather, a loose structure of ‘node’ elements store short phrases, or even sentences,

as attributes. There is, then, little differentiation between records, as can be seen from the FreeMind

XML in Figure 9.1. Rather than the refined XML by which Buckingham and Adams (2006) demonstrated

the tags employed by FreeMind, the approach here is to use XML directly from GRiST mind maps.

Accordingly, the left-hand side of Figure 9.1 shows a mind map created by GRiST expert number 2,

while the right-hand side depicts the corresponding XML, as viewed in the Mozilla web browser:
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Figure 9.1: Detail from a GRiST mind map, with the corresponding XML.
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Although the XML from Figure 9.1 came directly from FreeMind, GRiST researchers’ description of

their converted form largely applies. The <node/> tag, then, depicts individual nodes from a mind map

hierarchy1. FreeMind nodes from Figure 9.1 start with an angled bracket ‘<’ followed by the name of

the XML element, ‘node’. An oblique stroke followed by a closing angled bracket means that any such

node has no children; should that stroke be absent, nodes remain ‘open’, with further nodes nested inside

them. Accordingly, open nodes of the form <node> are closed by corresponding </node> tags later on in

the XML document (Buckingham, Ahmed, & Adams, 2007).

Node hierarchies from FreeMind, then, correspond to nested XML elements having the <node> tag; on

any given element, ‘TEXT’ attributes specify nodes’ contents. Further, nodes might be ‘open’ or ‘closed’,

or in FreeMind parlance, ‘folded’ or ‘unfolded’. For example, the root node [expert 02] from Figure

9.1 has an open <node> tag, having no oblique, but just a closing angled bracket. The same goes for

immediate children of that root; XML for main risk nodes such as [suicide] and [self harm] contain

sub-hierarchies of increasingly specific cues and risk factors. In fact, the [self harm] node was unfolded

to one level in Figure 9.1 to depict leaf nodes such as [history], which has a terminating oblique to

close it. The penultimate line showed the root node [expert 02] closed by an explicit ‘</node>’ tag,

before a ‘</map>’ tag closed the entire mind map, by balancing the ‘<map>’ tag from the first line.

An Approach Centred on XML

Figure 9.1, then, showed nested nodes of identical type that define hierarchical mind map structures;

information about those nodes was further held as attributes. In fact, XML allows any number of

different attributes, which further allowed unique expert IDs held in nodes to be recoded as discrete

attributes. Programs subsequently retrieve information about any given node from the associated at-

tributes (Buckingham & Adams, 2006). To that end, web browsers have so-called parsers that allow

programmers to develop software around XML (Wilde, 2006; Buckingham, Ahmed, & Adams, 2007).

The success of XML arises from its independence of particular platforms and languages; in recent

years, XML has increasingly comprised the core of applications, particularly with regard to database

systems. XML, by means of appropriate element tags, is able to represent structures having a relational

structure, in addition to the noted facility for representing semi-structured information. That power,

along with the growth of the Internet, has given rise to an approach called ‘XML-centric development’,

which refers the ubiquity of XML throughout such systems. Although XML technologies are not yet

mature, machines might rely on XML as the sole mechanism for storing and transporting data (Wilde,

2006). An XML-centric approach, then, will allow components from this thesis to integrate seamlessly

into the existing GRiST web site. Further, XML is ideally suited to storing additional information that

1Note that XML nodes are depicted in the same font as have been mind map nodes in earlier chapters.
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explains any raw data; such extra knowledge comprises ‘metadata’, to which attention turns next.

9.3 Metadata: Data about Data

The word ‘metadata’ comes from joining the two words ‘meta’ and ‘data’. In fact, ‘data’ refers to

information of any form, whether on paper or held electronically, while the Greek word ‘meta’ means

‘transcending’ and ‘going above and beyond’. Accordingly, ‘metadata’ means data that describes other

data (“Computer Dictionary”, 2010). Indeed, the future of information systems might depend on such

data about data. Although metadata is far from a recent idea, it has generally been used for specialist,

one-off purposes, in human-readable formats. The rise of the Internet, though, has led to a more formal

approach to metadata as a means of finding relevant information, and for integrating sources from varying

computer platforms and database management systems. In that respect, metadata resembles the Rosetta

Stone that translated between the Greek, Demotic and Hieroglyphics languages (Jeffery, 2000).

Types of Metadata

Metadata, then, describes data sources such as files and relational databases, and in addition any records

within those repositories. Attaching metadata provides a means whereby machines might interpret any

associated data. In practice, metadata reflects the structure of underlying information, and assists in

distilling knowledge from data. In addition, metadata helps to refine queries so that they return what

users actually request; metadata might further explain to users the processing involved in answering

queries. There are, though, three types of metadata. The first type is schema metadata that dictates

what can be held in any given information base. Associative metadata, on the other hand, links records

together, even though such connections might be unclear in any underlying data. The last type of

metadata is the navigational variety, which describes routes between schema and associative metadata

(Jeffery, 2000).

The term ‘schema metadata’ well describes the intensional knowledge introduced in Chapter 2; as was

noted, though, that form of knowledge is usually created before any actual records. Due to mind map-

ping’s lack of schema metadata, such intensional knowledge was generated from extensional knowledge

encoded as GRiST mind maps. Corresponding metadata views mind maps as relations, and nodes as

tuples, which gave rise to a structure based on tuples such as nodeID → nodeID and nodeID → concept.

By means of such tuples, metadata arising from in GRiST mind maps will indicate specific instances of

related nodes and concepts.

Such metadata reflect any results retained from CA and WordNet; viewed as associative metadata,

such knowledge served to links records together, as Chapter 8 showed in novel mind maps created from
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HC clusters. Further associative metadata for spelling corrections Chapters 3 allows corrected words to

be retrieved on demand, rather than applied to existing nodes. In addition, stems from 4 reflect differing

forms of general concepts contained in GRiST mind maps. As Jeffery (2000) noted, associative metadata

further helps users to visualise and explain information. In that spirit, FreeMind’s arrow pointers, intro-

duced in Chapter 8, depicted relationships across nodes, and augmented the strict hierarchical nature of

mind maps as demanded by Buzan (2003). As well as drawing together mind map concepts, associative

metadata from experiments reported earlier will allow users to review evidence for automated decisions,

by means of metadata about metadata.

Although the name ‘navigational’ suggests actively helping users to find resources, that type of meta-

data in fact serves just to map between schema metadata and the associative type. Experiments reported

earlier have shown that role to be filled, in part, by bespoke Java classes; such objects mediated between

intensional knowledge held as metadata and extensional knowledge in GRiST mind maps. In that way,

key concepts from GRiST mind maps will be mapped while individual nodes are left unchanged. Such

mappings, then, will be held separately as metadata. Accordingly, the next section addresses a so-called

native XML database that will hold such knowledge in discrete compartments.
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9.4 Xindice: a Native XML Database

Treating XML documents themselves as a flat-file database suffers a major drawback: it lacks any innate

facility for accessing such data. In fact, the importance of XML has led to databases that store data in

that format; Xindice is one such native XML database1. In addition to offering a convenient repository

for XML documents, Xindice provides a means of searching and retrieving such data (The Apache XML

Project, 2007).

Despite holding just semi-structured data, any XML database must support the basic functions of a

Data Base Management System (DBMS), such as query management, and processing updates. Any XML

database should further provide a means of managing both actual data and metadata (Thuraisingham,

2002). Xindice meets those demands by providing a basic command-line interface that works under

both Windows and Linux. The first step in creating a database is to define collections through that

command line. Collections are the basic unit of storage within Xindice; in that respect, Xindice collections

correspond to tablespaces in relational databases. All collections are treated as isolated resources, as

are any sub-collections they might contain. Standard backup and recovery procedures are applied to

collections by simply copying files that constitute any database (The Apache XML Project, 2007).

In addition to such basic management functions, Xindice fulfils further requirements of a DBMS, one of

which concerns retrieving data by means of queries. In Xindice, queries are couched in a format called

XQuery; that, in turn, uses a further XML tool, XPath, to identify XML elements. By itself, though,

XPath does actually return any information: that is done by Xindice. XPath further underpins the

XUpdate format that mediates database changes. Final support for Xindice as a DBMS comes from

a facility for indexing data, which enhances retrieval in a similar way as in relational databases (The

Apache XML Project, 2007). All of those DBMS-like features will be addressed shortly; for now, though,

attention turns to the actual XML held in Xindice collections. After that, sections on querying and

updating the database will make use of that XML repository.

