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We study theoretically and numerically the dynamics of a passive optical fiber ring cavity pumped
by a highly incoherent wave – an incoherently injected fiber laser. The theoretical analysis reveals
that the turbulent dynamics of the cavity is dominated by the Raman effect. The forced-dissipative
nature of the fiber cavity is responsible for a large diversity of turbulent behaviors: Besides nonequi-
librium statistical stationary states, we report the formation of a periodic pattern of spectral in-
coherent solitons, or the formation of different types of spectral singularities, e.g., dispersive shock
waves and incoherent spectral collapse behaviors. We derive a mean-field kinetic equation that
describes in detail the different turbulent regimes of the cavity and whose structure is formally anal-
ogous to the weak Langmuir turbulence kinetic equation in the presence of forcing and damping. A
quantitative agreement is obtained between the simulations of the nonlinear Schrödinger equation
with cavity boundary conditions and those of the mean-field kinetic equation and the corresponding
singular integro-differential reduction, without using adjustable parameters. We discuss the possible
realization of a fiber cavity experimental set-up in which the theoretical predictions can be observed
and studied.

PACS numbers: 42.65.Tg,42.55.Wd,05.45.-a,42.81.Dp,42.65.Sf

I. INTRODUCTION

The propagation of partially coherent nonlinear optical
waves is a subject of growing interest in different fields of
investigations, such as, e.g., supercontinuum (SC) gener-
ation [1, 2], rogue waves [3–6], shock waves [7–9], non-
linear interferometry [10, 11], or incoherent wave propa-
gation in homogeneous [12–16], discrete [17], multimode
[18, 19] and single-mode fibers nearby the integrable limit
[20–22]. From a different perspective, optical cavities and
lasers offer an interesting experimental platform to study
different regimes of optical turbulence [12, 23–37]. In par-
ticular, the phenomenon of condensation of photons has
been recently demonstrated in optical microcavities [38],
which raised important questions such as the relation be-
tween lasing and condensation [39]. Light condensation
is expected to be associated to the natural thermalization
of an optical wave in a nonlinear Kerr material. This ir-
reversible process of thermalization is described in detail
by the wave turbulence (WT) theory, which is inherently
a nonequilibrium theory formally based on irreversible
kinetic equations, as expressed by a H−theorem of en-
tropy growth [40, 41]. In particular, the WT formalism
describes a process of wave condensation that can occur
in an incoherently pumped passive optical cavity [42].
In this article we show that optical cavities can exhibit

a turbulent regime of fundamental different nature than
that discussed above. In this respect, we first note that
the phenomenon of optical wave thermalization does not
occur systematically, in the sense that it can be inhib-
ited by different mechanisms, e.g., the presence of a non-
local nonlinearity [9, 43] or the existence of additional

invariants in generalized 1D nonlinear Schrödinger-like
equations (NLSE) [1, 20, 44, 45]. Another mechanism
responsible for a breakdown of optical wave thermaliza-
tion is related to the causality condition underlying a
noninstantaneous nonlinear response of the medium. A
typical example is provided by the Raman effect in op-
tical fibers. In this case the turbulent behavior of the
random wave manifests itself in its spectral dynamics:
The incoherent wave self-organizes into spectral incoher-
ent solitons (SIS), i.e., incoherent solitons that cannot be
identified in the spatio-temporal domain but solely in the
spectral domain [46–51].

In this work we consider a passive optical fiber ring
cavity pumped by an incoherent optical wave, whose co-
herence time, tc, is much smaller than the round-trip
time, tc ≪ tR [42, 52, 53]. In this way, the optical beams
from different cycles are mutually incoherent with one an-
other, which makes the optical cavity non-resonant. As
a consequence, the cavity is no longer modelled by the
Lugiato-Lefever equation [54, 55]. The analysis reveals
that the system exhibits, as a general rule, a turbulent
dynamics. The main difference with respect to the pre-
vious works [42, 53], is that we consider here a highly
incoherent pump wave, in such a way that the Raman ef-
fect can no longer be neglected. The causality condition
inherent to the Raman response function fundamentally
changes the nature of the turbulent dynamics considered
previously [42, 53]. More specifically, the analysis reveals
that the turbulent behavior is exclusively dominated by
the Raman effect, whose kinetic description is found to be
formally analogous to that used to describe weak Lang-
muir turbulence in plasmas [56–58] (also see [59, 60]).
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It is important to note that, from a broader per-
spective, Langmuir turbulence in the strongly nonlinear
regime has been the subject of a huge number of theo-
retical and experimental studies [61, 62], in particular in
the original context of hydrodynamics [62–65], or in con-
trolled laboratory [66, 67] and space plasma experiments
[68–70]. Furthermore, evidence of cavitating Langmuir
turbulence has been recently shown to occur in natural
Earth’s aurora driven by solar wind [71]. To our knowl-
edge however, besides preliminary experiments in [49],
a clear experimental signature of weak Langmuir turbu-
lence has not been reported in the context of nonlinear
optics.

We discuss a formal analogy between the universal
form of the kinetic equation describing the weakly non-
linear regime of Langmuir turbulence [58] and the ki-
netic equation derived here to describe an incoherently
pumped passive optical fiber cavity. Indeed, we show
that when the fiber ring cavity is pumped by a strongly
incoherent wave, the system exhibits a turbulent dynam-
ics which is described in detail by a mean-field kinetic
equation (MF-KE) accounting for the incoherent pump-
ing, the finesse of the cavity, the propagation losses and
the delayed nonlinearity. The direct formal analogy be-
tween the weak Langmuir turbulence KE and the derived
MF-KE mainly relies on two factors, (i) the presence of
the optical incoherent pump excitation and the natural
losses inherent to an optical cavity configuration, (ii) the
analogy between molecular vibrations mediated by the
optical Raman effect and the excitations of ion-sound
waves mediated by the decay of plasma oscillations.

It is worth noting that, in spite of the formal anal-
ogy with weak Langmuir turbulence, in the optical con-
text discussed here the nonlinear response function of
the material is constrained by the causality condition, so
that the (Raman-like) spectral gain function involved in
the MF-KE exhibits a long-range interaction in frequency
space. In this way, the analysis of the MF-KE reveals the
existence of nonequilibrium stationary turbulent states,
whose balance among forcing, damping and nonlinear-
ity can be either local or strongly nonlocal in frequency
space. More generally, the forced-dissipative nature of
the cavity system is responsible for a large diversity of
non-stationary turbulent behaviors, such as the forma-
tion of a periodic pattern of continuous or discrete SISs,
as well as the formation of spectral singularities, i.e., in-
coherent dispersive shock waves and incoherent spectral
collapse singular behaviors. We stress the fact that the
simulations of the stochastic NLSE describing the inco-
herent wave circulating in the cavity have been found in
quantitative agreement with those of the MF-KE as well
as the corresponding singular integro-differential reduc-
tion, without using adjustable parameters. In the first
part of the article we discuss an ideal cavity configura-
tion to provide a panoramic overview of different regimes
of the turbulent cavity dynamics. In order to stimulate
experiments, in the second part of the article we consider
a specific realistic fiber ring cavity system. We finally

note that this work can also shed new light on the pecu-
liar role that plays the Raman effect on the generation
of frequency combs in high-finesse optical micro-cavities
[72–76], a subject of current intense investigations in rela-
tion with the important issue of the coherence properties
of frequency combs [77–81].

