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Abstract 

Climate change has become one of the most challenging issues facing the world. 

Chinese government has realized the importance of energy conservation and 

prevention of the climate changes for sustainable development of China's economy 

and set targets for CO2 emissions reduction in China. In China industry contributes 

84.2% of the total CO2 emissions, especially manufacturing industries. Data 

envelopment analysis (DEA) and Malmquist productivity (MP) index are the widely 

used mathematical techniques to address the relative efficiency and productivity of a 

group of homogenous decision making units, e.g. industries or countries. However, 

in many real applications, especially those related to energy efficiency, there are 

often undesirable outputs, e.g. the pollutions, waste and CO2 emissions, which are 

produced inevitably with desirable outputs in the production. This paper introduces 

a novel Malmquist–Luenberger productivity (MLP) index based on directional 

distance function (DDF) to address the issue of productivity evolution of DMUs in 

the presence of undesirable outputs. The new RAM (Range-adjusted measure)-based 
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global MLP index has been applied to evaluate CO2 emissions reduction in Chinese 

light manufacturing industries. Recommendations for policy makers have been 

discussed. 

Keywords. Data envelopment analysis (DEA), range-adjusted measure (RAM), 

directional distance function (DDF), energy efficiency 

1. Introduction  

Since the implementation of reform and open policy in 1978 in China, significant 

progress has been achieved in terms of economic and social developments. The 

statistical data from China Statistical Yearbook 2010 illustrates that China's nominal 

industrial gross domestic product (GDP) increased by 66.02 times between 1981 and 

2009 (204.84 vs. 13523.99 billion RMB Yuan). However, the rapid economic growth of 

industries in China has also resulted in high energy consumption and serious 

environmental problems, e.g. huge amount of CO2 emissions and industrial solid 

waste, which hindering the sustainability of China’s economic growth. BP (2011) 

argued that China’s total energy consumption was only half of the United States’ 

about ten years ago but overtook the United States to become the world’s largest 

energy user in 2010.The amount of industrial solid waste produced in 2009 (2.04 

billion tons) was 5.42 times that of 1981 (Bian et al. 2015).China Statistics show that 

the annual average growth rate of GDP in China was 10.2%, while the industry 

expanded by 11.9% on annual average in the period of 1981–2011, and the share of 

industrial added value exceeded 40% of GDP in the past three decades, and the 
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industry contributes 84.2% of the total CO2 emissions in China (Chen 2011). Wang et 

al. (2013b) also noted that China has already surpassed the USA and become the 

world’s largest energy consumer and contributor of CO2 emissions since 2007.  

Think tanks such as the World Pensions Council (WPC) have argued that the keys to 

success lie in convincing U.S. and Chinese policy makers: "as long as policy makers in 

Washington and Beijing didn't put all their political capital behind the adoption of ambitious 

carbon-emission capping targets, the laudable efforts of other G20 governments often remained in 

the realm of pious wishes."(Nicolas and Firzli 2015). Chinese government has also realized 

the importance of energy conservation and prevention of the climate changes for 

sustainable development of China's economy. To tackle the global climate change 

actively, Chinese central government announces 12th five-year plan intended to 

establish a “green, low-carbon development concept”, which states that in 2015 

China will increase the proportion of non-fossil fuels in energy generation to 11.4%, 

reduce energy consumption per unit of GDP by 16%, as well as reduce CO2 

emissions per unit of GDP by 17% from the levels in 2010, especially in Chinese 

manufacturing industries, as the industrial sector contributes most of carbon 

emissions in China. Furthermore, Chinese State Council released officially the 

"National Climate Change Plan (2014-2020)” in the September 2014and announced 

China's CO2 emissions to gross domestic product in 2020 would be reduced by 40% 

to 45% on the basis of 2005.  

There has been a lot of literatures on this issue, e.g. Chinese provinces' environmental 

productivity (Nakano and Managi 2008), total-factor carbon emission performance of 

https://en.wikipedia.org/wiki/World_Pensions_%26_Investments_Forum
https://en.wikipedia.org/wiki/2015_United_Nations_Climate_Change_Conference#cite_note-11
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the Chinese transportation industry (Zhang et al. 2015), regional environmental 

efficiencies (Yang et al. 2015), industrial total factor CO2 emission performance (Fan et 

al. 2015). See literature review in the next Section 2. This paper aims to address the 

CO2 emission reduction issue in Chinese manufacturing industries. Different from 

other existing literatures on this topic, this paper proposes a new RAM (Range 

adjusted model)-based Malmquist–Luenberger productivity (MLP) index and 

extends it to global one to avoid the infeasibility problem which may occurs when 

DMUs located beyond the efficiency frontier due to the mixed period models in the 

process of calculating MLP index. Moreover in the meantime the global MLP index 

based on RAM model can avoid the slacks problem and inconsistency problem.  

The rest of the paper is organized as follows: Section 2 reviewed the related 

literatures. Section 3 describes the existing RAM model and extends it to incorporate 

undesirable factors. Section 4 focuses on the RAM-based global MLP index. Section 5 

provides an empirical study on the productivity evolution of Chinese light 

manufacturing industries. Section 6 concludes this paper.  

2 Literature review 

Climate change has become one of the most challenging issues facing the world. 

Zhang et al. (2015) estimated the total-factor carbon emission performance of the 

Chinese transportation industry. Watanabe and Tanaka (2007) conducted the 

efficiency analysis of Chinese industry based on a directional distance function 

approach. Yang et al. (2015) investigated the regional environmental efficiencies in 
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China. Wang et al. (2015) studied environmental protection mechanisms and 

economic development of 211 cities in China. Fan et al. (2015) estimated the industrial 

total factor CO2 emission performance of industrial sub-sectors of Shanghai city in 

China. Nakano and Managi (2008) investigated the environmental productivity of 

Chinese provinces. Bian et al. (2015) measured Chinese regional industrial systems 

efficiency using two-stage DEA model. An et al. (2015) conducted the environmental 

efficiency evaluation of thermal power enterprises. Zhou et al. (2014) investigated the 

energy efficiency performance of China’s transport sector. Bi et al. (2014a) studied 

how the environmental regulations affect energy efficiency in China's thermal power 

generation. Besides China, more and more countries are concerned with reducing 

energy consumption and CO2 emissions while increasing the efficiency and 

productivity of the industrial sectors. Molinos-Senante et al. (2014) integrated 

environmental impacts in the assessment of the efficiency of estimating pure and 

mixed environmental performance indices on 60 Spanish wastewater treatment 

plants. Sueyoshi and Goto (2014a) compared Photovoltaic power stations between 

Germany and the United States to examine which country provides renewable 

energy in their usages more efficiently. Sueyoshi and Goto (2014b) discussed how to 

measure operational and environmental efficiency by considering energy utilization 

and environmental protection. Vlontzos et al. (2014) evaluated the energy and 

environmental efficiency of the primary sectors of the EU member state countries. 

Khodakarami et al. (2014) proposed a gradual efficiency improvement model to 

measure sustainability of the community of manufacturing and service businesses. 
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Arabi et al. (2015) investigated the productivity evolution of 18 steam power plants in 

Iran using a new slacks-based MLP (S-MLP) index. 

Most of the above literatures used data envelopment analysis (DEA) as the 

quantitative tool to measure the performance or efficiencies of decision-making units 

(DMUs). DEA is one of the widely used mathematical techniques to measure the 

relative efficiencies of a group of homogenous DMUs (Cook and Seiford 2009). 

Among DEA related studies, the Malmquist productivity (MP) index is an important 

concept which was first introduced by Malmquist (1953) and has further been 

studied and developed in the non-parametric framework by several authors (e.g. 

Caves et al. 1982, Färe and Grosskopf 1992, Thrall 2000). Lall et al. (2002) pointed out 

productivity has been widely recognized as an indirect measure of economic 

prosperity, standard of living and the competitiveness of an economy. It is an index 

which represents Total Factor Productivity (TFP) growth of a DMU, in that it reflects 

(a) progress or regress in efficiency along with (b) progress or regress of the frontier 

technology between two periods of time under the multiple inputs and multiple 

outputs framework (Cooper et al. 2007).  

In real practices there are often undesirable outputs, e.g., the pollutions, waste and 

CO2 emissions, which are produced inevitably with desirable outputs in the 

production. In order to recognize the undesirable outputs the MLP index based on 

directional distance function (DDF) was originally developed by Chambers et al. 

(1996) and applied by Chung et al. (1997) in environmental studies, which has been 

widely used to measure the productivity of DMUs with undesirable outputs, e.g. 
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manufacturing industries (Färe et al. 2001), power plants (Arabi et al. 2014), Iron and 

steel enterprises (He et al. 2013), the public sector (Yu et al. 2008) and countries 

(Yörük and Zaim 2005, Kumar 2006).  

In this period, the DDF formulations has been extended from radial measure to 

non-radial measure, e.g. the weighted non-radial DDF (Zhou et al. 2012), slacks-based 

measure (Arabi et al. 2014, 2015), the enhanced Russell measure (An et al. 2015). 

Subsequently the MLP index has also been extended much from its original form. 

Arabi et al. (2015) proposed a S-MLP index and they pointed out that S-MLP index 

may encounter infeasibility problem in the presence of undesirable outputs and 

when DDF is employed to measure MLP index and proposed a possible approach to 

avoid this problem. Following the weighted non-radial directional distance function 

proposed in Zhou et al. (2012), Zhang et al. (2015) proposed a non-radial Malmquist 

CO2 emission performance index for measuring dynamic changes in total-factor CO2 

emission performance over time. Ramli and Munisamy (2015) employed the RAM 

model incorporating undesirable output to measure the efficiency of Malaysian 

manufacturing industry with CO2 emissions.   

The above works enable the consideration of non-radial slacks. However Tone (2001) 

argued that four properties should be considered as important when designing 

measures, including Unit invariance, Monotone, Translation invariance and 

Reference-set dependent. Cooper et al. (1999) also proposed four mathematical 

properties to satisfy when they designed their inefficiency measure. Based on these 

properties, we think that for the S-MLP index in Arabi et al. (2015): (1) it neglects the 
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input slacks, (2) the objective function of their DDF is not the traditional sense of 

relative distance and its range may be beyond the [0,1], (3) the target(s) on the 

frontier of evaluated DMU may not be the closest one(s). Zhang et al. (2015)'s index 

selects weights of slacks arbitrarily and the range of the objective function may be 

beyond the [0,1]. Furthermore their index may also encounter infeasibility problem. 

Furthermore Aparicio et al. (2013) found inconsistency problem in MPL index 

besides the commonly known infeasibility problem and slacks problem.  