1Xindice may be pronounced with an Italian lilt, ‘Xeen-DEE-chay’, if so desired (The Apache XML Project, 2007).
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9.5 A Database of GRiST Mind Maps

An XML-centric approach, then, suggests using a database in that same format; the one chosen here,

Xindice, will hold both mind maps and metadata. To that end, the first part of this section describes the

creation the mind map portion of that database. Having created and loaded that partition, the process

of retrieving mind map nodes is described, after which comes a way of retrieving entire paths of nodes

from Xindice. Subsequently, a similar process is described for holding metadata in a separate part of

that database. In addition to metadata that denotes related nodes, a further type depicts nodes that

are better kept apart, due to antonymy in WordNet or to over-stemming conflating too large a range of

words. The first of those tasks, then, is to create the required partitions in Xindice.

Creating A Xindice Collection for Mind Maps and Metadata

The Xindice command line comprises a shell script called xindice.sh. All commands from that interface

follow a basic format, and use various parameters to express any required actions and resources. The first

such parameter is the operation required; for example, the argument ac indicates that a new collection is

to be created. Following that first argument, the -c argument always specifies the desired collection, in

terms of the Hyper-Text Transfer Protocol (HTTP). Rather than an external web site, though, developers

use a local service at HTTP port 8080; that port accesses the Tomcat Java Servlet container at the URL

localhost provided by Tomcat (The Apache Software Foundation, 2010).

Command-Line Access to Xindice, by means of Tomcat

Tomcat, then, interprets and executes commands from Java classes that comprise Xindice, routing re-

quests and delivering results over the Internet. In addition to any desired actions and resource locations,

commands that manage collections further take the name of the desired collection, within the top-level

collection given by the -c parameter. In that way, Figure 9.2 shows the creation of a new collection for

holding GRiST mind maps; the ac command requires Xindice to ‘add collection’ within the database

specified by the -c parameter, xmldb:xindice://localhost:8080/db. The name of that new collection,

mindmaps, is given by the -n parameter:

> xindice.sh ac -c xmldb:xindice://localhost:8080/db -n mindmaps

trying to register database

Created : xmldb:xindice://localhost:8080/db/mindmaps

Figure 9.2: Creating a Xindice collection for GRiST mind maps

The collection specified by -c in Figure 9.2 was actually the top level of the database, db. After ‘trying to
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register database’, Xindice announced success in creating the required collection1. In a similar way, the

‘list collections’ command lc provides information about the database. That command gave the top-level

collections listed in Figure 9.3 for the main db collection:

> xindice.sh lc -c xmldb:xindice://localhost:8080/db

mindmaps
meta
system

Total collections: 3

Figure 9.3: Main collections within Xindice.

The lc command, then, retrieves ‘child’ collections from within the one named in the -c argument.

Of the three resulting collections, ‘system’ and ‘meta’ already existed, for Xindice’s own use. The new

‘mindmaps’ collection, in contrast, was created to hold user-data in the form of GRiST mind maps.

Subsequently, that new collection was populated by a variant of the ‘add document‘ command, ad. In

fact, mind maps from a single local folder were loaded by the addmultiple command. Figure 9.4 shows

the -f argument used to specify that directory:

> xindice.sh addmultiple -c xmldb:xindice://localhost:8080/db/mindmaps

-f /home/keith/mindmaps

Reading files from: /home/keith/mindmaps

Added document xmldb:xindice://localhost:8080/db/mindmaps/02-condensed.mm. . .
Added document xmldb:xindice://localhost:8080/db/mindmaps/73-condensed.mm

Figure 9.4: Loading GRiST mind maps into a Xindice collection.

Just the first and last XML files to be loaded appear in Figure 9.4, for brevity1. In that way, novel mind

maps might be added from any source, given the required permission. Proof that mind maps from Figure

9.4 were loaded successfully came from the ‘list documents’ command ld shown in Figure 9.5; in the

same was as in the preceding example, just Xindice’s first and last responses are shown:

> xindice.sh ld -c xmldb:xindice://localhost:8080/db/mindmaps

02-condensed.mm. . .
73-condensed.mm

Total documents: 46

Figure 9.5: Mind maps loaded into Xindice as XML documents.

Figure 9.5 shows that all forty-six GRiST mind maps were loaded successfully. Although mind maps are

pure XML, Xindice added a header to each mind map, in order to explicitly declare the XML content in

the form <?xml version=1.0?>.

1The message ‘trying to register database’ is hard-coded into Xindice, and is omitted from subsequent examples.
1Note that GRiST mind maps were not numbered sequentially; there were, in fact, just 46 GRiST mind maps.
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Accessing Xindice by means of Web Browsers

Rather than viewing mind map XML directly in Mozilla, the so-called ‘dirty debug tool’ that comes

with Xindice was used; all the same, that tool uses Mozilla or any other web browser, such as Internet

Explorer™. Figure 9.6 shows the contents of Xindice’s ‘mind maps’ collection; individual mind map

documents are listed on the left-hand side, while the right-hand side shows detail of the condensed mind

map from GRiST expert 02:
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Figure 9.6: Detail from the ‘mindmaps’ collection of the Xindice database.
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The browser’s address bar from Figure 9.6 shows the full URL of the mind map in the main data

window. The first line of that window shows the mindmaps collection as a sub-collection of the main

one, db. Underneath that entry, to the left, the mind map displayed in the right-hand panel appears

highlighted, and takes its name from the particular XML file, 02-condensed.mm, that was originally

loaded into Xindice. That file name is reflected in the corresponding XML document, in the right-hand

panel.

The second line of the panel from Figure 9.6 shows the XML header added by Xindice, while remaining

XML in that that right-hand panel is pure FreeMind. That XML shows node elements to have two main

attributes: a unique numeric ID, and an associated TEXT attribute. Further attributes, such as FOLDED,

control the FreeMind GUI. Although subsequent queries concerned with modelling knowledge ignored

such attributes, they were retained so that mind maps might be loaded directly from Xindice; that will

be shown shortly, in chapter 10.

Adding an Index to the Xindice Database

The unique ID attribute allowed XPath to identify specific nodes; in that sense, ID acted in the same

way as do primary keys for relational databases. Indeed, such keys arise from the process of abstraction

and normalisation described in Chapter 2; for GRiST mind maps, though, that was applied to existing

mind maps, rather than acting as schema metadata. All the same, a further similarity arose between the

two types of DBMS, namely, an index on such unique IDs.
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Figure 9.5 shows Xindice’s add indexer command building an index called index-1, with the -p option

specifying that it should be compiled from the ID attributes of corresponding node elements, expressed

as node@ID:

> xindice.sh add indexer -c xmldb:xindice://localhost:8080/db/mindmaps

-n index-1 -p node@ID

CREATED : index-1

Figure 9.7: A unique index based on ID attributes.

As a result of the index built in Figure 9.5, XML elements are identified more quickly; more importantly,

a sole representative for several identical nodes is easily identified within the mindmaps collection. That

becomes clear in the next section, which deals with retrieving XML elements from Xindice.

Retrieving Mind Map Nodes from Xindice

Queries to Xindice are framed as XPath expressions that identify parts of an XML document. XPath

expressions are composed of location paths that comprise one or more location steps; individual steps

are separated by the character ‘/’. Each step has a predicate that filters the results from any preceding

steps; predicates use functions such as contains() to identify any required XML elements. Single-step

location paths suffice to find nodes having a specific text string, while more complex XPath expressions

arise from combining location steps into a composite location path (Clark & Derose, 1999).

Figure 9.8 shows the result of running a simple query against the mindmaps collection, by means of

the xpath command. Following the standard -c flag that specified the required collection, the XPath

expression itself appears after the -q option; in this case, the expression [@ID=‘13137’)] requested a

specific node whose ID attribute was set to the unique key ‘13137’. Following that query comes a single

result, as an instance of the element xq:result:

> xindice.sh xpath -c xmldb:xindice://localhost:8080/db/mindmaps

-q "//node[@ID=‘13137’)]/attribute::TEXT"

<xq:result TEXT="history"

xq:col="/db/mindmaps"

xq:key="02-condensed.mm">

Figure 9.8: Retrieving a specific node from the mindmaps collection.

The second line of the expression from Figure 9.8 uses //node to instruct XPath to process node elements

from the root downwards, in search of the key ‘13137’. The particular node under consideration at any

instant is called the context node, to which functions such as contains() are applied. The second step

subsequently acts on any nodes identified by that first step, and uses, attribute::TEXT to request just
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the TEXT attributes of nodes from the first step1. That expression further demonstrates the use of ‘axes’

within XPath; the attribute axis contains just attributes of nodes from preceding steps, while, say, the

child axis contains just nodes contained within any nodes identified. (Clark & Derose, 1999).

