

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches
copyright, (either yours or that of a third party) or any other law, including but not limited to
those relating to patent, trademark, confidentiality, data protection, obscenity, defamation,
libel, then please read our Takedown policy and contact the service immediately
(openaccess@aston.ac.uk)

http://www.aston.ac.uk/library/additional-information-for/aston-authors/aston-research-explorer/takedown-policy/

Self-Adapting Parallel Metric-Space

Search Engine for Variable Query

Loads

Khalil Badar Ali AL Ruqeishi

Doctor Of Philosophy

Aston University

Jun 2015

©Khalil Badar Ali AL Ruqeishi, 2015

Khalil Badar Ali AL Ruqeishi asserts his moral right to be identified as the

author of this thesis

This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognise that its copyright rests with its author and that no

quotation from the thesis and no information derived from it may be published

without appropriate permission or acknowledgement.

Aston University

Self-Adapting Parallel Metric-Space Search
Engine for Variable Query Loads

Khalil Badar Ali AL Ruqeishi
Doctor Of Philosophy, 2015

Thesis Summary

This research focuses on automatically adapting a search engine size in response to
fluctuations in query workload. Deploying a search engine in an Infrastructure as a Service
(IaaS) cloud facilitates allocating or deallocating computer resources to or from the engine.
Our solution is to contribute an adaptive search engine that will repeatedly re-evaluate
its load and, when appropriate, switch over to a different number of active processors.

We focus on three aspects and break them out into three sub-problems as follows:
Continually determining the Number of Processors (CNP), New Grouping Problem (NGP)
and Regrouping Order Problem (ROP). CNP means that (in the light of the changes in the
query workload in the search engine) there is a problem of determining the ideal number of
processors p active at any given time to use in the search engine and we call this problem
CNP. NGP happens when changes in the number of processors are determined and it must
also be determined which groups of search data will be distributed across the processors.
ROP is how to redistribute this data onto processors while keeping the engine responsive
and while also minimising the switchover time and the incurred network load.

We propose solutions for these sub-problems. For NGP we propose an algorithm for
incrementally adjusting the index to fit the varying number of virtual machines. For ROP
we present an efficient method for redistributing data among processors while keeping the
search engine responsive. Regarding the solution for CNP, we propose an algorithm deter-
mining the new size of the search engine by re-evaluating its load. We tested the solution
performance using a custom-build prototype search engine deployed in the Amazon EC2
cloud. Our experiments show that when we compare our NGP solution with computing
the index from scratch, the incremental algorithm speeds up the index computation 2–10
times while maintaining a similar search performance. The chosen redistribution method
is 25% to 50% faster than other methods and reduces the network load around by 30%.
For CNP we present a deterministic algorithm that shows a good ability to determine a
new size of search engine. When combined, these algorithms give an adapting algorithm
that is able to adjust the search engine size with a variable workload.

Keywords: Metric-Space Search engine, query workload, computer resources

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor Dr Michal
Konečný for his invaluable support and guidance throughout this process. I would not have
been able to complete the work of this Thesis if not for him. I am also incredibly thankful
for his time and patience in correcting my thesis and paper, and for his enlightening
discussions that brought me closer to the solution. His time and effort, which was invested
in me by him, indeed really helped me on my path towards becoming a researcher. I
would also like to express my gratitude to Dr Radu Calinescu from York University for
his guidance and support during my PhD. His advice has been an important influence
on my work. Similarly, I would like to thank my colleagues and friends in the computer
science department for their friendship and for providing unforgettable moments. I would
like to thank Dr Veronica Gil-Costa from Yahoo! Research Latin America for her help
to validate my work. I would like to thank Mr Alexander Brulo for his help and support
during my study. I would like to thank my colleague Dr Shahzad Mumtaz for his help and
support during my PhD. In particular, I would like to thank my parents and friends for
their unconditional love and support. Lastly, but not least, I want to thank my wife and
my children for their support and patience all of these years.

Contents

1 Introduction 1

1.1 Research Questions . 3

1.2 Contribution . 3

1.3 Structure of the Thesis . 4

1.4 Publications and Software . 4

2 Background 5

2.1 Search Engine Distributed Architecture . 5

2.2 Similarity Search . 6

2.2.1 Metric Spaces . 8

2.2.2 Similarity Queries . 8

2.3 Metric Space Indexing Approaches . 8

2.3.1 Sparse Spatial Selection (SSS) Approach 9

2.3.2 List of Clusters (LC) Approach . 9

2.4 Parallel Query Processing in Distributed Metric Space 13

2.5 Distributed Metric Space Index Problem (DMP) 15

2.5.1 Distributed Metric Space Index for Search Engine 17

K-means Clustering . 18

Query Vectors . 19

Km-Col Algorithm . 19

2.6 Search Engine and Cloud Architecture . 20

2.6.1 A Search Engine in Cloud . 21

2.7 Feedback Controller of Search Engine Simulator 23

2.8 Datasets . 24

2.9 Realistic User Behaviour . 25

3 Research Problem Analysis 27

3.1 Self-adapting Distributed Metric Space Index Problem (SDMP) 27

i

CONTENTS

3.2 Analysis of SDMP . 28

3.2.1 Regrouping Order Problem (ROP) 29

3.2.2 New Grouping Problem (NGP) . 30

3.2.3 Continually Determining the Number of Processors (CNP) 31

4 Dynamic Update of Distributed Metric Space Index 32

4.1 Distributed LC-clusters onto Processors . 32

4.2 Experiments Design . 35

4.2.1 Search Engine Simulator . 36

4.3 Experiments . 37

4.3.1 D-P is the Fastest . 37

4.4 Additional Observations . 38

4.5 Conclusions . 40

5 Adapting Distributed Metric Space Index 41

5.1 Recomputing G-groups . 41

5.1.1 Computing H-groups . 42

5.2 Experimental Evidence Supporting Hypotheses 44

5.2.1 The Number of H-groups . 46

5.2.2 Search Performance of TT-S . 48

5.2.3 Comparing TT-A and TT-R . 48

5.3 Switch-over Performance . 50

5.3.1 Experiments . 51

5.3.2 Results of Experiments . 51

5.4 Conclusions . 52

6 Determining Number of Processors 56

6.1 CNP . 56

6.1.1 Feedback Controller of Simulator . 57

6.1.2 CNP Solution . 57

6.2 SDMP . 61

6.3 Experiments Design and Results . 62

6.3.1 Search Scenarios . 63

Scenario 1 . 64

Scenario 2 . 64

Scenario 3 . 64

ii

CONTENTS

6.4 Conclusions . 64

7 Validation of Search Engine Simulator 70

7.1 Validation of Simulator . 70

7.2 Experiments and Results . 71

7.2.1 Performance Metric Experiments . 71

7.2.2 The Level of Scalability Experiments 72

8 Conclusion 75

8.1 Summary of Achievements . 75

8.1.1 Strengths of Research . 77

8.2 Future Work . 77

A A Process to Run Proposed Search Engine Simulator 80

A.1 Amazon EC2 configuration . 80

A.2 Shell scripts . 81

A.3 Search engine simulator . 83

Bibliography 86

iii

List of Figures

2.1 Simplified search engine architecture adopted from [11]. 6

2.2 Parallel processing architecture Adopted from [26]. 7

2.3 Example clusters built using the LC-cluster building algorithm. On the

right, the LC-clusters c1, c2 and c3 adopted from [12, 14]. 11

2.4 For R(q1, r) we need to consider the current bucket (c, rc, I) and the rest of

the centers. For R(q2, r) we consider only the current bucket. For R(q3, r)

we can avoid considering the current bucket (Adopted from [12]). 12

2.5 The role of the metric space in both the index building and search proces-

sors. Also showing how the index is distributed among the processors. . . . 15

2.6 Searching using distributed metric space index 16

2.7 K-Means clustering algorithm illustration (adopted from [37]). 18

2.8 Search engine deployed in cloud . 22

2.9 Feedback Controller of search engine simulator 23

2.10 Example of Realistic Query Sequence . 25

4.1 Re-distributing LC-clusters from 3 to 6 processors using D-P 35

4.2 The results of switch-over performance experiments. 39

5.1 Impact of increasing the number of H-groups (= w ∗ p) on performance. . . 47

5.2 TT-S and TT-R produce similar throughput, measured separately for in-

creasing p′ (E3) and increasing p/p′ (E4). 49

5.3 TT-A and TT-R lead to a similar maximum throughput after switchovers

with various p′ and with various ratios. 50

5.4 TT-A is faster than TT-R in switchovers with with various p′ and various

ratios. 53

iv

LIST OF FIGURES

5.5 TT-S and TT-A produce similar result of TT-R that show D-P is the faster

redistributed method. The black line in the figures show time of step2 of

switch-over when run one of transition types (Under the line) and time of

step 3 when use the ROP solution (D-P) (above the line). 54

5.6 TT-S and TT-A produce network load like TT-R that show D-P and D-I

have less load than D-S. 55

6.1 Feedback controller of search engine simulator 57

6.2 Computing p’ when query workload is increasing 59

6.3 Computing p’ when query workload is decreasing 60

6.4 Query rate in the Sogou log (adapted from [43]). 62

6.5 In Scenario 1, search engine show good response time when the value of

lookahead-time was suitable in E1, however, a small lookahead-time lead to

high response times in E2. 66

6.6 The search engine increases size too quickly when lookahead-time is too

large in E3 Scenario 1. 67

6.7 In Scenario 2, search engine show good response time when the value of

lookahead-time was suitable in E1, however, a small lookahead-time lead to

high response times in E2. 68

6.8 The algorithm does not cope well with very sharp changes of the workload

in Scenario 3. 69

7.1 Comparing the number of distance evaluation performed for the queries

Sets using our simulator and a third party implementation 72

7.2 Scalability of the search engine simulator. 74

A.1 Clustering package classes . 84

A.2 Network load classes . 85

A.3 Search engine package classes . 86

v

List of Tables

2.1 Instances details . 22

4.1 Mapping the LC-Clusters when switching over (p = 3→ p′ = 6), (the bold

numbers indicate clusters that have to be relocated) 34

4.2 Mapping the LC-Clusters when switching over (p = 6→ p′ = 3), (the bold

numbers indicate clusters that have to be relocated) 34

4.3 Experiments of switch-over performance . 37

5.1 Experiments of switch-over performance using TT-A and TT-S 51

6.1 Elements of Feedback Controller of Search engine simulator 57

vi

1 Introduction

Since 1993, the Internet has been growing rapidly and so too have the number of new

users [1]. As more data such as images, video and audio are available on the Internet, a

data search has become important to many users [2, 3, 4, 5, 6]. More than 4.64 billion

pages were contained within the Indexed Web by Monday, 13 April, 20151. As Jonassen

mentions in [1], in June 2011, the sites of Facebook, Microsoft and Yahoo! have more than

half a billion unique visitors each, and the sites of Google had already passed 1 billion

mark.

The growth in the amount of data available for search, rapidly increasing the numbers

of distributed data centers housing thousands of computers. These increases have driven

companies to build large data centers and increase the number of processors which consume

enormous amounts of electricity and require a huge infrastructure as support. For example,

Google has invested around $1 billion on building and running their data centers in 2011

[1]2 and $7.3 billion in 2013 [1]3.

1http://www.worldwidewebsize.com,The size of the World Wide Web, visited April 13, 2015
2http://www.datacenterknowledge.com/,Google Spent $951 Million on Data Centers in 4Q, January

2012,visited April 13, 2015
3http://www.datacenterknowledge.com/,Google Spent $7.3 Billion on its Data Centers in 2013,

FEBRUARY 2014,visited April 14, 2015

1

http://www.worldwidewebsize.com
http://www.datacenterknowledge.com/
http://www.datacenterknowledge.com/

Chapter 1 INTRODUCTION

The search engine is a popular term for an information retrieval system. It is used

to retrieve from large collections of information of an unstructured nature that satisfies

a user’s query [44]. The objective of a search engine is to answer queries well and fast

using a large data collection, in an environment that is constantly changing. Such a

goal implies that a search engine needs to cope with Web growth and change, as well

as growth in the number of users and variable searching patterns (user model). For this

reason, the system must be scalable. Scalability is the ability of the system to process an

increasing workload as we add more resources to the system and reducing it when workload

decreased. Scalability is not the only important aspect, the system must also provide high

capacity, where capacity is the maximum number of users that a system can sustain at

any given time, given both response time and throughput goals. Finally, the system must

not compromise quality of answers, as it is easy to output bad answers quickly.

The main two objectives of the search engine are providing results matching to a user’s

query and reducing the time and resources needed to assign this information to the user.

Using smart indexing data techniques with modern technology such as cloud should help

a search engine to achieve these objectives.

A typical search engine distributes its search index into multiple processors to achieve

a sufficiently high throughput [14, 15, 23, 24, 25, 33, 7]. However, the workload of a search

engine typically fluctuates. Therefore, it is desirable that a search engine adapts its size to

avoid wasting resources when the workload is low and to avoid unacceptable delays when

the workload is high. If the engine is deployed in an Infrastructure as a Service (IaaS)

cloud, the cloud facilitates allocate or deallocate computer resources to or from the engine.

Such an adaptive search engine repeatedly determines the number of processors to

use, appropriately regroups the search data to form a new search index, and re-deploys

the data onto the processors according to the new index.

Traditionally, the users used the keyword-based search as the main tool for finding

information in the Web. Also online applications use keywords as one of the essential

components for searching. For example, YouTube (Google) uses keyword search for finding

a gigantic archive of videos and Flickr (Yahoo!) does the same for finding pictures. Google,

Microsoft and Yahoo! use search to filter and organize news, media and private emails.

In addition, search is often conducted as a similarity search. Similarity search has

received much attention due to increasing interest in retrieving multimedia data [13].

Modern search engine systems have to manage collections of billions of objects. It is

implemented using a large pool of computing servers which share the engines large index.

Each server holds the part of the index relative to a disjoint sub-collection of documents.

2

Chapter 1 INTRODUCTION

The metric space index used to represent these objects are very large data structures,

the form of which can have a big impact on the quality and the speed of search engine

algorithms.

1.1 Research Questions

Our research focusing on similarity search with metric space indices and due to restricted

resources only on small-scale distributed search engines. The main question addressed in

this thesis is:

RQ How should a distributed search engine adapt its size when its query workload

changes?

Seeking to answer this question, the research is organized as an exploratory, iterative

process consisting of observation or literature study in order to define a problem or to

state a hypothesis, proposal of a solution, qualitative evaluation against the baseline and

publication of the results. In order to adapt the search engine size when query workload

changes, we need to determine a new number of processors and regroup search data to be

redistributed onto the processors. Thus, the research and the contributions within this

thesis are divided into the following three main directions:

RQ-A How to continually keep determining a suitable search engine size ?

RQ-B How to regroup the distributed data to changed requirements of the search engine?

RQ-C How to redistribute new groups of data among new processors when adapting the

search engine size ?

1.2 Contribution

We contribute solutions for the above research questions. The main contributions of the

research are as follows:

1. We propose an algorithm to determine the number of processors when the workload

changes (RQ-A solution, Algorithm 6.1.1 in Chapter 6).

2. We provide an algorithm to re-group the search data when search engine changes

size (RQ-B solution, Algorithm 5.1.2 in Chapter 5). (This chapter is joint work with

the supervisor based on our joint paper) .

3

Chapter 1 INTRODUCTION

3. We provide an efficient method to re-distribute data among processors when search

engine changes size (RQ-C solution, D-P method in Chapter 4).

4. We create a search engine simulator and tools for deploying it on Amazon EC2.

A solution to the problem of self-adapting distributed search engines sizes in the cloud

have been provided in this research as explained in details in Chapter 6.

1.3 Structure of the Thesis

In Chapter 2, we present the background material on classification and information theory

which is necessary in order to understand the contributions of the thesis. We also briefly

discuss cloud technology.

In Chapter 3, we outline and analyse the research questions and also discuss criteria

of success in finding answers to the questions.

In Chapter 4, we discuss methods of distributing (or re-distributing) newly re-grouped

data onto processors while keeping the search engine responsive and also the design and

results of our experiments to validate and evaluate the different methods.

In Chapter 5, we propose an algorithm for regrouping distributed data to changed

requirements of the search engine and evaluate its effectiveness.

In Chapter 6, we look at an algorithm for continually updating the search engine size

and the design and results of our experiments to validate and evaluate our algorithm.

In Chapter 7, we conclude this thesis, reviewing the material presented. We suggest

several interesting future directions which have arisen during the course of this research.

1.4 Publications and Software

The work presented in this thesis has resulted in one publication:

Al Ruqeishi, Khalil, and Michal Konečný. ”Regrouping Metric-Space Search Index for

Search Engine Size Adaptation.” Similarity Search and Applications. Springer Interna-

tional Publishing, 2015. 271-282.

Software

To support the experimental studies in this thesis which were developed together constitute

a search engine simulator deployable on the Amazon Elastic Compute Cloud (Amazon

EC2) platform http://duck.aston.ac.uk/khalil/thesis.