Chung et al. (1997) introduced the MLP index as a measure of productivity change in 

the context of a production technology incorporating undesirable outputs production 

based on the DDF proposed by Chambers et al. (1996). Subsequently MLP index has 

been widely applied in previous researches. For example, Färe et al. (2001) employed 

MLP index to account for both marketed output and the output of pollution 

abatement activities of U.S. state manufacturing sectors for 1974–1986. Kumar (2006) 

examined conventional and environmentally sensitive TFP in 41 developed and 

developing countries over the period of 1971 to 1992. Zhang et al. (2011) evaluated 

China's growth in total factor productivity with undesirable outputs during the 

period from 1989 to 2008. He et al. (2013) measured the energy efficiency and 

productivity change of China’s iron and steel industry over the period 2001–2008. 

Arabi et al. (2014) used S-MLP index to measure the efficiency, eco-efficiency, and 

technological changes of the power plants over the 8-year period in Iran. However 

several weakness of MLP index in its original form has also been found in the 

application process. Aparicio et al. (2013) summarized these main weaknesses, 
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including (1) infeasibility problem may occur when the estimation of the shift in 

technology between two periods of time is based on the distance from the period t 

observation to the period s technology, (2) slacks may be neglected when using DEA 

model based on DDF, and (3) inconsistency is implied in the set of postulates 

traditionally assumed in the joint production of desirable and undesirable outputs. 

Subsequently they proposed a redefinition of the assumption set to solve the 

inconsistency problem.   

 (1) Infeasibility problem. Pastor and Lovell (2005) introduced the concept of a 

global MPI index, which uses a base period technology to estimate and decompose 

productivity change. Following this line of research, Oh (2010) adapted the same idea 

to the MLP index, incorporating the negative effect of environmentally harmful 

by-products. Arabi et al. (2015) showed the shortcoming of the approach proposed by 

Aparicio et al. (2013) to tackle the infeasible problem based on a new direction 

function using slacks-based measurement.   

 (2) Slacks problem. Grifell-Tatje et al. (1998) proposed a new non-radial 

efficiency measure which incorporates all slacks on the selected side and a quasi-MP 

index. Chen (2003) extended the MPI into a non-radial index where the decision 

maker’s preference over performance improvement can be incorporated. It should be 

noted that their approaches is also applicable in MLP index. Arabi et al. (2015) 

proposed a slack based MLP index which used the sum of slacks of desirable and 

undesirable outputs as the objective function of their models. Zhang et al. (2015) 

proposed a non-radial Malmquist CO2 emission performance index on the weighted 
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non-radial DDF, which selects weights of slacks arbitrarily and the range of the 

objective function may be beyond the [0,1]. Dharmapala (2010) demonstrated with an 

application to banking that MPI loses its meaning whenever slacks are present and 

proposed intrinsic assurance regions to be appended to the DEA models to neutralise 

the effect of slacks.  

(3) Inconsistency problem. Aparicio et al. (2013) argued that while the MLP index 

may signal a decline in the environmental productivity, the opposite may actually be 

occurring. This erroneous result represents a serious drawback and casts important 

doubts on the correctness and robustness of the results obtained by MLP index. 

Therefore they proposed a solution to the inconsistency issue based on assuming a 

new postulate for the technology when good and bad outputs are produced that 

avoids the problems with the interpretability of the MLP index.  

The above three main problems encountered in MLP index reduce the use of this 

index as an empirical tool for productivity measurement in presence of undesirable 

outputs.  

3. RAM model 

In this section we first restate the RAM model and then we incorporate undesirable 

factors into this model. Let us consider 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑚) ∈ ℝ𝑚×𝑛
+  and 𝑌 =

(𝑦1, 𝑦2, … , 𝑦𝑠) ∈ ℝs×n
+  be input and output vectors of m and s dimension 

respectively. Assume that there are n  DMUs ( j = 1,… , n  DMUj) over T time 

periods (t = 1,… , T), then the Production Possibility Set (PPS) in period is defined by  
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𝑃𝑃𝑆𝑡 = {(𝑋𝑡, 𝑌𝑡)|𝑋𝑡  𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑌𝑡}, 𝑡 = 1, … , 𝑇.             (1) 

3.1 RAM model proposed by Cooper et al. (1999)  

In order to avoid the shortcomings in measures, such as commonly used radial 

measures, which fail to reflect inefficiencies (such as non-zero slacks), Cooper et al. 

(1999) proposed the RAM model (BCC-type) in period t as follows:  

𝑚𝑖𝑛 𝜃 = 1 − (𝑅𝑋
𝑡𝑇𝑑𝑋

𝑡 + 𝑅𝑌
𝑡𝑇𝑑𝑌

𝑡 ) 

𝑠. 𝑡. {

∑ 𝜆𝑗𝑋𝑗
𝑡𝑛

𝑗=1 + 𝑑𝑋
𝑡 = 𝑋0

𝑡

∑ 𝜆𝑗𝑌𝑗
𝑡𝑛

𝑗=1 − 𝑑𝑌
𝑡 = 𝑌0

𝑡

∑ 𝜆𝑗 = 1
𝑛
𝑗=1 , 𝑑𝑋

𝑡 , 𝑑𝑌
𝑡 , 𝜆𝑗 ≥ 0

                       (2) 

where 𝑅𝑋
𝑡𝑇 = (𝑅𝑋

1𝑡, 𝑅𝑋
2𝑡, … , 𝑅𝑋

𝑚𝑡)𝑇 and 𝑅𝑌
𝑡𝑇 = (𝑅𝑌

1𝑡, 𝑅𝑌
2𝑡, … , 𝑅𝑌

𝑠𝑡)𝑇 and  

𝑅𝑋
𝑖𝑡 = (𝑚 + 𝑠)−1(𝑚𝑎𝑥{𝑥𝑖𝑗

𝑡 |𝑗 = 1,… , 𝑛} −𝑚𝑖𝑛{𝑥𝑖𝑗
𝑡 |𝑗 = 1,… , 𝑛})

−1
, 𝑖 = 1,2,…𝑚     (3)  

𝑅𝑌
𝑟𝑡 = (𝑚 + 𝑠)−1(𝑚𝑎𝑥{𝑦𝑟𝑗

𝑡 |𝑗 = 1,… , 𝑛} − 𝑚𝑖𝑛{𝑦𝑟𝑗
𝑡 |𝑗 = 1,… , 𝑛})

−1
, 𝑟 = 1,2, … , 𝑠    (4)  

Cooper et al. (1999) showed that RAM measure 𝜃  satisfied the following 

mathematical properties:  

(P1)0 ≤ 𝜃 ≤ 1  

(P2)𝜃 = {
1 ⟺ 𝐷𝑀𝑈0 𝑖𝑠 𝑓𝑢𝑙𝑙𝑦 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡    
0 ⟺ 𝐷𝑀𝑈0 𝑖𝑠 𝑓𝑢𝑙𝑙𝑦 𝑖𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

 

(P3)𝜃 is invariant to  

{
𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑜𝑝𝑡𝑖𝑚𝑎

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑢𝑛𝑖𝑡𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑖𝑛𝑝𝑢𝑡𝑠 𝑜𝑟 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 𝑚𝑖𝑔ℎ𝑡 𝑏𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
 

 (P4)𝜃 is strongly monotonic.  

3.2 RAM model with undesirable outputs  

Sueyoshi et al. (2010) extended the basic RAM model with the incorporation of 
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undesirable outputs. This model measures the efficiency by maximizing the distance 

from the efficient frontier whereby outputs are maximized and inputs are minimized 

simultaneously. Tsang et al. (2014) proposed a RAM-based MP index to estimate 

dynamic productivity in the presence of negative data and undesirable outputs. In 

this subsection we restate the RAM model (BCC-type) incorporating undesirable 

factors. We further assume a vector of undesirable outputs denoted by the vector 

𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑘) ∈ ℝ𝑘×𝑛
+ . There are also n DMUs (𝑗 = 1,… , 𝑛 DMUj) over T time 

periods (𝑡 = 1,… , 𝑇). Thus we need to expand the definition on PPS in formula (1) as 

follows:  

𝑃𝑃𝑆𝐷
𝑡 = {(𝑋𝑡 , 𝑌𝑡 , 𝐵𝑡)|𝑋𝑡  𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 (𝑌𝑡 , 𝐵𝑡)}.                 (5) 

This technology gives a description of all technologically feasible relationships 

between inputs and outputs. Färe et al. (2007) pointed out that there are six axioms 

are required to model the production technology: (a) Finite amounts of inputs can 

only produce finite amounts of outputs; (b) Inactivity is always possible; (c) The 

strong disposability of inputs is assumed; (d) Any proportional contraction of 

desirable and undesirable outputs together is feasible if the original combination of 

them is in the PPS; (e) The strong disposability of desirable outputs is assumed, and 

(f) Null-jointness condition is assumed.  

Based on the above technology, we can have the following RAM model (BCC-type) 

with undesirable outputs:  

𝑚𝑖𝑛 𝜃 = 1 − (𝑅𝑋
𝑡𝑇𝑑𝑋

𝑡 + 𝑅𝑌
𝑡𝑇𝑑𝑌

𝑡 + 𝑅𝐵
𝑡𝑇𝑑𝐵

𝑡 ) 
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𝑠. 𝑡.

{
 
 

 
 

∑ 𝜆𝑗𝑋𝑗
𝑡𝑛

𝑗=1 + 𝑑𝑋
𝑡 = 𝑋0

𝑡

∑ 𝜆𝑗𝑌𝑗
𝑡𝑛

𝑗=1 − 𝑑𝑌
𝑡 = 𝑌0

𝑡

∑ 𝜆𝑗𝐵𝑗
𝑡𝑛

𝑗=1 + 𝑑𝐵
𝑡 = 𝐵0

𝑡

∑ 𝜆𝑗 = 1
𝑛
𝑗=1 , 𝑑𝑋

𝑡 , 𝑑𝑌
𝑡 , 𝑑𝐵

𝑡 , 𝜆𝑗 ≥ 0

                   (6) 

where 𝑑𝑋
𝑡 , 𝑑𝑌

𝑡 , 𝑑𝐵
𝑡  are slack vectors of inputs, desirable outputs, and undesirable 

outputs, respectively. Symbols 𝑅𝑋
𝑡𝑇 = (𝑅𝑋

1𝑡, 𝑅𝑋
2𝑡, … , 𝑅𝑋

𝑚𝑡)𝑇 , 𝑅𝑌
𝑡𝑇 = (𝑅𝑌

1𝑡, 𝑅𝑌
2𝑡, … , 𝑅𝑌

𝑠𝑡)𝑇 

and 𝑅𝐵
𝑡𝑇 = (𝑅𝐵

1𝑡, 𝑅𝐵
2𝑡, … , 𝑅𝐵

𝑘𝑡)
𝑇
 are standardization factors, and  

𝑅𝑋
𝑖𝑡 = (𝑚 + 𝑠 + 𝑘)−1(𝑚𝑎𝑥{𝑥𝑖𝑗

𝑡 |𝑗 = 1,… , 𝑛} − 𝑚𝑖𝑛{𝑥𝑖𝑗
𝑡 |𝑗 = 1,… , 𝑛})

−1
, 𝑖 = 1,2, …𝑚,   (7) 

𝑅𝑌
𝑟𝑡 = (𝑚 + 𝑠 + 𝑘)−1(𝑚𝑎𝑥{𝑦𝑟𝑗

𝑡 |𝑗 = 1,… , 𝑛} − 𝑚𝑖𝑛{𝑦𝑟𝑗
𝑡 |𝑗 = 1,… , 𝑛})

−1
, 𝑟 = 1,2,… , 𝑠,  (8) 

𝑅𝐵
𝑞𝑡
= (𝑚 + 𝑠 + 𝑘)−1(𝑚𝑎𝑥{𝑏𝑞𝑗

𝑡 |𝑗 = 1,… , 𝑛} − 𝑚𝑖𝑛{𝑏𝑞𝑗
𝑡 |𝑗 = 1,… , 𝑛})

−1
, 𝑞 = 1,2, … , 𝑘. (9)  

In model (5) we can see that there are an extra constraint ∑ 𝜆𝑗𝐵𝑗
𝑡𝑛

𝑗=1 + 𝑑𝐵
𝑡 = 𝐵0

𝑡 to 

address the undesirable outputs. Furthermore the objective function of model (6) is 

the sum of range adjusted slacks for inputs, desirable outputs and undesirable 

outputs. We can also easily verify that RAM measure with undesirable factors 

satisfy the mathematical properties (P1)-(P4).   