II. MODEL

We study the temporal dynamics of a partially coher-
ent wave that circulates in a passive optical fiber ring
cavity pumped by a highly incoherent wave. The prop-
agation of the optical wave in the fiber is known to be
described by the standard generalized NLSE model [51]:

−i∂zψ(z, t) = d̂(∂t)ψ(z, t) + γ(1 + iτs∂t)ψ(z, t)

×
∫ +∞

−∞

R(t′) |ψ(z, t− t′)|2 dt′ + iαψ(z, t), (1)

where d̂(∂t) =
∑

j≥2
βj

j! (i∂t)
j is the linear dispersion op-

erator accounting for the lowest-order (β2), and higher-
order dispersion effects, γ refers to the nonlinear coef-
ficient and R(t) = (1 − fR)δ(t) + fRR(t) to the usual
response function accounting for the instantaneous Kerr
effect and the non-instantaneous Raman response R(t),
which is constrained by the causality condition, R(t) = 0
for t < 0. The typical width of R(t) denotes the nonlin-
ear response time, τR. Equation (1) also describes self-
steepening through the term proportional to τs∂t, which
accounts for the dispersion of the nonlinearity [51]. We
remind that NLSE (1) conserves the ‘number of pho-

tons’, N =
∫

|ψ̃(ω, z)|2/(1 + τsω) dω, with ψ̃(ω, z) =
1
2π

∫

ψ(t, z)eiωtdt [82].
The cavity is pumped by a statistically station-

ary incoherent optical wave, with correlation function

〈F (t)F ∗(t′)〉 = CF (t
′ − t), such that

〈

F̃ (ω)F̃ ∗(ω′)
〉

=

δ(ω−ω′)SF (ω), with the power spectral density SF (ω) =

C̃F (ω), (F̃ (ω) = 1
2π

∫

F (t)eiωtdt). Note that, here and
below throughout the paper, the brackets < . > denote
an averaging over the realizations of the stochastic func-
tion F (t). We denote by tc the coherence time (i.e., the
width of CF ) and by PF = CF (0) the average pump
power. We denote by Fm(t) the pump injected at m−th
round-trip at time t −mtR. We assume that the coher-
ence time of the incoherent pump is much smaller than
the round trip time, tc ≪ tR (the longitudinal coherence
length is much smaller than the cavity length), so that
〈

F̃m(ω)F̃ ∗
m′(ω′)

〉

= δ(ω−ω′)δKmm′SF (ω), δ
K
m,m′ denoting

the Kronecker symbol. As discussed in previous works
[52, 53], the passive cavity does not operate as a reso-
nant ‘phase-sensitive interferometer’ [54, 55, 83–88], and
the temporal modes of the cavity do not play any key
role in the dynamics of the incoherent wave. The wave
circulating in the cavity and the pump wave are thus
mutually incoherent with each others, and the boundary
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conditions are not sensitive to the random relative phase
among them:

ψm+1(z = 0, t) =
√
ρψm(z = L, t) +

√
θ Fm(t), (2)

where ψm(z, t) denotes the intracavity optical field af-
ter m round trips (0 ≤ z ≤ L), while ρ and θ respec-
tively refer to the reflection and transmission coefficients
of the field intensity, ρ+ θ = 1. Note that the boundary
conditions (2) differ from those employed to derive the
mean-field Lugiato-Lefever model [54, 55], where the co-
herent phase shift gives an additional parameter, namely
the detuning, which critically affects the intracavity field
dynamics. In contrast, in the incoherent case, only the
finesse of the cavity is left to play an important role,
F = 2π/Γ, where Γ = θ + 2αL denotes the effective
amount of losses per round trip. The cavity finesse is
related to the time required to fill an initially empty cav-
ity, the so-called ‘injection time’ or average life-time that
a photon spends in the cavity, τph = tR/Γ. Once the
cavity is filled, the average power of the intracavity op-
tical wave reaches a stationary value, a feature that will
become apparent through Eq.(15).

III. MEAN-FIELD KINETIC EQUATION

In this section we combine the KE that describes the
evolution of the spectrum of the optical wave in the fiber
(0 ≤ z ≤ L) with the cavity boundary conditions (2)
so as to derive the MF-KE describing the turbulent sys-
tem. In the first step we ignore the cavity boundary
conditions, i.e., we consider the propagation of the opti-
cal field through the fiber at the round trip m (ψm(z, t),
0 ≤ z ≤ L). A fundamental assumption of the wave tur-
bulence theory used to derive the KE is that the random
optical wave evolves in the weakly nonlinear regime, i.e.,
the highly incoherent regime in which linear dispersive
effects dominate nonlinear effects [12, 40, 41], tc ≪ τ0,
where tc is the coherence time of the incoherent wave,
and τ0 =

√

|β2|L0/2 is the ‘healing time’, L0 = 1/(γPF )
being the nonlinear length. Notice that the ‘healing time’
denotes the time scale for which linear and nonlinear ef-
fects are of the same order, e.g., the typical time period
of modulational instability [12]. In this weakly nonlinear
regime, the statistics of the random wave results essen-
tially Gaussian [12, 40, 41, 46, 47, 89], which allows one to
achieve a closure of the hierarchy of moments equations.
Starting from the NLSE (1), one obtains a KE governing
the evolution of the averaged spectrum of the incoherent

wave
〈

ψ̃m(z, ω +Ω/2)ψ̃∗
m(z, ω − Ω/2)

〉

= nm(z, ω) δ(Ω)

for 0 ≤ z ≤ L:

∂znm(z, ω) =
γ̄

π
nm(z, ω)

∫

G(ω, ω′)nm(z, ω′) dω′

− 2αnm(z, ω), (3)

where G(ω, ω′) = (1 + τsω)g(ω − ω′), γ̄ = fRγ, and

g(ω) = ℑ[R̃(ω)] is the imaginary part of the Fourier

transform of R(t), which will be denoted as ‘spectral
gain function’ in the following [50]. In the limit α =
0, Eq. (3) conserves the averaged number of photons,