4

http://duck.aston.ac.uk/khalil/thesis

2 Background

In order to ease the understanding of our work and contributions, this chapter gives an

overview of the technical background and related work. In Section 2.1, we present the

search engine distributed architecture we assume in research. In Section 2.2, we discuss

the similarity search. We present metric space indexing algorithms in Section 2.3. Parallel

query processing is discussed in Section 2.4 including index partitioning. In Section 2.5,

we introduce distributed metric space index problem. In Section 2.6, we briefly discuss

cloud architectures and efficient deployment of a search engine in a cloud. Finally, we

present the datasets used in this research in Section 2.8.

2.1 Search Engine Distributed Architecture

Search engines are committed to answering a large number of different queries and handling

complex information in real time. According to Levene [11] a search engine includes five

parts: database, indexer, search index, query engine, and search interface as shown in

Figure 2.1. The database stores and categorizes the objects. These objects are scanned by

the indexer, which will create the search index. The query engine processes the queries by

retrieving relevant objects from the search index and combining these objects to provide

5

Chapter 2 BACKGROUND

a ranked list of results. The search interface displays the results [21].

Figure 2.1: Simplified search engine architecture adopted from [11].

As explained in [22], we can categorize search engine mechanisms based on two key

functions supported by the three key components: database, an indexer, and a query

processor. These functions are as follows:

• index processing: identifying and storing documents for indexing, transforming doc-

uments into index terms or features, taking index terms and building data structures

that enable fast searching.

• query processing: supporting the creation and refinement of query, displaying results,

generating ranked lists of documents for a user’s query, monitoring and measuring

effectiveness (quality of results) and efficiency (response time and throughput).

As in [14, 15, 24, 25, 26, 27, 28, 29, 30, 31] we assume a parallel query processing

architecture. In this architecture, there is a receptionist machine called query broker

which receives queries from users and distributes query processing onto processors, then

collects, merges and orders the results on the basis of their relevance as shown in Figure 2.2.

Moreover, the broker has a cache of query results (called query log) which holds the results

of most frequently submitted queries from users, which are used for successive submissions

of the same query. A search engine is composed of one or more broker machines and a

collection of p processors where p is typically several tens for a small search engine and

thousands for a large search engine.

2.2 Similarity Search

As more data such as images, video and audio are available on the Internet, huge data

centers become important to hold these data objects. These data objects need to be

6

Chapter 2 BACKGROUND

Figure 2.2: Parallel processing architecture Adopted from [26].

structured and manipulated effectively in order to enable users to access specific data.

Most of the traditional data centers made up of a simple attributed data and more

complex in nature which make too difficult to measure the relations between the data

objects when the data increased. Thus, to deal with increased data, data reduction ap-

proaches are employed using high dimensional vectors. A vector representation enables

these approaches to easily measure the distance between two data objects [45].

Searching for objects that are close or similar to a given query object is called similarity

searching or proximity searching [12]. Similarity searching has received much attention due

to increasing interest in retrieving multimedia data such as images, video and audio [13]. It

is known that employing a data structure for indexing objects will make it faster to answer

queries [14]. Many applications include a search engine for searching multimedia objects

annotated with unstructured text, such as in molecular biology, fingerprint matching, voice

recognition and multimedia databases. All these applications share a common framework,

which is in essence, to find close objects, under some suitable similarity measure, among

a large set of objects.

Similarity is represented by using a distance function, which satisfies the triangular

inequality, over a set of objects called a metric space [12]. Metric space, as a very general

data abstraction, is applicable to a wide variety of multimedia data types [19].

7

Chapter 2 BACKGROUND

2.2.1 Metric Spaces

A metric space (X, d) is composed of a universe of valid objects X and distance function

d : X ×X → R which will denote a measure of distance between objects [12, 13, 14, 15].

A finite subset U ⊂ X, with size n = |U |, is used to represent the database i.e. the

collection of objects to be searched. In a metric space, the properties of the distance

function d : X ×X → R are typically characterized as:

• d(x, y) ≥ 0 and if d(x, y) = 0 then x = y (strictly positiveness),

• d(x, y) = d(y, x) (symmetry),

• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

2.2.2 Similarity Queries

A similarity query can be one of three basic types:

• Range query R(q, r):

This query retrieves all the objects u ∈ U within distance r to q i.e. R(q, r) = {u ∈

U |d(q, u) ≤ r}.

• Nearest neighbor query NN(q): This query retrieves the object in U which is nearest

to q, that is, NN(q) = {u ∈ U |∀v ∈ U, d(q, u) ≤ d(q, v)}

• k-nearest neighbor query kNN(q, k):

This query retrieves the k closest objects to q in U . More precisely, kNN(q, k) ⊆

U such that |kNN(q, k)| = k and, for every u ∈ kNN(q, k) and every v ∈ U \

kNN(q, k), it holds that d(q, u) ≤ d(q, v).

We mainly focus in our research on k-nearest neighbor queries. While search engines

typically receive k-nearest neighbor (kNN) queries, i.e. “find k nearest objects to a

specified object q for a small k” [14], search engines would usually translate such queries

to range queries R(q, r), i.e. “find all objects within distance r from q”, because range

queries are easier to distribute and process. Our engine also adopts this approach.

2.3 Metric Space Indexing Approaches

According to [12, 13, 14, 15] metric space indexing strategies can be classified into two

main approaches :

8

Chapter 2 BACKGROUND

• Pivot-based approaches: select a number of objects from the metric space X as

pivots (pt1, pt2, , pts ∈ X) and categorize each object u ∈ U according to their

distance to these pivots. The distances between u and the pivots and between the

query q and the pivots are used together with the triangle inequality to filter out

objects in the database, without actually evaluating their distances to the query q

[12, 13, 14, 15] .

• Cluster-based approaches: A set of centers c1, c2, , ck is chosen to divide the

collection of objects into groups called clusters and each object in the space is associ-

ated to its closest center ci. Thus similar objects typically fall into the same cluster.

The key idea is to divide the space into zones as compact as possible [12, 13, 14, 15],

to reduce the numbers of items to search exhaustively.

These indexing approaches have been proposed in [12, 17, 18]. A good survey on metric

spaces can be found in [13]. Next, two concrete approaches will be described as examples

of the above two general approaches:

2.3.1 Sparse Spatial Selection (SSS) Approach

The Sparse Spatial Selection (SSS) approach is pivot-based. It selects a group of objects as

pivots from the database and then computes the distance between the objects of database

and the pivots. The SSS construction approach can be divided in two steps: the pivots

selection process and the distances computation process. To select the pivots set, let (X, d)

be a metric space, U ⊆ X an object collection, and M the maximum distance between

any pair of objects i.e M = max{d(x, y)/x, y ∈ X}. The set of pivots is initialized by

only the first object of the collection. Then for each object xi ∈ U , xi is chosen as a new

pivot if its distance to every pivot in the current set of pivots is equal or greater than αM

, where α is a constant whose optimal values are between 0.38 and 0.5 [20, 33]. One of

the good features of the pivot selection technique is being dynamic and adaptive when the

database is growing. The set of pivots adapts itself when a new element is added to the

database [38].

2.3.2 List of Clusters (LC) Approach

List of clusters (LC) is a simple and effective technique used to cluster finite subsets of

metric spaces.

The index is built by choosing a set of objects (centers) c ∈ U with radius rc where

each center maintains a bucket I that keeps track of the objects contained within the

9

Chapter 2 BACKGROUND

cluster (c, rc, Ic). Each bucket Ic contains the nearest k points to the respective center

c. Thus the radius rc is the maximum distance between the center c and its k nearest

neighbors. The index has been computed as specified below:

• Select the first center c1 ∈ U randomly to determine a LC-cluster (c1, r1, I1), where

I1 is the set kNNU (c1, k) of k nearest neighbours of c1 in U and r1 is the distance

between center of c1 and the most distant point in I1.

• Then, select the next center c2 such that the center is the farthest from c1 from the

remaining set U1=U \(I1∪{c1}). This second center c2 determines a new LC-cluster

(c2, r2, I2) where I2 is the set kNNU1(c2, k) of k nearest neighbours of c2 in U1 and

r2 is the distance between center of c2 and and the most distant point in I2.

• The above steps are carried out until there are no remaining centers in Un−1.

This process is specified in detail as Algorithm 2.3.1 below.

Algorithm 2.3.1: Build (U, k) adopted from [12]

Input:
U : a set of data points,
k: number of data points in each cluster.

Output: List of LC-clusters: (c1, r1, I1),(c2, r2, I2),. ,(ci−1, ri−1, Ii−1);

1: i=1

2: U1=U

3: Select center c1 ∈ U randomly.

4: while (Ui 6= ø) loop

5: Compute the radius ri to enclose the k nearest neighbors of ci in Ui.

6: Ii = {u ∈ Ui \ {ci} , d(ci, u) ≤ ri}
7: Ui+1=Ui \ (Ii ∪ {ci})
8: Select ci+1 ∈ Ui+1 such that

∑i
k=0 d(ci+1, ci) is as large as possible.

9: i = i+ 1

10: end loop

Figure 2.3 illustrates this algorithm using three clusters with centers c1, c2 and c3 in the

order of construction. Space can be divided into clusters using two ways: taking a fixed

radius for each cluster or using a fixed size. In [14, 23, 24, 25] the authors use clusters with

fixed size of k objects to promote a good load balance across processors and we also adopt

this approach to create 10000 clusters for our experiments. The algorithmic complexity

is O(n2/p∗) time for fixed radius partitions and O(n2/m∗) time for fixed size partitions,

where p is the expected bucket size and m∗ is the a fixed number of elements inside each

cluster.

10

Chapter 2 BACKGROUND

Figure 2.3: Example clusters built using the LC-cluster building algorithm. On the right,
the LC-clusters c1, c2 and c3 adopted from [12, 14].

This first step described above generates locally correlated clusters. Next, we turn to how

to use these clusters to search for the results of a range (q, r). The search algorithm is

shown in Algorithm 2.3.2. The idea is that, during the processing of a search query (q, r),

if the first cluster center is c and its radius rc, then start measuring the distance d(q, c)

and adding the center c of the cluster (c, rc, I) to the result set if d(q, c) ≤ r. Then, we

scan exhaustively I from the cluster (c, rc, I) only if the query ball (q, r) intersects with

the cluster (c, rc, I). However, if the query ball (q, r) is totally and strictly contained in

the cluster (c, rc, I), we only consider this cluster and ignore others because all the points

inside the query ball have been inserted into I. Moreover, if the query ball does not

cross with any clusters from U then that cluster is ignored. Figure 2.4 illustrates various

situations that can occur between a range query (q, r) and a cluster with center c and

radius rc. In our research, the value of r was 100 for all the range query (q, r) either search

query or training query that used to create the Index as explain in details in Section 2.5.1.

As stated in [12], a cluster-based model such as LC is much more efficient than other

known approaches to index high dimensional spaces because it takes up little memory

space and it is simple to develop and use. In addition, the LC (cluster based) approach

is shown to deal better with high dimensional metric spaces than the SSS (pivot based)

approach as pivots require more memory [12, 16]. Marin et al in [33] achieve the best

performance by combining LC and SSS indexing methods in their hybrid index. However,

we use pure LC-cluster because it’s simpler and the improvement of hybrid over LC is not

very significant.

11

Chapter 2 BACKGROUND

Algorithm 2.3.2: Search (L, q, r)

Input:
(q, r) — a range query,
C: list of LC clusters.

Output: L: list of results

1: L = empty list

2: for all (c, rc, I) in C (in the order given) repeat

3: compute d(c, q)

4: if d(c, q) ≤ r then add c to L

5: if d(c, q) ≤ rc + r then add all a ∈ I with d(a, q) ≤ r to L

6: if d(c, q) > rc − r then break from the loop

7: end for

8: return L

Figure 2.4: For R(q1, r) we need to consider the current bucket (c, rc, I) and the rest of
the centers. For R(q2, r) we consider only the current bucket. For R(q3, r) we can avoid
considering the current bucket (Adopted from [12]).

12

Chapter 2 BACKGROUND

2.4 Parallel Query Processing in Distributed Metric Space

According to [23], distributed metric space query processing was first studied in [32].

In[32], the authors proposed the following four query processing methods for a local index:

• Concurrent processing: Submit query to all p processors, collect top k results from

each processor and select the best k among p processors.

• Selective processing: Visit each processor sequentially and in each visit determine

if there are better results than the current top-k. This method aims to reduce the

number of intermediate results.

• Two-phase processing: Visit m < p processors and collect m · k results. Then select

the global top k and contact the remaining p −m processors to determine if they

are able to produce better results than global top k for each query.

• Probabilistic processing: Perform iterations by asking top-k/p results in each itera-

tion. As objects are distributed randomly onto processors there is a high probability

that the best top k will be determined in few iterations.

This work was extended in [15] for the LC-based approach, studying various forms of

parallelization.

This study will pay attention to the centralized model like the broker model as shown

in Figure 2.2. This processing architecture assumes that the broker receives queries from

users and distributes their processing onto the processors. The broker sends each query to

a circularly selected processor which becomes the ranker for the query. The processors

produce query answers and pass the results back to the broker [14, 23, 24, 25].

In [15] the authors studied the following forms of parallelizing the LC approach:

• Local index Local centers (LL): After distributing the vectors that correspond to the

search objects onto the processors, The LC clusters in each processor are constructed

locally. The ranker sends each query to all processors and a sequential LC search

algorithm will be applied in each processor and the local top k results sent back to

the ranker.

• Local index Global centers (LG): This uses a similar method to LL in order to index

objects locally in each processor. The ranker performs a parallel computation to

determine the cluster or center that must be visited by calculating the query plan.

Query plan will be the set of LC-Clusters that intersect with the query.

13

Chapter 2 BACKGROUND

• Global index Global centers (GG): In this case the LC clusters are built for the whole

database of search objects and the clusters are distributed onto processors in such a

way that each whole cluster is placed in a single processor. At end of this process the

whole LC clusters and the index plan is distributed in such a way that the clusters

are distributed onto p processors as shown in Figure 2.5 and as explained below :

1. Index Planner: Index Planner is responsible for computing clusters and dis-

tributing them to the processors. It sends each processor not only its LC-

clusters, but also an index plan, which is a map indicating for each LC-cluster

on which processor it is. The index plan is used by the processor when it acts

as a ranker for a query to determine which processors to contact regarding the

query.

2. Broker: As above, the broker receives queries from users and distributes query

processing onto processors (Rankers). In our simulator, we used broker as the

end users that sends queries to the processors.

3. Ranker(Processor): Upon receiving a query, the ranker processor calculates the

distance among the query and all of the centers across processors and formulates

a query plan, namely the set of LC-clusters that intersect the ball of the range

query (q, r). The ranker sends the query and its query plan to the processor

pi that contains the first cluster to be visited, namely, the first LC-cluster that

intersects the query ball. Then pi processes all LC-clusters that intersect (q, r).

For each such cluster, pi compares (q, r) against the data points stored inside.

The processor pi then returns to the ranker the objects that are within (q, r)

and passes the query and its plan to the next processor specified in the plan.

This continues until all the processors in the query plan have returned their

results to the ranker. The ranker sorts the query answers and passes the best k

back to the broker as shown in Fig. 2.6. Each processor acts both as a processor

in charge of processing a subset of LC-clusters and as a potential ranker.

4. Processor: Processors processes all clusters that intersect with (q, r) and returns

to the ranker all objects in the clusters. This continues until all the processors

in the query plan have returned their results. Each processor acts both as a

processor in charge of processing its LC-clusters and as a ranker of different

subset of all queries to the ranker.

[15, 14, 23, 24, 25] concluded that GG achieves better performance than the local index

as it reduces the average number of processors contacted per query. The GG method will

14

Chapter 2 BACKGROUND

be adopted for this study. An attractive feature of schemes without a global index is that

they lend themselves to Peer-to-Peer (P2P) processing, which naturally supports resizing

in response to load variations. For example, [34] presents a distributed metric space index

as a P2P system called M-index. Nevertheless, M-index is based on a pivot partitioning

model, which has a high space complexity and P2P cannot use GG. For further related

work using P2P metric space indexing see e.g. [39, 40, 41, 42].

Figure 2.5: The role of the metric space in both the index building and search processors.
Also showing how the index is distributed among the processors.

2.5 Distributed Metric Space Index Problem (DMP)

The previous discussion on local versus global distributed indexing concluded that the

global index strategy helps the broker to get the right top k results quickly. However, it

15

Chapter 2 BACKGROUND

Figure 2.6: Searching using distributed metric space index

16

Chapter 2 BACKGROUND

remains to consider the problem of how to distribute the global metric space index among

processors to improve search performances when a large stream of queries hit the search

engine. We call this the Distributed Metric space index Problem (DMP). More formally,

a solution to DMP is an algorithm with the following:

• Input: C a set of LC-clusters, p > 0 the number of processors.

• Output: A partition/grouping of C where the number of groups equals p (Each

group is be deployed on a different processor) .

The algorithm is measured by the following criteria:

• Performance of the search engine in terms of maximum throughput and average and

maximum response times.

• Balance query processing by using a small fraction of the distributed processors to

process a query and all processors dealing with a similar amount of queries.

