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Abstract
Purpose To test the hypothesis of a significant relationship
between systemic markers of renal and vascular function (pro-
cesses linked to cardiovascular disease and its development)
and retinal microvascular function in diabetes and/or cardio-
vascular disease.
Methods Ocular microcirculatory function was measured in
116 patients with diabetes and/or cardiovascular disease using
static and continuous retinal vessel responses to three cycles of
flickering light. Endothelial function was evaluated by von
Willebrand factor (vWf), endothelial microparticles and solu-
ble E selectin, renal function by serum creatinine, creatinine
clearance and estimated glomerular filtration rate (eGFR).
HbA1c was used as a control index.
Results Central retinal vein equivalence and venous maxi-
mum dilation to flicker were linked to HbA1c (both
p < 0.05). Arterial reaction timewas linked to serum creatinine
(p = 0.036) and eGFR (p = 0.039); venous reaction time was
linked to creatinine clearance (p = 0.018). Creatinine clearance
and eGFR were linked to arterial maximum dilatation
(p < 0.001 and p = 0.003, respectively) and the dilatation am-
plitude (p = 0.038 and p = 0.048, respectively) responses in the
third flicker cycle. Of venous responses to the first flicker

cycle, HbA1c was linked to the maximum dilation response
(p = 0.004) and dilatation amplitude (p = 0.017), vWf was
linked to the maximum constriction response (p = 0.016),
and creatinine clearance to the baseline diameter fluctuation
(p = 0.029). In the second flicker cycle, dilatation amplitude
was linked to serum creatinine (p = 0.022).
Conclusions Several retinal blood vessel responses to flicker-
ing light are linked to glycaemia and renal function, but only
one index is linked to endothelial function. Renal function
must be considered when interpreting retinal vessel responses.
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Introduction

The relatively straightforward non-invasive assessment of the
retinal circulation by methods such as fundus photography,
video recording and tomography has led to the view that it
has potential as a screening tool for cardiovascular disease
such as myocardial infarction and stroke [1–3]. This concept
has been supported through large population studies [4–6] that
together demonstrate a relationship between certain retinal
vessel indices and cardiovascular risk [7, 8]. Individuals with
good cardiovascular health are less likely to have signs of
retinopathy such as dilated retinal venules and narrow retinal
arterioles, both of which are associated with increased risk of
stroke and coronary artery disease [9].

Whilst retinal vessel calibres provide only static indices,
dynamic measurements such as retinal vessel reactivity to
flicker light provocation can provide further insight into the
status of the retinal microcirculation. Several authors have
demonstrated a link between measures of cardiovascular
health and retinal vessel dynamics, such as a decrease in
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retinal vessel dilation in the presence of decreased flow medi-
ated dilation of the brachial artery [10], prolonged reaction
times in retinal arterial responses to flicker light in patients
suffering from coronary artery disease [11], and decreased
vessel dilation to flicker light in patients with coronary artery
disease, and which depends on the severity of the disease [12].
There is considerable evidence that retinal vessel reactivity to
flicker light provocation is blunted in the presence of diabetes
and in diabetic retinopathy [13–16].

The classical risk factors for the development of cardiovas-
cular disease operate at the level of the endothelium [17, 18].
Leading plasmamarkers of endothelial perturbation, known to
be abnormal in cardiovascular disease, include von
Willebrand factor, soluble E selection and endothelial micro-
particles [19–21]. A further complicating pathogenic process
in cardiovascular disease is poor renal function, known to be
present in hypertension and diabetes [22–24], and which is a
risk factor for major cardiovascular disease [25, 26].We there-
fore hypothesised that retinal arterial and venous static and
flicker responses are influenced by renal and/or vascular func-
tion. We tested our hypothesis in a clinically relevant cohort of
patients with diabetes and/or cardiovascular disease.

Materials and methods

Subjects

We recruited 116 patients from out-patient clinics at a
University Teaching Hospital. Inclusion criteria were history
of cardiovascular disease (myocardial infarction, stroke,
>50 % stenosis of artery proven by transcutaneous interven-
tion, artery bypass grafting, amputation) and diabetes (HbA1c
> 55 mmol/mol and/or attendance at a diabetes clinic).
Exclusion criteria were age <18 years, connective tissue dis-
ease, cancer, recent (<3 months) cardiovascular events such as
myocardial infarction or stroke, recent (<3 months) surgery,
established ocular disease such as age-related macular degen-
eration. Ethical approval was obtained from West
Birmingham Ethics Committee and Aston University Ethics
Committee. Written informed consent was received from all
individuals taking part in the study. This study has been de-
signed and conducted in accordance with the Declaration of
Helsinki.