Output from Queries that Research Xindice

Output from the query in Figure 9.8 comprised a xq:result element; the prefix xq: refers to a names-

pace that lists XML elements defined for XQuery2. Elements from that namespace dictate that any

xq:result element must contain the results of a query, along with two other xq: attributes. Those extra

attributes show the source of any result: xq:col names the originating collection, while xq:key gives

the XML document within that collection. A similar format appears in Figure 9.9, where the XPath

expression [contains(@TEXT,‘abus’)] specified nodes having TEXT attributes that contained the stem

‘abus’. Because no particular node was requested by means of a unique key, seventy-three xq:result

elements arose for nodes containing ‘abus’, of which just one is shown as an example:

> xindice.sh xpath -c xmldb:xindice://localhost:8080/db/mindmaps

-q "//node[contains(@TEXT,‘abus’)]/attribute::TEXT"

<xq:result TEXT="abuse to client"

xq:col="/db/mindmaps"

xq:key="02-condensed.mm">

Figure 9.9: Retrieving nodes conflated by ‘abus’ from the mindmaps collection.

As was the case for queries specifying particular node keys, the query from Figure 9.9 returned just single

nodes from Xindice. A second facility of XPath, though, was useful in retrieving the full paths of nodes

from GRiST mind maps, as is discussed next.

Retrieving Node Paths from Xindice

Chapter 8 combined the full paths of mind map nodes into more representative structures; such paths

were, in fact, retrieved by extending the basic XPath expression from Figure 9.8. Rather than the full

Xindice query, just the XPath component appears next, first in full, and subsequently as successive steps:

xpath //node[@ID="10238"]/ancestor-or-self::node/attribute::ID

Step 1: //node[@ID="10238"] Identify the node having an ID attribute set to ‘10238’.

2: /ancestor-or-self::node Node 10238 itself, plus ancestors up to the root node.

3: /attribute::ID Select just ID attributes of nodes from step 2.

1Without that attribute::TEXT axis, Xindice returns the full sub-hierarchy above any matching node.
2Although not displayed, the namespace in Figure 9.8 was xmlns:xq="http://xml.apache.org/xindice/Query".
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Step 1 used a unique ID to identify node key 10238; having selected that context node, step 2 ascended

the node hierarchy back towards the root, by means of the ancestor-or-self axis. That axis worked by

first identifying the parent of node 10238 from step 1, followed by the parent of that immediate parent,

and so on. The final element was the root node of the mind map that contained node 10238. Finally,

step 3 used the attribute axis to strip away all but the ID attributes of nodes from such paths. Table

9.1 shows nodes from the resulting path, with the required node 10238 as the final entry:

Level ID Text

Root 10047 condensed 15

0 10209 self neglect

1 10231 assessment

2 10232 client presentation

3 10237 bruising

4 10238 suggests someone abusing them

Table 9.1: The full path to node 10238, from the XPath expression in Figure 9.9.

Retrieving just ID attributes minimised the amount of information processed by the intense recursive

processing required to identify ancestor nodes. Node texts themselves were subsequently fetched sepa-

rately for each key in any path; that was done by efficient queries that specified such unique keys. In

fact, texts were reattached to respective nodes by means of Java classes, although it might well be done

in XPath itself.

In fact, searching just for keys mimics an aspect of relational databases, in that the database proper need

not be searched. Rather, the single field required was held in the index defined earlier; such ‘index-only’

retrieval is very efficient, as response times demonstrate. Take, for example, nodes containing the stem

‘abus’ that were retrieved by the XPath expression from Figure 9.9. Without a unique index on the ID

attribute, retrieving paths for those nodes took 64,028 milliseconds, or just over a minute. Creating the

index brought that down to 1,856 milliseconds: under two seconds. While such improved response times

are not the primary aim here, they permit forms of analysis that make the database do most of the work.

9.6 A Database of GRiST Metadata

Having identified metadata, a repository is needed to store it. In fact, metadata can be encoded as XML

(Thuraisingham, 2002; Jeffery, 2000), suggesting the Xindice database as just such a repository, although

using a separate partition to the GRiST mind maps. Schema metadata used here dictate fields within

tuples, for example as nodeID → concept, where concept holds values such as ‘abuse’. Field names in

that tuple are schema metadata, while actual values are associative metadata; in that way, metadata

relate specific values together. Those first two types of metadata in turn act as navigational metadata,
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by which Chapter 10 extends the FreeMind GUI. Having identified metadata, then, a medium is needed

in which to store it; the Xindice database offers just such a repository, as shown next.

Creating Xindice Collections for Metadata

Alongside the ‘mindmaps’ collection at the top level of the database, a separate main collection was named

‘metadata’. Three types of metadata were stored in that collection. The first type was for stems that

identified related word forms; in fact, stems were called ‘keys’ within the database, reflecting their role as

an access method. The second type of metadata comprised words that should not be conflated by a given

stem, to avoid grouping too wide a range of words; the third type further stored spelling corrections that

were applied dynamically to nodes, on reading them from the database. To accommodate those three

types of metadata, sub-collections were created within the main ‘metadata’ collection. Figure 9.10 shows

the resulting child collections by means of the ‘list collections’ command, lc:

> xindice.sh lc -c xmldb:xindice://localhost:8080/db/metadata

keys
exclusive-keys
corrections

Total collections: 3

Figure 9.10: Sub-collections of the main ‘metadata’ collection

Those three sub-collections each contained a single document for storing metadata elements. Figure 9.11

shows one such document under the ‘keys’ metadata collection; that information came from the ‘list

documents’ command, ld, for the specified collection:

> xindice.sh ld -c xmldb:xindice://localhost:8080/db/metadata/keys

keys-root

Total documents: 1

Figure 9.11: The ‘keys-root’ XML document in the ‘metadata/keys’ collection.

Figure 9.11 shows that the document keys-root was created in the keys collection, which was contained

in turn within the top-level metadata collection. That new document, though, was empty; accordingly,

a sole XML element called keys was added. That element constituted a root node for any subsequent

queries or updates, which require a context node on which to operate.

The result, then, was a sub-collection that stored stems, which comprised secondary keys in addition

to the main access route of nodeID. That new XML document contained a sole element, further called

keys. Actual metadata were stored as child nodes of that document-level element, as Figure 9.12 shows

for metadata about stem keys:
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Figure 9.12: Example of XML for holding keys metadata.

Individual key elements from Figure 9.12 were, then, nested within the overall keys element at the root of

a document. In that way, the collection for a specific type of metadata was primed with a single-element

document; actual stems comprised key elements nested within the document’s root element. In a similar

way, the remaining two metadata collections were primed with documents called corrections-root and

exclusive-keys-root, with respective XML elements called corrections and exclusive-keys.

A similar situation existed for spelling metadata, but with two attributes instead of just one. Figure

9.13 shows that the first attribute, WORD1, reflected a spelling error, while WORD2 supplied a correction:

Figure 9.13: Example of XML for holding spelling correction metadata.

Whereas spelling metadata from Figure 9.13 required just pairs of WORD attributes, the third type

of metadata had to cater for any number of words that should be processed separately; that is done by

means of STEM elements. Figure 9.14 shows such metadata for two examples. The first is for the words

‘male’ and ‘female’ that were conflated by ‘male’. WordNet reported those words to be antonyms, and

should be treated separately; all the same, they are marked as related by the TYPE attribute. The second

example involves the key ‘form’ that identified a variety of words that should be handled in isolation:

Figure 9.14: Example of XML for holding exclusive-keys metadata.

Metadata from Figure 9.14 allows software to process words separately, or together; regardless, the

distinction can be made clear to users. Having determined what metadata must be stored, then, the next

section describes the exact mechanism for creating metadata in Xindice.
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Creating Metadata in Xindice

XML elements for metadata contain one, two, or several attributes, depending on the type; all types,

thought, are treated in a similar fashion. In fact, metadata for spelling corrections is used to demonstrate

how new elements were added. That type took just two attributes: one for any misspelling, and another

for the corresponding correction. For any such pair, XUpdate appended a new correction element to

the root element, corrections. The syntax of XUpdate was similar to that of XQuery, and used XPath

to identify an appropriate root element. Figure 9.15 gives the XML for adding a single new correction:

Figure 9.15: XUpdate XML for appending a new correction element

The short name xu: is from the XUpdate namespace, which defines the required elements. The xu:append

element on the second line indicates where to add the new child element; that is under the corrections

root element, as specified by the select attribute. Line 3 shows that a new correction element is to

be added. Lines 4 and 5 give the required WORD attributes, before remaining entries close all higher level

elements. The resulting XML is sent to Xindice for processing.