2.5.1 Distributed Metric Space Index for Search Engine

In [14], Marin at al propose a solution to DMP supporting a large-scale search engine. The

authors proposed two types of algorithms for DMP: query-based algorithms and query-

independent algorithms. Query-based algorithms, namely Km-Col and Km-Row, partition

a set of LC-clusters based on a set of sample queries Q.

Km-Col introduces several levels of groupings. We adopt the following notation for

these levels:

• Data points U : points in a metric space, representing the objects of the search

• LC-clusters C: partition of U , grouping nearby data points

• H-groups H: partition of LC-clusters U , grouping clusters whose centers are near in

the metric dQ derived from Q.

• G-groups: partition of H, one group per processor

LC-clusters are computed using the List of Clusters (LC) algorithm (Section 2.3.2)

, with the natural metric on the data points. H-groups are computed from LC-clusters

using K-means with the query-vector metric dQ. Due to the nature of K-means, H-groups

are of varying sizes. G-groups are computed from H-groups using a procedure we call

Group-Balanced, which attempts to balance their sizes.

As explained above, H-groups are computed from LC-clusters using K-means with the

query-vector metric dQ.

17

Chapter 2 BACKGROUND

K-means Clustering

K-means clustering is a method of grouping items into k groups. The grouping is achieved

by minimizing the sum of distances between objects and the corresponding centroid. A

centroid is an element of the group that tends to be near its centre. The main idea of the

K-means Algorithm is explained in 2.5.1 :

Algorithm 2.5.1: K-means (k,X, d)

Input:
k —number of groups,
X —set of objects to be clustered,
d— a metric on X.

Output: Partition Y of X with |Y | = k

1: Select k initial ” means ” randomly.

2: Create k groups by allocating each of the objects into the nearest mean.

3: Compute the actual mean of each group and replace the previous means with the

new means.

4: Repeat the steps 2 and 3 until there are no significant changes in the groups.

This approach has the advantage of being simple. Its aim is to partition data points

into k groups in which each data point belongs to the group with the nearest mean. The

above steps are illustrated in an example shown in Figure 2.7.

Figure 2.7: K-Means clustering algorithm illustration (adopted from [37]).

A limitation of the K-means method is a lack of discrete data analysis capability.

This method requires specification of the number of groups in advance. However, it is a

simple and easy to implement method of clustering. Note that the groups computed by

K-means are not necessary of similar sizes i.e. some groups can have more items than

18

Chapter 2 BACKGROUND

others. The work by Marin et al [14] is the basis of our research and some components of

the query-based algorithms will be used in other chapters.

Query Vectors

Puppin et al [26] proposed the so-called query-vector model for partitioning search data

with a focus on search performance. This model takes into account a set of sample queries

obtained from a log of queries over a certain period. In effect, the search engine is trained

to perform well on queries that have been observed in recent past.

Let us briefly explain the concept of query vectors. Let Q = {q1, q2, qm} be the

set of sample queries and let C = {c1, c2, cn} be the centres of LC-clusters. The

query vector for ci usingQ, denoted QV (Q, ci), is them-dimensional vector {b1, b2, bm},

where bj = 1 iff the handling of query qj requires data ci to be visited, otherwise bj = 0.

The Euclidean metric on these query vectors translates to a new metric over the data

items C. The metric dQ makes pairs of points that are near in the natural metric seem far

away from each other if they are close to many queries from Q, and conversely the metric

dQ makes pairs of faraway points seem almost identical if they are not near any of the

queries from the set Q. In Km-Col, query vectors are used to measure distance between

LC-clusters.

Km-Col Algorithm

This algorithm uses query vectors to group the LC-clusters into p · w H-groups, where

w > 1. One uses p · w instead of just p in order to have roughly the same number of

LC-cluster assigned to each processor, which will lead to good load balance of workload

among the processors. This is achieved by assigning the resulting H-groups to G-groups

as explained in the following steps and specified in Algorithm 2.5.2:

1. Group the n LC-Clusters into p · w H-groups using the K-means algorithm where

the distance used is dQ, i.e. the Euclidean distance between query vectors.

2. Then, apply Group-Balanced (Algorithm 2.5.3 originally a part of Km-Col):

2.1 sort the H-groups {H1, H2, ,Hp·w} in non-increasing order by the number

of LC clusters.

2.2 assign {H1, H2, , Hp·w} to the G-groups {g0, , gp} in such a way that

the H-group which contains the biggest number of LC-clusters is assigned to the

first G-group, H-group that contains the second biggest number of LC-clusters

to the second G-group, and so on until we reach p-th G-groups.

19

Chapter 2 BACKGROUND

2.3 Starting from the H-group that contains the (p+ 1)-th biggest number of LC-

clusters and continuing in decreasing order until the last H-group which contains

the least number of LC-clusters, each one is assigned to the G-group with the

least number of LC-clusters.

Algorithm 2.5.2: Km-Col (w, dQ)(C, p)

Tuning Parameters:
Integer w > 0,
dQ — metric on C.

Input:
C a set of LC-clusters ,Integer p > 0.
Output:
G a set of groups with |G| = p that partition C.
Extra Output: H a set of H-groups that partition C.

1: H = K-means(C, p · w, dQ)
2: G = Group-Balanced(H, p)
3: return G and H;

Algorithm 2.5.3: Group-Balanced (H, p)

Input:
p > 0,
H a set of H-groups that partition C.

Output:
G a set of groups with |G| = p that partition C.

1: Hsorted = sort-by-decreasing-size(H)
2: for i = 0; i < p; i+ + do
3: G[i].insert all(Hsorted[i])
4: G size[i] = Hsorted[i].size()
5: end for
6: for i = p . . . (p.w − 1) do
7: smallest G i = find smallest(G)
8: G[smallest G i].insert(Hsorted[i])
9: G size[smallest G i]=G size[smallest G i]+Hsorted[i].size()

10: end for
11: return G;

2.6 Search Engine and Cloud Architecture

The term cloud computing probably comes from the cloud patterns which are used to

present the Internet in various flow charts and schemes. Cloud can be defined in many

ways as an umbrella term to describe a category of sophisticated on-demand computing

services [35]. A Cloud Computing Architecture is a structure of cloud resources, services,

20

Chapter 2 BACKGROUND

middleware and software components and the relationships between them [36]. The cloud

computing architecture has its ’front end’ which is the side interacting with a computer

user, client or any application (i.e. web browser, etc.) required to access the cloud com-

puting systems, and its ’back end’ which comprises a network of various computers, servers

and data storage systems which implement Internet-accessible on-demand services. The

cloud computing architecture is relatively simple, but requires intelligent management of

connections between servers and assigning tasks, as well as monitoring and measurement

systems which track and control the use of resources and determine whether resources are

allocated to the appropriate user. It is the easy availability of computing resources any

time and anywhere which is the key feature of cloud computing.

In our context, a search engine is a type of distributed application and cloud is a

platform to deploy it on. Cloud technology with its massive storage capabilities and

information management can effectively support the performance that is sufficient for some

types of engines and other applications. Cloud offers the facilities to increase and decrease

the number of processors and facilitate a flexible allocation of the processors in order to

meet changing workload demands. It simplifies the deployment of cloud services including

search engines by protecting users from the essential infrastructure and implementations

details and promotes redistribution of data on processors that can process the queries

in a search engine. This improves the resource utilisation. This research aims to use

cloud facilities to manage search engine resources efficiently. Using cloud resources to

run a search engine will help to increase and decrease resources depending on the query

workload as shown in Figure 2.8 .

2.6.1 A Search Engine in Cloud

One of the main services model delivered by Cloud is Infrastructure-as-a-Service (IaaS).

IaaS has become a solution to reduce costs and improve resource efficiency. IaaS is char-

acterized by the concept of resource virtualization. Virtualization enables the running of

multiple Operating System (OS) instances - called virtual machines (VMs)- on the same

physical server [8]. For example, Amazon EC2 runs instances on its physical infrastructure

using open-source virtualization middleware [9, 10].

All the experiments of this research have been executed in the Amazon EC2 IaaS cloud

using different types of virtual machine instances. The details of Amazon EC2 instances

types are shown in Table 2.1.

We measure the throughput of the search engine simulator by finding the maximum

throughput. Maximum throughput is the highest output throughput achieved when flood-

21

Chapter 2 BACKGROUND

Figure 2.8: Search engine deployed in cloud

Table 2.1: Instances details
Instance
Family Type Processor

Arch vCPU Memory (GiB) Instance
Storage(GB)

General purpose m1.medium 32-bit or 64-bit 1 3.75 1 x 4

General purpose m3.medium 32-bit or 64-bit 1 3.75 1 x 4

General purpose m3.large 32-bit or 64-bit 2 7.5 1 x 32

22

Chapter 2 BACKGROUND

Figure 2.9: Feedback Controller of search engine simulator

ing the input with queries. We run our simulator in Amazon EC2 however EC2 have

unstable network characteristics that can degrade the performance and drastically unsta-

ble throughput [54]. We have observed that the network stack efficiently facilitates the

queuing of queries until the engine is able to accept them. The steps of obtaining the

throughput are explained in chapter 5.

2.7 Feedback Controller of Search Engine Simulator

Feedback control can help increasingly complex computer systems adapt to changes in

workloads. Control theory offers a principled way for designing feedback loops for dealing

with unpredictable workload changes in systems [47].

In the previous chapter, we mentioned that we propose an algorithm to determine the

number of processors there are when the workloads changes. Thus a software feedback

controller has been implemented in the search engine simulator to determine the number

of processors there should be when the workload changes. The feedback controller is used

to measure system’s outputs (CPU utilization) to achieve the specified goal.

In [48], Abdelzaher at al presented a survey of feedback performance control in com-

puting systems. In [49], a feedback control real-time scheduling (FCS) framework has

been proposed to provide performance guarantees for real-time systems.[50] presented is-

sues regarding feedback control in a cloud computing infrastructure. Also there are many

previous works on feedback-controlled adaptive resources (e.g., [51, 52, 53]), however none

of the previous works match the objectives of this research i.e. adapting cloud resources

when the query load changes in the search engine.

We adapt elements of feedback control from [47] to design our feedback controller in

the simulator. In particular, we use the process shown in Figure 2.9, incorporating the

following elements:

23

Chapter 2 BACKGROUND

• Reference input is the desired value of the measured outputs such such as the

Maximum and Minimum of CPU utilization of all processors.

• Measured output is a measurable characteristic of the system such as overall CPU

utilization of processors, query workload and average response time.

• Control error is the difference between the reference input and the measured out-

put.

• Control input is a parameter that affects the behaviour of the system such as the

new number of processors.

• Controller determines the setting of the control input needed to achieve the ref-

erence input. The controller computes values of the control input based on current

and past values of control error.

• Disturbance input is any change that affects the way in which the control input

influences the measured output such as the query workload.

We used these elements to design the feedback controller of our search engine simulator

as explained in Chapter 6

2.8 Datasets

In our research experiments, we have used the following two datasets:

• SIFT 1.This dataset consists of three subsets: learning, database and query. The

learning set is extracted from Flickr images and the database and query descriptors

are from the INRIA Holidays dataset [16]. The following table summarizes the

number of descriptors in the dataset:

Vector dataset : SIFT , descriptor dimensionality d 128
Learning set size: 100,000 vectors
Database set size: 1,000,000 vectors
Queries set size: 10,000 vectors

This dataset was used in our experiments before we attained access to CoPhIR

dataset.

1: http://corpus-texmex.irisa.fr

24

Chapter 2 BACKGROUND

• CoPhIR 2. This is the largest publicly available collection of high-quality images

metadata for research purposes. According to Bolettieri in [46], the XML data of

CoPhIR collection consists of 245.3 GB disk space for 106 millions images.

All of the experiments reported in the thesis use data derived from CoPhIR.

2.9 Realistic User Behaviour

In realistic scenarios for search engines the user queries tend to be highly skewed and the

bias changes unpredictably. In our research, we aim to run our search engine simulator in

a similar environment by using queries that mimic a realistic user behaviour.

Veronica Gil-Costa from Yahoo! Research Latin America Labs helped us to create

queries that mimic a more realistic user behaviour. The Realistic Queries Sequence has

been derived from two files:

• User Sequence: text queries from a real user query log of the Yahoo! search engine.

• Queries Set: a randomly selected set of 10,000 objects from the CoPhIR Dataset.

The Realistic Queries Sequence has been produced using the following steps:

1. Take each query from Queries Set and match it with a query (text query) from the

User Sequence. Each object from Queries Set is linked to a single text query from

the User Sequence i.e. IMG1 7→ Q1, IMG2 7→ Q2, IMG3 7→ Q3.

2. Reproduce the order of the queries from the User Sequence using the image queries

provided by Queries Set. Notice that some queries in the User Sequence can be

repeated, e.g:

Figure 2.10: Example of Realistic Query Sequence
User Sequence Realistic Query Sequence

Q1 7→ IMG1

Q1 7→ IMG1

Q2 7→ IMG2

Q3 7→ IMG3

Q3 7→ IMG3

We used Realistic Query Sequence in all our experiments. In our experiments, we were

comparing the Realistic Query Sequence and Random Query Sequence. We used Realistic

Query Sequence to get a more realistic simulation. The performance does not differ very

2http://cophir.isti.cnr.it/

25

Chapter 2 BACKGROUND

much between both sequences. The results did not change because we did not use Broker

cache in our simulation. If a broker cache would be used, the sequences would probably

differ more as cache impacts performance when there are repeating queries. Using Broker

cache will give better throughput and will reduce the processors overload.

26

3 Research Problem Analysis

In Section 3.1, we introduce the main research problem. Then, we analyse the problem

and explain three sub-problems and measurable success criteria in Section 3.2.

3.1 Self-adapting Distributed Metric Space Index Problem (SDMP)

In [14], the authors have proposed a unified framework that facilitates an understanding of

DMP as explained in Chapter 2 and offers algorithms enabling efficient similarity search in

large-scale Web search engines. However, this work does not address the following issues:

1. Dealing with varying query workload by varying the number of processors.

2. Redistributing C, the set of LC-clusters, when the set of active processors changes.

We focus on a variation of DMP with the addition of the above issues, called Self-

adapting Distributed Metric Spaces Index (SDMP). DMP is the base for understanding

the principles of SDMP and finding a solution for SDMP can give further insights to DMP.

This research aims to find solution to SDMP by developing an algorithm with the following

specification:

27

Chapter 3 RESEARCH PROBLEM ANALYSIS

• Assume P is the set of processors available for use by the search engine.

• Initial input: G0 a partition of C allocated onto a subset of processors P0 ⊆ P.

• Continual input:

– Set of queries QT over any given time interval T in the past when the engine

was active.

– Response time of all queries ρT : QT → R+.

– Average load LT (P) for each processor P ∈ P over T during which P was

active.

• Continual effect: The algorithm repartitions C and redistributes it to different

processors within P at different times. Pt ⊂ P, the set of active processors at time

t ≥ 0 , changing depending on the Gt (allocation of the LC-clusters to processors at

time t).

A SDMP algorithm will be measured by the following criteria:

• Reduced cost of the resources required for searching and increased processor utilisa-

tion compared with non-adaptive algorithms. The utilisation is measured using the

average load LT (P) for all processors P ∈ P over various time period T . The cost

is measured using
∫
T ptdt where pt = |Pt|.

• Maintaining a good search performance compared with non-adaptive algorithms.

Search performance is measured using the average and maximum response time of

all queries.

3.2 Analysis of SDMP

In other words, the SDMP solution may be regarded as an adaptive search engine which

will repeatedly re-evaluate its load and, when appropriate, switch over from p active

processors to a different number of active processors. Each switch-over comprises the

following steps:

1. Determine the new number of processors p′ based on the recent load.

2. (Re-)compute H-groups and G-groups (i.e. the index plan) for p′ processors.

3. Distribute the index plan and the relevant LC-clusters onto each processor.

28

Chapter 3 RESEARCH PROBLEM ANALYSIS

4. Pause search .

5. Switch to new LC-clusters and plan, de/activating some processors.

6. Resume search.

In order to have a better understanding of SDMP, we focus on three aspects and break

them out into three sub-problems that correspond to the first three steps of a switch-

over. Solutions to these sub-problems can produce key answers and insights for solving

the overall problem. The three sub-problems are as follows:

• Continually determining the Number of Processors (CNP): In the light of the changes

in the query workload in the search engine, there is a problem of determining the

ideal number of processors p active at any given time to use in the search engine

(Step 1 of switch-over).

• New Grouping Problem (NGP): When a change in the number of processors is

determined, we have to decide the groups G that will be distributed across the

processors (Step 2 of switch-over).

• Regrouping Order Problem (ROP): When we have new groups G we will need to plan

how to redistribute the LC-clusters in the groups G onto processors, while minimising

the switchover time and the incurred network load (Step 3 of switch-over).

However, a solution to the problem associated with continually determining the number

of processors (CNP) can be judged only in relation to some solution to new grouping

problem (NGP). In turn, solving NGP should take into account the chosen method for

ROP so that the new groups can be efficiently deployed. Thus, solutions of these problems

will be considered in reverse order.