Study protocol

A full history and examination took place to ensure that sub-
jects were free from any disease as outlined in the exclusion
criteria. All subjects were instructed to refrain from consum-
ing caffeinated products, chocolate, drinking alcohol and
smoking on the study day. Intraocular pressure (IOP) was
measured by contact tonometry and calculated as the mean

of three consecutive readings after instillation of one drop of
0.4 % benoxinate hydrochloride (Chauvin Pharmaceuticals
Ltd., Kingston-Upon-Thames, UK; TonopenXL, Medtronic
Solan, PMS Instruments, Maidenhead, UK). Data were
discarded if the coefficient of variation (CV) exceeded 5 %.

Dynamic and static retinal vessel assessment was deter-
mined after full pupil dilation was reached with 1 %
tropicamide (Chauvin Pharmaceuticals Ltd., Kingston-Upon-
Thames, UK), digital fundus images and reactivity parameters
of retinal blood arteries and veins were obtained (retinal vessel
analyser [RVA], Imedos Systems (UG) haftungsbeschraenkt
Jena, Germany) [27]. For static vessel analysis, black and
white fundus images were obtained at a 30° angle with the
optic nerve head centred using the inbuilt Zeiss 450 F fundus
camera (Zeiss GmbH, Germany). Arterial and venous diame-
ters provided an arteriovenous ratio (AVR), central retinal ar-
tery equivalent (CRAE) and central retinal vein equivalent
(CRVE; Vesselmap software, Imedos Systems (UG)
haftungsbeschraenkt, Jena, Germany) [28, 29]. CRVE,
CRAE and AVR were calculated from arteries and veins that
were located within a ring whose centre was the optic nerve
head and whose inner and outer margins were of one half disc
diameter (DD) and one full DD. These measurements (AVR,
CRAE and CRVE) are standard ophthalmological indices and
are used to describe the physical structural of different retinal
arteries and veins such as luminal diameter.

Static imaging was followed by dynamic assessment where
retinal diameters were measured continuously at a sampling
rate of 25Hz. Stimulation of retinal blood vessels was done by
optoelectronic interruption of the green fundus illumination
used by the RVA resulting in a flickering light provocation
with a 12.5-Hz frequency [30–32]. After BP stabilisation
and image focussing, a vessel segment of the superior tempo-
ral retinal artery and vein (500 μm in length) was chosen at a
distance of 1.5–2 DD away from the margins of the optic
nerve head. Baseline diameter of both the artery and vein
was recorded according to the standard RVA protocol [32]
for 50 s and then followed by 3 cycles of 20-s flicker provo-
cation with each 80-s recovery time. This resulted in a 350-s
measuring period during which the fellow eye was occluded.
From the diameter recordings, the values for maximum dila-
tion (MD), maximum constriction (MC) and dilation ampli-
tude (DA), arterial baseline corrected flicker response (BFR),
and arterial and venous reaction time (RT) to flicker provoca-
tion were calculated [33].

Plasma markers

Venous blood was collected into citric acid and plasma obtain-
ed after centrifugation at 1000 g for 20 min. Von Willebrand
factor (vWf) and soluble E selectin were measured by com-
mercial enzyme linked immune-sorbent assay (ELISA; Dako-
Cytomation, Ely, Cambs UK and R&D Systems, Abingdon,
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UK). The ELISAs had intra- and inter-assay coefficients of
variation <5 % and <10 %, respectively. Endothelial micro-
particles were determined by flow cytometry (Apogee Flow
Systems, Hemel Hemstead, UK) using fluorochrome-linked
monoclonal antibodies to CD144 (R&D Systems, Abingdon,
UK) [34]. The size of the EMP was confirmed with polysty-
rene beads of 110-, 200-, 500-nm and 1-μm diameter together
with 300- and 880-nm silica beads (Apogee Flow Systems,
Hemel Hemstead, UK). Creatinine and HbA1cweremeasured
by standard techniques by the Hospital Routine Pathology
Laboratory. Creatinine clearance and the estimated glomerular
filtration rate (eGFR) were calculated according to the
Cockcroft and Gault, and the Modification of Diet in Renal
Disease equations, respectively [35, 36].