Based on model (6) we can easily have CCR-type RAM model with undesirable 

outputs as follows:  

𝑚𝑖𝑛 𝜃 = 1 − (𝑅𝑋
𝑡𝑇𝑑𝑋

𝑡 + 𝑅𝑌
𝑡𝑇𝑑𝑌

𝑡 + 𝑅𝐵
𝑡𝑇𝑑𝐵

𝑡 )

𝑠. 𝑡.

{
 
 

 
 
∑ 𝜆𝑗𝑋𝑗

𝑡𝑛
𝑗=1 + 𝑑𝑋

𝑡 = 𝑋0
𝑡

∑ 𝜆𝑗𝑌𝑗
𝑡𝑛

𝑗=1 − 𝑑𝑌
𝑡 = 𝑌0

𝑡

∑ 𝜆𝑗𝐵𝑗
𝑡𝑛

𝑗=1 + 𝑑𝐵
𝑡 = 𝐵0

𝑡

𝑑𝑋
𝑡 , 𝑑𝑌

𝑡 , 𝑑𝐵
𝑡 , 𝜆𝑗 ≥ 0

              (10) 

4. A RAM-based global MLP index 

4.1 MLP index and global MLP index 

MP index was first introduced by Malmquist (1953) and has further been studied and 
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developed in the non-parametric framework by several authors (e.g. Färe and 

Grosskopf 1992, Thrall 2000). Lall et al. (2002) argued that productivity has been 

widely recognized as an indirect measure of economic prosperity, standard of living 

and the competitiveness of an economy. Cooper et al. (2007) pointed out that MPI is 

an index which represents Total Factor Productivity (TFP) growth of a DMU, in that 

it reflects (a) progress or regress in efficiency along with (b) progress or regress of the 

frontier technology between two periods of time under the multiple inputs and 

multiple outputs framework. The productivity index is based on the benchmark 

technology.  

As international concerns increase about the sustainable growth, there are more and 

more attempts to develop measures of productivity growth incorporating the 

undesirable or harmful by-products in the process of producing desirable products. 

Chung et al. (1997) modified the MP index and integrated the concepts of the MP 

index and DDF to measure environmentally sensitive productivity growth which 

was named the MLP index. Subsequently MLP index was used widely to measure 

the performance of a wide range of DMUs, e.g. Iran power industries (Arabi et al. 

2015), Environmental productivity of Chinese provinces (Nakano and Managi 2008), 

Productivity growth in OECD countries (Yörük and Zaim 2005). However 

conventional MLP index may encounter the infeasibility problem in measuring 

cross-period DDFs and is not circular in its geometric mean form. In order to resolve 

these problems, Oh (2010) proposed the global MLP index which is circular and free 

of infeasibility problem by employing concepts of the global MP index of Pastor and 
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Lovell (2005). This suggested index is employed in analyzing 26 OECD countries for 

the period 1990-2003. Tohidi et al. (2012) proposed is a global cost MP index based on 

the cost MP index defined by Maniadakis and Thanassoulis (2004). This global cost 

index is circular and free of infeasibility when the production technology exhibit 

variable returns to scale (VRS). 

First we define global PPS as 𝑃𝑃𝑆𝐷
𝐺 = 𝑐𝑜𝑛𝑣{𝑃𝑃𝑆𝐷

1 , 𝑃𝑃𝑆𝐷
2, … , 𝑃𝑃𝑆𝐷

𝑇}, where 𝑐𝑜𝑛𝑣{∗} 

denotes the convex hull. Thus a global MLP index (output-oriented) is defined on 

𝑃𝑃𝑆𝐷
𝐺 as  

𝑀𝐿𝑃𝐺(𝑋𝑡 , 𝑌𝑡 , 𝐵𝑡 , 𝑋𝑡+1, 𝑌𝑡+1, 𝐵𝑡+1) =
1+�⃗⃗� 𝐷𝐷𝐹

𝐺 (𝑋𝑡,𝑌𝑡,𝐵𝑡,𝑔𝑌,𝑔𝐵)

1+�⃗⃗� 𝐷𝐷𝐹
𝐺 (𝑋𝑡+1,𝑌𝑡+1,𝐵𝑡+1,𝑔𝑌,𝑔𝐵)

         (11)  

where �⃗⃗� 𝐷𝐷𝐹
𝐺 (𝑋𝑝, 𝑌𝑝, 𝐵𝑝, 𝑔𝑌, 𝑔𝐵) = 𝑚𝑎𝑥{𝛽: (𝑋

𝑝, 𝑌𝑝 + 𝛽𝑔𝑌, 𝐵
𝑝 − 𝛽𝑔𝐵) ∈ 𝑃𝑃𝑆𝐷

𝐺}, 𝑝 = 𝑡, 𝑡 +

1. If we further assume the direction vector (𝑔𝑌, 𝑔𝐵) = (𝑌
𝑝, 𝐵𝑝) and constant returns 

to scale (CRS) on the technology 𝑃𝑃𝑆𝐷
𝐺, thus we have  

�⃗⃗� 𝐷𝐷𝐹,𝑐
𝐺 (𝑋𝑝, 𝑌𝑝, 𝐵𝑝 , 𝑔𝑌, 𝑔𝐵) = 𝑚𝑎𝑥 𝛽

𝑠. 𝑡.

{
 
 

 
 

∑ ∑ 𝜆𝑗𝑡𝑋𝑗
𝑡 ≤ 𝑋𝑝𝑛

𝑗=1
𝑇
𝑡=1

∑ ∑ 𝜆𝑗𝑡𝑌𝑗
𝑡 ≥ (1 + 𝛽)𝑌𝑝𝑛

𝑗=1
𝑇
𝑡=1

∑ ∑ 𝜆𝑗𝑡𝐵𝑗
𝑡 = (1 − 𝛽)𝐵𝑝𝑛

𝑗=1
𝑇
𝑡=1

𝜆𝑗𝑡 ≥ 0, 𝑗 = 1,… , 𝑛; 𝑡 = 1,… , 𝑇

                  (12) 

and under VRS technology:  

�⃗⃗� 𝐷𝐷𝐹,𝑣
𝐺 (𝑋𝑝, 𝑌𝑝, 𝐵𝑝, 𝑔𝑌, 𝑔𝐵) = 𝑚𝑎𝑥 𝛽

𝑠. 𝑡.

{
  
 

  
 

∑ ∑ 𝜆𝑗𝑡𝑋𝑗
𝑡 ≤ 𝑋𝑝𝑛

𝑗=1
𝑇
𝑡=1

∑ ∑ 𝜆𝑗𝑡𝑌𝑗
𝑡 ≥ (1 + 𝛽)𝑌𝑝𝑛

𝑗=1
𝑇
𝑡=1

∑ ∑ 𝜆𝑗𝑡𝐵𝑗
𝑡 = (1 − 𝛽)𝐵𝑝𝑛

𝑗=1
𝑇
𝑡=1

∑ ∑ 𝜆𝑗𝑡 = 1
𝑛
𝑗=1

𝑇
𝑡=1

𝜆𝑗𝑡 ≥ 0, 𝑗 = 1,… , 𝑛; 𝑡 = 1,… , 𝑇

                  (13)  

4.2 A RAM-based global MLP index 
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In model (12) or model (13) we can see that there may be some missing slacks in the 

inequalities ∑ ∑ 𝜆𝑗𝑡𝑋𝑗
𝑡 ≤ 𝑋𝑝𝑛

𝑗=1
𝑇
𝑡=1  and ∑ ∑ 𝜆𝑗𝑡𝑌𝑗

𝑡 ≥ (1 + 𝛽)𝑌𝑝𝑛
𝑗=1

𝑇
𝑡=1 . Therefore in this 

paper we attempt to formulate a RAM-based global MLP index using RAM measure 

to reflect DDFs of DMUs. We define the global RAM-based MLP index 

(non-oriented) on 𝑃𝑃𝑆𝐷
𝐺 as  

𝑀𝐿𝑃𝐺(𝑋𝑡 , 𝑌𝑡 , 𝐵𝑡 , 𝑋𝑡+1, 𝑌𝑡+1, 𝐵𝑡+1) =
�⃗⃗� 𝐷𝐷𝐹
𝐺 (𝑋𝑡+1,𝑌𝑡+1,𝐵𝑡+1)

�⃗⃗� 𝐷𝐷𝐹
𝐺 (𝑋𝑡,𝑌𝑡,𝐵𝑡)

            (14)  

where �⃗⃗� 𝐷𝐷𝐹
𝐺 (𝑋𝑝, 𝑌𝑝, 𝐵𝑝) = 𝑚𝑖𝑛{𝜃 = 1 − (𝑅𝑋

𝑝𝑇
𝑑𝑋
𝑝
+ 𝑅𝑌

𝑝𝑇
𝑑𝑌
𝑝
+ 𝑅𝐵

𝑝𝑇
𝑑𝐵
𝑝
): (𝑋𝑝 − 𝑑𝑋

𝑝
, 𝑌𝑝 +

𝑑𝑌
𝑝
, 𝐵𝑝 − 𝑑𝐵

𝑝
) ∈ 𝑃𝑃𝑆𝐷

𝐺}, 𝑝 = 𝑡, 𝑡 + 1.  