N̂m =
∫

nm(z, ω)/(1 + τsω)dω over the round-trip. Note
that the KE (3) accounts for nonlinear dispersive effects
(self-steepening), but not for linear dispersion effects, al-
though linear dispersion plays a key role in the establish-
ment of the weakly nonlinear regime [12]. This means
that the KE does not depend on the sign of the disper-
sion coefficient (normal or anomalous dispersion regime)
and thus does not describe coherent soliton states. Note
that the fact that the generation of a coherent soliton
is quenched by the strong randomness of the incoherent
wave in the weakly nonlinear regime (tc ≪ τ0) has been
already studied in different cases [90–92], in particular
through supercontinuum generation [12, 93].
It is also important to remark that the instantaneous

Kerr nonlinearity does not enter the KE (3). Indeed, the
conservative four-wave interaction is known to achieve
a closure of the hierarchy of moment equations at the
second-order in the perturbation expansion procedure in-
herent to the WT theory [12]: To next order, the instan-
taneous Kerr nonlinearity coupled to higher-order disper-
sion leads to a collision term that describes, e.g., super-
continuum generation through optical wave thermaliza-
tion [12]. We anticipate that the theory will be validated
by the simulations, as revealed by the quantitative agree-
ment obtained between NLSE and MF-KE simulations.
Let us now consider the boundary conditions of the

passive cavity. Taking the Fourier transform of Eq.(2)
and neglecting the correlations between the incoherent
intracavity field and the incoherent pump field, we have

nm+1(z = 0, ω) = ρ nm(z = L, ω) + θ SF (ω), (4)

where the averaged spectrum SF (ω) of the pump field,

such that
〈

F̃m(ω +Ω/2) F̃ ∗
m(ω − Ω/2)

〉

= SF (ω)δ(Ω), is

independent of the round trip m. Also note that the
averaged pump power is given by PF =

∫

SF (ω)dω.
In order to derive the MF-KE we need to assume that

the averaged spectrum of the wave, nm(ω, z), exhibits
a slow variation within a single round trip. As defined
above, the averaged spectrum denotes an average over
the realizations of the injected stochastic pump wave.
We note that, contrary to the usual mean-field approach
underlying the Lugiato-Lefever equation [54, 55], here we
do not assume that the field amplitude ψm(t, z) exhibits
a slow variation within a round trip – the individual fluc-
tuations of the incoherent wave ψm(t, z) exhibit rapid
variations with a time correlation much smaller than the
round-trip time, tc ≪ tR (or equivalently, the correla-
tion length, λc, is much smaller than the cavity length,
λc ≪ L). It is important to note that, whenever one
considers the high-finesse cavity regime, θ ≪ 1, αL≪ 1,
then the assumption that the averaged spectrum exhibits
slow variations within a round-trip is automatically sat-
isfied because we are considering the weakly nonlinear
regime of interaction, tc ≪ τ0. The evolution of the ki-
netic Eq.(3) can then be averaged over a round trip by
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introducing the slow time derivative of the averaged spec-
trum, ∂T ñ(T, ω) = [nm+1(z = 0, ω) − nm(z = 0, ω)]/tR,
where T = mtR = mL/vg, vg being the group velocity of
the optical field in the fiber. In this way we obtain the
MF-KE

tR ∂T ñ(T, ω) =
γ̄L

π
ñ(T, ω)

∫

G(ω, ω′)ñ(T, ω′) dω′

+ θ SF (ω)− Γ ñ(T, ω), (5)

where Γ = θ+1−exp(−2αL) ≃ θ+2αL for αL≪ 1. This
MF-KE (5) provides a mean-field description (θ ≪ 1,
αL ≪ 1) of the evolution of the averaged spectrum of
the incoherent wave under the influence of the nonlinear
interaction, the incoherent pumping, and both the cav-
ity losses and the propagation losses. It describes the
turbulent dynamics of the cavity with the following hi-
erarchy of the relevant time scales, tc ≪ τ0 ≪ tR. It is
important to note that, because of the presence of the
forcing and dissipative nature of the cavity, the MF-KE
appears as the temporal counterpart of the weak Lang-
muir turbulence KE used to describe isothermal plasma
in the presence of heavily damped ion-sound waves in the
spatial domain [57, 58].

IV. STATIONARY STATES

We start our study by considering the existence of tur-
bulent regimes that are characterized by a stationary av-
eraged spectrum, i.e., we look for the existence of station-
ary solutions to the MF-KE (5). We anticipate that the
nonequilibrium stationary solution results from a balance
(either local or nonlocal in frequency space), between
forcing, damping and nonlinearity, so that their structure
differs from the celebrated Kolmogorov-Zakharov spectra
of turbulence, which are established in the inertial (con-
servative) regime of interaction [40, 41].

The stationary solutions extend in frequency space
over a spectral bandwidth much larger than the typi-
cal bandwidth of the spectral gain function g(ω). The
behavior of the tails of g(ω) are then expected to play
a key role in the form of the stationary solution of the
MF-KE. In this respect, we remind that because of the
causality property of R(t), the gain function g(ω) al-
ways decays algebraically at infinity, e.g., ∼ 1/ω3 for a
damped harmonic oscillator, ∼ 1/ω for an exponential re-
sponse. Such a long-range interaction in frequency space
introduces singularities into the convolution operator of
the MF-KE (5), Mω(T ) =

∫

g(ω − u)ñu(T ) du, which
can be properly addressed by using the Hilbert opera-

tor, Hf(ω) = π−1P
∫ +∞

−∞

f(ω−u)
u du, where P denotes the

Cauchy principal value. It was shown in Ref.[7] that the
convolution operator is dominated by the behavior of the
response function R(t) near by the origin t = 0. More
specifically, it was shown in the Supplement of Ref.[7]
that the convolution operator can be written in the fol-

FIG. 1: Turbulent regimes characterized by a statistical sta-
tionary solution of the MF-KE (5). For a continuous (Raman-
like) response function, the stationary solution is given by
(9) (red line, with c = 1/

√
5) (a-b); while for a discontin-

uous (exponential-like) discontinuous response function, the
stationary solution is given by (14) (red line) (c-d). The sta-
tionary solutions are unstable, as revealed by the numerical
simulations of the the MF-KE (5) (blue line), z = 50 (a,c);
z = 400 (b,d).

lowing form without approximations:

Mω(T ) = −τ−1
R πR̄(0)Hñω(T ) + τ−2

R πR̄(1)(0)∂ωñω(T )

+
1

2
τ−3
R πR̄(2)(0)H∂2ωñω(T )

+τ−4
R

∫ ∞

0

[

∂3ωñω+ u
τR

+ ∂3ωñω− u
τR

]