Statistics

We hypothesised that renal function (as defined by creatinine
clearance, serum creatinine and eGFR), systemic endothelial
function (as marked by endothelial microparticles, von
Willebrand factor and soluble E selectin) and glycaemia (as
assessed by HbA1c) each have an effect on retinal vessel
function. We tested these hypotheses in a multi-variate linear
regression analysis taking each ocular index and the depen-
dent variable and the seven research indices as independent
variables. According to Altman [37], a sample size of at least
ten is required for each independent variable, of which we
have seven, thus calling for a total sample size of at least 70
patients. However, in view of the possible likelihood of a
relationship between the seven indices, and in order to obtain
greater confidence we decided to over-recruit by at least 50 %
(i.e. to at least 105 patients), eventually recruiting 116 patients.
Continuously variable data are presented as mean and stan-
dard deviation or as median and interquartile range as distri-
bution demands, and were correlated by Spearman’s method.
Categorical data are presented as number and percentage.
Analyses were performed on Minitab version 17 (Minitab
Inc, Coventry, UK).

Results

Tables 1, 2 and 3 show the clinical, demographic and ocular
indices of all 116 patients. Median duration of disease in the
73 diabetics was 10 years (interquartile range 4.5–16.5 years).

In the analyses of the ocular indices of Table 3(a), although
intraocular pressure was linked to creatinine clearance
(p = 0.014), eGFR (p = 0.004) and serum creatinine
(p = 0.011) in univariate analysis, none remained significant
in multivariate analysis. HbA1c was linked to CRVE
(p = 0.014) and venous size (p = 0.034), but there were no
other links with other venous indices or any arterial index.

In analysis of the IMEDOS indices, no laboratory or clinical
index was significantly linked to any arterial index, but V max
was linked to HbA1c (p = 0.038). Regarding the ocular indices
in Table 3(b), no laboratory or clinical index was linked to
averaged arterial maximum dilatation, constriction or dilatation
amplitude or baseline diameter fluctuation, but in univariate
analysis, the arterial reaction time was linked to serum
creatinine (p = 0.033) and the eGFR (p = 0.035), and both were
retained in multivariate analysis (p = 0.036 and p = 0.039, re-
spectively). Of the averaged venous indices, once more, max-
imum dilatation, constriction or dilatation amplitude or base-
line diameter fluctuation failed to link to any index. However,
venous reaction time was linked to creatinine clearance (uni-
variate p = 0.024, multivariate p = 0.018) and eGFR (univari-
ate p = 0.033 but multivariate p = 0.126).

Correlations between the laboratory indices are present in
Table 4. Von Willebrand factor correlated with soluble E
selectin, whilst (unsurprisingly) the three renal indices strong-
ly inter-correlated. For each ocular index, we first performed a
univariate analysis of all seven research indices, then a multi-
variate analysis with only those indices that were significant
(p < 0.05) in the univariate analysis. Analyses of the arterial
and vein responses to the three individual flicker cycles in
relation to the laboratory and haemodynamic indices are pre-
sented in Table 5. The creatinine clearance and eGFR were
both independently linked to the arterial maximum dilatation
response and the dilatation amplitude response to the third
flicker cycle. As regards venous responses, in the first flicker
cycle, HbA1c was linked to the venous maximum dilation
response and dilatation amplitude, von Willebrand factor
was linked to maximum constriction, and creatinine clearance
was linked to baseline diameter fluctuation.

Discussion

The eye represents a unique opportunity to non-invasively
assess microcirculation, and may be useful in predicting those
at risk of cardiovascular disease [2–10, 38–40]. A further de-
velopment in ocular pathology is the recognition of the value
of retinal vessel responses to flickering light in diabetes and
cardiovascular disease [14–16, 41–43]. A potential patho-
physiological process to explain these abnormal retinal vessel
responses is endothelial dysfunction [11–13, 17, 18, 44–46],
known to be present in diabetes [47–49]. However, the kidney
can also be a target organ in diabetes, and may also be linked
to endothelial dysfunction [50–52]. Despite this, the role of
renal function in retinal vessel responses to flicker light is
unexplored.