If we further assume CRS on the technology 𝑃𝑃𝑆𝐷
𝐺, thus we have  

�⃗⃗� 𝐷𝐷𝐹,𝑐
𝐺 (𝑋𝑝, 𝑌𝑝, 𝐵𝑝) = 𝑚𝑖𝑛 𝜃 = 1 − (𝑅𝑋

𝑝𝑇
𝑑𝑋
𝑝
+ 𝑅𝑌

𝑝𝑇
𝑑𝑌
𝑝
+ 𝑅𝐵

𝑝𝑇
𝑑𝐵
𝑝
)

𝑠. 𝑡.

{
 
 

 
 

∑ ∑ 𝜆𝑗𝑡𝑋𝑗
𝑡 + 𝑑𝑋

𝑝
= 𝑋𝑝𝑛

𝑗=1
𝑇
𝑡=1

∑ ∑ 𝜆𝑗𝑡𝑌𝑗
𝑡 − 𝑑𝑌

𝑝
= 𝑌𝑝𝑛

𝑗=1
𝑇
𝑡=1

∑ ∑ 𝜆𝑗𝑡𝐵𝑗
𝑡 + 𝑑𝐵

𝑝
= 𝐵𝑝𝑛

𝑗=1
𝑇
𝑡=1

𝜆𝑗𝑡 ≥ 0, 𝑗 = 1,… , 𝑛; 𝑡 = 1,… , 𝑇

               (15) 

where 𝑅𝑋
𝑝𝑇
= (𝑅𝑋1

𝑝
, 𝑅𝑋2

𝑝
, … , 𝑅𝑋𝑚

𝑝
)
𝑇

, 𝑅𝑌
𝑝𝑇
= (𝑅𝑌1

𝑝
, 𝑅𝑌2

𝑝
, … , 𝑅𝑌𝑠

𝑝
)
𝑇

 and 𝑅𝐵
𝑝𝑇
=

(𝑅𝐵1
𝑝
, 𝑅𝐵2

𝑝
, … , 𝑅𝐵𝑘

𝑝
)
𝑇

, and 

𝑅𝑋
𝑝𝑇
= (𝑚 + 𝑠 + 𝑘)−1 (𝑚𝑎𝑥{𝑥𝑖𝑗

𝑝
|𝑗 = 1,… , 𝑛} − 𝑚𝑖𝑛{𝑥𝑖𝑗

𝑝
|𝑗 = 1,… , 𝑛})

−1
, 𝑖 = 1,2, …𝑚, (16) 

𝑅𝑌
𝑝𝑇
= (𝑚 + 𝑠 + 𝑘)−1 (𝑚𝑎𝑥{𝑦𝑟𝑗

𝑝
|𝑗 = 1,… , 𝑛} − 𝑚𝑖𝑛{𝑦𝑟𝑗

𝑝
|𝑗 = 1,… , 𝑛})

−1
, 𝑟 = 1,2, … , 𝑠, 

(17) 𝑅𝐵
𝑝𝑇
= (𝑚 + 𝑠 + 𝑘)−1 (𝑚𝑎𝑥{𝑏𝑞𝑗

𝑝
|𝑗 = 1,… , 𝑛} − 𝑚𝑖𝑛{𝑏𝑞𝑗

𝑝
|𝑗 = 1,… , 𝑛})

−1
, 𝑞 =

1,2,… , 𝑘,(18)  

𝑝 = 𝑡, 𝑡 + 1, and under VRS technology:  
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�⃗⃗� 𝐷𝐷𝐹,𝑣
𝐺 (𝑋𝑝, 𝑌𝑝, 𝐵𝑝) = 𝑚𝑖𝑛 𝜃 = 1 − (𝑅𝑋

𝑝𝑇
𝑑𝑋
𝑝
+ 𝑅𝑌

𝑝𝑇
𝑑𝑌
𝑝
+ 𝑅𝐵

𝑝𝑇
𝑑𝐵
𝑝
)

𝑠. 𝑡.

{
  
 

  
 

∑ ∑ 𝜆𝑗𝑡𝑋𝑗
𝑡 + 𝑑𝑋

𝑝
= 𝑋𝑝𝑛

𝑗=1
𝑇
𝑡=1

∑ ∑ 𝜆𝑗𝑡𝑌𝑗
𝑡 − 𝑑𝑌

𝑝
= 𝑌𝑝𝑛

𝑗=1
𝑇
𝑡=1

∑ ∑ 𝜆𝑗𝑡𝐵𝑗
𝑡 + 𝑑𝐵

𝑝
= 𝐵𝑝𝑛

𝑗=1
𝑇
𝑡=1

∑ ∑ 𝜆𝑗𝑡 = 1
𝑛
𝑗=1

𝑇
𝑡=1

𝜆𝑗𝑡 ≥ 0, 𝑗 = 1,… , 𝑛; 𝑡 = 1,… , 𝑇

            (19)  

The global RAM-based MLP index can be decomposed into components of 

productivity growth under CRS and VRS assumptions, respectively, as follows:  

Under CRS assumption:  

𝑀𝐿𝑃𝑐
𝐺(𝑋𝑡 , 𝑌𝑡 , 𝐵𝑡 , 𝑋𝑡+1, 𝑌𝑡+1, 𝐵𝑡+1) =

�⃗⃗� 𝐷𝐷𝐹,𝑐
𝐺 (𝑋𝑡+1,𝑌𝑡+1,𝐵𝑡+1)

�⃗⃗� 𝐷𝐷𝐹,𝑐
𝐺 (𝑋𝑡,𝑌𝑡,𝐵𝑡)

=
�⃗⃗� 𝐷𝐷𝐹,𝑐
𝑡+1 (𝑋𝑡+1,𝑌𝑡+1,𝐵𝑡+1)

�⃗⃗� 𝐷𝐷𝐹,𝑐
𝑡 (𝑋𝑡,𝑌𝑡,𝐵𝑡)

×

[
�⃗⃗� 𝐷𝐷𝐹,𝑐
𝐺 (𝑋𝑡+1,𝑌𝑡+1,𝐵𝑡+1) �⃗⃗� 𝐷𝐷𝐹,𝑐

𝑡+1 (𝑋𝑡+1,𝑌𝑡+1,𝐵𝑡+1)⁄

�⃗⃗� 𝐷𝐷𝐹,𝑐
𝐺 (𝑋𝑡,𝑌𝑡,𝐵𝑡) �⃗⃗� 𝐷𝐷𝐹,𝑐

𝑡 (𝑋𝑡,𝑌𝑡,𝐵𝑡)⁄
] =

𝑇𝐸𝑡+1

𝑇𝐸𝑡
× [

𝐵𝑃𝐺𝑡+1
𝑡,𝑡+1

𝐵𝑃𝐺𝑡
𝑡,𝑡+1] = 𝐸𝐶

𝑡,𝑡+1 × 𝐵𝑃𝐶𝑡,𝑡+1   

(20)  

where 𝑇𝐸𝑡 and 𝐸𝐶𝑡,𝑡+1 denote the technical efficiency (TE) in period t and the 

efficiency change (EC) in period 𝑡 to 𝑡 + 1. Variable 𝐵𝑃𝐺𝑡
𝑡,𝑡+1  denotes the best 

practice gap between traditional technology frontier and global technology frontier. 

Thus 𝐵𝑃𝐶𝑡,𝑡+1  denotes the best practice gap change, which measures technical 

change between two time period 𝑡 and 𝑡 + 1.  

Under VRS assumption:  

𝑀𝐿𝑃𝑣
𝐺(𝑋𝑡 , 𝑌𝑡 , 𝐵𝑡 , 𝑋𝑡+1, 𝑌𝑡+1, 𝐵𝑡+1) =

�⃗⃗� 𝐷𝐷𝐹,𝑣
𝐺 (𝑋𝑡+1,𝑌𝑡+1,𝐵𝑡+1)

�⃗⃗� 𝐷𝐷𝐹,𝑣
𝐺 (𝑋𝑡,𝑌𝑡,𝐵𝑡)

× (
𝑆𝐸𝑡+1 (𝑋𝑡+1,𝑌𝑡+1,𝐵𝑡+1)

𝑆𝐸𝑡(𝑋𝑡,𝑌𝑡,𝐵𝑡)
) =

�⃗⃗� 𝐷𝐷𝐹,𝑣
𝑡+1 (𝑋𝑡+1,𝑌𝑡+1,𝐵𝑡+1)

�⃗⃗� 𝐷𝐷𝐹,𝑣
𝑡 (𝑋𝑡,𝑌𝑡,𝐵𝑡)

× [
�⃗⃗� 𝐷𝐷𝐹,𝑣
𝐺 (𝑋𝑡+1,𝑌𝑡+1,𝐵𝑡+1) �⃗⃗� 𝐷𝐷𝐹,𝑣

𝑡+1 (𝑋𝑡+1,𝑌𝑡+1,𝐵𝑡+1)⁄

�⃗⃗� 𝐷𝐷𝐹,𝑣
𝐺 (𝑋𝑡,𝑌𝑡,𝐵𝑡) �⃗⃗� 𝐷𝐷𝐹,𝑣

𝑡 (𝑋𝑡,𝑌𝑡,𝐵𝑡)⁄
] ×

(
𝑆𝐸𝑡+1 (𝑋𝑡+1,𝑌𝑡+1,𝐵𝑡+1)

𝑆𝐸𝑡(𝑋𝑡,𝑌𝑡,𝐵𝑡)
) =

𝑃𝑇𝐸𝑡+1

𝑃𝑇𝐸𝑡
× [

𝐵𝑃𝐺𝑡+1
𝑡,𝑡+1

𝐵𝑃𝐺𝑡
𝑡,𝑡+1] × (

𝑆𝐸𝑡+1 (𝑋𝑡+1,𝑌𝑡+1,𝐵𝑡+1)

𝑆𝐸𝑡(𝑋𝑡,𝑌𝑡,𝐵𝑡)
) = 𝑃𝐸𝐶𝑡,𝑡+1 ×

𝐵𝑃𝐶𝑡,𝑡+1 × 𝑆𝐶𝐻𝑡,𝑡+1                                                      (21) 

where 𝑃𝑇𝐸𝑡 and 𝑃𝐸𝐶𝑡,𝑡+1 denote the pure technical efficiency (PTE) in period 𝑡 



18 
 

and the pure efficiency change (PEC) in period 𝑡  to 𝑡 + 1 . Variable 𝐵𝑃𝐺𝑡
𝑡,𝑡+1 

denotes the best practice gap between traditional technology frontier and global 

technology frontier. Thus variable 𝐵𝑃𝐶𝑡,𝑡+1 denotes the best practice gap change, 

which measures technical change between two time period 𝑡 and 𝑡 + 1. Variable 

𝑆𝐸𝑡 means the scale efficiency on global benchmark in period 𝑡 and  

𝑆𝐸𝑡(𝑋𝑡 , 𝑌𝑡) = �⃗⃗� 𝐷𝐷𝐹,𝑐
𝐺 (𝑋𝑡 , 𝑌𝑡 , 𝐵𝑡) �⃗⃗� 𝐷𝐷𝐹,𝑣

𝐺 (𝑋𝑡 , 𝑌𝑡 , 𝐵𝑡)⁄               (22)  

Variable 𝑆𝐶𝐻𝑡,𝑡+1 is the ratios of scale efficiencies of the two bundles from the two 

periods as the global benchmarks under the VRS assumption.   