3.2.1 Regrouping Order Problem (ROP)

Find an algorithm with the following:

• Input:

G = {g1, g2, . . . , gp}, a partition of C, allocated onto processors P = {P1, P2, , Pp}

and G′ =
{
g′1, g

′
2, . . . , g

′
p′

}
another partition of C. (Groups G′ are typically those

calculated by a solution to the NGP problem).

• Output: Allocation of the sets
{
g′1, g

′
2, . . . , g

′
p′

}
onto processors P ′ = {P ′1, P ′2, , P ′p′}

where P and P ′ typically share a number of common processors.

29

Chapter 3 RESEARCH PROBLEM ANALYSIS

A list of steps, each of which is of one of the following types:

– Copy some LC-clusters from Pi to P ′j

– Update the LC planning index with the new location of LC-clusters in P ′j

– Delete some LC-clusters from a processor Pi.

These steps must lead from G on P to G’ to P ′.

A ROP algorithm will be measured by the following criteria:

• Network load: moving LC-clusters among the processors as little as possible, mea-

sured as a weighted average of the amount of transferred data and the number of

transactions. For example, the algorithm should check for similar groups and keep

them in the same processor.

• Switch-over performance: the time it takes to distribute the index new plan and the

relevant LC-clusters onto each processor (switch-over step 3).

Solving ROP well will be more or less important depending on the type of search engine.

For example, the ROP will be less relevant when the data allocated in the processors is

small, such as a small search engine. On the other hand, deployment of the search engine

in a cloud will increase the weight of ROP because moving a large amount of LC-clusters

among rented processors in the cloud has less predictable (and usually higher) costs than

doing the same on one’s own hardware.

3.2.2 New Grouping Problem (NGP)

Find an algorithm with the following:

• Input:

G = {g1, g2, . . . , gp} a partition of C , Q a sample set of queries and integer p′ > 0.

• Output:

G′ =
{
g′1, g

′
2, . . . , g

′
p′

}
a partition of C.

A NGP algorithm will be measured by the following criteria:

• Switch-over performance: time to compute G′ groups and time to deploy it using

ROP solution.

30

Chapter 3 RESEARCH PROBLEM ANALYSIS

• Search performance (maximum throughput) of the search engine in the cloud after

reorganizing the LC-clusters according to the groups G′. The search results are

independent of performance or configuration of the search engine i.e. number of

processors p or G-groups.

3.2.3 Continually Determining the Number of Processors (CNP)

Find an algorithm with the following:

• Initial input: G = {g1, g2, . . . , gp}, a partition of C, allocated onto processors

{P1, P2, , Pp}.

• Continual input:

– Set of queries QT over any given time interval T in the past.

– Response time of all queries ρT : QT → R+.

– Average load LT (P) for each processor P ∈ P over T .

• Continual effect:

Produce a function to measure overall load for current processors to decide when to

change p and defining a new value of p.

A CNP algorithm will be measured by the following criteria:

• When the algorithm is connected with certain solutions to ROP and NGP (as de-

scribed below), an efficient solution for SDMP would be obtained.

A solution to SDMP will be obtained from solutions to CNP, GNP and ROP as follows:

The CNP produced a function pt. Wherever the value of pt changes, NGP is applied to

calculate new groups from the current groups G = {g1, g2, . . . , gp}. Then the result of

NGP G′ =
{
g′1, g

′
2, . . . , g

′
p′

}
is passed onto ROP to compute the allocation of these groups

onto processors P ′ = {P ′1, P ′2, , P ′p′} and a list of steps that lead from an old to a

new allocation. When these steps are executed the allocation of new groups is realized

and allocated in the new processors until the value of pt change again. In the following

chapters we will study these three problems one by one.

31

4

Dynamic Update of

Distributed Metric Space

Index

In the previous chapter we looked at three sub-problems of SDMP and explained how

to evaluate potential solutions. In this chapter we focus on the first sub-problem, i.e.

Regrouping Order Problem (ROP). At the beginning, we briefly expand on ROP problem

in Section 4.1. Then, in section 4.2 we present the results of experiments comparing several

potential solutions to ROP.

4.1 Distributed LC-clusters onto Processors

Adapting the search engine size with varying workloads means that sometimes it switches

over from using p processors to a different number of active processors p′. As soon as

the search engine starts, the index planner computes G-groups of LC-clusters and assigns

processors for these groups and then distributes these groups onto the assigned processors.

When the workload changes, the search engine needs to switch over to the new number

of processors. Before switching, we need to plan the reorganizing of the search data by

re-distributing the LC-clusters among new processors.

The Index Planner will re-compute G-groups and create a new plan for the new number

32

Chapter 4 DYNAMIC UPDATE OF DISTRIBUTED METRIC SPACE INDEX

of processors and then assign processors for each of the new G groups and re-distribute

them onto the processors. Processors need the plan of G-groups when they search. This

plan holds the centres of all LC-clusters and the location of each LC-cluster in the proces-

sors. As explained in the previous chapter, the input of ROP is G = {g1, g2, . . . , gp}, a par-

tition of C, is allocated onto processors P = {P1, P2, , Pp} and G′ =
{
g′1, g

′
2, . . . , g

′
p′

}
,

another partition of C, calculated by a solution to the NGP problem.

We consider the following three methods to redistributing LC-clusters during searching

and redistributing the LC clusters according to the given G-groups G′ to a new set of

processors P ′:

D-S Distributed from Scratch; The Index Planner sends all the LC-clusters to the assigned

processors to replace their old LC-clusters, if any exist.

D-I Distributed using Index Planner; The Index planner compares between G′ and G and

sends only the missing LC-clusters to each processor. The processors will remove

any old LC-clusters that are no longer assigned to them.

D-P Distributed using Processors; The Index Planner pre-computes the instructions for

the processors and the processors swap LC-clusters among themselves according to

the new plan.

In the D-P method, the Index Planner pre-computes instructions for processors instead

of the processors doing it themselves because we expect the processors will be busy with

searching and we do not want to give them more load by forcing them to calculate the

LC-clusters that need to be sent to other processors. The D-S method loads the network

more and requires more time as it re-distributes the whole dataset for every switch-over.

It is important to maximise the reuse of previous LC-clusters when assigning processors

to G-groups. For this purpose, D-I and D-P reuse most of the previous LC-clusters. Thus,

they are likely to be more efficient than D-S.

In D-I and D-P, we compare the LC-clusters in the old and new plan before assigning

new processors to the new G-groups. Then, we assign each currently active processor to

the new G-group that has the maximum number of LC-clusters matching those LC-clusters

that are currently in the processor. The steps are as follows:

1. Find the group g′i that has the maximum number of LC-clusters matching those

LC-clusters in the group g1 on the processor p1.

2. Assign g′i to p′1, where p′1 = p1.

33

Chapter 4 DYNAMIC UPDATE OF DISTRIBUTED METRIC SPACE INDEX

3. Repeat steps 1 and 2 as many as times as possible.

4. If p > p′, the LC-clusters on the remaining G groups will be redistributed to the P ′

processors according to their location in G′.

5. If p < p′, the remaining G′ groups will be assigned arbitrarily to the remaining

processors in P ′

6. Produce the instructions for moving the LC-clusters to get from the current assign-

ment to the new assignment given by the mapping of G′ onto P ′.

We list all the LC-clusters that are missing from or do not belong to each g′i. The

missing LC-clusters from g′i will be received either from Index Planner or from other

processors, depending on the redistribution method.

When either increasing or decreasing the search engine size, we try to reduce the

network bandwidth by reducing the number of LC-cluster transfers onto processors. Ex-

amples for both types of Switch-over are shown in tables 4.2 and 4.1. In these two tables,

we show the number of LC-clusters that match between G on P and G′ on P ′. Table 4.2

shows a decrease in the search engine size from 6 to 3 processors where the number of

LC-clusters that are left in the same processors are 8614 and 1386 need to be transferred

to other processors. On the other hand, when the search engine increased in the size from

3 to 6 processors, 9649 LC-clusters were left in the same processors and 351 transferred

to the new processors, as shown in Table 4.1 and Figure 4.1.

p1 p2 p3

p′1 8946 0 0

p′2 0 472 0

p′3 0 0 231

p′4 0 0 165

p′5 0 0 96

p′6 0 54 36

Table 4.1: Mapping the LC-Clusters when switching over (p = 3 → p′ = 6), (the bold
numbers indicate clusters that have to be relocated)

p1 p2 p3 p4 p5 p6

p′1 7721 0 0 55 0 0

p′2 0 444 0 325 41 222

p′3 0 0 449 82 412 249

Table 4.2: Mapping the LC-Clusters when switching over (p = 6 → p′ = 3), (the bold
numbers indicate clusters that have to be relocated)

34

Chapter 4 DYNAMIC UPDATE OF DISTRIBUTED METRIC SPACE INDEX

 P1 P2 P3

 P'1=P1 P'2=P2 P'3=P3 P'4 P'5 P'6

 L
C

-C
lu

s t
er

s

 L
C

-C
lu

s t
er

s

 L
C

-C
lu

s t
er

s

 L
C

-C
lu

s t
er

s

 L
C

-C
lu

s t
er

s

L
C

-C
lu

s t
er

s

L
C

-C
lu

s t
er

s

 New New New P1 P2 P3

Send LC-Clusters
 to new processors
using D-P

54

36
96165

528562

L
C

-C
lu

s t
er

s

L
C

-C
lu

st
er

s

8946

 8964 472 231 165 96 90

Figure 4.1: Re-distributing LC-clusters from 3 to 6 processors using D-P

As we mentioned earlier, in the D-I method, the index planner will send to each

processor only the missing LC-clusters, and in the D-P method, the processors will swap

LC-clusters among themselves depending on the new plan. This way we reduce the time

for switch-over and also the number of LC-clusters which will be sent to the processors.

For this purpose, we formulated the following hypothesis:

ROP-H D-P is faster and does not load the network significantly more than D-S and

D-I.

Experimental evidence supporting this hypothesis and a measurement of the scale of

difference in speed and network load is provided in the following section.

4.2 Experiments Design

In these experiments, we aim to compare the switch-over performance of the redistribution

methods D-S, D-I and D-P. Switch-over performance is measured using :

• the time from the point when G′ groups have started to deploy onto P ′ until the

point when the new processors become active (see switch-over step 3 in Section 3.2).

• network load.

We have to mention that grouping data and switch-over will be done in the background

of processors during the searching. For this purpose, we will use the faster redistribution

35

Chapter 4 DYNAMIC UPDATE OF DISTRIBUTED METRIC SPACE INDEX

methods to reduce the impact of switch-over on throughput performance. The performance

is influenced by the following parameters:

1. Search engine size evolution (SE): We consider only a one switchover at a time

and write it as p→ p′. E.g., 5→8 encodes a single switchover from 5 to 8 processors.

In our experiments, we use a small and large ratio p/p′ of increasing or decreasing

transitions sharing the same p′. More specifically, we use the four switch-overs shown

in Table 4.3.

2. Dataset (D): The parameter dataset D represents the set of objects that needs to

be searched. In our experiments, we used a number of varying size datasets from

the CoPhIR Dataset1 (see Chapter 2). In our experiments, we used a randomly

selected set of 1,000,000 objects (2.27 GB) from the CoPhIR. Each object comprises

282 floating-point number co-ordinates .

As explained in Chapter 1, the experiments to measure switch-over performance have

been run on Amazon EC2 instances. The maximum number of instances used in our

experiments was 14. All search processors and broker ran on m3.medium instances. while

the Index planner ran on a m3.large instance.

When the search engine starts, the Index Planner computes 10000 LC-clusters using

the LC algorithm. Each of these clusters have 100 objects. The Index Planner computes

G-groups of LC-clusters for processors using the Km-Col algorithm. When the search

engine changes its size, the Index Planner re-computes G-groups for a new number of

processors and executes one of the ROP solutions and then co-ordinates the execution of

the instructions to physically move the LC-clusters to the new processors (i.e.in switch-over

step 3 introduced in Section 3.2).

4.2.1 Search Engine Simulator

We used the search engine simulator to conduct all the experiments in our research. We

assume the search engine simulator outlined in Figure 2.6. Search engine simulator

has been implemented by using Java language and Eclipse software and it contains the

following four parts:

1. Index Planner: Index Planner node is responsible for computing G-groups and dis-

tributing them to the processors.

1http://cophir.isti.cnr.it/

36

Chapter 4 DYNAMIC UPDATE OF DISTRIBUTED METRIC SPACE INDEX

2. Broker: As we stated in the Section 2.1, Broker receives queries from users and

distributes query processing onto processors, then collects, merges and orders the

results on the basis of their relevance. However, in our simulator we used broker as

the end users that sends queries to the processors and receives the results from the

Rankers.

3. Ranker(Processor): calculates query plan and sends the query and its query plan to

the processors in order to get the result.

4. Processor: processes all clusters that intersect with (q, r) and returns to the ranker

all objects in the clusters.

For further details about how to run a proposed search engine simulator in the cloud,

please read the Appendix A.

4.3 Experiments

In these experiments, we check switch-over performance of D-S, D-I and D-P for different

p, p′. We run four experiments for each redistribution method as shown in Table 4.3.

Table 4.3: Experiments of switch-over performance

Code Redistribution
method p→p′ Switching type

E1 D-S,D-I,D-P 8→12 small increase

E2 D-S,D-I,D-P 4→12 large increase

E3 D-S,D-I,D-P 6→4 small decrease

E4 D-S,D-I,D-P 12→4 large decrease

The switch-over time and network load has been measured in each experiment to

support the hypothesis as explained below.

4.3.1 D-P is the Fastest

Distributing LC-clusters using D-P speed up the switching time as stated in ROP-H. The

results of these experiments, as shown in Figure 4.2, support this hypothesis. The time

of switch-over is less when using D-P as we use processors to re-distribute LC-clusters to

other processors instead of using index planner. The Network load becomes slightly higher

than D-I because D-P sends instructions to swap LC-clusters over to the processors. As

explained above, this is because we expect processors will be busy with searching and we

do not want to give them more load by forcing them to calculate the LC-clusters that need

to be sent to other processors.

37

Chapter 4 DYNAMIC UPDATE OF DISTRIBUTED METRIC SPACE INDEX

The experiments show that in this context D-P is approximately 50% faster than D-S

and 10% to 25% faster than D-I. In addition, D-P and D-I reduce the network load to

around 30% less than D-S. As we stated in Subsection 3.2.1, the aim was to moving

LC-clusters among the processors as little as possible.

Figure 4.2(b) switchover network load, which is the amount of data transferred among

processors during a switchover. We compare the amount of data transferred among pro-

cessors when the search engine size enlarges and shrinks using the three distribution meth-

ods. D-P and D-I reduce the number of LC-cluster transferred among processors during

switchover comparing with D-S, however the amount of data in D-P was more than D-I

because each processor needs to check which LC-clusters will move to other processors.

4.4 Additional Observations

Shrinking Search Engine Size is Faster than Enlarging

In the experiments, we compare the switch-over time when the search engine size enlarges

and shrinks using the three distribution methods. The Switch-over time is faster when

the search engine size shrinks from 12 to 4 processors than when it enlarges from 4 to

12 processors. This applies to all the methods shown in Figure 4.2. In D-I and D-S

methods, the Index Planner needs to connect with fewer numbers of processors in order

to deploy the LC-clusters when shrinking the size of the search engine than it does when

it is enlarging. In D-P method, when shrinking the search engine size, the number of

processors that send the LC-clusters is more than the number of processors that sends the

LC-clusters when it is enlarging.

Ratio between p and p′ affect Switching Time

In the experiments, we compare the switch-over time using two different ratios between

p and p′: 2/3 and 1/3, when the search engine size enlarges or shrinks. The results show

that when the engine size enlarges and the ratio was 2/3 between p and p′ switch-over

requires less time than when ratio was 1/3. However, when the search engine is shrinking,

switch-over was a little bit faster when the ratio was 1/3 rather than 2/3. This applies to

all the methods shown in Figure 4.2. Moreover, that was not the case with the network

load as the ratio between p and p′ does not seem to correlate to many differences. The

reason, as we expected, was that the number of processors that sends the LC-clusters or

the number of processors that needs to be connected by Index planner affected switching

time as explained in Subsection 4.4. However, we need to do more in future work to prove

38

Chapter 4 DYNAMIC UPDATE OF DISTRIBUTED METRIC SPACE INDEX

	 	

	

69.9	
73.6	

62.7	
60.3	

35.2	

40.3	

18.8	

23.7	

10.9	

15.8	

10.5	 12.3	

0.0	

10.0	

20.0	

30.0	

40.0	

50.0	

60.0	

70.0	

80.0	

8-->12	 4-->12	 6-->4	 12-->4	

Se
co
nd
s	

p-->p'	

D-S	
D-I	
D-P	

(a) LC-clusters redistribution time

	 	

	

4724	 4638	
4508	

4638	

3038	
3183	

2880	
3141	

3358	 3317	
3040	

3355	

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

5000	

8-->12	 4-->12	 6-->4	 12-->4	

N
et
w
or
k	
Lo
ad
	(M

B)
		

p-->p'	

D-S	
D-I	
D-P	

(b) Network load of different distribution methods

Figure 4.2: The results of switch-over performance experiments.

39

Chapter 4 DYNAMIC UPDATE OF DISTRIBUTED METRIC SPACE INDEX

these observations.