We tested the hypothesis that retinal vessel responses in
patients with diabetes and/or cardiovascular disease would
be linked to vascular and/or renal function, but factored in
glycaemia as a reference pathological process. As markers of
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endothelial function, we chose endothelial microparticles, von
Willebrand factor and soluble E selectin [19, 20]. The former
are shed from the cell membrane as a result of endothelial
injury and in vasomotion disorders involved in cardiovascular
disease, including diabetes [21, 53, 54]. Von Willebrand fac-
tor, a large multimeric glycoprotein stored in endothelial
Weibel–Palade bodies and released in a steady state directly
from translation and transcription, promotes platelet–platelet
and platelet–subendothelial adhesion, and is a co-factor for
coagulation factor VIII [55]. However, at times of increased

endothelial stress, damage or activation, Wiebel–Palade bod-
ies release large amounts into the plasma, thereby promoting
thrombosis [56]. Increased levels in diabetes and diabetic ret-
inopathy are a long-established fact [57, 58]. The adhesion
molecule E-selectin (CD69E) is a membrane component up-
regulated at times of endothelial activation, under which con-
ditions it mediates adhesion between the endothelium and
leukocytes [59]. Serum proteases can generate a cleaved prod-
uct, i.e. soluble E selectin, increased levels of which reflect
increased endothelial activation [60, 61]. Potential mecha-
nisms for increased plasma levels of these markers in diabetes
are diverse and include the effects of hyperglyaemia, ad-
vanced glycation end products, reactive oxygen species and
inflammation [49, 62, 63].

We found that HbA1c is linked to several venous retinal
vessel indices — the CRVE, venous size, V max, and the
maximum dilatation and dilatation amplitude to the first flick-
er cycle. No arterial index was linked to HbA1c. Only one
vascular marker (von Willebrand factor, known to be in-
creased in diabetes [57, 58, 64]) was linked to a retinal vessel
response — that of venous maximum constriction. However,
renal markers were linked to retinal vessel responses on sev-
eral occasions. The arterial reaction time was linked to serum
creatinine and the eGFR, and in the third flicker cycle, maxi-
mum dilation was linked to creatinine clearance and the
eGFR, and dilation amplitude to creatinine clearance and the
eGFR. However, venous reaction time was linked to

Table 1 Clinical data,
medication and demographics Feature Data Feature Data

Demographics

Age [years] 64.3 (9.9) Sex [m/f] 86/30
Weight [kg] 86.6 (16.6)

Clinical

BMI [kg/m2] 29.3 (5.5) SBP [mm Hg] 126 (16)

DBP [mm Hg] 73 (11) HR [bpm] 72 (13)

Co-morbidities

Coronary artery disease [n,%] 61, 52.6 % Peripheral artery disease [n, %] 9, 7.7 %

Cerebrovascular disease [n,%] 11, 9.5 % Diabetics [n, %] 73, 62.9 %

Medications

Calcium channel blockers [n,%] 47, 40.5 % ACEI/ARB [n, %] 84, 72.4 %

Lipid-lowering [n,%] 103, 88.8 % Aspirin [n, %] 76, 67.8 %

Clopidogrel [n,%] 15, 12.9 % Nitrate [n, %] 22, 19.0 %

Oral anticoagulant [n,%] 16, 13.8 % Beta blocker [n, %] 51, 44.0 %

Diuretic [n,%] 45, 38.8 % Thyroxine [n, %] 15, 12.9 %

Metformin [n, %] 47, 40.5 % Sulphonylurea [n, %] 14, 12.1 %

DPP-4 inhibitor [n,%] 14, 12.1 % Insulin [n, %] 29, 25.0 %

GLP-1 agonist [n,%] 8, 6.9 % Piaglitazone [n, %] 6, 5.2 %

M Male; f female; SBP systolic blood pressure; DBP diastolic blood pressure; HR heart rate; BMI body mass
index; HbA1C glycated haemoglobin; DM diabetes mellitus; ACEI angiotensin-converting-enzyme inhibitor;
ARB angiotensin receptor blockers; DPP-4 dipeptidyl peptidase-4 (‘gliptins’); GLP-1 glucagon-like peptide-1
(exenatide, liraglutide). Data presented as mean with standard deviation, or as number of subjects and percentage

Table 2 Laboratory indices

Index Data

Renal markers

Serum creatinine (μmol/L) 97 (32)

eGFR (ml/min/1.73) 69 (18)

Creatinine clearance (ml/min) 85 (30)

Vascular markers

Von Willebrand factor (IU/dL) 114 (22)

Endothelial microparticles (×103/μL) 35.9 (9.4–91.1)

Soluble E selectin (ng/mL) 25 (9.5)

Glycaemic marker

HbA1c (mmol/mol) 53 (17)

eGFR Estimated glomerular filtration rate. Data presented as mean and
standard deviation or as median and interquartile range
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creatinine clearance, and venous baseline diameter fluctuation
was linked to creatinine clearance in the third flicker cycle.