It is easy to verify that the 𝑀𝐿𝑃𝑐
𝐺(𝑋𝑡 , 𝑌𝑡 , 𝐵𝑡 , 𝑋𝑡+1, 𝑌𝑡+1, 𝐵𝑡+1)  or 

𝑀𝐿𝑃𝑣
𝐺(𝑋𝑡 , 𝑌𝑡 , 𝐵𝑡 , 𝑋𝑡+1, 𝑌𝑡+1, 𝐵𝑡+1)  is circular. We take 

𝑀𝐿𝑃𝑐
𝐺(𝑋𝑡 , 𝑌𝑡 , 𝐵𝑡 , 𝑋𝑡+1, 𝑌𝑡+1, 𝐵𝑡+1) as an example. 𝑀𝐿𝑃𝑐

𝐺(𝑋𝑡 , 𝑌𝑡 , 𝐵𝑡 , 𝑋𝑡+1, 𝑌𝑡+1, 𝐵𝑡+1) ×

𝑀𝐿𝑃𝑐
𝐺(𝑋𝑡+1, 𝑌𝑡+1, 𝐵𝑡+1, 𝑋𝑡+2, 𝑌𝑡+2, 𝐵𝑡+2) =

�⃗⃗� 𝐷𝐷𝐹,𝑐
𝐺 (𝑋𝑡+1,𝑌𝑡+1,𝐵𝑡+1)

�⃗⃗� 𝐷𝐷𝐹,𝑐
𝐺 (𝑋𝑡,𝑌𝑡,𝐵𝑡)

×
�⃗⃗� 𝐷𝐷𝐹,𝑐
𝐺 (𝑋𝑡+2,𝑌𝑡+2,𝐵𝑡+2)

�⃗⃗� 𝐷𝐷𝐹,𝑐
𝐺 (𝑋𝑡+1,𝑌𝑡+1,𝐵𝑡+1)

=

�⃗⃗� 𝐷𝐷𝐹,𝑐
𝐺 (𝑋𝑡+2,𝑌𝑡+2,𝐵𝑡+2)

�⃗⃗� 𝐷𝐷𝐹,𝑐
𝐺 (𝑋𝑡,𝑌𝑡,𝐵𝑡)

= 𝑀𝐿𝑃𝑐
𝐺(𝑋𝑡 , 𝑌𝑡 , 𝐵𝑡 , 𝑋𝑡+2, 𝑌𝑡+2, 𝐵𝑡+2).  

Similarly we can verify its components in formula (20) are also circular. We can 

further verify 𝑀𝐿𝑃𝑣
𝐺(𝑋𝑡 , 𝑌𝑡 , 𝐵𝑡 , 𝑋𝑡+1, 𝑌𝑡+1, 𝐵𝑡+1) and its decomposed components in 

formula (21) are also circular. 

The global RAM-based MLP index can be roughly illustrated through the following 

Figure 11. In Figure 1 𝑃𝑃𝑆𝐷
𝑡  and 𝑃𝑃𝑆𝐷

𝑡+1 denote the traditional PPS of period 𝑡 and 

𝑡 + 1.  

[Figure 1 about here] 

                                                             
1We only illustrate the desirable and undesirable outputs in this figure.  
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We can see that the 𝑀𝐿𝑃𝐺(𝑋𝑡, 𝑌𝑡 , 𝐵𝑡 , 𝑋𝑡+1, 𝑌𝑡+1, 𝐵𝑡+1)  for DMU A1 could be 

represented as  
𝐴2𝐷2

𝐴1𝐷1
=

𝐴2𝐵2

𝐴1𝐵1
×
𝐴2𝐷2 𝐴2𝐵2⁄

𝐴1𝐷1 𝐴1𝐵1⁄
. It should be noted that we assume the CRS 

technology in this Figure. If we assume VRS technology, there should be a factor 

𝑆𝐶𝐻𝑡,𝑡+1 which reflects the changes of scale efficiencies in different periods, which 

cannot be illustrated in this figure directly.  

The RAM-based global MLP index can be easily extended to conduct variable 

specific analysis. See Appendix A for the extensions of this index.  

 

5. CO2 emissions in Chinese light manufacturing industries 

5.1. Dataset and indicators  

In this study we selected the two-digit light manufacturing industries in China as the 

DMUs2. Light industry refers to the section of an economy's industry characterized 

by less capital-intensive and more labor-intensive operations. Products made by an 

economy's light industry tend to be targeted toward end consumers rather than other 

businesses. In this study we use the data of Chinese manufacturing industries from 

2004 to 2012, which is derived from China Statistical Year Book 2005-2013, China 

Industry Statistical Year Book 2013, and China Energy Statistical Year Book 

2005-2013. In the period of 2004-2012, there are some changes on the statistical 

coverage of industries in China. Before 2007, the industry statistics cover all state 

owned and non-stated owned above designated size (which is 5 million Yuan of 

annual revenue from primary business). From 2007 to 2010, the industry statistics 

                                                             
2Note: The classification of light and heavy industries in Chinese manufacturing industries is based on the information from 

National Bureau of Statistics of P.R.China (http://www.sc.stats.gov.cn/tjzs/cswd/201504/t20150401_181042.html). 

http://www.businessdictionary.com/definition/section.html
http://www.businessdictionary.com/definition/economy.html
http://www.businessdictionary.com/definition/secondary-industry.html
http://www.businessdictionary.com/definition/capital-intensive.html
http://www.businessdictionary.com/definition/labor-intensive.html
http://www.businessdictionary.com/definition/operations.html
http://www.businessdictionary.com/definition/product.html
http://www.businessdictionary.com/definition/consumer.html
http://www.businessdictionary.com/definition/business.html
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cover all industries above designated size (5 million Yuan). From 2011 on, the 

standard starting point of industrial enterprises above designated size was adjusted 

to 20 million Yuan of annual revenue from primary business.  

From 2012, National Bureau of Statistics of China (NBS) enforces new standard on 

Industrial Classification for National Economic Activities (GB/T4754-2011). The 

number of two-digit light manufacturing industries changed from 18 to 17. The 

Manufacture of Rubber and the Manufacture of Plastics merged into Manufacture of 

Rubber and Plastics Products. Thus we merged the data of those two manufacturing 

industries at 2011 and before as one DMU and use 17 two-digit light manufacturing 

industries in China as the DMUs in this study. See Table B-1 for details in the 

Appendix B.  

The following Table 1 shows the summary of input and output indicators used in 

previous studies on Chinese environmental efficiency in recent three years. From this 

table we can see that labour, capital and energy consumption are the most frequently 

used input indicators and Gross Domestic Products (GDP) and CO2 emission are the 

most frequently used desirable and undesirable outputs respectively. In this paper 

we use the Gross Industrial Output Value (GIOV) instead of GDP because this paper 

aims to investigate the productivity evolution of 17 two-digit light Chinese 

manufacturing industries.  

[Table 1 about here] 

We select three input variables including Labour, Asset and Energy and two output 
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variables, including GIOV as a desirable output and CO2 emissions as an undesirable 

output. 

(1) Labour: Labour input refers to the amount of Labour in Chinese manufacturing 

industries. Because of the mobility of Labour, the amount of Labour input is different 

at different time in one year, so the number of annual average employed persons is 

taken as the indicator. This indicator is from China Statistical Year Books 

2005-2012directly. In China Statistical Year Book 2013 the data of Labour indicator is 

not reported, which is the latest Statistical Year Book published at the time we 

writing this paper. Therefore we use the average ratio of GIOV to Labour of all the 

provinces in China to estimate this indicator for the last year in this study by 

sub-level manufacturing industries respectively under the assumption that the 

technology level of the whole country is the average of all provinces.  

(2) Asset: Asset refers to the amount of total assets in Chinese manufacturing 

industries. Total Assets input is from China Statistical Year Books and refers to all 

resources that are owned or controlled by enterprises through previous trades or 

transactions with expectation of making economic profits. Classified by the degree of 

liquidity, total assets include current assets, and non-current assets. Current assets 

can be classified into monetary assets, trading financial assets, notes receivable, 

accounts receivable, advanced payments, other prepaid money and inventories. 

Non-current assets can be divided into long-term equity investment, fixed assets, 

intangible assets and other non-current assets. Data on this indicator are obtained by 

the year-end figures of total assets in the Assets and Liability Table of accounting 
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records of enterprises. In order to ensure the comparability, we transformed the 

value of this indicator to constant price in 2010 using the Consumer Price Index (CPI) 

of China, as shown in the following Table 2. The CPI data is derived from OECD 

(2010).  

[Table 2 about here] 

(3) Energy: We use Total Energy Consumption from China Statistical Year Book 

2005-2012 as the indicator for Energy in our study. Total Energy Consumption refers 

to the total consumption of energy of various kinds by the production sectors in the 

country in a given period of time. It is a comprehensive indicator to show the scale, 

composition and pace of increase of energy consumption. Total energy consumption 

includes that of coal, crude oil and their products, natural gas and electricity. 

However, it does not include the consumption of fuel of low calorific value, 

bio-energy and solar energy. According to China Energy Statistical Yearbook 2013, 

the coefficients of transforming different types of transforming different types of 

energy into SCE are shown in the following Table 3.  

[Table 3 about here] 

(4) GIOV: The GIOV is used in our study as a desirable output and can be obtained 

from China Statistical Year Books 2005-2012. Note that this indicator is not reported 

in China Statistical Year Book 2013. However we can find the indicator Sales Ratio of 

Products (SRP) from China Statistical Year Book 2013 and use the indicator Industrial 

Sales Output Value (ISOV) from China Industry Statistical Year Book 2013 to 
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calculate GIOV for each sub-level manufacturing industry using the formula GIOV =

ISOV/SRP for the year 2013. In order to ensure the comparability, we also transform 

the value of this indicator to constant price in 2010 using the CPI of China, as shown 

in Table 2.  

(5) CO2 emissions. CO2 is the main by-product of industrial activities as the 

combustion of fossil fuels in the manufacturing process produces CO2 (Oggioni et al. 