Retrieving Metadata

In fact, metadata about stem keys is the most easily retrieved: the XPath expression for that was simply

"/keys", to list all elements in the keys-root document. The resulting list of key elements provided

the required stems as TEXT attributes. Further types of metadata, though, required more processing. In

particular, exclusive stems might have multiple STEM attributes; for any given stem, then, bespoke Java

classes interrogated the database for exclusions. Such cases arose from grouping too broad a variety of

words, for example, the words ‘inform’ and ‘formal’ that were conflated by ‘form’. Metadata, though,

allowed XPath to keep those words separate.
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To that end, XPath had to identify exclusive-key elements corresponding to any given word. Figure

9.16 shows how the Java class MindmapMetadata used those entries. The filter @*=‘inform’ in the first

line matches any XML attribute that contains the word ‘inform’, on whatever element. The next entry

shows the resulting metadata, which had three STEM attributes, of which STEM3 was set to ‘inform’. The

line after that shows the automated decision to treat those stems separately, due to the spread of L′

for corresponding words. Following that is an XPath expression that identifies words closely related to

‘inform’, by excluding words conflated by ‘formal’. The final entry shows the six words actually conflated

by the stem ‘inform’:

xPathExpression = //exclusive[@*=‘inform’]

<exclusive STEM1="form" STEM2="formal" STEM3="inform"/>

keep INFORM separate from: FORM FORMAL

required xPathExpression =

//node[contains(@TEXT,‘inform’)][not(contains(@TEXT,‘formal’))]

6 filtered word(s) for "inform": inform, informs, informed,

informing, informants, information

Figure 9.16: XPath expression for selecting exclusive-key metadata

The third entry in the XPath expression from Figure 9.16 used the contains() function to identify the

desired nodes bearing the stem ‘inform’, while the not() function removed unrelated words stemmed by

‘formal’ from any results. Combining two conditions in that way identified nodes that contained ‘inform’,

but not the word ‘formal’; because ‘informal’ contains both, it was ignored. No check was needed for

the word ‘form’, as it was shorter than either ‘inform’ or ‘formal’, and would conflated a wider group of

words. All the same, concepts might be shown as related by setting the corresponding TYPE attribute.

Because TEXT attributes are treated as entire strings, though, a problem would arise for any node

containing both ‘inform’ and ‘informal’; without further analysis by Java code, version 1.1 of XPath used

in Xindice would fail. In fact, version 2 of XPath allows for smaller sub-strings, called tokens (Clark &

Derose, 1999). Tokenising text would permit XPath to check individual words within nodes; for that

reason, the adoption of version 2 by Xindice would be welcomed.
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9.7 Implementation Considerations

FreeMind stores mind maps as XML, which can be parsed by software to produce data structures for

analysis; in developing GRiST, that involved software written ion Lisp. That programming language was

well suited to representing hierarchical structures, and to recursive analyses that extracted information

from such trees. In fact, those Lisp programmes converted FreeMind XML into a more general format,

for display in web browsers and accompanying client-side software created in Macromedia Flash. In that

way, participants in GRiST were able to review their own interview data, and further to gain an overall

view of collected experts’ ideas (Buckingham & Adams, 2006).

Changing and Augmenting FreeMind

In contrast, the approach taken here was to process FreeMind XML directly, and to present any results by

means of that same GUI. In fact, FreeMind was written in a freely available programming language called

Java (Sun Microsystems Inc., n.d.), which is based on the technique of Object Orientated Programming

(OOP); that approach stresses the reuse of existing programmes, known as classes. Reusing existing code

requires the key word extends, as Figure 9.17 shows for a class called AstonFreeMind:

public class AstonFreeMind extends FreeMind {
}

Figure 9.17: Extending the FreeMind Java class, to create AstonFreeMind.

The resulting AstonFreeMind class from Figure 9.17 provided all the functionality of the parent class,

FreeMind; additional code was needed just for altering that functionality, and for adding facilities. The

first such amendment was to remove the first two navigation buttons from the main tool bar; those

two buttons respectively comprised the ‘next’ and ‘previous’ controls. To that end, Figure 9.18 shows

Java code that retrieved an array of panel sub-components, from a FreeMind instance referenced by the

reserved word ‘this’:

Component[] components = this.getContentPane().getComponents();

MainToolBar mainToolBar = (MainToolBar)components[0];

mainToolBar.remove(0);

mainToolBar.remove(0);

Figure 9.18: Removing unwanted FreeMind options from the novel AstonFreeMind class.
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In fact, that main tool bar retrieved in Figure 9.18 was the first sub-component within any FreeMind

instance, at index ‘0’, from which the first two entries were removed. The ‘cast’ denoted by parentheses

forced retrieved components to take the form of MainToolBar objects. Subsequently, the first two entries

were removed by their successive positions at the front of the list supplied by FreeMind. Although that

Java code has repeated references to array index 0, the first occurrence removes the entry at the beginning

of that list, promoting what was previously the second element to the front, for the second invocation of

remove().

Restricting FreeMind’s File Operations

The second change made to FreeMind’s standard behaviour was to read mind maps from the mindmaps

collection within Xindice; further, any changes or novel mind maps were written to separate XML files,

in order to ensure the database’s integrity. To that end, FreeMind’s options for opening and saving mind

maps as XML documents were deactivated; first of all, though, the existing ‘Save’ menu was retrieved

from the FreeMind menu bar by means of the following bespoke Java method, getMenu() presented next

That method takes as arguments the name of the desired menu, and the actual FreeMind menu bar object

on which it lies. Successive menus are retrieved by means of Java’s native menuBar.getItem() method,

for as many as are reported by the variable menuBar.getMenuCount(). Each menu’s name is checked,

and the position of the required menu stored in the variable menuIndex, which terminates the search:

private int getMenu(String menuName, MenuBar menuBar) {

int menuIndex = -1;

for (int i = 0; menuIndex < 0 && i < menuBar.getMenuCount();++i; {

JMenuItem menuItem = menuBar.getItem(i);

if (jMenu.getText().equals(menuName)) {
menuIndex = i;

}
}
return menuIndex;

}

Figure 9.19: The bespoke Java method getMenu() from the AstonFreeMind class.

Passing the name ‘Save’ to the getMenu() method from 9.19 retrieved the position of that menu item

on the main FreeMind menu bar, which appears at the top of the GUI. That, in fact, was a drawback

of Java: lists of components on GUIs have to be searched for any desired object. Although more direct

access might be allowed by novel code, Java lacks any direct mappings between components and their

position on the GUI.
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Having provided a means of retrieving menu objects, then, code in Figure 9.20 retrieves of the Free-

Mind menu bar, from which it subsequently removes of the ‘Save’ menu item at the corresponding index,

should it be an acceptable value. Subsequently, a bespoke ‘Save As’ option is added back to the menu bar

in the form of Java’s built-in JMenuItem class. To that new item is added a MouseListener object that

detects mouse movements and clicks, which are handled by means of an ‘new’ instance of the bespoke

Java class SaveAsProcessor() to produce the required changes in FreeMind’s file handling:

MenuBar menuBar = this.getFreeMindMenuBar();

int menuIndex = getMenu("Save", menuBar);

if menuIndex > -1) {
mainMenu.remove(menuIndex);

JMenuItem saveAs = new JMenuItem();

saveAs.addMouseListener(new SaveAsProcessor());

mainMenu.add(saveAs);

}

Figure 9.20: Replacing the ‘Save As’ dialogue in the AstonFreeMind class.

By means of the SaveAsProcessor() class from Figure 9.20, then, a new ‘save as’ option committed

updated GRiST mind maps as novel XML documents, outside Xindice. Further, generated combined and

normalised maps might be stored for later retrieval. That, in turn, meant replacing various ‘listeners’

that invoked custom code according to whatever key was pressed, or mouse button clicked. Particular

actions, then, were specified by attaching independent listeners to each button of interest. In a similar

way as for the existing ‘Save’ menu, FreeMind’s ‘New’ and ‘Open’ options were removed from the main

menu; those options, though, were not reintroduced in any form.

Additional Options for FreeMind’s Node Menus

In addition to the main FreeMind menu bar, right-clicking on individual nodes yields pop-up menus of

available options; such node-level menus were further modified to deactivate options that might not apply,

say, due a lack of relevant metadata for any given node.