Notably, no renal or vascular index was linked to intraoc-
ular pressure or to any of the IMEDOS indices, but several

indices were linked to flicker response indices. The fact that
arterial responses were linked to renal indices in the third, but
not the first or second flicker cycles, is curious. This result,
remaining present after adjustment for multiple analyses and

Table 3 Ocular indices
(a) Resting ocular indices and Imedos indices

Index Data

Intraocular pressure (mm Hg) 14.1 (2.5)

Central retinal artery equivalent (arbitrary units) 176 (17)

Central retinal vein equivalent (arbitrary units) 212 (19)

Artery/vein ratio 0.83 (0.09)

Artery diameter (μm) 113 (19)

Vein diameter (μm) 141 (19)

Imedos indices:

Amax - Maximum arterial dilation after flicker (%) 0.9 (0.1–2.0)

Amin - Minimum arterial dilation after flicker (%) −0.5 (−1.1–0.1)
Apeak – Arterial dilation amplitude (%) 1.4 (0.3–2.9)

Vmax – Maximum venous dilation after flicker (%) 2.8 (1.7–3.9)

(b) Retinal vessel flicker indices

Flicker 1 Flicker 2 Flicker 3 Averaged flicker response

Arterial responses

Maximum dilatation (%) 3.8 (3.5) 3.6 (3.2) 4.0 (3.4) 2.8 (2.1)

Maximum constriction (%) −2.2 (1.9) −2.4 (1.9) −2.1 (1.8) −1.9 (1.4)

Dilatation amplitude (%) 5.1 (3.3–7.7) 5.0 (3.1–7.7) 5.1 (3.2–7.5) 4.0 (2.6–6.4)

Reaction time (seconds) 18 (10–22) 18 (13–26) 19 (14–31) 18 (12–24)

Venous responses

Maximum dilatation (%) 4.4 (2.1) 4.8 (2.5) 4.7 (3.0) 4.3 (2.0)

Maximum constriction (%) −1.3 (1.8) −1.1 (2.0) −1.1 (2.4) −0.8 (1.3)

Dilatation amplitude (%) 5.0 (3.9–7.3) 5.4 (4.1–7.4) 5.2 (3.6–7.3) 4.6 (3.5–6.2)

Reaction time (seconds) 20 (17–23) 20 (15–23) 20 (15–23) 20.4 (6.7)

Summarized retinal vessel calibres and software-generated vessel reactivity parameters and IMEDOS software-
generated arterial and venous responses to flicker. Data presented as mean (SD) or median (lower quartile-upper
quartile)

Table 4 Correlations between laboratory indices

HbA1c Creatinine
clearance

Serum creatinine Estimated GFR Endothelial
microparticles

Von Willebrand
factor

Soluble E selectin −0.022 −0.01 −0.085 0.078 0.083 0.401

0.823 0.924 0.389 0.427 0.394 <0.001
Von Willebrand factor 0.127 −0.046 0.120 −0.047 0.034

0.178 0.658 0.200 0.614 0.721
Endothelial microparticles 0.098 0.092 0.013 −0.005

0.302 0.381 0.892 0.956
Estimated −0.013 0.733 −0.852
GFR 0.172 <0.001 <0.001
Serum −0.155 −0.55
Creatinine 0.102 <0.001
Creatinine −0.139
Clearance 0.185

Data are Spearman correlation coefficient and p value. GFR Glomerular filtration rate

Graefes Arch Clin Exp Ophthalmol (2016) 254:2257–2265 2261



factors, is robust and presumably reflects a pathophysiological
feature of the arterial vessel that is apparent only after serial
stimulation. This is counter to the link between vascular, renal
and glycaemic indices and venous responses that were evident
only in the first flicker cycle, when vessels were relatively
unstimulated. We also note that soluble E selectin and endo-
thelial microparticles, both known to be increased in diabetes
[47, 53, 54, 65], were not linked to any ocular or retinal vessel
index.