G(u)du, (6)

where we have defined for u > 0: G(u) = − 1
2

∫∞

u

(

g( v
τR

)+
R̄(0)
v − R̄(2)(0)

v3

)

(v − u)2dv, and R̄(t) is a smooth function

defined by R(t) = τ−1
R R̄(t/τR)H(t), R̄(n)(0) denoting the

n−th derivative at t = 0 andH(t) the Heaviside function.
It is important to note that the expression (6) is exact
and provides an expansion of the convolution operator
Mω(T ) in powers of 1/τR, without particular stringent
assumptions on the specific form of the response function,
R(t).
In the following we will consider two different represen-

tative examples of response functions, either continuous
or discontinuous at the origin, so as to illustrate quali-
tative different behaviors of the stationary turbulent so-
lutions of the cavity. Note that, for simplicity, we will
neglect in the following the impact of the self-steepening
term, which simply introduces a multiplicative pre-factor
1+τsω that plays a marginal role whenever the spectrum
of the intracavity field evolves far from −1/τs.

A. Continuous response function

We illustrate the case of a continuous response function
by considering the important example of the Raman-like
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damped harmonic response function [51]:

R(t) = H(t)
1 + η2

ητR
sin

( ηt

τR

)

exp
(

− t

τR

)

. (7)

This function being continuous at t = 0, the first term in
the expansion of the convolution operator (6) vanishes.
On the other hand, the higher-order singular dispersive
term (third term in (6)) can be neglected in the station-
ary turbulent regime considered in this section – while it
plays a key role in the non-stationary regimes discussed
below. Accordingly, the stationary solution of MF-KE
(5), nst

ω , that varies slowly compared to 1/τR, is solution
of the following reduced equation:

Ωc

N2
c

nst
ω ∂ωn

st
ω +

Ωc

2
S̃F (ω)−

1

Nc
nst
ω = 0, (8)

where we have introduced the characteristic frequency
Ωc =

√

2(1 + η2)θγ̄PFL/(ΓτR), and characteristic spec-

tral amplitude Nc = τR
√

2θPF /((1 + η2)γ̄L), while

S̃F (ω) = SF (ω)/PF . We are looking for a stationary
solution nst

ω on a frequency interval that excludes the

pump spectrum S̃F (ω), i.e., ω . −σF , where σF denotes
the typical spectral bandwidth of the pump wave. Then
assuming Ωc/σF ≫ 1, and τRΩc ≫ 1 (which is a condi-
tion independent of τR), the stationary solution reads:

nst
ω = Nc

( ω

Ωc
+ c

)

, (9)

in the bulk spectrum away from the source S̃F (ω), i.e.,
for −cΩc ≤ ω . −σF , see Fig. 1a. Note that the con-
stant of integration, c, can be chosen in such a way that
nst
ω matches with the pump source nearby ω ∼ 0. This

stationary solution results from a balance between the
(Burgers) derivative operator and the losses, which are
uniformly distributed in frequency space.

B. Discontinuous response function

Let us now consider the case of a discontinuous re-
sponse function, which we illustrate with the familiar ex-
ample of a purely exponential decay of the response:

R(t) = H(t) exp(−t/τR)/τR. (10)

The discontinuity at t = 0 completely changes the form
of the stationary solution. According to the dominant
singular term in the expansion of the convolution oper-
ator (6), we obtain the following reduced form of the
stationary MF-KE:

− 1

N2
d

nst
ω Hnst

ω +
πΩd

2
S̃F (ω)−

1

Nd
nst
ω = 0, (11)

where we have introduced the characteristic frequency
Ωd = 2θγ̄LPF /(πτRΓ

2) and spectral amplitude Nd =
τRΓ/(γ̄L). We assume again that the pump spectrum

SF (ω) is localized over a narrow frequency band at
ω = 0 and look for a stationary solution on some in-
terval (−Ω, 0), with Ω ≫ σF . We first note that, since
nst
ω > 0 for ω ∈ (−Ω, 0), the Hilbert transform qω = Hnst

ω

satisfies

qω = −Nd for ω ∈ (−Ω, 0). (12)

Second, using the Poincaré-Bertrand identity
2H(fHf) = (Hf)2 − f2, and nst

ω = −Hqω, we
find that qω satisfies:

(Hqω)2 = q2ω − πN2
dΩdHS̃F (ω) + 2Ndqω. (13)

Since Hqω = −nst
ω ≤ 0, we have nst

ω = (q2ω −
πN2

dΩd HS̃F (ω) + 2Ndqω)
1/2. To pursue the analy-

sis, we approximate the normalized pump spectrum by
S̃F (ω) = δ(ω), so that HS̃(ω) = 1/(πω). Therefore, for
ω ∈ (−Ω, 0), we obtain nst

ω = Nd(−1 − Ωd/ω)
1/2. This

solution should be continuous away from the source, so
this imposes Ω = Ωd and therefore the stationary solu-
tion reads:

nst
ω = Nd

√

−1− Ωd

ω
for ω ∈ (−Ωd, 0). (14)

We can check that this solution indeed satisfies
∫ 0

−Ωd
nst
ω dω = πNdΩd/2, as expected by integrating (11)

with respect to ω. An illustrative plot of the stationary
solution (14) is reported in Fig. 1b.
We remind that the stationary solution (14) of the MF-

KE results from a balance between the forcing, the dom-
inant nonlinear singular term of the convolution oper-
ator, and the losses distributed uniformly in frequency
space. Contrary to the previous case of continuous re-
sponse function where such a balance is achieved ‘locally’
in frequency space as a result of the local property of
the (Burgers) derivative operator, here, the Hilbert op-
erator is inherently nonlocal, so that the balance among
forcing, nonlinearity and losses results strongly delocal-
ized in frequency space. As already commented, these
nonequilibrium stationary solutions are of different na-
ture than the Kolmogorov-Zakharov spectra of turbu-
lence, which are solutions of the cubic nonlinear collision
term of the kinetic equation in the inertial regime of in-
teraction [40, 41]. In particular, the stationary solutions
discussed in this section are not characterized by a con-
stant flux of particles (or energy) in frequency space.
In the next section we study the turbulent dynamics

of the cavity by means of numerical simulations consid-
ering the natural experimental configuration where the
cavity is initially empty and gets gradually filled by the
injected incoherent pump wave. We note in this respect
that numerical simulations performed by starting from
the stationary solutions indicate that they are unstable,
even in the absence of an additional perturbation (see
Fig. 1). This is due to the fact that the stationary so-
lutions refer to exact solutions of the stationary MF-KE
in the ‘bulk spectrum’, i.e., far away from the frequency
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band that supports the pump source, ω ∈ [−σF , σF ].
Accordingly, the stationary solutions do not account for
the specific form of the pump spectral shape, i.e., they
do not match with the specific details of SF (ω). This
introduces a weak perturbation in the system, which is
sufficient to destabilize the stationary solutions. This
aspect has been also confirmed by remarking that sta-
tionary solutions featured by large values of Ωc and Ωd

result more robust numerically, a feature which is con-
sistent with the fact that such solutions are less sensitive
to the details of the pump spectrum. We will see in the
next section that, instead of the stationary solutions, the
cavity develops a large diversity of non-stationary turbu-
lent behaviors characterized by the emergence of spectral
incoherent solitons or spectral singularities.