The Java code from Figure 9.22 started by calling the getMenu() method. That method, though, was

not the one from Figure 9.19; rather, a further method of that name took just the required menu as an

argument, and processed FreeMind’s ‘node’ menu without needing that object as a parameter. Such ‘over-

riding’ allows Java to recognise methods that, while having the same name, have differing ‘signatures’

of arguments. The first two statements, then, derive the dimensions of the new pop-up in terms of

the current FreeMind GUI; the pop-up is half the width and height of the containing panel. The third

statement creates the actual pop-up as a new instance of FreeMind, while the succeeding three lines
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int AstonIndex = getMenu("Aston Options");

for (int i = 0; AstonIndex > -1 && i < 4

&& i < jToolBar.getComponentCount(); ++i; {
Component component = jToolBar.getComponent(i);

component.setEnabled(false);

}

Figure 9.21: Enabling the menu of ‘Aston Options’ in the AstonFreeMind class.

respectively hide the standard toolbar, sets the pop-up dimensions, and further sets the ‘zoom’ level to

adjust the size of the resulting mind map. Lastly, the new pop-up is added to the main FreeMind GUI:

Double width = this.getSize().getWidth() / 2;

Double height = this.getSize().getHeight() / 2;

FreeMind popUp = new FreeMind();

popUp.getController().setToolbarVisible(false);

popUp.setPreferredSize(width, height);

popUp.getView().setZoom((float) 0.75);

this.getContentPane().getComponents().add(popUp);

Figure 9.22: Creating a pop-up window within the FreeMind GUI of the AstonFreeMind class.

The code from Figure 9.22 shows the OOP nature of FreeMind’s style of Java; by means of the variable

this, an entire FreeMind GUI was made available for manipulation. In that way, various new menus were

added to FreeMind, while certain standard options were removed or redirected. That ability to retrieve

entire FreeMind objects further helped to identify the keys of whatever nodes were selected. The example

given in Figure 9.23 shows how individual nodes were obtained from FreeMind; that process starts by

retrieving the MapView object, provided by the standard FreeMind class, that holds any mind map node

hierarchy. Subsequently, an associated NodeView object returns whatever nodes were selected, with the

actual nodes appearing from the getModel() method:

MapView mapView = this.getView();

NodeView nodeView = mapView.getSelected();

MindMapNode node = nodeView.getModel();

Figure 9.23: Creating a pop-up window within the FreeMind GUI of the AstonFreeMind class.
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Java code from Figures 9.18 to 9.23, then, showed ways in which control was taken from FreeMind itself,

and passed to novel code in the AstomFreeMind class. In order to put those separate components together,

attention turns next to an overview of a proposed system having, at its heart, the forty-six GRiST mind

maps held in Xindice, and the metadata arising from this thesis.

An Overview of the Proposed System.

The proposed system, then, relies on GRiST mind maps and any corresponding metadata held in Xindice.

Along with Java’s facility with XML, that promoted the XML-centric development encouraged by Wilde

(2006). In addition to actual Xindice data, XML provided a mechanism for querying the database,

and for transporting results back to users. As a result, XML elements both from mind maps and from

metadata collections were identified by XPath, and returned by way of HTTP, making Xindice available

both from a command line and from Java classes. In fact, that was done by means of a new class called

MindMapMetadata, which relied on a further new class, XindiceCollection, to connect to the required

Xindice collection. For easier command line usage, both of those classes were invoked by a third, called

XRun, that required two arguments: the last part of a collection name, and a XPath expression.

Part One: Extracting Knowledge from GRiST Mind Maps.

Such communication with Xindice allowed GRiST mind maps to be readily accessed, and further stored

additional knowledge held as metadata. The first of those types arose from spelling correction; that

process appears in the top part of Figure 9.24, where FreeMind XML from GRiST mind maps checked

for spelling errors. Suggested replacements from Jazzy were refined by means of L′, and any accepted

corrections stored in Xindice. In a similar way, stems identified in the bottom part of Figure 9.24 are

written to the database; Xindice itself appears to the right-hand side, adjacent to the Tomcat servlet

container that mediates communication between Java objects and Xindice:
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Figure 9.24: Implementation Diagram I
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The two novel classes from Figure 9.24, then, mediated communication with Xindice; those classes,

MindmapMetadata and XindiceCollection, might in fact store any XML data in a web-orientated format.

That suggests a more general use of Xindice, as an alternative to the SQL databases that currently support

dynamic web sites. Developing such systems is assisted by the Tomcat container, which eases development

by mimicking web site behaviour. In fact, the MindmapMetadata class handled all transfers of data. On

receiving a request for data from Xindice, a new XindiceCollection object established a connection; on

completion, MindmapMetadata returned lists of XML elements from XindiceCollection and closed the

corresponding connection.

Part Two: Applying Knowledge to GRiST Mind Maps.

Having extracted spelling corrections and stems from GRiST mind maps, the second phase involved

WordNet, and three new Java classes. The first of those was MindmapPOSAnalysis that performed CA

on prepositions and meta-type pairs, while the second, MindmapPathsAnalysis, provided metadata for

generating novel mind maps. In turn, those classes invoked a class called AutoCA to perform CA and

to interpret any results. Accordingly, Figure 9.24 shows just those three new classes, and omits the

MindmapMetadata and XindiceCollection classes introduced previously. Further, the Xindice database

appears at the top of Figure 9.24; Java classes on the left-hand side used CA to disambiguate Word-

Net entries, while classes to the right used WordNet to conflate nodes by meaning, in addition to any

morphological similarities:
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Figure 9.25: Implementation Diagram II
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9.8. CHAPTER SUMMARY

The combination of Figures 9.24 and 9.25, then, yielded a system for interacting with knowledge from

GRiST mind maps. By means of the Xindice XML database, and Java’s facility for handling XML, the

resulting system followed the XML-centric approach espoused by Wilde (2006). The resulting information

base of expert mental health knowledge stored unambiguous concepts and related nodes, which formed

the basis for the final phase; that comes after a summary of this chapter.

9.8 Chapter Summary

This chapter introduced XML as a flexible way of holding data. Indeed, FreeMind uses XML to represent

mind maps. In contrast to, say, relational databases, XML represents just semi-structured data; that

makes metadata all the more important, so as to impose more structure on such data. Indeed, the system

described here adopted the approach of XML-centric development’, which reflected the use of end-to-end

XML in this thesis.

Following that introduction came an overview of the Xindice XML database, which provided a con-

venient repository for both mind maps and metadata. Xindice was shown to posses important features

of any DBMS, including support for separate collections, query management, and update processing; in

addition, XPath was introduced as vital to those activities. XML from FreeMind node hierarchies was

loaded directly into a Xindice collection, with text held as attributes of generic node elements. The

Xindice command line was used to create and populate the database; subsequently, queries of varying

complexity showed how mind map nodes were retrieved by XQuery and XPath. Notably, a unique index

greatly speeded up some of those queries.

Following that overview of Xindice, metadata were described as vital to future information systems.

Having identified metadata, Xindice offered an ideal repository for any resulting XML, in that separate

collections kept metadata apart from GRiST mind maps. Within the corresponding metadata collection

were created three sub-collections, one for each type of metadata; that was done by means of XUpdate,

which added new metadata elements to the database. One particular type of metadata stored exclusive

stems, which were best treated separately; that allowed a flexible approach to handling words conflated

by such stems. To that end, adoption of version 2 of XPath for Xindice was strongly encouraged.

Lastly, various Java classes were shown in relation to the Xindice database for mind maps and meta-

data. Two particular classes mediated all communication with Xindice. By means of those helper classes,

mind map nodes and associated metadata were retrieved precisely, and swiftly. Indeed, such databases

are seen as useful in wider applications for the Internet, which might well become the next important

generation of databases. Certainly, XML technologies performed well in the approach reported here; the

culmination of that work forms the penultimate chapter of this thesis.
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10.1 Introduction

In Chapter 9, the FreeMind Java class was extended to create a novel class called AstonFreeMind, which

was augmented by means of new facilities. The first such amendment was to remove certain navigation

buttons from the main tool bar; those buttons offered options that processed mind maps outside Xindice.

The second change to FreeMind involved reading mind maps from Xindice’s mindmaps collection, with

any changes or novel mind maps written to separate XML files. To that end, FreeMind’s options for

opening and saving mind maps as XML documents were deactivated, and a bespoke ‘Save’ used instead.

In addition to the main FreeMind menu bar, pop-up menus from the ‘nodes’ menu further gave access

to metadata gathered during this thesis. The FreeMind interface, then, was tailored to maintain the

integrity of the Xindice database, and to display ‘Aston Options’ that present mind maps created from

metadata stored in Xindice. Indeed, raw metadata should be presented in a way that is amenable to

humans (Berners-Lee, 1997); such a facility is provided by the Graphic User Interface (GUI) described

next. That GUI comprises parts, the first being a work space for GRiST researchers and panellists, which

allows easy access to the mind maps that underpin the project. Following that come novel menu options

that operate on entire mind maps, and further options available for individual nodes.
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10.2 A Work Space for GRiST

The panel shown in Figure 10.1 is the initial display of the new AstonFreeMind class, which retrieves the

names of GRiST mind maps from Xindice, and generates the required XML to a temporary file. That

file is subsequently loaded by the existing ‘Open’ functionality in FreeMind. The resulting GUI, then,

provides a convenient interface through which to handle the forty six GRiST mind maps:
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Figure 10.1: Initial Screen from the AstonFreeMind GUI

304



10.3. MENU OPTIONS THAT OPERATE ON MIND MAPS

Mind maps represented by nodes in Figure 10.1 can now be opened either individually, in groups, or

all forty-six in one go. Further, selected mind maps may be merged into a single entity by the process

described in Chapter 8.