The most powerful relationships we found were between
the positive correlations between two renal indices and arterial
maximum dilation in the third flicker cycle. This we interpret
as high maximum arterial dilations, reflecting good microvas-
cular responses, are linked to good renal function as are
reflected by high eGFR and high creatinine clearance. This
is similar to the link between dilation amplitude and renal
indices. The reason why these are present not in the first or
second, but only in the third cycle may be that the vessels are
less able to control their responses after a prolonged bout of
stimulation.

The link between venous responses and HbA1c in the first
flicker cycle alone is perhaps unsurprising given the weight of
literature on the effect of this risk factor on the vasculature
[39–44]. However, this is in contrast to the lack of an arterial
link which supports the work ofMandecka et al. [14] who also
failed to correlate HbA1c with flicker responses. The links
with von Willebrand factor and creatinine clearance, although
present and adjusted for multiple analyses, are, nonetheless,
weak and so may be spurious.

Our data confirms, contrasts and extends that of
others. Yip et al. [66] reported that retinopathy was
associated with end-stage renal disease, the latter being
unrelated to retinal arteriolar calibre, retinal venular

calibre and retinal vascular fractal dimension. Eriksen
et al. [67] found that the measured GFR, but not a
creatinine-based eGFR, was linked to retinopathy, but
not to retinal artery or vein diameters. Our data supports
this finding as our creatinine-based eGFR did not cor-
relate significantly with retinal artery or vein diameters.
Using retinal fundus photography, Lim et al. [68] de-
scribed an association between narrower retinal arterio-
lar calibre, smaller retinal vascular fractal dimensions
and the presence of AV nicking and opacification with
lower eGFR and a higher urinary albumin to creatinine
ratio and microalbuminuria, the latter reflecting more
severe renal disease. They concluded that quantitative
changes of the retinal vascular geometry and qualitative
changes in the vessel architecture are associated with
markers of renal dysfunction and damage. Together,
these three sets of data all support, to one extent or
another, the general hypothesis that renal function is
important in retinal vessel integrity, as does our own
data.

We acknowledge the limitation of multiple analyses, and
that many of these are likely to be physiologically (the vessel
indices) and/or mathematically (the renal indices) related (cor-
relations in Table 4) and so we may be at risk of false posi-
tives. However, we feel this is countered by the large sample
size and that we have not over-interpreted our data. Our data
may also be limited by possible effects of various systemic
medications being taken by the patients, and that we recruited
from a well-motivated group that may contribute to a better
than expected endothelial function compared to poorly moti-
vated patients on different medications. Nevertheless, our
population is fully clinical in that all were being seen in a
secondary care setting for diabetes and/or cardiovascular

Table 5 Univariate and multivariate links between arterial and venous flicker responses and laboratory and haemodynamic indices

Flicker 1 Flicker 2 Flicker 3

Arterial responses

Maximum dilatation (%) None None Cr Cl: <0.001–<0.001 Creat:
0.072–0.117 eGFR: 0.002–0.003

Maximum constriction (%) None None None

Dilatation amplitude (%) None None Cr Cl: 0.013–0.038 eGFR: 0.022–0.048

Baseline diameter fluctuation (%) None None None

Reaction time (seconds) None Creat: 0.023–0.666 sEsel: 0.007–0.590 None

Venous responses

Maximum dilatation (%) HbA1c: 0.004–0.004 None None

Maximum constriction (%) vWf: 0.016–0.028 None None

Dilatation amplitude (%) HbA1c: 0.008–0.017
vWf: 0.019–0.072

Creat: 0.022–0.543 None

Baseline diameter fluctuation (%) Cr Cl: 0.029–0.043 None None

Reaction time (seconds) None None None

Data are p values from univariate and then multivariate regression analysis. Cr Cl Creatinine clearance, Creat serum creatinine, eGFR estimated
glomerular filtration rate, SBP systolic blood pressure, HR heart rate, sEsel soluble E selectin
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disease, and so represent the full spectrum of diabetic
atherosclerosis.

We conclude that HbA1c may be an influence on venous
responses to a first flicker stimulation, and that renal function
is an influence on arterial responses to a third flicker cycle.
Flicker stimulation analyses should consider the effects of
these risk factors.
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