V. HIGH-FINESSE CAVITY CONFIGURATION

In this section we consider an ‘ideal cavity configura-
tion’, in the sense that the finesse of the incoherently
pumped cavity is deliberately enhanced in order to freely
explore the large variety of turbulent regimes of the cav-
ity. It is in this regime that the cavity deeply influences
the turbulent dynamics, in the sense that the photon life-
time (τph), is larger than all other relevant time scales –
it is larger than the time required for the formation of the
pattern of SISs, or the time required for the development
of spectral shock and collapse singularities. In the follow-
ing, we compare in a systematic fashion the simulations
of the incoherently pumped passive cavity based on the
NLSE with those based on the MF-KE. Notice that all
results of NLSE simulations reported below refer to a sin-
gle simulation – no averaging over different simulations
has been performed, while we implicitly perform an aver-
aging over different realizations of the pump source since
Fm(t) is generated independently at each round-trip, see
Sec. II. We study different turbulent regimes depend-
ing on the relative importance of the response time of
the nonlinearity and the healing time, with τR ≪ tR,
τ0 ≪ tR.
The NLSE simulations are performed by integrating

Eq.(1) for the field ψm(z, t) from z = 0 to z = L, while
ψm+1(z = 0, t) is computed by applying the boundary
conditions given by the cavity map (2) at each round
trip. The incoherent pump spectrum is assumed to be
Gaussian-shaped, SF (ω) ∼ exp[−ω2/(2σ2

F )]. For conve-
nience, we normalized the problem with respect to the
pump power PF , the nonlinear length L0, the nonlinear
time T0 = L0/vg, and the healing time τ0 [12]. The di-
mensionless variables are obtained through the transfor-
mations z/L0 → z; ψ/

√
PF → ψ; F/

√
PF → F ; αL0 →

α; L/L0 → L; t/τ0 → t and T/T0 → T = mL/L0,
where we remind that m denotes the number of round
trips. Also note that a constant noise background has
been added in the simulations. Such a spectral noise is
important in order to sustain a steady incoherent soli-
ton propagation [12], otherwise the SIS undergoes a slow

FIG. 2: Spectral pattern formation of SISs: Temporal evo-
lution of the spectrum of the intracavity turbulent optical
field obtained by solving the NLSE with boundary conditions
Eqs.(1-2) (a), and the MF-KE (5) (b). (c) Corresponding evo-
lutions of the intracavity power, N(T ) =

∫
ñ(T, ω)dω: NLSE

(1-2) (solid blue), MF-KE (5) (dashed red). Correspond-

ing power corrected by the self-steepening factor, N̂(T ) =∫
n̂(T, ω)dω (solid black), which relaxes toward a stationary

state as predicted by Eq.(15), N̂st = θ
Γ
P̂F ≃ 0.83. Parame-

ters: L = 5L0 is the total length of the cavity, η = 1, τR = 0.2
in the response function, pump spectral bandwidth σF = 2π,
losses αL = 10−3, fR = 0.18, τs = 1/280, sign(β2) > 0. Note
that the typical SIS spectral width is given by the bandwidth
of the spectral gain function, ∆ωg, so that the spectral inter-
val among adjacent SISs in (a-b) is much larger than ∆ωg,
i.e., ∆ωpatt ≫ ∆ωg.

adiabatic reshaping so as to adapt its shape to the local
value of the noise background. This noise background
can also simulate the presence of a quantum noise back-
ground. The amount of noise background is defined from
the ratio, say µ = Pn/PF , between the background noise
power (Pn) and the average power of the injected pump
wave (PF ). In the following, otherwise stated, we have
considered the typical of µ ≃ 5.1× 10−7, which is of the
order of the quantum noise background level.

A. Formation of a spectral pattern of SISs

We start the simulations by investigating the possibil-
ity to generate SISs in the incoherently pumped passive
cavity. For this purpose, we consider a spectral band-
width of the incoherent pump, σF , of the same order as
the corresponding bandwidth of the spectral gain func-
tion, σF ∼ ∆ωg ∼ 1/τR. The response function im-
plemented in the simulations refers to the Raman-like
damped harmonic oscillator given in Eq.(7). In the fol-
lowing we will always consider the natural experimental
configuration in which the cavity is initially empty, while
the incoherent pump progressively fills the cavity in time.



7

The cavity is characterized by a length L = 5L0, while
the amount of losses (αL = 10−3) has been chosen in
such a way to enhance the cavity finesse, so that the in-
tracavity power reached in the stationary regime is of
the same order than the injected pump power. Note that
concrete experimental values of the normalized parame-
ters used in the simulations reported in this section are
discussed in detail in Sec. VI. For instance, the simu-
lations reported in Figs. 2-3 typically correspond to the
experimental parameters given through the first line of
Fig. 7 in Sec. VI.
The simulations reveal that the intracavity field ex-

hibits a turbulent dynamics characterized by statistically
stationary fluctuations. The cavity is filled according to
the solution of MF-KE for N̂(T ) =

∫

ñ(T, ω)/(1+τsω)dω:
The ‘number of photons’ evolves according to

N̂(T ) =
θ

Γ

[

1− exp
(

− ΓT

tR

)]

∫

SF (ω)

1 + τsω
dω. (15)

This means that it relaxes exponentially, with the charac-
teristic photon life-time τph = tR/Γ, toward the station-

ary state, N̂st = θP̂F /Γ, with P̂F =
∫ SF (ω)