4.5 Conclusions

As explained above, the main goal of the experiments is to find an efficient method to

redistribute G-groups among processors when switching over from p to p′ and to reduce

the network load. D-P was found to be the fastest among the three methods we considered.

Moreover, D-P and D-I required fewer LC-clusters to be redistributed among the processors

than D-S. We can conclude from the experiments that D-P is a suitable solution to ROP

and we will use it for redistributing LC-clusters among processors. In particular, we will

apply D-P with NGP solutions when measuring their impact on switchover performance.

40

5

Adapting Distributed Metric

Space Index

An adaptive search engine is required to determine a suitable number of processors to

use at any given time. When the number of processors is determined, it is necessary to

compute the G-groups that will be distributed across the processors. Adapting G-groups

to a new number of processors requires either creating new groups from scratch or the

altering existing groups.

In this chapter, we propose an algorithm for the New Grouping Problem (NGP) and

evaluate its effectiveness using a prototype cloud-based search engine we developed for

this purpose as explained in Chapter 1. This chapter is organized as follows. Section 5.1

describes our algorithm for recomputing G-groups. Section 5.2 presents the design and

results of our experiments to validate and evaluate our algorithm. Section 5.3 presents

experiments to study how different NGP solutions suit different ROP methods.

5.1 Recomputing G-groups

In this chapter, we present an algorithm for NGP and experimental evidence of how

different ways of implementing NGP impact the search performance after the switch-over.

41

Chapter 5 ADAPTING DISTRIBUTED METRIC SPACE INDEX

5.1.1 Computing H-groups

We compute G-groups from H-groups in the same way as in the KmCol algorithm as

explained in Chapter 2. We therefore focus on the computation of H-groups for p′ pro-

cessors from H-groups for p processors. We introduce the following three methods (called

transition types):

TT-R: Compute H-groups from scratch using K-means, like KmCol.

TT-S: Reuse the H-groups from previous configuration.

TT-A: Increase the number of H-groups using Adjust-H (Algorithm 5.1.1).

Algorithm 5.1.1: Adjust-H(d)(H,new size)

Tuning Parameters: d — a metric on C
Input:

H — a set of H-groups partitioning C,
new size — the target number of H-groups (new size > |H|)

Output:
updated H with |H| = new size

1: Hsorted = sort by decreasing size(H)

2: while size(Hsorted) 6= new size loop

3: largest group = Hsorted.getFirst()

4: new groups = K-means(d)(largest group, 2) // split

5: Hsorted.insert sorted(new groups)

6: Hsorted.delete(largest group)

7: end loop

8: return Hsorted

Notice that the number of H-groups will never be decreased by TT-A. This is appropri-

ate because, as we show in Section 5.2, reducing the number of H-groups does not improve

search performance.

Adjust-H takes as parameters the number new size (= p′ · w) and the old H-groups.

On line 1, it starts by arranging the H-groups in an ordered collection, with the largest

group first. On lines 2–7, the number of H-groups is increased by repeatedly splitting the

largest H-group into two using K-means, until there are new sizes many of them. Thanks

to the following observation, we do not need to study the effect of repeated TT-A on

search performance:

Proposition 1 (Repeated TT-A is equivalent to a single TT-A). For any set H and

sequence |H| < p1 < p2 < . . . < pn, it holds:

Adjust-H
(
. . .Adjust-H(Adjust-H(H, p1), p2), . . . , pn

)
= Adjust-H(H, pn)

42

Chapter 5 ADAPTING DISTRIBUTED METRIC SPACE INDEX

Proof. A repeated execution of Adjust-H results in successive executions of the loop that

forms the algorithm. There are no commands to change the H-groups between the suc-

cessive executions of the loop. Thus the result of the repeated loop executions is the same

as running the loop only once with new size set to the final value pn.

To pursue our goal to speed up switchovers while keeping a good search performance,

we will test the search performance implications of the three transition types TT-R, TT-S

and TT-A. Based on preliminary observations, we formed the following hypotheses:

NGP-H1 The time it takes to compute H-groups grows significantly with the number

of these H-groups.

NGP-H2 Increasing the number of H-groups does not reduce search performance.

Equivalently, when reducing p, TT-S does not lead to a worse search performance

than TT-R.

NGP-H3 Computing a number of H-groups and then splitting them up using TT-A

does not impair search performance when compared to computing the same

number of H-groups directly using TT-R.

We provide experimental evidence supporting these hypotheses in Section 5.2.

Using these hypotheses, on the assumption that they are correct, we propose the

algorithm Regroup (Algorithm 5.1.2) to decide which of the three transition types to use.

The algorithm parameters can be tuned using the wmin and winit. TT-R uses winit

to compute H-groups from scratch, while wmin is used by TT-A to re-compute H-groups.

Due to hypothesis NGP-H2, the values of these tuning parameters do not significantly

affect search performance. We therefore use the fairly low values winit = 2 and wmin = 1.5

in our experiments in order to reduce the time it takes to compute the H-groups. At the

beginning, if a new Q is provided, it is necessary to update the metric dQ and re-compute

the H-groups from scratch (TT-R, lines 2 and 3). If the number of H-groups is smaller than

p′ ∗ wmin, the number of H-groups is increased (TT-A, line 5). If there is no change in Q

and p > p′, then H is reused (TT-S). Finally, on line 7, new G-groups are computed from

the H-groups, using Group-Balanced, an algorithm borrowed from Km-Col (see Section

2.4.1).

43

Chapter 5 ADAPTING DISTRIBUTED METRIC SPACE INDEX

Algorithm 5.1.2: Regroup(winit, wmin)(p′, H, dQ, Q)

Tuning Parameters: winit, wmin ≥ 1
Input:

p′ — new number of processors,
H — a set of H-groups partitioning C (optional, needed if Q absent),
dQ — a metric on C (optional, needed if Q absent),
Q — sample set of queries (optional, needed if H absent)

Output:
G — a partition of C with |G| = p′, updated H and dQ

1: if Q is provided then

2: dQ := Query-Vector-Metric(C,Q)

3: H := K-means(dQ)(p′ ∗ winit, C) // TT-R

4: elseif |H| < p′ ∗ wmin then

5: H := Adjust-H(dQ)(H, p′ ∗ wmin) // TT-A

6: end // TT-S: the if block not executed

7: G := Group-Balanced(H, p′)

8: return G,H, dQ

5.2 Experimental Evidence Supporting Hypotheses

In the experiments, the three transition types are compared in terms of their effect on

search performance and the time it takes to compute H-groups for the new number of

processors (a component of switch-over performance). The performance is influenced by

the following parameters:

1. Search engine size evolution (SE): We consider only a one switchover at a time

and write it as p→ p′ as explained in Chapter 4.

2. Dataset (D): As explained in Chapter 4, a dataset represents the set of objects

that needs to be searched. In our experiments, we used a randomly selected set of

1,000,000 objects from the CoPhIR Dataset. Each object comprises 282 floating-

point number coordinates.

3. Sample queries (Q): As explained in Section 2.5, the set defines the metric dQ

which is used to partition LC-clusters into H-groups. In our experiments, we used

as Q a randomly selected set of 1,000 objects from the CoPhIR Dataset.

4. Query profile (QP): Query profile simulates how users send queries to the search

engine. It is determined by a sequence of queries and the timing when each query

occurs. In our experiments, we use the Realistic Query Set as explained in Section

2.9. We fire the queries at a constant query rate. This rate is not a parameter of

44

Chapter 5 ADAPTING DISTRIBUTED METRIC SPACE INDEX

the experiment because it is determined automatically in the process of measuring

maximum throughput as described below.

Search performance is measured using maximum throughput. This is defined as follows:

The current output throughput (queries/s) of a search engine is the rate at which answers

to queries are sent to clients. This is equal to the input throughput, i.e. the rate at which

the queries are arriving, except when the queries are accumulating inside the engine.

Maximum throughput is the highest output throughput achieved when flooding the input

with queries. We have observed that the network stack efficiently facilitates the queuing

of queries until the engine is able to accept them.

As we explained in 2.6.1, EC2 produces unstable throughput caused by virtualization.

We have observed that from different runs that the maximum query throughput is unstable

when we run the same number of processors at different times. Thus we propose the

following approach to measure the maximum query throughput in the search engine. We

use the same types of Amazon EC2 instances (as explained in chapter 4) for the search

engine nodes (Fig. 2.6).

In each experiment, we used the following steps to obtain sufficiently reliable through-

put measurements despite significant performance fluctuations of the Amazon cloud plat-

form:

• Conduct two speed tests: an initial and a final test. The two tests are identical.

Each test comprises 4 repetitions of a fixed task based on distributed searching.

• If the speed variation of throughput within these 4 repetitions is over 5%, the cloud

is not considered sufficiently stable.

• Also if the initial and final speed measurements differ by over 2%, the cloud is not

considered sufficiently stable.

• The average of the speed measurements in the initial and final tests is used to

calibrate the maximum throughput measurements obtained in the experiment to

account for longer-term variations in the cloud performance.

When the stability tests failed repeatedly, we relaxed the thresholds and if the initial

and final speed measurements differed by over 2% we took the average of the measurements

obtained from 3 repetitions of the experiment. This happened in approximately 75% of

our experiments.

We observed that in many experiments, the throughput fluctuates at the beginning

and then stabilises. To discount the initial instability, we run each search experiment

45

Chapter 5 ADAPTING DISTRIBUTED METRIC SPACE INDEX

as a sequence of blocks of 100 queries and we waited until there were four consecutive

blocks with a performance variation of the throughput below 30%. We discounted the

preceding blocks that had a higher variance. We computed the 95% confidence intervals

for throughput experiments as per the following steps:

• based on three runs of an experiment (each accepted by relaxed stability criteria):

– compute mean and margin for the throughput of each run (h1, h2, h3 the 3

throughput measurements) where margin is σ = 2

√
n∑

k=1
(xk−µ)2

n and L = µ+−

margin.

– calibrated measurements and speed margin.

∗ hLi = hi ∗ sstd/sLi.

∗ sLi = key formula applied to results of the 8 speed tests.

∗ sstd = standard speed test result, used for calibration only.

• compute mean and margin of the three margins, hLa = mean of hL1, hL2, hL3.

• compute margin of the centres of three margins hLi, hm = margin of centres of

hL1, hL2, hL3.

• compute final throughput range hLam = hLa+−hm where hm accounts for varia-

tions due to non-determinism and hLa accounts for variations due to Amazon cloud.

Moreover, we sorted the result of each query to get only 30 objects for each query. The

full code for our experimental search engine and the experiments described in this section

are available on http://duck.aston.ac.uk/ngp.

5.2.1 The Number of H-groups

Experiment E1. To test hypothesis H1, we computed different numbers of H-groups

and observed how the computation time grows with size while the remaining parameters

are fixed. The results shown in the Figure 5.1(a) confirm hypothesis H1.

Experiment E2. In a similar setup as experiment E1, we checked whether the extra

computation time spent creating more H-groups translates to improved search perfor-

mance, in contradiction to hypothesis H2. We have done this for p = 8 and p = 18 and

the same values of w as for E1. The results of E2 in Fig. 5.1(b) show that the throughput

is not significantly affected by w, confirming H2.

46

http://duck.aston.ac.uk/ngp

Chapter 5 ADAPTING DISTRIBUTED METRIC SPACE INDEX

(a) TT-R computation time grows

	
	 	
	
	

	 	
W 4 8 16 32 64

p=8
42.56 46.28 46.70 46.66 50.02

(40.35-44.76) (45.17-47.40) (46.45-46.96) (45.51-47.81) (42.48-57.56)

p=18
87.95 89.45 91.07 89.75 92.48

(82.19-93.70 (85.94-92.95) (90.56-91.58) (89.72-89.79) (91.16-93.81)
	 	

0	

20	

40	

60	

80	

100	

120	

4	 8	 16	 32	 64	

Th
ro

ug
hp

ut
 (q

ue
ry

/s
)

w

P=8	

P=18	

(b) Throughput is not significantly affected

Figure 5.1: Impact of increasing the number of H-groups (= w ∗ p) on performance.

47

Chapter 5 ADAPTING DISTRIBUTED METRIC SPACE INDEX

5.2.2 Search Performance of TT-S

Experiments E3 and E4. Reusing H-groups for p′ < p (TT-S) is much faster than

re-computing H-groups (TT-R). The alternative phrasing of hypothesis H2 states that

this speed up does not come at a cost to the search performance. Here we report on

experiments that confirm hypothesis H2 in the alternative phrasing: The same switchover

p → p′ is performed using TT-R and independently using TT-S and the resulting search

performance is measured.

These two experiments differ in the set of switchovers considered as follows:

• E3 varies p′ and fixes the ratio p/p′.

• E4 varies the ratio p/p′ and fixed p′.

The results of these experiments shown in Figures 5.2(a) and 5.2(b) support H2:

TT-S does not lead to worse search performance as compared to TT-R when switching

over to a smaller number of processors , in fact the opposite seems to be true.

5.2.3 Comparing TT-A and TT-R

Experiments E5 and E6. In this section, we test hypothesis H3 by comparing the

results of experiments that measure the search performance after computing H-groups

using TT-R and TT-A. Moreover, we capture the computation time of the transitions to

measure the speed-up of TT-A over TT-R.

As with E3 and E4, the experiments differ in the set of switchovers considered as

follows:

• E5 varies the ratio p/p′ and fixed p′.

• E6 varies p′ and fixes the ratio p/p′.

The results of experiments E5 and E6 in Figures. 5.3(a) and 5.3(b) support hypothesis

H3, namely they show that the maximum throughputs after TT-A is similar to, sometimes

even better than the maximum throughput after TT-R. Plots in Figures. 5.4(a) and 5.4(b)

show that in this context the speed-up of TT-A versus TT-R is 2–10 times.

In the next section, we applied the ROP methods with TT-A and TT-S transition

types to measure switchover performance.

48

Chapter 5 ADAPTING DISTRIBUTED METRIC SPACE INDEX

	
	 	 	 	

	
	

p-->p' 3-->2 5-->3 8-->5 12-->8 18-->12

TT-S
20.34 23.93 32.94 47.24 59.37

(19.46-24.33) (21.01-26.86) (29.23-36.64) (46.95-47.52) (47.42-71.32)

TT-R
17.55 22.73 32.29 45.27 56.19

(16.54-18.56) (21.75-23.72) (28.43-36.16) (44.93-45.60) (52.78-59.59)
	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

3->2	 5	-->3	 8-->5	 12-->8	 18-->12	

Th
ro
ug
hp
ut
	(q
ue
ry
/s
)	

p->p'	

TT-S	
TT-R	

(a)

	
	 	 	 	

p-->p' 3-->2 5-->2 8-->2 12-->2 18-->2

TT-S
20.34 15.39 14.98 16.01 18.04

(19.46-24.33) (14.46-16.31) (14.61-15.36) (15.31-16.71) (17.03-19.05)

TT-R
17.55 17.55 17.55 17.55 17.55

(16.54-18.56) (16.54-18.56) (16.54-18.56) (16.54-18.56) (16.54-18.56)
	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

3->2	 5	-->2	 8-->2	 12-->2	 18-->2	

Th
ro

ug
hp

ut
 (q

ue
ry

/s
)

p->p'

TT-S	
TT-R	

(b)

Figure 5.2: TT-S and TT-R produce similar throughput, measured separately for increas-
ing p′ (E3) and increasing p/p′ (E4).

49

Chapter 5 ADAPTING DISTRIBUTED METRIC SPACE INDEX

	
	 	
	
	

	 	
p-->p' 2-->3 3-->5 5-->8 8-->12 12-->18

TT-A
21.89 30.47 41.09 48.39 81.39

(19.46-24.33) (28.48-32.46) (33.42-48.77) (43.75-53.03) (69.70-93.08)

TT-R
22.73 32.29 45.27 56.19 79.62

(21.75-23.72) (28.43-36.16) (44.93-45.60) (52.78-59.59) (68.67-90.57)
	 	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

2-->3	 3	-->5	 5-->8	 8-->12	 12-->18	

Th
ro

ug
hp

ut
(q

ue
ry

/s
ec

)

p->p'

TT-A	
TT-R	

(a)

	
	 	 	 	

	
	

p-->p' 2-->3 3-->5 5-->8 8-->12 12-->18

TT-A
74.14 71.63 79.78 73.95 81.39

(73.076-75.20) (65.30-77.95) (74.74-84.83) (73.26-74.64) (67.32-95.46)

TT-R
79.62 79.62 79.62 79.62 79.62

(68.67-90.57) (68.67-90.57) (68.67-90.57) (68.67-90.57) (68.67-90.57)
	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

2-->18	 3	-->18	 5-->18	 8-->18	 12-->18	

Th
ro
ug
hp
ut
	(q
ue
ry
/s
)	

p-->p'	

TT-A	
TT-R	

(b)

Figure 5.3: TT-A and TT-R lead to a similar maximum throughput after switchovers with
various p′ and with various ratios.