In addition to nodes carrying the names of mind maps in Figure 10.1, an [Index] node was added

at the bottom right-hand corner, as can be seen in Figure 10.1. Branches from that node allow users to

display metadata gleaned during this thesis. Some of the options provided by this new panel are handled

by the parent FreeMind class, while others reflected bespoke code from AstonFreeMind. Available options

fall into two categories: those that act on whole mind maps, and others that work at the level of individual

nodes. Both types will now be presented in more detail.

10.3 Menu Options that Operate on Mind Maps

One of the new facilities provided by AstonFreeMind appears on the panel in Figure 10.2, and allows

users to open several GRiST mind maps simultaneously; a further option generates a single entity from

paths in the selected mind maps. Those actions are available from a new ‘Aston Options’ entry on the

pop-up menu arising from right-clicking on selected nodes:
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Figure 10.2: Map Options Menu on the AstonFreeMind GUI
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Note that just two options are available in Figure 10.2; the remainder are ‘greyed out’ by means of

retrieving that menu from the FreeMind class, and disabling options that do not operate on entire mind

maps, as described in Chapter 9. Clicking on the ‘Open’ in the new Aston menu, then, opens several

mind maps in separate panels within the main FreeMind GUI. In contrast, the ‘Merge Maps’ option

combines any selected mind maps into a single, un-normalised version, in a sole new panel. Remaining

Aston options are disabled because they operate on particular nodes or on atomic concepts; those options

will be presented in full after having presented mind maps arising from the options that were available.

Multiple panels resulting from the ‘Open’ option need no further explanation; that option opened mind

maps exactly as would FreeMind, except that multiple clicks on the standard ‘Open’ dialogue would be

avoided. Mind maps arising from the ‘Merge’ option, though, will not have been seen before; accordingly,

the result of merging the mind maps selected in Figure 10.2 are presented as a single, un-normalised mind

map in Figure 10.3. That combined version presents the summed knowledge about mental health risks

in the selected mind maps, whose GRiST identifiers appear in the root node:
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In fact, the mind map from Figure 10.3 reflects paths just from the upper levels of the combined mind

map hierarchy; in fact, did not go much further, as just the first three levels were merged. Chapter 8,

though, proposed using structures from overlapping levels as a means of joining separate analyses into

complete, combined mind maps. Although not normalised, such merged mind maps distil knowledge

from selected experts into a graded summary of risk factors. Having, then, shown novel options that act

on entire mind maps, attention turns next to facilities that operate on individual nodes.

10.4 Menu Options that Operate on Mind Map Nodes

Returning to the initial screen from the AstonFreeMind GUI, a further node was added that did not, in

fact, refer to any GRiST mind map. That was the [Index] node from Figure 10.2, which was shown

‘folded’, that is, with child nodes hidden from view; that node is shown unfolded in Figure 10.4 to reveal

a node hierarchy. The stems of various concepts identified in experiments by means of the Levenshtein

Distance, reported in Chapter 4, are presented in alphabetical groups; in this case, shaded entries ‘J’ and

‘N’ have further been unfolded to reveal associated stems:
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The index node for [N] from Figure 10.4, say, lists stems such as ‘judg’ for ‘judging’, ‘judged’ and

‘judgemental’. A right mouse click while positioned over any such index entry identifies paths to nodes

containing the corresponding stem. Those paths can then be combined into two ways; the first is a

cross-reference that displays paths exactly as found in GRiST mind maps, but combined into a single

hierarchy. The second option, in contrast, generates a normalised node hierarchy of more atomic concepts,

and further reorganises correspondences to top-level risk categories. In order to illustrate those options,

Figure 10.5 shows the pop-up menu arising from right-clicking the index node for ‘depress’. On that

menu, options that operate on entire mind maps are unavailable for the [Index] node hierarchy. Instead,

the [XRef] and [Normalise] nodes offer facilities for generating mind maps from paths just to nodes

containing the required stem, to form novel, distinct overviews of particular concepts:
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Figure 10.5: Details from the ‘XRef’ option in Figure 10.2
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The selected node from Figure 10.5, then, identified concepts conflated by the stem ‘depress’; the corre-

sponding right-click menu was modified to reflect available options. The selected cross-reference option

gave a further sub-menu of possible search strings, to allow searching either for all conflated nodes or for

specific morphological forms. In the letter case, that would have meant using the overall stem ‘depress’,

which did not appear as an actual word in any GRiST mind map. The resulting mind map might be

displayed in two ways: as a pop-up window, or as a full-screen mind map in which all permitted FreeMind

options are available. Indeed, the ‘Normalise’ option works in a similar way; accordingly, Figure 10.3

overleaf shows such a normalised mind map in a pop-up window.

The pop-up shown in Figure 10.6, then, presents a normalised version of further paths to nodes

conflated by ‘abus’. Although a separate instance of the novel AstonFreeMind class, that pop-up in fact

allowed just a small sub-set of FreeMind options; apart from moving the new mind map within its smaller

panel, actions are restricted to folding and unfolding nodes:
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The pop-up in Figure 10.6 resulted, in fact, from extra functionality encoded in the novel AstonFreeMind

class; in this case, imbuing FreeMind with a capability for showing nested mind map panels. The pop-up

from Figure 10.6, then, summarised paths to nodes expressing forms of ‘abuse’, with arrows showing any

relationships to a separate group of corresponding risk categories. Using pop-up panels further avoided

cluttering the workspace with multiple open mind maps; all the same, full mind maps may be generated

on demand. When generating normalised mind maps, though, machines relied on metadata from spelling,

CA, and stemming; it is important that such metadata are available for inspection, as shown next.

Berners-Lee (1997) suggests that machines might have a button marked ‘Oh Yeah’ that, when clicked,

would display audit information that justifies decisions made automatically. In that spirit, such a button

was implemented in AstonFreeMind to display metadata relevant to any generated node hierarchy. Figure

10.7 shows the menu that results from clicking the right mouse button on the node [substance misuse];

the existence of metadata for that node made the ‘Oh Yeah’ option available. A further sub-menu listed

just a sole source of metadata, from WordNet:
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Figure 10.7: Details from the ‘Normalise’ option in Figure 10.7
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The pop-up menu in Figure 10.7, then, showed WordNet metadata to be available for the node [substance

misuse]. Selecting that option displayed another pop-up window populated with metadata from Xindice,

so as to address the problem of trust in knowledge-based systems.

A further extension to FreeMind attempted to answer that question, by means of metadata from

the Xindice database. Structures of intensional knowledge held as XML were described in Chapter

9; retrieving those elements by means of XPath queries allowed FreeMind pop-ups to display metadata

associated with specific nodes. Although such keys are not visible in FreeMind itself, the underlying XML

does store them; in that way, the key of any node selected in FreeMind was passed as an argument to

XPath. Metadata retrieved from the XML database were subsequently formatted into a pop-up window,

and displayed in FreeMind.

The means of displaying the ‘Oh Yeah’ pop-up window resembled that described for normalised mind

maps. Accordingly, just detail of the pop-up resulting from clicking Figure 10.7 is reproduced as in Figure

10.8, which shows WordNet metadata for node number 13199, [substance misuse]. Two groups of

WordNet results are evident: one for words related to ‘substance’, with further one noting the relationship

between ‘abuse’ and ‘misuse’:

Figure 10.8: Detail of the ‘Oh Yeah?’ pop-up arising from Figure 10.7

The first three entries in Figure 10.8 show words that appeared in glosses, which constitute examples

of word usage. The next two results come from mutual hypernym pointers in WordNet. Lastly, the

relationship between ‘abuse’ and ‘misuse’ arose from a WordNet verb group, even though those words

are, in fact, nouns; that result is marked with an asterisk to indicate that verb groups were less reliable

sources of WordNet metadata.