1+τsω
dω. This

prediction is confirmed by the numerical simulations, as
illustrated in Fig. 2c.
The main result revealed by the simulations is the for-

mation of a spectral pattern of almost regularly spaced
SISs. This is remarkably illustrated in Fig. 2a-b, which
reports the temporal evolution of the spectrum of the
turbulent field starting from an empty cavity. In a first
stage, due to the high cavity finesse, a small amount
of the incoherent pump enters the cavity, so that the
system evolves in the linear regime. Once the intracav-
ity pump intensity becomes large enough, the nonlinear
regime leads to the generation of a SIS, which propa-
gates in the spectral domain toward the low-frequency
components. As a consequence, the frequency interval
of incoherent pump excitation, ω ∈ [−σF , σF ], results to
be cleared out by the emission of the SIS. In this way,
the process can start again: The intracavity pump is re-
generated and once its intensity becomes large enough,
a second SIS is emitted and is red-shifted away from the
pump frequency band, and so on the process is repeated,
thus leading to the formation of a regular spectral pattern
of SISs, as evidenced in Fig. 2a-b. The resulting spectral
pattern of SISs then spans several orders of the resonant
Raman frequency shift. The cavity losses combined with
the self-steepening effect, lead to a slow down of the most
spectrally shifted SISs. Actually, the spectral bandwidth
of the pattern of SISs is essentially limited by the finesse
of the cavity, F = 2π/Γ.
One may wonder whether the spectral pattern of SIS

reported here can be explained by a mechanism of cas-
caded Raman scattering, a well-known process that has
been widely studied in both single pass propagation
[94, 95], or in cavity systems, e.g., in cw fiber lasers
[96], in mode-locked fiber lasers [97], or in passive micro-
resonators [98, 99]. Cascaded Raman scattering refers
to the generation of several Stokes orders, the 1st order

subsequently leading to the generation of the 2nd order,
which in turn generates the 3rd one, and so on several
orders are generated in cascade. In this way the different
Stokes bands have fixed frequencies in the spectrum, and
adjacent bands are separated one from each other by the
Raman resonant frequency (∆ωg ≃ 13.2THz in conven-
tional silica fibers). These properties contrast with the
spectral pattern of SIS discussed here since, (i) each indi-
vidual band is itself continuously frequency shifted dur-
ing the temporal evolution, (ii) the frequency separation
among adjacent bands is much larger than the Raman
resonant frequency, ∆ωpatt ≫ ∆ωg (see Fig. 2a). These
fundamental differences with cascaded Raman scatter-
ing are not surprising since, as explained here above,
in our system the mechanism underlying the formation
of the spectral pattern of incoherent frequency bands is
based on the emission of SISs from the injected incoher-
ent pump. In other words the different bands in our spec-
tral pattern do not correspond to different Stokes orders,
but to the successive emission of different SISs from the
injected incoherent pump. As a consequence, it is diffi-
cult to assess even qualitatively the frequency separation
among adjacent SISs, since such a shift is related to the
processes of SIS emission and pump regeneration in the
cavity (which obviously depends on the cavity length and
finesse).

Also note that the frequency shift of a SIS is very differ-
ent from the well-known soliton self-frequency shift due
to intra-pulse Raman scattering [51], since this effect is
fundamentally related to the propagation of a coherent
soliton pulse. In contrast, there is no pulse confinement
in the temporal domain here, since we deal with an in-
coherent wave characterized by fluctuations that are sta-
tistically stationary in time.

A continuous SIS is known to become unstable under
certain conditions, and can thus relax during the prop-
agation toward a discrete SIS [49]. Indeed, depending on
different key parameters, such as e.g., the spectral band-
width of the pump, the amount of noise background, or
the structure of the response function g(ω), the cavity
system can self-organize into a spectral pattern of dis-
crete SISs, as illustrated in Fig. 3. The discrete SIS is
characterized by three incoherent spectral bands equally
spaced by the Raman frequency: a new Raman band
grows up by absorbing the previously generated spectral
band, thus leading to a ‘discrete propagation’ of the dis-
crete SIS in frequency space. As for continuous SISs, the
cavity finesse also delimits the spectral bandwidth of the
generated spectral pattern of discrete SIS.

We also verified by NLSE simulations that perturba-
tive higher-order dispersion effects do not affect the spec-
tral dynamics of the incoherent wave, in agreement with
the theory. Notice the remarkable agreement between
numerical simulations of the NLSE (1) with boundary
conditions (2), and the simulations of the MF-KE (5),
without using adjustable parameters.
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FIG. 3: Spectral pattern formation of SISs: Temporal evolu-
tion of the spectrum of the intracavity turbulent optical field
obtained by solving the NLSE (1-2) (a), and the MF-KE (5)
(b). (c) Corresponding evolutions of the intracavity power,
N(T ) =

∫
ñ(T, ω)dω: NLSE (1-2) (solid blue), MF-KE (5)

(dashed red). Corresponding power corrected by the self-

steepening factor, N̂(T ) =
∫
n̂(T, ω)dω (solid black), which

relaxes toward a stationary state as predicted by Eq.(15),

N̂st = θ
Γ
P̂F = 0.83. Parameters are the same as in Fig. 2,

except that η = 2.6, which entails a larger velocity of the soli-
ton in frequency space (note that the frequency windows are
different for Figs. 2 and 3).

B. Incoherent spectral singularities

In the previous section we discussed the turbulent
regime of the cavity when the spectral bandwidth of the
incoherent pump is of the same order as the bandwidth
of the spectral gain function, g(ω). Let us now consider
the regime in which the pump spectral bandwidth is in-
creased in a significant way, σF ≫ ∆ωg ∼ 1/τR. The cav-
ity then enters a qualitatively different turbulent regime.
As already discussed above in Sec. IV through the analy-
sis of the stationary solutions, in this ‘long-range regime’
the behavior of the tails of the gain spectrum g(ω) plays
an important role in the spectral dynamics. We antici-
pate that the cavity will be shown to exhibit a turbulent
dynamics featured by the formation of spectral singular-
ites, whose structures are described in detail by the ex-
pansion of the convolution operator Mω given in Eq.(6).
Proceeding as in Sec. IV, we will consider two different
examples of continuous and discontinuous response func-
tions to illustrate different forms of spectral singularities.
We will also neglect the impact of the self-steepening
term, since the spectral dynamics of the cavity will be
shown to evolve far away from−1/τs, as will be confirmed
by the numerical simulations reported in Figs. 4-5.
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FIG. 4: Development of dispersive spectral incoherent shock
waves (with continuous response function): (a-d) Temporal
evolution of the spectrum of the intracavity turbulent optical
field obtained by solving the NLSE (1-2) (gray line), the MF-
KE (5) (dashed-red line), the singular integro-differential MF-
KE (16) (dashed-green line). (e) Corresponding evolutions
of the intracavity power, N(T ) =

∫
ñ(T, ω)dω: The cavity

develops the shock well before reaching the stationary steady
state (15), τshock ≪ τph. Parameters: L = 20L0 is the total
length of the cavity, η = 1, τR = 2τ0 in the response function,
pump spectral bandwidth σF = 4π, losses αL = 10−3, fR =
0.18.