5.3 Switch-over Performance

In Chapter 4, we test ran the three ROP methods with TT-R (KmCol). The conclusion

of previous experiments show that D-P is faster than D-I and D-S methods. In this

50

Chapter 5 ADAPTING DISTRIBUTED METRIC SPACE INDEX

section, we aim to compare the switch-over performance of the ROP methods when the

new groups have been computed using TT-A and TT-S instead of TT-R. The result of

these experiments will show if changing the transition type has made any change of switch-

over performance.

As we mentioned in Chapter 4, switch-over performance is measured using the time

from the point when G′ groups have started deploy onto P ′ until the point when the new

processors becomes active and network load. Also we have mentioned that grouping data

and switch-over will be done in the background of processors during the searching.

5.3.1 Experiments

We run similar experiments with same ratios and number of processors using TT-A and

TT-S transition types as shown in Table 5.1. However, TT-A transition types are used

mainly when the size of engine grows.

Table 5.1: Experiments of switch-over performance using TT-A and TT-S

Code Distributed
method p→p′ Switching type Transition type

E1 D-S,D-I,D-P 4→12, 8→12 Increase TT-A, TT-R, TT-S

E2 D-S,D-I,D-P 6→4, 12→4 Decrease TT-S, TT-R

5.3.2 Results of Experiments

The experiments show that D-P is the fastest in all three transition types. Moreover, switch

over using TT-S is faster than TT-A when enlarging the search engine size and using D-I

and D-P methods. However, switch-over time of TT-S was almost similar to TT-R when

the search engine shrank. This result confirms the result shown in the previous chapter

that D-P method is a fastest redistributed method. Figures 5.5 and 5.6 show the switch-

over performance and network load respectively. Figure 5.5 show the time of switch-over

steps in Section (3.2) as follows:

• Time of step 2 when run one of transition types (Under the line).

• Time of step 3 when use the ROP solution (D-P) (above the line).

Moreover, the network load of all transition types show that D-I and D-P less than D-S

because less number of LC-clusters send to new processors, as explained in the previous

chapter.

51

Chapter 5 ADAPTING DISTRIBUTED METRIC SPACE INDEX

5.4 Conclusions

We have proposed a new algorithm for planning an incremental regrouping of a metric-

space search index when a search engine is switched over to a different size. This algorithm

is inspired by the results of a set of experiments we conducted. These experiments also

indicate that our algorithm facilitates 2–10 times faster switchover planning and leads to

a similar search performance when compared with computing the index from scratch.

In this chapter, we studied only the re-computation of the metric-space index when

the search engine changes size. In the next chapter, we study the remaining aspects of

an adaptive search engine, such as determining when and how to change the engine size

while keeping the engine responsive.

52

Chapter 5 ADAPTING DISTRIBUTED METRIC SPACE INDEX

(a)

(b)

Figure 5.4: TT-A is faster than TT-R in switchovers with with various p′ and various
ratios.

53

Chapter 5 ADAPTING DISTRIBUTED METRIC SPACE INDEX

(a) Switch-over time of TT-A (b) Switch-over time of TT-S

(c) Switch-over time of TT-R

Figure 5.5: TT-S and TT-A produce similar result of TT-R that show D-P is the faster
redistributed method. The black line in the figures show time of step2 of switch-over when
run one of transition types (Under the line) and time of step 3 when use the ROP solution
(D-P) (above the line).

54

Chapter 5 ADAPTING DISTRIBUTED METRIC SPACE INDEX

(a) Network load of TT-A (b) Network load of TT-S

(c) Network load of TT-R

Figure 5.6: TT-S and TT-A produce network load like TT-R that show D-P and D-I have
less load than D-S.

55

6

Determining Number of

Processors

We now turn our attention to the problem of Continually determining the Number of

Processors (CNP). In this chapter, we focus on determining the size of the search engine

and, in particular, deciding when the search engine should change size. Therefore, we first

recall CNP and describe in more detail our CNP solution (Section 6.1). Then, we describe

our SDMP solution and recall that the SDMP solution is based on solutions to CNP, NGP

and ROP (Section 6.2). Finally, we present our experiments design to evaluate our CNP

and SDMP solutions and analyse the results (Section 6.3).

6.1 CNP

As explained in Chapter 3, adapting the search engine size with varying workloads means

switching over to a different number of active processors p′ in response to a higher or lower

query workload. To predict p′, the CNP solution uses a feedback controller. Feedback

controller needs the recent overall CPU load LT (P) for the set of currently active processors

in the search engine. The feedback controller used to predict p′ for the next period of time

in the search engine depends on various parameters, as we will explain in Subsection 6.1.1.

56

Chapter 6 DETERMINING NUMBER OF PROCESSORS

6.1.1 Feedback Controller of Simulator

Figure 6.1: Feedback controller of search engine simulator

In this section, we propose a feedback controller of a search engine simulator that uses

Determine-Processor-Number (Algorithm 6.1.1) to determine the number of processors

when the query workload changes. We adapt elements of the feedback controller concept

from [47, 48, 49, 51, 52, 53] which is illustrated in Figure 6.1 and explained in Section

2.7. These elements are used as different parameters in the CNP solution. In our feedback

control system, we determine the number of processors of the next period of time by using

the following elements:

Controller elements

1 Control Input: 7→ number of processors (p′)

2 Reference Input: 7→
maximum average load (maxLφ)

minimum average load (minLφ)

optimal-load

3 Disturbance input: 7→ rate of incoming queries

4 Measured output over recent time: 7→
overall CPU utilization

average response time

worst response time

Table 6.1: Elements of Feedback Controller of Search engine simulator

When the workload changes rate of incoming queries, ie Disturbance input, the control

system measures the change of load , the overall load of all processors and the average

response time. Then, the system control transforms the measured output so that it could

be compared with the reference input. Control error will compare the difference between

the reference input and the measured output. After that based on current and past values

of control error the Controller computes values of the control input (new number of

processors p′) needed to achieve the reference inputs.

6.1.2 CNP Solution

57

Chapter 6 DETERMINING NUMBER OF PROCESSORS

Algorithm 6.1.1: Determine-Processor-Number(P)

Reference Input:
maxLφ — maximum average loads of all processors,
minLφ — minimum average loads of all processors,
optimal-load — target average load when the query workload decreasing,
other.

Tuning Parameters:
lookahead-time — is a ratio used to compute the lookahead time from the
monitoring duration d.
n — number of times checking the overall load of all processors.

Input: P — the set of currently active processors
Output: p′ — new number of processors

1: (L,L∆) = Get-Variations(P, n)
2: if L∆ > 0 then
3: p′ = increase-p(L∆, L, lookahead-time,maxLφ)
4: end if
5: else-if L∆ < 0 then
6: p′ = decrease-p(L∆, L, optimal-load,maxLφ,minLφ)
7: end if
8: end if

Algorithm 6.1.2: Get-Variations(P, n)

Input:
P — set of processors to monitor
n — number of measurements to make, n ≥ 3.

Output:
L[] — recent overall load of all processors during period of time.
L∆ — a variation of overall load of all processors during period of time.

1: for i = 1 . . . n
2: A[i] = Measure-Processors-Load(P)
3: L[i] = Sum{A[i][P] | P ∈ P}
4: end for
5: First Average = Average{L[1], L[2], L[3]}
6: Second Average = Average{L[n− 2], L[n− 1], L[n]}
7: L∆ = First Average− Second Average

Algorithm 6.1.3: Measure-Processors-Load(P)

Tuning Parameters:
repeat number — number of checks > 0,
checking interval — delay between checks.

Input: P — set of processors to monitor.
Output: A[] — recent load of each processor P ∈ P

1: repeat every checking interval for repeat number times
2: for every P ∈ P loop
3: current load sum[P] += Get-Current-Load(P)
4: end for
5: end repeat
6: for every P ∈ P loop
7: A[P] = current load sum[P]/repeat number
8: end for

58

Chapter 6 DETERMINING NUMBER OF PROCESSORS

We propose the Determine-Processor-Number Algorithm, This algorithm takes as pa-

rameter the current set of processors P reference input and various tuning parameters. In

this algorithm, we use there components of reference input : maxLφ , minLφ , optimal-

load. The optimal-load is used consistently to maintain sufficient numbers of processors

in the search engine when the query workload is decreasing.

At the beginning, we measure the recent overall load of all processors L and a variation

of overall load of all processors L∆ during a certain period of time by calling the Get-

Variation (Algorithm 6.1.2) (Line 1).

if L∆ = 0 then there is no need to change the number of processors and if L∆ > 0 that

shows the overall load is increasing. We measure the expected-load for the next period of

time by multiplying the variation L∆ by lookahead-time and then we add the result to

the recent load L. We decide the next number of processors by comparing the expected-

load with maxLφ ∗ p, an estimate of the maximum attainable load of the current set of

processors. The number of processors for the next period of time is computed by dividing

the expected-load by maxLφ as shown in Fig 6.2.

increase-p(L∆, L, lookahead-time) ={
dexpected-load/maxLφe if expected-load > maxLφ ∗ p
p otherwise

Figure 6.2: Computing p’ when query workload is increasing

if L∆ < 0 then the number of processors are going to decrease. We divide L by the

59

Chapter 6 DETERMINING NUMBER OF PROCESSORS

optimal-load to ensure the search engine has enough processors as shown in Fig 6.3.

decrease-p(L∆, L, optimal-load) ={
dL/optimal-loade if L/p < minLφ
p otherwise

where minLφ ≤ optimal-load < maxLφ.

Figure 6.3: Computing p’ when query workload is decreasing

The Get-Variation algorithm is used in Algorithm 6.1.1 to measure the overall load

of processors and the variation of change in the overall load of processors during a given

time period. In this algorithm, we measure the average load of each processor using the

Measure-Processors-Load algorithm (Algorithm 6.1.3) and calculate the overall load of all

processors L[] for n numbers (lines 1-4). In lines 5-7, we measure the variation of the

overall load of processors (L∆) by finding the average of the first three load measurements

L[0], L[1], L[2] and the average of last three L[n− 2], L[n− 1], L[n] and then we subtract

the two averages.

The Measure-Processors-Load algorithm (Algorithm6.1.3) reads the current CPU load

for each processor at each time interval. Then, we calculate an estimate of the average load

of each processor over the measurement period given by the parameters: repeat number a

number of times to check the current CPU load, checking interval delay between checks.

On lines 1-5, we read and sum the CPU load for each processor each time interval. Then,

we calculate the average load for each processor and store it in the array A[P] (lines 7-10).

60

Chapter 6 DETERMINING NUMBER OF PROCESSORS

Algorithm 6.2.1: Adapting(P, C, dQ, H)

Tuning Parameters:
tuning parameters as specified in sub-algorithms
Input:

P —a set of active processors,
C — LC-clusters,
dQ: a metric on C,
H — a set of H-groups partitioning C.

1: i = 1
2: pi = 2,Pi = 1
3: repeat forever
4: p′ =Determine-Processor-Number(Pi)
5: if (p′ 6= pi) then
6: (Gi+1, Hi+1) = Regroup(p′, C, dQ, Hi)
7: Re-allocation-steps = D-P(Gi+1, Hi+1)
8: Pi+1 = Switch-over (Re-allocation-steps)
9: pi+1 = p′

10: i = i+ 1
11: end if
12: end repeat

6.2 SDMP

A solution to SDMP will be obtained from the solutions to CNP, GNP and ROP as follows:

CNP determines the new number of processors when pt changes and NGP is applied to

calculate the new groups from the current G-groups. Then, the result of NGP G-groups is

passed onto ROP to compute the allocation of these groups onto the new set of processors

giving a list of steps that lead from an old to a new allocation. When these steps are

executed, the new groups are allocated. After new groups have been allocated onto the

new processors, they will continue running the search until the value of pt changes again

as determined by the CNP solution.

For this purpose, we propose the Adapting algorithm (Algorithm 6.2.1) to adapt the

search engine size with the varying workloads. The algorithm switches over to the new

search engine size p′ after computing and deploying G′ groups onto many processors. On

lines 1-10, the search engine runs a loop to adapt search engine size as follows:

On line 3, determine p′ by using CNP solution i.e. Algorithm 6.1.1. If the search

engine needs to change size (line 4) then apply NGP solution to compute G′-groups and

then the ROP solution to deploy G′-groups onto p′ (lines 5-6). In line 7, the search engine

switches over to p′ processors.

We considered two scenario parameters when designing a solution for SDMP: firstly,

a frequency of change of sample query set Q and secondly, a frequency of the need to

61

Chapter 6 DETERMINING NUMBER OF PROCESSORS

change p due to query load fluctuations. These two parameters influence which one of the

three transition types (TT-R,TT-S,TT-A) would be optimal when the search engine size

changes. We focus only on the second parameter and assume in our scenario that Q does

not change and the query load undergoes 2-4 major changes per day.

6.3 Experiments Design and Results

In the experiments, we aim to evaluate the Adapting algorithm as well as the Determine-

Processor-Number algorithm (CNP solution). The Adapting algorithm is measured in

terms of the effect on the search performance and the ability to change the search engine

size with query workload variation. The performance is influenced by the same parameters

as in Chapters 4 and 5 above.

A simulation of a realistic query workload is required to evaluate our solution. The

Sogou log 1 (Figure 6.4) provides a sample search engine query load distribution by hours

in the Sogou search engine 2. This load has been used to determine the query rate evolution

in our search client simulation. We converted the Sogou log from hours to minutes so that

the simulation does not take too long. We fire the queries depending on the varying query

rate in the Sogou log. However, the Sogou log gives a query rate appropriate to a single

time zone. To evaluate our solution in simulated multiple time zones, we modified this

query rate as explained in the next section.

Figure 6.4: Query rate in the Sogou log (adapted from [43]).

1http://www.sogou.com/labs/dl/q-e.html
2http://www.sogou.com/

62

http://www.sogou.com/labs/dl/q-e.html
http://www.sogou.com/

Chapter 6 DETERMINING NUMBER OF PROCESSORS

6.3.1 Search Scenarios

The variation of query workload change depend on different reasons such as different

time zones among countries and special events in the world. For this purpose, we aim to

evaluate the Adapting algorithm for three different search scenarios as follows:

Scenario 1 Single time zone over 50 hours.

Scenario 2 Multiple time zones with weights over 50 hours.

Scenario 3 Simulating a big event causing a temporary a sharp increase and then sharp

decrease soon afterwards.

We run three type of experiments for these three scenarios to evaluate our solutions

as follows:

E1 The parameters are set to ensure the search engine adapts its size as soon as the

workload changes. In the experiments the values of the parameters are as follows:

• maxLφ =0.80: the maximum average load per processor.

• minLφ =0.50: the minimum average load per processor.

• optimal-load =0.7 : target average load when the query workload is decreasing

to make sure that the search engine has enough processors for any changes.

• lookahead-time=5: is a ratio used to compute the lookahead time from the

monitoring duration d.

• n = 3 : number of measurements to make.

• repeat number=3 : number of checks > 0.

• checking interval= 1 second : delay between checks.

In the other experiments, we changed the value of lookahead-time parameter to check

how increasing or decreasing the expected time for the next switch-over affects the

search results. As the query workload fluctuated, we found that increasing this

parameter will affect the result of searching if the search engine does not have enough

processors. However, decreasing the value of lookahead-time more than necessary

that might keep the search engine doing many switch-overs in a short period of time

which would affect the search engine’s performance.

E2 As explained above in this experiments we reduce the value of the lookahead-time

parameter to check how the search engine responds. In this experiment, we decrease

lookahead-time to 1 while keeping the other parameters as in E1.

63

Chapter 6 DETERMINING NUMBER OF PROCESSORS

E3 In this experiment, we increase lookahead-time to 10 and keep other parameters as

in E1.

The results of these experiments for each scenario are as follows:

Scenario 1

In the experiment E1, the search engine starts with 2 processors and changes depending on

the change in the workload as shown in the Figure 6.5(a). The result of this experiment

shows that the search engine adapts its size dependent workload change without any

significant delay. However, the experiment E2 shows some delay in response to workload

change as we reduce lookahead-time to 1 as shown in the Figure 6.5(b). In E3, search

engine increases p too quickly and too much in response to the increase of the workload

as shown in Figure 6.6.

Scenario 2

In Scenario 2, we simulate two time zones as explained above. The time difference between

the two zones was 6 hours. The result of experiment E1 in Scenario 2 show that the search

engine adapts its size when the workload changes as shown in Figure 6.7(a). In experiment

E2 there is some delay in the search engine adaptation as shown in Figure 6.7(b).

Scenario 3

As explained above, in Scenario 3, we aim to evaluate the Adapting algorithm when the

workload sharply increases and then decreases. The results of E1 show that there is some

delay in response to workload changes that make the average response time become worse

during sharp increases (as shown in Figure 6.8). After increasing the time of checking the

overall load, the search engine delayed at the beginning to adapt its size; thus it seems the

search engine could not manage to adapt its size in response to workload changes. Scenario

3 tests show that the algorithm does not cope well with very sharp changes; this could be

improved by taking the recent response times into account when deciding whether and by

how much to increase P .

6.4 Conclusions

The experiments show that the Adapting algorithm has the ability to adapt the search

engine size when the workload changes except when the change is very sharp. However,

we plan in the future to improve our algorithm to be able to adapt the search engine when

64

Chapter 6 DETERMINING NUMBER OF PROCESSORS

the change is very sharp by monitoring daily/weekly patterns as well as special events and

so predict the load based on such data.