The first group of words from Figure 10.8, then, arose from glosses for the word ‘substance’. In that
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way, the related words ‘alcohol’, ‘drug(s)’, and ‘medication’ were found, and used in drawing together

nodes in generated mind maps. That word ‘medication’, though, further had acceptably close hypernyms

‘depressants’ and ‘drug(s)’. The first of those results was due to stripping the prefix ‘anti-’, while the

latter provided further support for the corresponding gloss result. In addition, appending the plural suffix

‘(s)’ to the singular form showed that both words were detected in GRiST mind maps.
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10.5 Chapter Summary

The introduction in Section 10.1 described ‘Aston Options’ that were provided by the novel AstonFreeMind

Java class. Those additional facilities were available on the work space for GRiST that was shown in

Section 10.2; certain of those options operated on entire mind maps, as was shown in Section 10.3. Such

facilities included an ability to open several mind maps simultaneously, and further to generate merged

versions of selected mind maps.

Further options available on the new GRiST workspace were described in Section 10.4; those op-

tions acted on individual nodes, rather than on whole mind maps. Pop-up menus added to FreeMind’s

standard ‘nodes’ menu further gave access to metadata gathered during this thesis. Those options com-

prised a means of generating cross-references of specified concepts, and for creating normalised knowledge

structures; both options resulted in novel mind maps shown either in pop-up windows allowed by the

AstonFreeMind class, or as additional FreeMind windows.

This new user interface, then, implements the work of this thesis by means of object-orientated pro-

gramming techniques. The resulting GUI acts both as a convenient way of interacting with GRiST mind

maps, and as a vehicle for presenting newly discovered knowledge. It further permits the interrogation of

metadata, in order to justify decisions taken automatically by machines. All that remains is to summarise

the chapters of this thesis, and to close with some conclusions and proposals for future research.
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11.1. SUMMARY

This chapter summarises the approach taken by this thesis to automating analyses of GRiST mind

maps, and of treating them as an information base of mental health knowledge. Part I, then, introduced

problems that arise from mental health disorders, and of the need for accurate risk assessments. Knowl-

edge extracted from mind maps recoded by experts during Part I was subsequently applied in Part II,

in order to normalise any knowledge they contained. Finally, Part III showed the implementation of the

proposed approach, and benefits that it offered to GRiST. Those parts are now addressed in more detail,

before and some conclusions close the chapter, and the thesis.

11.1 Summary

Part I: Extracting Knowledge from GRiST Mind Maps.

Part I of this thesis, then, started by introducing the role of risk analysis in mental health care. In that

respect, the GRiST project provided important, expert knowledge to help front-line services in making

assessments. Further, a pre-processing stage of data cleaning and abstraction was applied, which resulted

in spelling corrections, and stems that identified related word forms. Corresponding chapters are now

reviewed in more detail.

Chapter 1, then, introduced difficulties arising from mental health problems in the United Kingdom.

Such problems harm sufferers themselves, in addition to family members and to the public at large. In

recent years, though, problems have been exacerbated by so-called care in the community, rather than

in institutions such as hospitals. As a result, workers in front-line services, although lacking any formal

training in risk analysis, must evaluate any behavioural cues exhibited and decide whether to refer cases

to better qualified experts in mental health.

To that end, the GRiST encapsulated experts’ ideas about assessing mental health risks, and supports

from-line services by means of a web-based interface; in fact, GRiST captured such knowledge by means

of mind maps that recorded interviews with specialists. Because of the importance of mind mapping

to GRiST, that technique was reviewed in terms of ideas espoused by its inventor. GRiST mind maps,

though, justifiably strayed from those rigid guidelines; all the same, the ensuing richness of those mind

maps hindered any automated interpretation by machines. Further, mind mapping lacks any intrinsic

means of restricting the expression of knowledge; that allowed GRiST panellists to stray from the template

that was provided.

After Chapter 1 closed with an overview of this thesis, Chapter 2 addressed mind maps in the wider

context of ‘semantic networks’ such as concept maps, relational databases and knowledge bases. A review

of mind mapping in knowledge engineering, though, showed mind maps to be restricted to brainstorming,
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which contributed knowledge to more formal semantic networks. In sharp contrast, viewing GRiST mind

maps as an information base of metal health knowledge made them amenable to abstraction, by which

related formats are refined. Applying abstraction to GRiST mind maps yielded a structure for storing

knowledge that augmented any inherent hierarchical associations.

Chapter 3 began that process of abstraction by dealing with spelling mistakes, which detracted from

isolating key concepts in GRiST mind maps. A review of automated spelling correction, though, revealed

that ‘non-words’ might be valid words that happened to be missing from standard dictionaries. In

fact, support for taking words as presented, or for determining acceptable suggestions, came from words

encoded in GRiST mind maps themselves.

Spelling corrections were further refined by means the Levenshtein Distance, L. Although that algorithm

was designed to correct transmission errors arising from noisy channels, it has become widely used for

comparing textual information. After reviewing approaches to using and refining L, an adjusted version

was proposed for improving spelling correction in GRiST mind maps, in addition to revealing valid,

novel terms. Experiments showed that approach to be largely successful, in that unsuitable candidate

corrections were declined, sometimes in favour of taking words as they were entered by GRiST experts.

Abstraction was furthered in Chapter 4 by means a ‘stemming’, which identified invariant portions

of related word forms. Rather than relying on linguistic rules, though, the Levenshtein Distance that

Chapter 3 applied to spelling correction was employed. In that way, stems were extracted from mind map

nodes purely by identifying morphological similarities. Experiments subsequently showed that approach

to successfully extract key concepts from GRiST mind maps, regardless of particular word forms. That

approach further identified reliable pre- and suffixes, in addition to words that should be excluded from

conflation, in order to prevent over-stemming.

Part II: Applying Knowledge to GRiST Mind Maps.

Having successfully identified novel concepts, corrected genuine spelling mistakes, and extracted stems

from GRiST mind maps, Part II applied any such knowledge to discerning related nodes; that further

involved the popular WordNet tool, by which Chapter 5 revealed related meanings between words from

GRiST mind maps, rather than related forms. There were, though, problems in using that tool, namely,

a lack of coverage for stop words, and an innate ambiguity between certain entries. Whereas stop words

are commonly ignored, or removed prior to any main analysis, the solution proposed here lay in existing

lists of stop words. The first challenge posed by WordNet, then, was met by an extension to WordNet

that mimicked synsets reported for content words.

The more difficult problem of ambiguity, though, was shown as amenable to a technique called ‘clus-

322



11.1. SUMMARY

tering’; the specific form of clustering used here was CA, which Chapter 6 introduced as a means of

resolving ambiguity in WordNet. After describing the underlying mechanisms of CA, which draws on

classical mechanics, existing approaches were reviewed that applied CA to researching plain text. Those

studies suggested a way to determine patterns of word usage around prepositions, which might subse-

quently resolve ambiguous cases in GRiST mind maps. Although interpreting CA results is generally a

human activity, automating CA for GRiST mind maps allowed machines to derive such patterns unaided.

Subsequently, Chapter 7 presented results from overcoming the problems posed by WordNet, described

in Chapter 5. Experiments started by identifying ‘triples’ of words, each triple comprising a word,

followed by a preposition, with a further word after that. CA on triples composed of just unambiguous

words revealed reliable patterns of usage, which subsequently suggested most likely interpretations of

ambiguous words from further, novel triples. Instead of words themselves, though, CA involved so-called

‘meta types’ that reflected roles that words play in phrases, as ‘things’, as ‘actions’, or as ‘modifiers’.

That knowledge further augmented the hierarchical associations inherent in mind maps, enriching the

emerging information base of mental health knowledge.

Chapter 8 was concerned with generating idealised, combined versions of the collected GRiST mind

maps, from nodes identified by an amalgamation of CA, stemming, and WordNet; the ensuing mind

maps provided overall knowledge structures for particular concepts. After drawing related meanings

from WordNet, that chapter described the hierarchical nature of CA clusters that contributed nodes to

any combined mind map. Experiments in refining mind map structures first addressed just nodes grouped

by stems; subsequently, those mind maps were augmented by semantically related nodes identified by

WordNet.

Part III: Implementation, Summary and Conclusions.

The last part of this thesis looked at the system that arose from preceding parts. Chapter 9 introduced

the XML format in which FreeMind encodes mind maps, and further introduced a native XML database;

that database stored both GRiST mind maps, and any knowledge gathered by experiments in earlier

chapters; such additional knowledge constituted ‘metadata’ that described existing data encoded in mind

maps. The Xindice database further responded to queries from both machines and humans, about either

type of data. The resulting XML-centric system was ideally suited to Internet applications.

Following that discussion of implementation issues, Chapter 10 demonstrated the gains that accrued

from this thesis. Such benefits included extensions to FreeMind that communicated with the XML

database, and provided a work space for GRiST researchers. One such extension generated refined mind

maps on demand, while a further one aided navigation between related nodes. Importantly, metadata that

supported any automated decisions were made available to humans by means of an ‘Oh Yeah?’ button
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inspired by Berners-Lee (1997). That chapter closed by considering the implementation of this approach

in Java and XML. That, then, brought the thesis to this point: Chapter 11, which summarised the

approach taken here to normalising and enriching GRiST mind maps. Accordingly, the final conclusion

follows next.