1. Continuous response function: Spectral shock wave

We first consider the Raman-like response function to
illustrate the example of the continuous response func-
tion. On the basis of the expansion of the convolution
operator discussed through Eq.(6), the MF-KE for the
averaged spectral dynamics ñω(T ) takes the form

tR ∂T ñω =
γ̄L(1 + η2)

τ2R

(

ñω∂ωñω − 1

τR
ñωH∂2ωñω

)

+ θ SF (ω)− Γ ñω. (16)

The leading-order Burgers term in (16) is responsible
for the development of a gradient catastrophe, which
is subsequently regularized by the nonlinear dispersive
term involving the Hilbert operator [7]. This prediction
is confirmed by numerical simulations of the NLSE (1)
with boundary conditions (2), which have been found in
quantitative agreement with the MF-KE (5) and the re-
duced singular integro-differential MF-KE (16), as shown
in Fig. 4. As discussed in detail in [7], the dispersive
shock wave reported here develops in the spectral evo-
lution of the incoherent wave. It is thus of fundamental
different nature than the conventional dispersive shocks
that develop either in the spatial or the temporal domain
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FIG. 5: Development of spectral collapse singularity (with
discontinuous response function): Temporal evolution of the
spectrum of the intracavity turbulent optical field obtained
by solving the NLSE (1-2) (gray line), the MF-KE (5)
(dashed-red line), the singular integro-differential MF-KE
(17) (dashed-green line). The inset shows the correspond-
ing evolutions of the intracavity power, N(T ) =

∫
ñ(T, ω)dω:

The cavity develops the collapse before it reaches the statis-
tical stationary regime, τcoll ≪ τph Parameters: L = 20L0

is the total length of the cavity, pump spectral bandwidth
σF = 6π, τR = 3τ0, η = 1, losses αL = 10−3, fR = 0.18.

from coherent disturbances, which have been experimen-
tally observed in ion-acoustic waves [100], water surface
gravity waves [101], and fiber optics [102], and have re-
cently regained great interest in optics [103–112]. Coher-
ent dispersive shocks and their stationary analogues have
shown to play a role also in passive cavity configurations
[113–115], where one can envisage that they can impact
the generation of combs in the normal dispersion regime
[116, 117].
Note that, in the incoherent case examined here, the

incoherent shock singularity develops in the cavity well
before that it reaches the statistically stationary steady
state. In other words the characteristic shock time scale
is much smaller than the photon life-time, τshock ≪ τph,
see Fig. 4. This is interesting when one reminds the fact
that the rapidly oscillating dispersive shock wave struc-
ture is known to regularize the shock singularity in a
conservative (Hamiltonian) system. Here, the dispersive
shock wave develops far from the statistical stationary
regime, i.e., in the non-conservative regime where the in-
jected pump is still filling the cavity, ∂TN(T ) > 0.

2. Discontinuous response function: Spectral collapse

To illustrate the example of a discontinuous response
function, we consider a purely exponential decay given
in (10). The discontinuity at t = 0 completely changes

the dynamics [7], which is now dominated by a nonlinear
singular term:

tR ∂T ñω =
γ̄L

τR

(

− ñωHñω − 1

τR
ñω∂ωñω

+
1

2τ2R
ñωH∂2ωñω

)

+ θSF (ω)− Γñω. (17)

The impact of the leading-order term in (17) was dis-
cussed in detail in Ref.[7], in relation with an analytical
solution originally derived in [118]. It was shown that
the spectrum exhibits a collapse-like behavior, while the
spectral peak is shifted toward the low-frequency com-
ponents (ω < 0) with a constant velocity. This general
behavior is confirmed by the numerical simulations of the
turbulent cavity, although the cavity operates far from
the statistical stationary regime in the presence of a sig-
nificant forcing, i.e., the collapse time is much smaller
than the photon life-time, τcoll ≪ τph, see the inset of
Fig. 5 with ∂TN(T ) > 0. Note again the quantitative
agreement between NLSE (1), MF-KE (5) and the singu-
lar integro-differential MF-KE (17), without adjustable
parameters.

VI. MODERATE FINESSE CAVITY
CONFIGURATION

A. Numerical results

Let us now discuss a more realistic fiber ring cavity
configuration characterized by a moderate finesse. A
typical experimental set-up of the fiber ring cavity is re-
ported in Fig. 6. To be concrete, we considered here a
cavity of length L = 25m, with fiber nonlinear coefficient
γ = 2W−1km−1, which operates in the anomalous dis-
persion regime β2 = −10−26s2/m at the carrier pump
wavelength λp = 1550nm (193.5THz). We remind here
that in the strongly incoherent (i.e., weakly nonlinear)
regime the sign of second-order dispersion does not af-
fect the turbulent dynamics, as discussed above through
the kinetic theory and the MF-KE. However, we will see
that the weakly nonlinear regime is not guaranteed as
the spectral bandwidth of the injected incoherent pump
is decreased, which can be responsible for the generation
of coherent soliton states. In order to increase the finesse
of the cavity, we considered in the simulations a coupler
of efficiency 0.99, weak fiber losses 0.2dB/km, as well as a
strong (average) pump power of PF =100W that enables
a reduction of the length of the cavity. Note that such
a high power source can be implemented in practice by
considering a cavity synchronously pumped by incoher-
ent long pulses. With these parameters we have a typical
cavity finesse of F ≃ 500. Simulations of the NLSE in-
clude both the instantaneous and the delayed contribu-
tions to the nonlinear response function, with the usual
Raman contribution fR = 0.18 and response function

R(t) = 1+η2

ητR
sin(ηt/τR) exp(−t/τR), with η = 2.6 and
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FIG. 6: Scheme of the fiber ring cavity experiment. The inco-
herent source can be modulated in time so as to synchronously
pump the cavity with high power incoherent long pulses. The
polarization controller can be used to get rid of fiber bire-
fringence. A high-efficiency coupler is inserted in the cavity
to increase the finesse. Numerical simulations of the NLSE
reveal that the cavity generates a spectral pattern of SISs.

τR = 32fs. Note that this expression refers to the usual
expression of the Raman response function in optical
fibers with τR = 32fs and η = 2.6 (τ1 = τR/η = 12.2fs)
[51].