2011, Benhelal et al. 2013). Thus the CO2 emission is the undesirable output in our 

study. The data for this indicator is not provided directly in China Statistical Year 

Books or China Industry Statistical Year Books. Hence we estimated it based on the 

consumption of different types of energy. The main source of (net) global CO2 

emissions to the atmosphere is the use of fossil fuels (see, Green 2000). Thus the most 

widely used method for the estimation of CO2 emissions is based on the 

consumption of fossil fuels including coal, crude Oil and natural gas. These three 

types of fossil fuels count for more than 85% CO2 emission in China (Chen 2009). In 

our study, we also use the CO2 emission from coal, crude oil and natural gas as the 

total CO2 emissions of sub-level Chinese manufacturing industries.  

Intergovernmental Panel on Climate Change (IPCC 2006) published IPCC Guidelines 

for National Greenhouse Gas Inventories, in which the equation for calculating CO2 

emissions from fossil fuels is provided as follows:  

𝐶𝑂2 = ∑ 𝐶𝑂2,𝑖
3
𝑖=1 = ∑ 𝐸𝑖 × 𝑁𝐶𝑉𝑖

3
𝑖=1 × 𝐶𝐸𝐹𝑖 × 𝐶𝑂𝐹𝑖 × (44 12⁄ )          (23) 

where 𝐶𝑂2,𝑖(𝑖 = 1,2,3) denote the CO2 emissions of coal, crude oil and natural gas, 



24 
 

respectively. Variables 𝐸𝑖, 𝑁𝐶𝑉𝑖, 𝐶𝐸𝐹𝑖, and 𝐶𝑂𝐹𝑖 denote the total consumption (E), 

net calorific value (NCV), Carbon Emission Factors (CEF), and carbon oxidation 

factor (COF) of these three types of energy. Constant values of 44 and 12 are the 

molecular weights of CO2 and carbon respectively. Furthermore we need to 

transform different types of energy into SCE, whose coefficients are provided by 

China Energy Statistical Yearbook 2005-2013. According to the above formula and 

Chen (2009)'s research, we list the coefficients for CO2 emissions estimation of 

Chinese manufacturing industries as follows:  

[Table 4 about here] 

5.2 Descriptive statistics 

Table5 shows the means of five indicators in the period 2004-2012 of Chinese light 

manufacturing industries. We can see that all inputs and outputs except Labour 

increased significantly. From 2004 to 2012, the GIOV grew from 5352.3770 to 

17361.0300 in the unit of 100 million RMB (Yuan). In the meantime the CO2 emissions 

grew from 2815.0114 to 4563.7849 in the unit of 10 000 tons.  

[Table 5 about here] 

5.3 Results 

In this paper we employ global MLP index based on RAM model under VRS 

assumption (model 21) to conduct analysis on 17 Chinese light manufacturing 

industries. As discussed in subsection 5.1, we separate our study periods into three 

clusters/stages: (1) 2004-2006, (2) 2007-2010, and (3) 2011-2012. We have the averages 
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of global MLP index and its components of all Chinese manufacturing industries as 

shown in Table 6. We can also see the changes of averages of global MLP index and 

its components from Figure 2. 

[Table 6 about here] 

In the first stage (2004-2006), the global MLP index declined slightly from 1.0236 to 

1.0043, which reflected the productivity of Chinese light manufacturing industries 

increased in this stage but the speed declined. The pure technical efficiency (PTE) 

change (PEC) declined from 1.0039 to 1.0014, which indicated the PTE of Chinese 

light manufacturing industries decreased slightly in this period. However the BPC 

increased significantly from BPC=1.0280 to 1.0363, which indicated the 

contemporaneous frontier shifted slightly towards the global technology frontier in 

the direction of more desirable outputs and less undesirable outputs. Also the scale 

efficiency change factor (SCH) decreased from SCH=0.9934 to SCH=0.9726 which 

indicated the scale economies of Chinese light manufacturing industries dropped 

slightly in the first period. From 2003, the Chinese economy has entered the 

expansion cycle and the investments on manufacturing industry increased year by 

year. However manufacturing industry encountered severe overcapacity issue due to 

the lack of consumption in term of the total retail sales of consumer goods. Thus the 

drop of scale economies of Chinese light manufacturing industries is natural.  

In the second stage (2007-2010), the global MLP index increased slightly from 0.9948 

to 1.0084. The PEC increased from 0.9831 to 1.0006, which indicated the PTE of 

Chinese light manufacturing industries increased slightly in this period. Also the 
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BPC increased slightly from BPC=1.0132 to BPC=1.0358, which indicated the 

contemporaneous frontier shifted slightly towards the global technology frontier in 

the direction of more desirable outputs and less undesirable outputs. Also the scale 

efficiency change factor (SCH) decreased from SCH=1.0016 to SCH=0.9819 which 

indicated the scale economies of Chinese light manufacturing industries dropped 

slightly in the second period. In 2008 Chinese government invested 4,000 billion 

RMB on the construction of basic infrastructure. However it exacerbated the 

industrial overcapacity issue in China. Therefore the scale economies of Chinese light 

manufacturing industries decreased continuously.  

In the third stage (2011-2012), the global MLP index is 0.9931, which shows that the 

productivity of Chinese manufacturing industries went down in this period. The PTE 

change (PEC=0.9967) illustrated that the average technical efficiency also dropped. 

However the BPC is 1.0046 which means the contemporaneous frontier still shifted 

towards the global technology frontier in the direction of more desirable outputs and 

less undesirable outputs. Furthermore we can see SCH=0.9921 which indicated the 

scale economies of Chinese light manufacturing industries dropped slightly in the 

third period. See Figure 2 for details.  

[Figure 2 about here] 

In the end, we can see that contemporaneous frontier shifted continually towards the 

global technology frontier in the direction of more desirable outputs and less 

undesirable outputs in the period of 2004-2012, which indicates that Chinese light 

manufacturing industries paid much attention on the CO2emissions reduction in the 
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process of increasing GIOV. However the scale efficiency of Chinese light 

manufacturing industries dropped gradually, which means Chinese light 

manufacturing industries went away farther and farther from their optimal 

operation scale. Among these light manufacturing industries, the SCH of some 

industries, e.g. Manufacturing of Textile, Wearing Apparel and Accessories and 

Manufacturing of Raw Chemical Materials and Chemical Products, are the lowest 

relatively.  

If we use traditional global MLP index based on model (13) which is associated with 

radial measure, we have the values of this traditional index and its components of 

Chinese 17 light manufacturing industries under VRS technology as follows:  

[Table 7 about here] 

It should be noted that there are some differences between Table 6 and Table 7 

especially on the SCH factor. We can see that SCHs in three stages in Table 6 are all 

smaller than 1. On the contrary in Table 7 they are all larger than 1. According to the 

common sense in China, most people think that light manufacturing industries 

declined in this period. That means our RAM-based MLP index is more accurate 

than traditional radial-based MLP index so that we can have more accurate MLP 

index and its components to support the decision-making. 

We also listed the global MLP index and its decompositions of each light 

manufacturing industry. Please see Table B-2 in the Appendix B. From this table, we 

can see that the detailed changes of global MLP indexes of those 17 Chinese light 
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manufacturing industries. It is worth noting that, among these light manufacturing 

industries, the SCH of some industries, e.g. Manufacturing of Textile, Wearing 

Apparel and Accessories and Manufacturing of Raw Chemical Materials and 

Chemical Products, are the lowest relatively. 

 

6 Conclusions and policy implications 

This paper proposes a new RAM-based global MLP index which considers the slacks 

of inputs, desirable outputs and undesirable outputs all together. This new MLP 

index overcomes with three main weakness of the standard MLP including (1) 

infeasibility problem, (2) slacks neglect, and (3) inconsistency problem. We further 

analyzed the possibility of CO2emissions reduction in Chinese light manufacturing 

industries. It is evident that the CO2 emissions grew by about 60% during the 

analysis period (2004- 2012). In the three stages of the analysis we concluded that: 

during (2004-2006), the global MLP index declined slightly from 1.0236 to 1.0043, 

while in the second stage (2007-2010), the global MLP index increased slightly from 

0.9948 to 1.0084. In the third stage (2011-2012), the global MLP index is 0.9931, which 

shows that the productivity of Chinese manufacturing industries went down in this 

period. Interestingly in all stages the contemporaneous frontier shifted towards the 

global technology frontier in the direction of more desirable outputs and less 

undesirable outputs, which indicates that Chinese light manufacturing industries 

paid much attention to the CO2emissions reduction in the process of increasing 

GIOV. Those facts mean that Chinese government has made great efforts on 



29 
 

improving the GIOV using limited resources and in the meantime reducing the CO2 

emissions in the process of production. Researchers interested can apply this new 

index to other manufacturing in China or elsewhere. 

For policy makers it is important to note that the scale efficiency of Chinese light 

manufacturing industries dropped gradually during 2004-2012, which means Chinese 

light manufacturing industries went away farther and farther from their optimal 

operation scale, i.e. Chinese manufacturing industry currently encountered severe 

overcapacity issue due to the lack of consumption in term of the total retail sales of 

consumer goods, as well as too much CO2 emissions. Thus we suggest that (1) 

Chinese government could encourage domestic manufacturers to input more resources 

into the research and development (R&D) on advanced manufacturing technology to 

improve their R&D abilities to upgrade their products and increase their value-added 

to produce more GIOV and less CO2 emissions using the limited resources. (2) 

Chinese government could encourage domestic manufacturers to learn and introduce 

advanced experiences and equipment from industrialised countries in the world to 

help improve their own production technology and management. (3) Chinese 

government could provide incentives for CO2 emissions reduction for domestic 

manufacturers. For example, Chinese government could provide specific fund for 

manufacturers with relatively low energy consumption and CO2 emissions to support 

them improve their competitiveness in the market and to promote the economic 

growth mode shift from conventional high energy consumption and CO2 emissions to 

clean production with low energy consumption and CO2 emissions. 
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Appendix A. Some extensions of global MLP index  

The RAM-based global MLP index can be easily extended to conduct variable 

specific analysis as follows:  

(1) For input slacks, we can define the distance function DDF as follows:  

If we assume CRS on the technology 𝑃𝑃𝑆𝐷
𝐺, thus we have  

�⃗⃗� 𝐷𝐷𝐹,𝑐
𝐺 (𝑋𝑝, 𝑌𝑝, 𝐵𝑝) = 𝑚𝑖𝑛 𝜃 = 1 − 𝑅𝑋

′𝑝𝑇
𝑑𝑋
𝑝

𝑠. 𝑡.