65

Chapter 6 DETERMINING NUMBER OF PROCESSORS

(a) E1

(b) E2

Figure 6.5: In Scenario 1, search engine show good response time when the value of
lookahead-time was suitable in E1, however, a small lookahead-time lead to high response
times in E2.

66

Chapter 6 DETERMINING NUMBER OF PROCESSORS

Figure 6.6: The search engine increases size too quickly when lookahead-time is too large
in E3 Scenario 1.

67

Chapter 6 DETERMINING NUMBER OF PROCESSORS

(a) E1

(b) E2

Figure 6.7: In Scenario 2, search engine show good response time when the value of
lookahead-time was suitable in E1, however, a small lookahead-time lead to high response
times in E2.

68

Chapter 6 DETERMINING NUMBER OF PROCESSORS

Figure 6.8: The algorithm does not cope well with very sharp changes of the workload
in Scenario 3.

69

7

Validation of Search Engine

Simulator

In this chapter, we will present the validation that has been done for our simulator. In

Section 7.1, we explain the validation of simulator and type of validations that have been

considered. Then in Section 7.2, we present all the experiments of the validations and the

results of the experiments.

7.1 Validation of Simulator

Validation is to indicate that experiments have been properly conducted for our simulator

properly with error free implementations. We validate our simulator in two ways:

• Compare our implementation with a third party implementation in terms of a per-

formance metric for the same dataset and queries.

• Provide evidence that the parallel realization of the simulator is able to scale its

performance with the number of processors.

We discuss both validation points below.

70

Chapter 7 VALIDATION OF SEARCH ENGINE SIMULATOR

7.2 Experiments and Results

The experiments depend on the following parameters:

1. Dataset (D): The dataset as explained in Section 5.2, represents the set of objects

that needs to be searched. We used a selected set of 1,000,000 objects from the

CoPhIR Dataset. Each object comprises 282 floating-point number co-ordinates

and each LC-cluster has 100 objects.

2. Query profile (QP)

In our experiments, we use as queries 200,000 that following more realistic user

behaviour as explained in Section 2.9. We fire the queries at a constant query rate.

7.2.1 Performance Metric Experiments

We compared our research implementation with a third party implementation from Yahoo!

research group. The goal was to check our implementation of the LC index against a third

party implementation in terms a performance metric such as total number of distance

evaluations.

Veronica Gil-Costa from Yahoo! Research Latin America Labs provided a third party

implementation to validate our simulator. The code she used to building the LC index is

available in http://www.sisap.org/metricspaceslibrary.html/. She created the LC-

index for our dataset and executed the same queries as we did and counted the number of

distance evaluations.

In the first experiments, we compute the total number of distance evaluation of queries.

We searched the queries using the third party LC index and compared the total number of

distance evaluation of queries with the results of our implementation. The idea is that, as

explained in 2.3.2 during the processing of a search query (q, r), if the first cluster center

is c and its radius is rc, start by measuring the distance d(q, c) and adding the center c of

the cluster (c, rc, I) to the result set if d(q, c) ≤ r. Then, we scan exhaustively I from the

cluster (c, rc, I) only if the query ball (q, r) intersects with the cluster (c, rc, I). However,

if the query ball (q, r) is totally and strictly contained in the cluster (c, rc, I), we only

consider this cluster and ignore others because all the points inside the query ball have

been inserted into I. For example, if the query ball (q, r) is totally and strictly contained

in the cluster (c, rc, I), the number of distance evaluations will be 101 only. First we

evaluated the distance between the query and the cluster radius Rc then we evaluated the

distance between the query and the 100 objects inside the cluster. However, sometimes

71

http://www.sisap.org/metricspaceslibrary.html/

Chapter 7 VALIDATION OF SEARCH ENGINE SIMULATOR

we compared the query with more than one cluster if the query intersected many clusters.

In the experiments, we used two sets of queries where each set has 100,000 objects.

We run each set with both LC index implementations. Both implementations have given

exactly the same number of distance evaluations for the same dataset and queries. We

show a small sample of the results for the two query sets in both implementations in Figure

7.1.

	
Query	Set.1	

Third	party	Implementation	result		 Our	simulator	result	

IDq 0 nDists 101
IDq 1 nDists 101
IDq 2 nDists 101
IDq 3 nDists 101
IDq 4 nDists 101
IDq 5 nDists 101
IDq 6 nDists 101
IDq 7 nDists 101
IDq 8 nDists 101
IDq 9 nDists 304
IDq 10 nDists 304
IDq 11 nDists 304
IDq 12 nDists 312
IDq 13 nDists 312
IDq 14 nDists 305
IDq 15 nDists 305
IDq 16 nDists 305
IDq 17 nDists 412

	
0	ndist	101	
1	ndist	101	
2	ndist	101	
3	ndist	101	
4	ndist	101	
5	ndist	101	
6	ndist	101	
7	ndist	101	
8	ndist	101	
9	ndist	304	
10	ndist	304	
11	ndist	304	
12	ndist	312	
13	ndist	312	
14	ndist	305	
15	ndist	305	
16	ndist	305	
17	ndist	412	
	

Query	Set.2	
Third	party	Implementation	result		 Our	simulator	result	

IDq 0 nDists 101
IDq 1 nDists 101
IDq 2 nDists 101
IDq 3 nDists 101
IDq 4 nDists 101
IDq 5 nDists 101
IDq 6 nDists 304
IDq 7 nDists 304
IDq 8 nDists 304
IDq 9 nDists 312
IDq 10 nDists 312
IDq 11 nDists 305
IDq 12 nDists 305
IDq 13 nDists 305
IDq 14 nDists 412
IDq 15 nDists 412
IDq 16 nDists 512
IDq 17 nDists 512
IDq 18 nDists 512
IDq 19 nDists 101

	
0	ndist	101	
1	ndist	101	
2	ndist	101	
3	ndist	101	
4	ndist	101	
5	ndist	101	
6	ndist	304	
7	ndist	304	
8	ndist	304	
9	ndist	312	
10	ndist	312	
11	ndist	305	
12	ndist	305	
13	ndist	305	
14	ndist	412	
15	ndist	412	
16	ndist	512	
17	ndist	512	
18	ndist	512	
19	ndist	101	
	

	
	

Figure 7.1: Comparing the number of distance evaluation performed for the queries Sets
using our simulator and a third party implementation

7.2.2 The Level of Scalability Experiments

Another validation is to provide some evidence that the parallel realization of the simulator

is able to scale its performance with the number of processors. We provide the evidence

by showing the level of scalability in Amazon EC2 and in a 32-core shared-memory com-

72

Chapter 7 VALIDATION OF SEARCH ENGINE SIMULATOR

puter. Scalability refers to the simulator’s ability to accommodate rising resource demand

gracefully, without a noticeable loss in the quality of services. To measure scalability, we

need to measure how the throughput increases when the search engine size increases.

In the second experiment, we compared the level of scalability of the simulator on

Amazon EC2 and on a 32-core shared-memory computer. In both experiments, we used

the sequence 2,4,8,16,32 for numbers of processors and measured the maximum throughput

using the method described in Section 5.2. In the Amazon EC2 experiments, we used the

same instances as stated in section 2.6 and we measured the confidence intervals for each

experiment of the different number of processors using the same method explained in

section 5.2. In the 32-core server, we deployed each processor on a separate core and all

the processors shared the same memory.

The results in Figure 7.2 show that the parallel realization of the simulator is able to

scale its performance nearly linearly with the number of processors. When we run the

simulator in the 32-core shared-memory computer, the results show that the simulator is

strongly non-linear due the bottleneck of shared memory. Therefore, in EC2 the simulator

scales are much better than the 32-core shared-memory computer.

73

Chapter 7 VALIDATION OF SEARCH ENGINE SIMULATOR

(a) Amazon EC2

(b) 32-core shared-memory computer

Figure 7.2: Scalability of the search engine simulator.

74

8 Conclusion

8.1 Summary of Achievements

In this thesis, we focus on the problem of how to self adapt parallel metric-space search en-

gine size for dynamic query loads (SDMP). The SDMP solution was achieved by adapting

the search engine by way of re-evaluating its load and, when appropriate, by switchover

from p active processors to a different number of active processors.

We break SDMP out into three sub-problems. The three sub-problems are as follows:

• Continually determining Number of Processors (CNP): In the light of the changes

in the query workload in the search engine, there is a problem of determining the

ideal number of processors p active at any given time to use in the search engine.

• New Grouping Problem (NGP): When a change in number of processors is deter-

mined, we have to decide the groups G that will be distributed across the processors.

• Regrouping Order Problem (ROP): When we have new groups G we will need to plan

how to redistribute the LC-clusters into the groups G onto processors while keeping

the engine responsive, while minimising the switchover time and the incurred network

load.

75

Chapter 8 CONCLUSION

Solutions to these sub-problems can produce key answers and insights for solving the

overall problem. The research achievements regarding the solutions for these sub-problem

are as follows:

• ROP: We considered the following three methods to re-distribute the LC clusters

according to the given G-groups G′ to a new set of processors P ′:

D-S Distributed from Scratch; The Index Planner sends all the LC-clusters to the

assigned processors to replace their old LC-clusters,if any.

D-I Distributed using Index Planner; The Index planner sends only the missing

LC-clusters to each processor. The processors will remove any old LC-clusters

that are no longer assigned to them.

D-P Distributed using Processors; The Index Planner pre-computes the instruc-

tions for the processors and the processors swap LC-clusters among themselves

according to the new plan.

D-P was found to be the fastest among the three methods we considered. Moreover,

D-P and D-I required less LC-clusters to be redistributed among the processors than

D-S. The experiments show that D-P is 50% faster than D-S and 10% to 25% faster

than D-I. In addition, D-P and D-I reduces the network load to around 30% less

than D-S load.

• NGP: We compute G-groups from H-groups in the same way as in the Km-Col

algorithm as explained in Chapter 2. We therefore focus on the computation of H-

groups for p′ processors from H-groups for p processors. We introduce the following

three methods (called transition types):

TT-R: Compute H-groups from scratch using K-means, like Km-Col.

TT-S: Reuse the H-groups from previous configuration.

TT-A: Increase the number of H-groups using Adjust-H.

We have proposed a new algorithm for planning an incremental regrouping of a

metric-space search index when a search engine is switched over to a different size.

This algorithm is inspired by the results of a set of experiments we conducted. These

experiments also indicate that our algorithm facilitates 2–10 times faster switchover

planning and leads to a similar search performance when compared with computing

the index from scratch.

76

Chapter 8 CONCLUSION

• CNP: We have proposed the adapting algorithm for determining the new size of the

search engine and the algorithm evaluated by using three search scenarios as follows:

Scenario 1 Single time zone over 50 hours.

Scenario 2 Multiple time zones with weights over 50 hours.

Scenario 3 simulating a big event causing a temporary sharp increase and then a

sharp decrease soon afterwards.

The search engine updates the number of processors whenever the workload changes

using the Adapting algorithm with all search scenarios.

Moreover, we use CoPhIR to run our experiments which is the largest publicly

available collection of high-quality images metadata. Moreover, we used 1 million

objects from CoPHIR to evaluate the result from our research.

8.1.1 Strengths of Research

Amazon EC2 cloud: This research has been conducted using a real cloud i.e. Amazon

EC2. One contribution is in using Amazon EC2 to manage search engine size and our

methods to mitigate its unstable performance. Amazon EC2 provided suitable services at

an acceptable cost.

CoPhIR dataset: One of the difficulties which we faced at the beginning of this

research was to find a real dataset for our experiments. We downloaded different dataset

from the internet to run the experiments and test our results. However these were less

realistic than CoPHIR.

This research provides the Adapting algorithm to adapt the search engine size using

cloud. We have not come across any research using cloud to manage search engine size.

8.2 Future Work

This research can be expanded in different directions as follows:

1. Limitation of Amazon EC2 cloud: various issues with EC2 instances affected the

performance for the search engine. Moreover, Amazon EC2 is changing the types of

instances from time to time and some of these instance take a fairly long time to be

ready for use. We plan to use a more suitable environment to deploy and evaluate

our solutions.

77

Chapter 8 CONCLUSION

2. In this research we did not focus on potential changes of the sample query set Q

when running SDMP experiments. We plan to consider this parameter in the future.

3. We created a method to determine a new search engine size using the most recent

load. However, we would like to monitor daily/weekly patterns as well as special

events and predict the load based on such data. When the search engine uses more

parameters it will be able to manage the size depending on the result which repeat-

edly updates the search engine.

4. We plan to consider in the future the load presented to clusters. As we observe from

our experiments some LC-clusters have higher load than other LC-clusters. We plan

to measure the load of each LC-cluster during search and by regrouping the LC-

clusters among processors so LC-clusters that have higher load will be redistributed

into different processors. We expect that network load are going to drop down as

only few of the LC-clusters move to new addresses during switch-over.

5. We measured CPU utilisation of the processors only to determine number of Pro-

cessors. We have not yet evaluated the overall CPU utilisation of our method.

Therefore, the loads of the Broker and Index Planner have not been measured. We

plan to measure the loads of the Broker and Index Planner in the future as part of

an overall CPU utilisation study.

6. We used a self-made experimental search engine to evaluate our solution for SDMP.

We hope to implement our methods in a real search engine and evaluate them in

this context. However, before scaling this work there is some limitations which need

to be considered as follows:

• Dataset size: In our experiments, we used a set of 1,000,000 objects (2.27

GB) from the CoPhIR to evaluate our solution. However, the dataset is much

bigger in the real search engine and regrouping huge dataset for big numbers

of processors will require a lot of time and which may affect the search engine

performance.

• Cost of EC2 instances: Cost of EC2 instances is dependent on the type of

instances in Amazon. Indexing and grouping data for a real search engine will

require an instance with big memory and each instance must be ready to hold

a big group of LC-clusters, which thus would be more expensive. We need to

measure the cost of running real search engines in EC2 instances.

78

Chapter 8 CONCLUSION

In future work, we hope to consider these points to evaluate our solution in a real

search engine.

79

A

A Process to Run Proposed

Search Engine Simulator

A.1 Amazon EC2 configuration

Running our search engine simulator in Amazon EC2 requires the creation of an account

in order to run all the configuration steps as explained below:

1. log into your Account

2. Launch Instances: create and configure your instances in the EC2 by selecting launch

in the EC2 Dashboard. Follow the steps below for instance configuration:

(a) Choose an Amazon Machine Image (AMI): select Amazon linux AMI from the

options.

(b) instance type: Select the type of the instances e.g m1.medium.

(c) Create a Virtual Private Cloud (VPC).

(d) A Key Pair: Create a new key pair and assign a name.

(e) Security Group: configure your virtual firewall.

(f) Launch Instance: start your instance by clicking launch.

80

Appendix A A PROCESS TO RUN PROPOSED SEARCH ENGINE SIMULATOR

(g) Primary IP Address(public): A primary IP address is used to access to the

main instance in your VPC.

3. Connect to your Instance: connect your instance by using EC2 Dashboard or by

running a script as explained in Section A.2.

4. Terminate Instances:

Terminate your instances to prevent additional charges via Dashboard. All the data

will be deleted from the instances.

For further details, see: http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

get-set-up-for-amazon-ec2.html

A.2 Shell scripts

In this section, we explain the different shell scripts that we developed to help run our

search engine simulator in EC2. We consider as an example the NGP TT-A throughput

experiment switching from 8 to 18 processors. We created three types of scripts to run

the search engine simulator in Amazon EC2:

• Launch instances script: This script launches all the required Amazon EC2 instances.

The script carries out the following steps:

1. Allocate a private IP address: We allocate a private IP address to each instance

e.g privateip0=10.0.0.20 . These private addresses are used to communicate

between instances. The main instance has both a public IP address and a

private IP address. The public IP address will be allocated by Amazon EC2

and used as the main IP to access the main instance from outside Amazon EC2.

The private IP addresses are used to communicate to the other instances.

2. Type of instance: In this part, we decide types of instance and select the Ma-

chine Image (AMI) which has been created during Amazon EC2 configuration

e.g

run ins tance=”ec2−run−i n s t a n c e s ami−75037602

−−in s tance−type m3. medium −−subnet subnet−2d5f0a46 ”

. These details can used for all the instances and Th user can create different

type for each instances

81

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html

Appendix A A PROCESS TO RUN PROPOSED SEARCH ENGINE SIMULATOR

3. Launch the main instance: Launch the main instance and hold its details to

associate the main instance to private address e.g

{ run ins tance } −−pr ivate−ip−address { p r i v a t e i p 0 }

.

4. Launch other instances: Then we launch all the remaining instances and asso-

ciate each instances to it private IP-Address e.g

{ run ins tance } −−pr ivate−ip−address { p r i v a t e i p 1 } .

.

5. Associate public address: Associate the main instance to the public address e.g

ec2−a s s o c i a t e−address − i i n s t a n c e i d 54 . 229 . 175 . 232

.

• Simulator script: This script is used to send the simulator codes to Amazon EC2

instances, execute them and get the result back.