We report in Fig. 7 the results of the numerical sim-
ulations of the NLSE (1) with boundary conditions (2).
Because of the large spectral bandwidth of Raman gain
in optical fibers (i.e., the small response time τR) the
simulations reveal that the cavity usually operates in the
regime characterized by the formation of a spectral pat-
tern of SISs. The dynamics of the cavity is reported for
different values of the spectral bandwidth of the inco-
herent pump, as illustrated by Fig. 7, where the pump
bandwidth is varied from 6.2THz to 3.1THz. More specif-
ically, for small spectral bandwidths, the generated SISs
exhibit a discrete behavior. Conversely, for larger spec-
tral bandwidths, the cavity initially tends to generate a
pattern of continuous SISs. However, each of the con-
tinuous SIS subsequently decays toward a stable discrete
SIS, in analogy with a previous study of SIS emerging
from a supercontinuum spectrum [49].
It is also interesting to note that, by decreasing the

pump spectral bandwidth, linear and nonlinear effects
can become of the same order (tc ∼ τ0), so that the sys-
tem no longer evolves in the weakly nonlinear regime and
the validity of the theoretical kinetic approach becomes
questionable. In the anomalous dispersion regime consid-
ered here, this may lead to the generation of a coherent
soliton. This is illustrated in Fig. 8, which reports a sim-
ulation realized with the same parameters as in Fig. 7,

except that the spectral bandwidth has been decreased
down to 1.55THz. We can note that the system initially
tends to generate a discrete SIS, as in Fig. 7, however,
at the time T ≃ 60T0, the first sideband of the discrete
SIS suddenly leads to the generation of a coherent soli-
ton, which is rapidly shifted toward the low frequency
components. This becomes apparent in the correspond-
ing temporal intensity profile reported in Fig. 8b, which
shows that a large amplitude coherent soliton is gener-
ated. Note in particular in Fig. 8b that most of the power
of the incoherent component is transferred to the coher-
ent soliton component. This energy transfer process is
strongly favoured by the Raman effect, whose underly-
ing spectral red-shift confers a large momentum to the
soliton.

B. Discussion

Let us consider the possible experimental realization of
the proposed concept. While basic elements and compo-
nents are readily available on the market, there are seri-
ous technical challenges and limitations for experimental
implementation. Firstly, we estimate the achievable fi-
nesse in the fibre-based ring cavity. To do that we need to
account for all types of losses, such as splice losses, bend-
ing losses and fibre coupler intrinsic losses. The combined
splice losses together with the bending losses will amount
to ∼ 0.2–0.25 dB per cavity round-trip. The fibre losses
of 0.2 dB/km could be neglected for 25 meter long cav-
ity. Insertion losses on fibre coupler together with excess
losses add approximately 0.25 dB. So the best achiev-
able fibre-based cavity finesse is around 55. Minimising
the number of splices between different types of fiber and
careful elimination of bending losses, one can potentially
bring the finesse value up to 100. Another limiting factor
is the bandwidth of the fiber-based coupler. Indeed, the
typical bandwidth of a wideband fibre optical 99/1 cou-
pler is no more than 200nm, which is 25 THz or just two
Raman shifts at 1550nm. This means that only 2 first
lobes could be extracted from the cavity while further
lobes will encompass much lower cavity finesse, and then
the further energy transfer will be suppressed.
Limitations also arise from the available sources of

stochastic pulses used to pump the cavity. One needs
to have pulses of high peak power, of long duration, and
of incoherent nature. The availability of such sources is
really limited. Ideally the cavity should be pumped syn-
chronously, which means that for a 25 m long cavity the
pump pulse repetition rate is 8 MHz. For such a short
cavity and low finesse the average power of the incoherent
pulse should be of the order of 100W, which may be ob-
tained by considering a duration of the incoherent pulse
of ∼20–50 ns. A possible solution is to use Nd:YAG Q-
switched laser coupled into a fibre. Another possibility is
a semiconductor laser, such as VECSEL, however achiev-
ing the required parameters could prove more difficult in
this case.
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FIG. 7: Spectral dynamics obtained by simulations of NLSE
(1) (including the instantaneous Kerr effect, fR = 0.18, and
the Raman response function, η = 2.6) with boundary con-
ditions (2) (1st column), corresponding MF-KE (5) (2nd col-
umn), for the optical fiber ring cavity described in the text
(see Fig. 6 and Sec. VI for all parameters). The 3rd column
shows the intensity temporal dynamics, |ψ|2(t, T = 400T0), in
a specific temporal window. The incoherent cavity leads to
the generation of a pattern of discrete SISs with different spec-
tral bandwidths of the incoherent pump: 1st line 6.2THz; 2nd
line 3.1THz. A quantitative agreement is obtained between
NLSE and MF-KE simulations without using adjustable pa-
rameters. Note in particular that no coherent solitons are
generated, in contrast to Fig. 8.

FIG. 8: Spectral dynamics obtained by simulations of NLSE
(1) (including the instantaneous Kerr effect, fR = 0.18, and
the Raman response function, η = 2.6) with boundary condi-
tions (2) (a), and corresponding intensity temporal dynamics,
|ψ|2(t, T = 70T0), for the optical fiber ring cavity described
in the text (see Fig. 6 and Sec. VI for all parameters). The
only difference with respect to Fig. 7 is that the spectral band-
width of the incoherent pump has been decreased to 1.55THz.
The evolution is characterized by the generation of a coherent
soliton at T ≃ 60T0, see the text for discussion.

VII. CONCLUSION

We have shown that the Raman effect dominates the
turbulent dynamics of an optical fiber ring cavity pumped
by a strongly incoherent source. We have derived a MF-
KE that describes in detail the spectral evolution of the
turbulent dynamics, which revealed a variety of behav-
iors, such as nonequilibrium stationary turbulent states
of different nature than those predicted by the standard
wave turbulence theory, the formation of spectral pat-
terns of SISs, or the development of incoherent dispersive
shock waves and incoherent collapse singularities. Note
that, although dispersive shock waves are known to reg-
ularize a gradient catastrophe in a conservative physical
system, here they have been shown to develop far from
the stationary behavior of the cavity in the presence of
forcing and damping (τshock ≪ τph). Such a diversity of
turbulent behaviors has been reported in the ideal high-
finesse cavity configuration, while the formation of pat-
terns of SISs has been found as the natural regime of
operation for moderate cavity finesses. We have shown
that there exist a formal analogy between the derived
MF-KE accounting for forcing and damping effects in-
herent to the cavity configuration and the universal form
of the kinetic equation describing weak Langmuir turbu-
lence. The analysis reveals that the experimental fea-
sibility of the demonstration of weak Langmuir optical
turbulence in standard optical fiber cavities is not im-
mediate – while basic elements and components should
be readily available, the implementation of the whole ex-
periment involves serious technical challenges. On the
other hand, the exceptional high-finesse inherent to op-
tical micro-resonators [72] would offer the possibility to
explore in a relatively simple optical setting the whole
richness of Langmuir turbulence [58, 61, 62]. This type
of experiments should also be of interest for the impor-
tant issue of the coherence properties of frequency combs
in micro-resonators, whose study is the subject of a cur-
rent vivid interest [77–81].
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