{
 
 

 
 

∑ ∑ 𝜆𝑗𝑡𝑋𝑗
𝑡 + 𝑑𝑋

𝑝
= 𝑋𝑝𝑛

𝑗=1
𝑇
𝑡=1

∑ ∑ 𝜆𝑗𝑡𝑌𝑗
𝑡 ≥ 𝑌𝑝𝑛

𝑗=1
𝑇
𝑡=1

∑ ∑ 𝜆𝑗𝑡𝐵𝑗
𝑡 ≤ 𝐵𝑝𝑛

𝑗=1
𝑇
𝑡=1

𝜆𝑗𝑡 ≥ 0, 𝑗 = 1,… , 𝑛; 𝑡 = 1,… , 𝑇

                    (A-1) 

where 𝑅𝑋
′𝑝𝑇

= (𝑅𝑋1
′𝑝
, 𝑅𝑋2

′𝑝
, … , 𝑅𝑋𝑚

′𝑝
)
𝑇

 and  

𝑅𝑋
′𝑝𝑇

= (𝑚)−1 (𝑚𝑎𝑥{𝑥𝑖𝑗
𝑝
|𝑗 = 1,… , 𝑛} − 𝑚𝑖𝑛{𝑥𝑖𝑗

𝑝
|𝑗 = 1,… , 𝑛})

−1
, 𝑖 = 1,2,…𝑚,      (A-2)  

𝑝 = 𝑡, 𝑡 + 1, and under VRS technology:  

�⃗⃗� 𝐷𝐷𝐹,𝑣
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𝑗=1
𝑇
𝑡=1

∑ ∑ 𝜆𝑗𝑡𝑌𝑗
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∑ ∑ 𝜆𝑗𝑡𝐵𝑗
𝑡 ≤ 𝐵𝑝𝑛

𝑗=1
𝑇
𝑡=1

∑ ∑ 𝜆𝑗𝑡 = 1
𝑛
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𝑇
𝑡=1

𝜆𝑗𝑡 ≥ 0, 𝑗 = 1,… , 𝑛; 𝑡 = 1,… , 𝑇

                   (A-3) 

(2) For slacks of desirable outputs, we can define the distance function DDF as 

follows:  

If we assume CRS on the technology 𝑃𝑃𝑆𝐷
𝐺, thus we have  
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�⃗⃗� 𝐷𝐷𝐹,𝑐
𝐺 (𝑋𝑝, 𝑌𝑝, 𝐵𝑝) = 𝑚𝑖𝑛 𝜃 = 1 − 𝑅𝑌

′𝑝𝑇
𝑑𝑌
𝑝

𝑠. 𝑡.

{
 
 

 
 

∑ ∑ 𝜆𝑗𝑡𝑋𝑗
𝑡 ≤ 𝑋𝑝𝑛

𝑗=1
𝑇
𝑡=1

∑ ∑ 𝜆𝑗𝑡𝑌𝑗
𝑡 − 𝑑𝑌

𝑝
= 𝑌𝑝𝑛

𝑗=1
𝑇
𝑡=1

∑ ∑ 𝜆𝑗𝑡𝐵𝑗
𝑡 ≤ 𝐵𝑝𝑛

𝑗=1
𝑇
𝑡=1

𝜆𝑗𝑡 ≥ 0, 𝑗 = 1,… , 𝑛; 𝑡 = 1,… , 𝑇

                  (A-4) 
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(A-5)  

𝑝 = 𝑡, 𝑡 + 1, and under VRS technology:  
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(3) For slacks of undesirable outputs, we can define the distance function DDF as 

follows: If we assume CRS on the technology 𝑃𝑃𝑆𝐷
𝐺, thus we have  

�⃗⃗� 𝐷𝐷𝐹,𝑐
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−1
, 𝑞 = 1,2, …𝑘,       

(A-8)  

𝑝 = 𝑡, 𝑡 + 1, and under VRS technology:  
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                    (A-9) 

Similar to formulae (20) and (21), we can easily to build global MLP index to conduct 

variable specific analysis (Inputs, desirable outputs and undesirable outputs 

respectively) based on the distance function DDFs of (A-1) to (A-9).  

 

 

Table 1. The inputs and outputs variables used in literatures on Chinese 

environmental efficiency. 

Authors Year Input and output variables 

Zhang et 

al. 

2015 Inputs: (1) Employees, (2)Total fixed assets, (3) Energy consumption 

Outputs: (1) Gross product, (2) CO2 emissions 

Yang et 

al.3 

2015 Inputs: (1) Capital, (2) Labour input, (3) Energy consumption, (4) CO2 

emission, (5) SO2 emission 

Outputs: (1) GDP 

Wang et 

al. 

2015 Inputs: (1) Labour, (2) Capital, (3) Energy 

Outputs: (1) GDP, (2) SO2 emission 

Fan et al. 2015 Inputs: (1) Capital stock, (2) Labour force, (3) Energy consumption 

Outputs: (1) Gross industrial output; (2) CO2 emissions 

Bian et 

al. 

2015 Inputs: (1) Fixed assets, (2) Labour, (3) Energy consumption, (4) 

Industrial pollution abatement investment 

Outputs: (1) GDP, (2) COD (chemical oxygen demand); (3) SO2 ; (4) 

Ammonia nitrogen (NH4eN); (5) Output value of products made from 

comprehensive utilization of industrial waste (OPUW) 

An et al. 2015 Inputs: (1) Production time, (2) Coal consumption  

                                                             
3In this research the authors used undesirable outputs as inputs.  
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Outputs: (1) Total industrial output value, (2) Electric energy 

production, (3) Solid waste 

Zhu et 

al. 

2014 Inputs: (1) Environmental impact quotient (EIQ), (2) Chemical oxygen 

demand (COD), (3) ammonia nitrogen (AN), (4) hazardous solid waste 

(HSW)  

Outputs: (1) The average market price, (2) The area treated 

Zhou et 

al. 

2014 Inputs: (1) Labour, (2) Capital stock, (3) Transport fuel 

Outputs: (1) Transport services, (2) CO2 emissions 

Zhang et 

al. 

2014 Inputs: (1) Labour,(2) Capital, (3) Energy 

Outputs: (1) GDP, (2) SO2 emissions, (3) COD, (4) CO2 emissions 

Yin et al. 2014 Inputs: (1) Total water consumption, (2) Comprehensive energy 

consumption, (3) Construction land area, (4) Total investment in fixed 

assets, (5) Numbers of employed person 

Outputs: (1) Waste water emission, (2) COD emission, (3) CO2 emission, 

(4) SO2 emission, (5) Soot emission ,(6) Industrial dust emission, (7) Solid 

waste emission, (8) Gross domestic production 

Wu et al. 2014 Inputs: (1) Total investment in fixed assets of industry, (2) Electricity 

consumption by industry 

Outputs: (1) Gross regional product of industry, (2) Total volume of 

nitrogen dioxide pollutant emissions  

Wang et 

al. 

2014 Inputs: (1) Capital Stock, (2) Labour, (3) Energy consumption 

Outputs: (1) GDP 

Wang 

and Wei 

2014 Inputs: (1) Net value of fixed assets of industrial enterprises, (2) Number 

of employed person of industrial enterprises, (3) Total energy 

consumption of industrial enterprises 

Outputs: (1) Value-added of industrial enterprises, (2) Total volume of 

industrial SO2 emissions, (3) Total volume of industrial carbon dioxide 

emissions 

Li et al. 2014 Inputs: (1) Network length above 35 kV, (2) Transformers capacity 
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above 35 kV, (3) Number of employees, (4) Cost of the main business 

Outputs: (1) Electric power supply amount, (2) Power supply reliability, 

(3) The quality of the voltage, (4) Line loss 

Huang 

et al. 

2014 Inputs: (1) Capital, (2) Labour input, (3) Land input, (4) Energy 

Outputs: (1) GDP, (2) Environmental pollutants 

Hou et 

al. 

2014 Inputs: (1) Cost except Labour, (2) Labour 

Outputs: (1) Revenue, (2) Soil loss, (3) Nitrogen loss 

Du et al. 2014 Inputs: (1) Labour, (2) Capital stock, (3) Energy consumption  

Outputs: (1) Gross regional product, (2) Carbon dioxide emissions 

Bi et al. 2014a Inputs: (1) Installed capacity, (2) Labour, (3) Coal total, (4) Gas total 

Outputs: (1) Annual net electricity generated, (2) Sulfur dioxide 

emission, (3) NOx, (4) Soot 

Bi et al. 2014b Inputs: (1) Labour, (2) Capital, (3) Energy 

Outputs: (1) Value-added, (2) CO2 emissions 

Long et 

al. 

2013 Inputs: (1) Capital stock, (2) Human resources stock, (3) Employment, 

(4) Coal consumption 

Outputs: (1) Gross Regional Product (GRP), (2) SO2 emissions 

Wang et 

al. 

2013a Inputs: (1) Capital Stock, (2) Labour, (3) Energy 

Outputs: (1) GDP, (2) CO2  emissions  

He et al. 2013 Inputs: (1) Net fixed assets, (2) Employees, (3) Energy 

Outputs: (1) Value added, (2) Waste gas, (3) Waste water, (4) Solid 

Waste 

Yang 

and 

Wang 

2013 Inputs: (1) Capital investment, (2) Labour, (3) Energy 

Outputs: (1) GDP, (2) CO2  emissions  

Yuan et 

al. 

2013 Inputs: (1) Employees, (2) Fixed assets, (3) Current assets 

Outputs: (1) Gross output value, (2) Wastewater, (3) SO2, (4) Soot 

Wang et 

al. 

2013b Inputs: (1) Energy consumption, (2) Labour, (3) Capital stock  

Outputs: (1) GDP, (2) CO2  emissions 
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Zhang 

and 

Choi 

2013a Inputs: (1) Capital, (2) Labour, (3) Energy 

Outputs: (1) Regional GDP, (2) CO2  emissions 

Zhang 

and 

Choi 

2013b Inputs: (1) Capital, (2) Fossil fuel, (3) Labour 

Outputs: (1) The electricity output, (2) CO2  emissions 

Zhang 

and 

Choi 

2013c Inputs: (1) Labour, (2) Capital, (3) Energy consumption 

Outputs: (1) GDP, (2) Industrial value added, (3) The employment rate, 

(4) SO2 emissions, (5) COD, (6) CO2  emissions  
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Table 2. The CPI of China. 

Date Value 

2003 81.8313  

2004 85.0227  

2005 86.5673  

2006 87.8369  

2007 92.0238  

2008 97.4532  

2009 96.7834  

2010 100.0000  

2011 105.4706  

2012 108.2221  

2013 111.0703  

                  Note: According to OECD statistics, we set Index 2010=100. 

 

 

 

 

Table 3. Coefficients of transforming different types of energy into SCE. 

Energy types 
Coefficients of 

transforming 
Units 

Coal 0.7143 kg SCE/kg 

Coke 0.9714 kg SCE/kg 

Crude Oil 1.4286 kg SCE/kg 

Gasoline 1.4714 kg SCE/kg 

Kerosene 1.4714 kg SCE/kg 

Diesel Oil 1.4571 kg SCE/kg 

Fuel Oil 1.4286 kg SCE/kg 

Natural Gas 1.3300 kg SCE/cm 

Electricity 0.1229 kg SCE/kh 

                       Note: This data is derived from China Energy Statistical Yearbook 2013.  