11.2 Success in Answering Research Questions

Chapter 1 raised research questions that are re-stated here, with an indication of what success was

achieved in answering them:

• Can a theoretical framework be provided for mind mapping? Chapter 2 showed the answer to

that question to a resounding “yes”. The family of related representations known as semantic

networks readily accepts mind maps as its latest addition. Many similarities exist between

members of that group, with mind maps differing mainly in a lack of control over content.

That was overcome by extracting intensional knowledge after having created mind maps,

rather than beforehand in other types of semantic network. As a result, mind maps might

be queried in a similar way to relational databases, or knowledge bases held as ontologies

such as concept maps, or structures in OntoEdit. That was made possible by, as Date (1975,

2003) says, ”putting one thing in one place”, just as in those more formal representations

currently employed by the research community.

• Is it possible to improve on existing spelling correction algorithms? Again, the answer is

“yes”, as was shown in Chapter 3. By referring to the actual corpus of text under investiga-

tion, appropriate corrections were accepted, and novel yet valid words retained as used by

mind map authors. Further, an adjusted form of the Levenshtein Distance promoted accep-

tance of suggestions that were further down Jazzy’s lists. In short, evaluating suggestions in

that way led to great improvements in spelling correction for GRiST mind maps. Medical

terminology found in those mind maps was treated as such, instead of being replaced by

inappropriate candidates from Jazzy’s dictionaries.

• Is it possible to improve on existing stemming techniques? Results from experiments that

used an adapted Levenshtein Distance showed that, indeed, stemming need not rely on

linguistic rules; in some cases, such knowledge actually impaired stemming. Although the

Porter stemmer (Porter, 2006) was rejected primarily for its reliance on linguistic rules,

results show a purely text-based approach to work better, especially when any corpus is

considered as a source of knowledge in itself.

(continued overleaf)
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• What can be done to resolve the ambiguity evident in WordNet? Ambiguity in WordNet

obscured exact meanings of words used by human authors. That problem was overcome

here by means of CA’s clustering facility. Ambiguous words that appeared to either side

of various prepositions were disambiguated by considering that context. In addition, words

determined to be nouns yielded subjects and objects for actions suggested by words best

treated as verbs. By those means, then, deficiencies in WordNet were successfully mitigated.

• How might the structure of mind maps be refined automatically? Mind mapping differs

from related digital formats for representing knowledge, in exerting no control over the

structure of mind maps. However, in deriving such rules after the event, mind maps have

been shown amenable to normalisation. Normalised paths of nodes, when passed through

CA, yielded an idealised version of whatever concept was under consideration. In that way,

variation in expressing ideas was overcome, allowing mind mapping is to be treated as a

formal representation of knowledge.

11.3 Wider Applications and Future Work

In addition to the GRiST mind maps, mind mapping in general would benefit from discoveries made in

this thesis. In fact, the inventor of mind mapping lists five key uses of mind mapping. Those uses can be

paraphrased as:

1. Self-Analysis: review past achievements and project future goals.

2. Problem Solving: gain an in-depth understanding of a problem by mind mapping it.

3. Thinking: free the thinking process by creating branches from a central image.

4. Teaching: mind mapping encourages flexibility in delivering talks.

5. Management: improve communication, and help focus marketing and promotion

(Buzan, 1996, 2003).

GRiST mind maps largely reflected item 3 from the above list, namely, thinking. In education, though,

Buzan (1996, 2003) considers just teachers’ use of mind mapping as an aid to preparing and giving lessons.

That goes against personal experience of teaching in English and French Secondary schools, where mind

maps proved more popular with pupils than with teachers, for uses 1−3 inclusively: self-analysis, problem

solving, and thinking. Benefits to management, number 5 in the list, seem to reflect uses 1 − 4, rather

than any specific advantage.

Whatever use mind maps finds, techniques invented here would help in discerning patterns that are

not immediately evident. Notably, a single mind map might be generated to give an overall view of a

particular domain. Further, adjuncts to FreeMind would allow users to use mind maps as an information
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base that responds to queries. In that way, sales managers, for example, could more easily assimilate

ideas from their sales force by having them create mind maps. In Education, teachers might obtain a

combined view of pupils’ thoughts on, say, on-line abuse, or of problems facing children having Special

Educational Needs (SEN). For general mind mapping by individuals, ideas from successive mind maps

made for usages 1 and 3, self-analysis and thinking, might be compared or combined on a home PC.

This thesis further contributed novel algorithms for spelling correction and stemming. Those, in turn,

relied on an adapted Levenshtein Distance, and an automated form of Correspondence Analysis. Both of

those analyses might find applications outside mind mapping. At the time of writing, people in general

are becoming aware of the potential for finding patterns in data, for example through television series

that depict mathematicians assisting the police, or by IBM’s advertising campaign. Echoing the uses of

mind mapping listed by Buzan (1996, 2003), managers might find trends in sales data, while teachers

might detect patterns in factors that affect pupils’ academic and social well-being. Of particular interest

are ways in which clustering might assist the Police in identifying patterns in criminal activities.

A further application of this research might be in analysing DNA sequences. Although L and CA

are already used by molecular biologists (Tylera, Hortona, & Krause, 1991), work from this thesis might

help in interpreting whatever results arise. For the former, identifying repeated strings within strings

would turn stemming to a non-linguistic purpose, while for the latter, automated CA could help humans

in interpreting whatever clusters and outliers emerge.

Future work, then, aims to bring techniques developed here to the public at large. That will be

done, in part, by a web site for KnowWare (Priscott, 2011), which will feature ”knowledge-based wares”.

In addition to a separate domain for mobile devices, an Android “app” is planned to fully integrate

knowledge-based offerings on hand-held devices. As well as CA and Edit Distance options. that new site

will host a ‘mind map farm’, which will allow users to query and reconfigure mind maps. Rather than

requiring FreeMind to be installed on local machines, KnowWare will offer a centralised service based on

a Xindice XML database. A Java servlet reads various configuration files from the server, and prepares

a HTML page. FreeMind itself runs from a Java archive downloaded by an Applet, rather than as an

executable on client machines. The word ‘farm’ reflects that mind map authors might share, view and

analyse mind maps as a community.
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11.4 Conclusions

This thesis opened with an overview of the problems caused in the U.K. by mental health problems, and of

the GRiST project that disseminates expert knowledge to front-line services. There was, though, a great

deal of knowledge left untouched by GRiST, particularly of knowledge of a non-hierarchical nature. This

thesis, then, aimed to automate the processing of those mind maps, mimicking the process performed

manually by Buckingham and Adams (2006). To that end, early chapters pre-processed those mind maps

by correcting spelling errors, and by extracting stems that identify key concepts.

The chosen tool for spelling correction and stemming was the Levenshtein Distance L. After ad-

justment for string lengths, L-based algorithms showed both qualitative and quantitative improvements

over the Jazzy spelling checker and the Porter stemmer. Importantly, eschewing any built-in linguistic

knowledge actually yielded better results. That is not to argue for ignoring such linguistic knowledge

entirely, but to apply it as needed rather than as a fundamental aspect of any algorithm.

Armed with spelling corrections and stems, the second phase of this thesis applied knowledge to

GRiST mind maps, rather than extracting it from them. In that respect, the WordNet tool proved

very useful, but bore the dual disadvantages of a lack of widely used words such as prepositions, and

of ambiguous entries for many words. Both of those problems were overcome, by means of an adjunct

to WordNet, and by performing CA on matrices of prepositions and pairs of meta-types. As a result,

WordNet was proved to be a more useful and discerning tool. Further, automating CA allowed machines

to successfully determine clusters of ‘actions’, ‘things’ and ‘modifiers’ that revealed more precisely what

GRiST authors meant when using ambiguous words in conjunction with prepositions.

As a result, the third part of this thesis described a XML-centric system that managed mental health

knowledge, and made it available in novel way that benefit GRiST as a whole. Rather than using the

LISP language for modelling knowledge structures, the system described here relied purely on Java and

XML, and used an experimental d6database called Xindice at its heart. That combination of emerging

Internet technologies, in addition to benefiting GRiST, would be useful in any web context; indeed, once

mature, such XML databases are set to displace relational databases as the most appropriate way of

storing, analysing, and transporting knowledge. GRiST, then, will benefit from this research, as will the

application of mind mapping in general, and of the use of XML technologies in web-based settings. I

therefore offer this thesis as worthy of being conferred the degree of Doctor of Philosophy.

Keith Priscott, August 2011.
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