1. Send the simulator files from local machine to the main instance, e.g

. The following is the list of simulator files that are sent to the instances:

– IndexPlanner.jar

– SearchProc.jar

– SearchBroker8-18.jar (This depends on the number of processors)

– Controller.jar (Used only for CNP experiments)

– ips18.txt

– myKeyPair.pem

– TT-A-8-18.sh

– Dataset1mCHLC100.ser

– Dataset.txt

– queries.txt

– SampleQuery.txt

2. Run the simulator execution:

e.g

ssh \${ opt ions } \${host1 } sh NGP−p8−18. sh}

82

Appendix A A PROCESS TO RUN PROPOSED SEARCH ENGINE SIMULATOR

.

3. Send back the results from the main instance to the local machine

e.g

scp \${ opt ions } \${host1 } : o u t p u t f i l e . txt \${ l o c a l 1 }}

.

4. Stop the simulator e.g

ssh −n \${ opt ions } \${host1 } k i l l −9 ‘ps −e f

| grep java | grep −v grep | awk ’{ pr in t \$2 } ’ ‘}

.

• Simulator execution: This script runs the search engine simulator in EC2.

1. Run the Index Planner: Copy all the necessary files in IndexPlanner node before

starting Index Planner.

2. Run the Processors: Copy the processor files onto the processors. Then run all

the processors and make them ready to accept requests from IndexPlanner or

from Broker.

3. Run the Broker: Start run Broker in the main instance e.g SearchBroker8-

18.jar.

4. Stop the simulator: When the Broker finishes search it will send a command

to kill all jar files in the nodes. e.g

ssh −n \${ opt ions } \${host1 } k i l l −9 ‘ps −e f |

grep java | grep −v grep | awk ’{ pr in t \$2 } ’ ‘}

.

• Terminate all instances After the work is complete, terminate all the instance in

EC2 to avoid extra cost.

A.3 Search engine simulator

The search engine simulator has three packages holding different classes. In this section,

we focus on the main classes in each package. These packages as follows:

• Clustering package:

83

Appendix A A PROCESS TO RUN PROPOSED SEARCH ENGINE SIMULATOR

Figure A.1: Clustering package classes

The package to compute G-groups using different transition types. As shown in

Figure A.1. This package includes the following classes:

1. Point: Represent a data point object.

2. Cluster: Represent LC-cluster objects each center, with elements set and radius.

3. Query: Represent query objects with a radius and also to calculate query vec-

tors.

4. Clustering: user to returns H-groups computed by k-means and LC-clusters

created by LC algorithm.

5. IndexDBPartition: holds all the transition types to compute G-groups.

6. Partition Type: lists different transition types.

7. DistanceComp: to compare distance between data points.

8. PointAndDistanceFromCenter: compute distance of points from center of the

LC-clusters.

• Network load package: The network package provides the ability to monitor sockets

to compute the network load of all the processors as shown in Figure A.2. This

package includes the following classes:

1. MonitoringSocket: calculates the network load of the processors.

84

Appendix A A PROCESS TO RUN PROPOSED SEARCH ENGINE SIMULATOR

Figure A.2: Network load classes

2. DebuggingInputStream: a substitute for InputStream that counts the bytes

being transferred OutputStream.

3. DebuggingOutputStream: a substitute for OutputStream that counts the bytes

being received InputStream

Note all the classes in this package have been adopted from http://www.javaspecialists.

eu/archive/Issue169.html. We modified them for our research by making Moni-

toringSocket as superclass for Processor class in the search engine package.

• Search engine package:

The search engine package holds all the classes used for simulating the search engine

as shown in A.3.

These classes as follows:

1. IndexPlanner class: This class will be used in Index Planner node in the search

engine architecture. It computes LC-clusters and G-groups using classes in

Clustering Packet. Then it creates the index plan for these G-groups before

distributing the index plan and LC-clusters onto the processors.

2. SearchProc class: This class is present in the Processor node. It works as a

ranker and as a processor as explained in Chapter 2.

85

http://www.javaspecialists.eu/archive/Issue169.html
http://www.javaspecialists.eu/archive/Issue169.html

Appendix A A PROCESS TO RUN PROPOSED SEARCH ENGINE SIMULATOR

Figure A.3: Search engine package classes

3. Broker class: In this simulator, Broker class sends queries to the rankers and

receives the result from rankers as mentioned in Chapter2. This class records

the throughput of the search engine and response time.

4. Control class: We use control class for monitoring change in the query workload.

Control has all the parameters needed to decide when the search engine changes

size.

86

Bibliography

[1] Jonassen, Simon. Efficient query processing in distributed search engines. PhD thesis,

Department of Computer and Information Science, Norwegian University of Science

and Technology,Trondheim, Norway. 2013.

[2] Hunter Schwarz, How Many Photos Have Been Taken Ever, BuzzFeed, September

24, 2012.

[3] A. Jaimes, M. Christel, S. Gilles, R. Sarukkai, and W.-Y. Ma. Multimedia infor-

mation retrieval: What is it, and why isnt anyone using it? In Proceedings of the

ACM SIGMM International Workshop on Multimedia Information Retrieval, pages

38, Hilton, Singapore, 2005.

[4] M. Kankanhalli and Y. Rui. Application potential of multimedia information re-

trieval. Proceedings of the IEEE, 96(4):712720, 2008.

[5] Swain, M.J. Searching for multimedia on the World Wide Web. 1999. IEEE Inter-

national Conference on Multimedia Computing and Systems, 1999.

[6] Smeulders, A. W. M., Worring, M., Santini, S., Gupta, A., and Jain, R., Content-

based image retrieval at the end of the early years, IEEE Transactions on Pattern

Analysis and Machine Intelligence 22(12), 13491380 (2000).

[7] R. van Zwol, S. Ruger, M. Sanderson, and Y. Mass. Multimedia information retrieval:

new challenges in audio visual search. SIGIR Forum, 41(2):7782, 2007.

[8] Ibrahim, Amani S., et al. ”CloudSec: a security monitoring appliance for Virtual

Machines in the IaaS cloud model.” Network and System Security (NSS), 2011 5th

International Conference on. IEEE, 2011.

[9] Ostermann, Simon, et al. ”A performance analysis of EC2 cloud computing services

for scientific computing.” Cloud computing. Springer Berlin Heidelberg, 2010. 115-

131.

87

Appendix A BIBLIOGRAPHY

[10] Barham, P., Dragovic, B., Fraser, K ., Hand , S., Harris, T .L., Ho, A., Pratt, 1.,

Warfield, A.: Xen and the art of virtualization. In: SOSP. ACM, New York (2003).

[11] Mark Levene: An Introduction to Search Engines and Web Navigation (2. ed.).

Wiley 2010: I-XIX, 1-478.

[12] E. Chavez and G. Navarro. A compact space decomposition for effective metric

indexing. Pattern Recognition Letters, 26(9):1363-1376, 2005.

[13] E. Chavez, G. Navarro, R. Baeza-Yates, and J. Marroquin. Searching in metric

spaces. ACM Computing Surveys, 3(33):273-321, 2001.

[14] Marin, M., Ferrarotti, F., Gil-Costa, V., (2010), Distributing a metric-space search

index onto processors. In: Parallel Processing (ICPP), 39th International Conference

on Parallel Processing, San Diego, California, USA. The Institute of Electrical and

Electronics Engineers, Inc.

[15] V. Gil-Costa, M. Marin, and N. Reyes. Parallel query processing on distributed

clustering indexes.Journal of Discrete Algorithms, 7:3-17, 2009.

[16] E. Chavez, G. Navarro, R. Baeza-Yates, and J.L. Marroquin. Proximity searching

in metric spaces. ACM Computing Surveys, 33(3):273-321, September 2001.

[17] G. Navarro. Searching in metric spaces by spatial approximation. VLDB, pages 28-

46, 2002.

[18] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for simi-

larity search in metric spaces. In VLDB, pages 426-435, 1997.

[19] Novak, D., Batko, M., and Zezula, P. (in press). Metric Index: An efficient and

scalable solution for precise and approximate similarity search. Information Systems.

doi:10.1016/j.is.2010.10.002.

[20] N. R. Brisaboa and O. Pedreira. Spatial selection of sparse pivots for similarity

search in metric spaces. In SOFSEM 2007, LNCS 4362, pages 434-445, 2007.

[21] Akassh A Mishra and Chinmay Kamat. Article: Migration of Search Engine Process

into the Cloud. International Journal of Computer Applications 19(1):19-23, April

2011. Published by Foundation of Computer Science.

[22] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, and S. Raghavan, Searching the

Web, ACM Trans. Internet Tech., 1(1), 2001.

88

Appendix A BIBLIOGRAPHY

[23] V. Gil-Costa, and M. Marin, ”Load Balancing Query Processing in Metric-Space

Similarity Search”, In 12th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGrid 2012), May 13-16, 2012, Ottawa, Canada.

[24] V. Gil-Costa and M. Marin, ”Approximate Distributed Metric-Space Search”, ACM

Workshop on Large-Scale and Distributed Information Retrieval (LSDS-IR 2011),

Glasgow UK, Oct. 2011.

[25] D. Puppin. A search engine architecture based on collection selection. PhD thesis,

Department of Informatics, Pisa University, Pisa, Italy, Sept. 2007.

[26] D. Puppin, F. Silvestri, and D. Laforenza. Query-driven document partitioning and

collection selection. In INFOSCALE 2006, Hong Kong, May 30-June 1, 2006. ACM,

2006.

[27] D. Puppin, F. Silvestri, R. Perego, and R. Baeza-Yates. Load balancing and caching

for collection selection architectures. In INFOSCALE 2007, Suzhou, China, June

6-8, 2007, page 2. ACM, 2007.

[28] Claudine Santos Badue, Ramurti Barbosa, Paulo Golgher, Berthier Ribeiro-Neto,

and Nivio Ziviani. Distributed processing of conjunctive queries. In HDIR ?05: Pro-

ceedings of the First International Workshop on Heterogeneous and Distributed

Information Retrieval (HDIR05),SIGIR 2005, Salvador, Bahia, Brazil, 2005.

[29] Fidel Cacheda and Vassilis Plachouras. Performance analysis of distributed archi-

tectures to index one terabyte of text. volume 2997, pages 394-408, 2004.

[30] Salvatore Orlando, Raffaele Perego, and Fabrizio Silvestri. Design of a Parallel and

Distributed WEB Search Engine. In Proceedings of Parallel Computing (ParCo)

2001 conference. Imperial College Press, September 2001.

[31] Kowalski G. Information Retrieval Architecture and Algorithms. 1st. Springer-

Verlag New York, Inc , 2010.

[32] Papadopoulos, A., Manolopoulos, Y.: Distributed processing of similarity queries.

Distributed and Parallel Databases 9(1),67-92 (2001).

[33] M. Marin, V. Gil-Costa, and C. Bonacic. A search engine index for multimedia

content. In Proc. EuroPar 2008, pages 866?875. LNCS 5168, Aug. 2008.

[34] David Novak, Michal Batko, Pavel Zezula: Large-scale similarity data management

with distributed Metric Index. Inf. Process. Manage. 48(5): 855-872. 2012.

89

Appendix A BIBLIOGRAPHY

[35] Voorsluys, W., Broberg, J., Buyya, E., (2011), ”Cloud computing in a nutshell”.

In:Cloud computing: principles and paradigms, by Buyya, R., Broberg, J., Goscinski,

A. John Wiley ‘I&’ Sons, Inc.

[36] Hosono, S., Kimita, K., Akasaka, T., Hara, T., Shimomura, Y., Arai, T., (2011),

Toward Establishing Design Methods for Cloud-Based Business Platforms. In: Hes-

selbach, J., Herrmann, C., Functional Thinking for Value Creation. 3rd CIRP In-

ternational.

[37] Wang, X., (2010), Clustering in the Cloud: Clustering algorithms to Hadoop

Map/Reduce Framework. Texas State University-San Marcos, Dept. of Computer

Science. Technical Reports-Computer Science. Paper 19. Independent Study Report.

[38] Gil-Costa Veronica, and Mauricio Marin. ”Distributed sparse spatial selection in-

dexes.” 16th Euromicro Conference on Parallel, Distributed and Network-Based

Processing. IEEE, 2008.

[39] Marin, M., Gil-Costa, V., Hernandez, C.: Dynamic p2p indexing and search based

on compact clustering. In: SISAP. pp. 124131 (2009).

[40] Novak, D., Batko, M., Zezula, P.: Metric index: An efficient and scalable solution

for precise and approximate similarity search. Inf. Syst. 36(4), 721733 (2011).

[41] Doulkeridis, C., Vlachou, A., Kotidis, Y., Vazirgiannis, M.: Peer-to-peer similarity

search in metric spaces. In: VLDB (2007).

[42] Yuan, Y., Wang, G., Sun, Y.: Efficient peer-to-peer similarity query processing for

high-dimensional data. In: Asia-Pacific Web Conference. pp. 195201 (2010).

[43] Beitzel, Steven M., et al. ”Hourly analysis of a very large topically categorized web

query log.” Proceedings of the 27th annual international ACM SIGIR conference on

Research and development in information retrieval. ACM, 2004.

[44] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schutze. Introduction

to Information Retrieval. Cambridge University Press, 1 edition, July 2008.

[45] P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity search. The metric space

approach. Advances in Database Systems, 32, Springer, 2006.

[46] Bolettieri, Paolo, Andrea Esuli, Fabrizio Falchi, Claudio Lucchese, Raffaele Perego,

Tommaso Piccioli, and Fausto Rabitti. ”CoPhIR: a test collection for content-based

image retrieval.” arXiv preprint arXiv:0905.4627 (2009).

90

Appendix A BIBLIOGRAPHY

[47] Hellerstein, J. L., Diao, Y., Parekh, S., and Tilbury, D. M. (2004). Feedback control

of computing systems. John Wiley and Sons.

[48] T.F. Abdelzaher, J.A. Stankovic, C. Lu, R. Zhang, and Y. Lu, Feedback Performance

Control in Software Services, IEEE Control Systems, vol. 23, no. 3, June 2003.

[49] C. Lu, J.A. Stankovic, G. Tao, and S.H. Son, Feedback Control Real-Time Schedul-

ing: Framework, Modeling, and Algorithms, Real-Time Systems J., vol. 23, no. 1/2,

pp. 85-126, 2002.

[50] Lim, H. C., Babu, S., Chase, J. S., and Parekh, S. S. (2009, June). Automated

control in cloud computing: challenges and opportunities. Proceedings of the 1st

workshop on Automated control for datacenters and clouds (pp. 13-18). ACM.

[51] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bigus. Using

control theory to achieve service level objectives in performance management. In

Proc. of IM, 2002.

[52] G. Soundararajan, C. Amza, and A. Goel. Database replication policies for dynamic

content applications. In Proc. of EuroSys, 2006.

[53] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal. Dynamic provisioning of multi-

tier internet applications. In Proc. of ICAC, 2005.

[54] Wang, Guohui, and TS Eugene Ng. ”The impact of virtualization on network per-

formance of amazon ec2 data center.” INFOCOM, 2010 Proceedings IEEE. IEEE,

2010.

91

	Introduction
	Research Questions
	Contribution
	Structure of the Thesis
	Publications and Software

	Background
	Search Engine Distributed Architecture
	Similarity Search
	Metric Spaces
	Similarity Queries

	Metric Space Indexing Approaches
	Sparse Spatial Selection (SSS) Approach
	List of Clusters (LC) Approach

	Parallel Query Processing in Distributed Metric Space
	Distributed Metric Space Index Problem (DMP)
	Distributed Metric Space Index for Search Engine
	K-means Clustering
	Query Vectors
	Km-Col Algorithm

	Search Engine and Cloud Architecture
	A Search Engine in Cloud

	Feedback Controller of Search Engine Simulator
	Datasets
	Realistic User Behaviour

	Research Problem Analysis
	Self-adapting Distributed Metric Space Index Problem (SDMP)
	Analysis of SDMP
	Regrouping Order Problem (ROP)
	New Grouping Problem (NGP)
	Continually Determining the Number of Processors (CNP)

	Dynamic Update of Distributed Metric Space Index
	Distributed LC-clusters onto Processors
	Experiments Design
	Search Engine Simulator

	Experiments
	D-P is the Fastest

	Additional Observations
	Conclusions

	Adapting Distributed Metric Space Index
	Recomputing G-groups
	Computing H-groups

	Experimental Evidence Supporting Hypotheses
	The Number of H-groups
	Search Performance of TT-S
	Comparing TT-A and TT-R

	Switch-over Performance
	Experiments
	Results of Experiments

	Conclusions

	Determining Number of Processors
	CNP
	Feedback Controller of Simulator
	 CNP Solution

	SDMP
	Experiments Design and Results
	Search Scenarios
	Scenario 1
	Scenario 2
	Scenario 3

	Conclusions

	Validation of Search Engine Simulator
	Validation of Simulator
	Experiments and Results
	Performance Metric Experiments
	The Level of Scalability Experiments

	Conclusion
	Summary of Achievements
	Strengths of Research

	Future Work

	A Process to Run Proposed Search Engine Simulator
	Amazon EC2 configuration
	Shell scripts
	Search engine simulator

	Bibliography