 

 

Table 4. The coefficients for CO2 emissions estimation. 

Energy types 

The coefficients of transforming 

different types of energy into 

SCE 

Estimated CO2 emission 

factors 

Value Units Value Units 

Coal 0.7143 kg SCE/kg 2.763 kg/kg SCE 

Crude oil 1.4286 kg SCE/kg 2.145 kg/kg SCE 

Natural gas 1.3300 kg SCE/cm 1.642 kg/kg SCE 
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Table 5. The average of the means of five indicators in different years.  

Year 

Assets  

(100 million 

Yuan) 

Labour 

 (10 000 

persons) 

Energy 

 (10 000 tons of 

SCE) 

GIOV  

(100 million 

yuan) 

CO2 

emissions 

 (10 000 

tons)  

2004 5190.9667  235.0992  2257.5403  5352.3770  2815.0114  

2005 4953.7836  172.7765  2494.0765  5778.5302  3190.7223  

2006 5694.7751  183.7624  2735.1631  7002.5491  3286.4728  

2007 6451.2878  195.6365  2947.3121  8538.2248  3474.7669  

2008 7239.5170  216.6782  3185.6595  9954.5629  4055.6167  

2009 8177.7884  215.4412  3194.5659  11151.0962  4028.6364  

2010 9441.7888  229.0665  3242.8776  13514.3629  4117.4074  

2011 10158.8990  214.1376  3563.1452  15513.7319  4454.6316  

2012 11598.7355  238.1396  3755.3489  17361.0300  4563.7849  

 

 

 

Table 6. The global MLP index and its components of Chinese light manufacturing 

industries under VRS technology.  

Years 2004-2005 2005-2006 2006-2007 2007-2008 2008-2009 2009-2010 2010-2011 2011-2012 

Global 

MLP 
1.0236 1.0043 N/A 0.9948 1.0037 1.0084 

N/A 
0.9931 

PEC 1.0039 1.0014 N/A 0.9831 0.9998 1.0006 N/A 0.9967 

BPC 1.0280 1.0363 N/A 1.0132 1.0159 1.0358 N/A 1.0046 

SCH 0.9934 0.9726 N/A 1.0016 0.9899 0.9819 N/A 0.9921 

Note: N/A denotes "not available".  

 

 

 

 

 

Table 7. The traditional global MLP index and its components of Chinese light 

manufacturing industries under VRS technology.  

Years 2004-2005 2005-2006 2006-2007 2007-2008 2008-2009 2009-2010 2010-2011 2011-2012 

Global 

MLP 
1.1178 1.0659 N/A 1.0167 1.0243 1.0606 

N/A 
0.9830 

PEC 1.0259 1.0134 N/A 0.9869 0.9994 1.0094 N/A 0.9875 

BPC 1.0615 1.0272 N/A 1.0010 1.0217 1.0035 N/A 0.9970 

SCH 1.0322 1.0267 N/A 1.0253 1.0039 1.0184 N/A 1.0006 

Note: N/A denotes "not available". 
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Appendix B.  

 

Table B-1. The comparison of two-digit light manufacturing industries in 2011 (and before) 

and20124.  

2011 and before  2012 

No. Two-digit manufacturing No. Two-digit manufacturing 

1 Processing of Food from Agricultural Products 1 Processing of Food from Agricultural Products 

2 Manufacture of Foods 2 Manufacture of Foods 

3 Manufacture of Beverages* 3 
Manufacture of Liquor, Beverages and Refined 

Tea* 

4 Manufacture of Tobacco 4 Manufacture of Tobacco 

5 Manufacture of Textile 5 Manufacture of Textile 

6 
Manufacture of Textile Wearing Apparel, 

Footware and Caps* 
6 

Manufacture of Textile, Wearing Apparel and 

Accessories* 

7 
Manufacture of Leather, Fur, Feather and 

Related Products* 
7 

Manufacture of Leather, Fur, Feather and Related 

Products and Footwear* 

8 
Processing of Timber, Manufacture of Wood, 

Bamboo, Rattan, Palm and Straw Products 
8 

Processing of Timber, Manufacture of Wood, 

Bamboo, Rattan, Palm and Straw Products 

9 Manufacture of Furniture 9 Manufacture of Furniture 

10 Manufacture of Paper and Paper Products 10 Manufacture of Paper and Paper Products 

11 Printing, Reproduction of Recording Media 11 Printing and Reproduction of Recording Media 

12 
Manufacture of Articles For Culture, Education 

and Sport Activities* 
12 

Manufacture of Articles for Culture, Education, 

Arts and Crafts, Sport and Entertainment 

Activities* 

13 
Manufacture of Raw Chemical Materials and 

Chemical Products 
13 

Manufacture of Raw Chemical Materials and 

Chemical Products 

14 Manufacture of Medicines 14 Manufacture of Medicines 

15 Manufacture of Chemical Fibres 15 Manufacture of Chemical Fibres 

16 Manufacture of Rubber 
16 Manufacture of Rubber and Plastics Products 

17 Manufacture of Plastics 

18 

Manufacture of Measuring Instruments and 

Machinery for Cultural Activity and Office 

Work* 

17 
Manufacture of Measuring Instruments and 

Machinery* 

Note: * means that there are minor changes of industries' name at the beginning of 2012 

 

 

  

                                                             
4For details, please refer the following link: http://www.stats.gov.cn/tjsj/tjbz/hyflbz. 
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Table B-2. Productivity growth, efficiency and technical changes of Chinese light 

manufacturing industries (VRS technology).  

DMUs 

2004-2005 2005-2006 

Global 

MLP 
PEC BPC SCH 

Global 

MLP 
PEC BPC SCH 

Processing of Food from 

Agricultural Products 
1.0376  1.0000  1.0382  0.9994  1.0119  1.0000  1.0094  1.0024  

Manufacture of Foods 1.0181  1.0115  1.0075  0.9990  1.0048  1.0035  1.0004  1.0008  

Manufacture of Liquor, 

Beverages and Refined Tea 
1.0176  1.0146  1.0020  1.0010  1.0033  1.0027  0.9999  1.0006  

Manufacture of Tobacco 1.0014  1.0000  1.0000  1.0014  1.0032  1.0000  1.0000  1.0032  

Manufacture of Textile 1.0770 1.0000 1.0764 1.0006 1.0042 1.0000 1.2071 0.8319 

Manufacture of Textile, Wearing 

Apparel and Accessories 
1.0559  1.0000  1.0500  1.0056  1.0067  1.0000  1.0517  0.9572  

Manufacture of Leather, Fur, 

Feather and Related Products 

and Footwear 

1.0303  1.0000  1.0299  1.0004  1.0118  1.0000  1.0093  1.0024  

Processing of Timber, 

Manufacture of Wood, Bamboo, 

Rattan, Palm and Straw Products 

1.0216  1.0103  1.0123  0.9989  1.0019  1.0035  0.9978  1.0006  

Manufacture of Furniture 1.0114  1.0000  1.0000  1.0114  1.0033  1.0000  1.0000  1.0033  

Manufacture of Paper and Paper 

Products 
1.0217  1.0165  1.0049  1.0002  0.9977  1.0003  0.9969  1.0005  

Printing and Reproduction of 

Recording Media 
1.0170  1.0088  1.0101  0.9981  1.0014  1.0108  0.9891  1.0016  

Manufacture of Articles for 

Culture, Education, Arts and 

Crafts, Sport and Entertainment 

Activities 

1.0166  1.0000  1.0000  1.0166  1.0149  1.0000  1.0000  1.0149  

Manufacture of Raw Chemical 

Materials and Chemical 

Products 

0.9986  1.0000  1.1826  0.8444  0.9866  1.0000  1.2710  0.7762  

Manufacture of Medicines 1.0113  1.0045  1.0062  1.0005  1.0013  1.0031  0.9978  1.0004  

Manufacture of Chemical Fibres 1.0070  1.0000  1.0091  0.9980  1.0052  1.0000  1.0116  0.9937  

Manufacture of Rubber and 

Plastics Products 
1.0454  1.0000  1.0463  0.9991  1.0111  1.0000  1.0754  0.9402  

Manufacture of Measuring 

Instruments and Machinery 
1.0133  1.0000  1.0000  1.0133  1.0044  1.0000  1.0000  1.0044  

 
         

Table B-2 (cont'd). Productivity growth, efficiency and technical changes of Chinese light 

manufacturing industries (VRS technology).  

DMUs 

2007-2008 2008-2009 

Global 

MLP 
PEC BPC SCH 

Global 

MLP 
PEC BPC SCH 

Processing of Food from 

Agricultural Products 
1.0333  1.0000  1.0244  1.0086  0.9860  1.0000  0.9904  0.9956  

Manufacture of Foods 0.9962  0.9971  0.9985  1.0006  1.0033  1.0005  0.9994  1.0033  

Manufacture of Liquor, 

Beverages and Refined Tea 
0.9950  0.9961  0.9985  1.0004  1.0034  1.0028  1.0008  0.9998  

Manufacture of Tobacco 1.0005  1.0000  0.9996  1.0010  1.0001  1.0000  0.9992  1.0009  
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Manufacture of Textile 0.9947  0.8032  1.2386  0.9998  1.0239  1.0124  1.0117  0.9997  

Manufacture of Textile, 

Wearing Apparel and 

Accessories 

0.9965  1.0000  1.0014  0.9951  1.0231  1.0000  1.0462  0.9779  

Manufacture of Leather, Fur, 

Feather and Related Products 

and Footwear 

0.9997  1.0000  0.9774  1.0229  1.0136  1.0000  1.0098  1.0038  

Processing of Timber, 

Manufacture of Wood, Bamboo, 

Rattan, Palm and Straw 

Products 

0.9945  0.9895  1.0019  1.0031  1.0057  1.0106  0.9974  0.9978  

Manufacture of Furniture 1.0009  1.0000  0.9989  1.0020  1.0067  1.0000  1.0011  1.0056  

Manufacture of Paper and 

Paper Products 
0.9883  0.9953  0.9935  0.9995  0.9966  0.9944  1.0024  0.9998  

Printing and Reproduction of 

Recording Media 
0.9983  1.0000  0.9924  1.0060  1.0010  1.0000  1.0000  1.0010  

Manufacture of Articles for 

Culture, Education, Arts and 

Crafts, Sport and Entertainment 

Activities 

0.9988  1.0000  0.9957  1.0030  1.0066  1.0000  1.0040  1.0026  

Manufacture of Raw Chemical 

Materials and Chemical 

Products 

0.9321  1.0000  0.9346  0.9973  0.9910  1.0000  1.1851  0.8362  

Manufacture of Medicines 0.9978  1.0007  0.9975  0.9996  0.9997  0.9995  1.0009  0.9994  

Manufacture of Chemical Fibres 1.0004  1.0000  1.0122  0.9884  1.0003  1.0000  0.9936  1.0068  

Manufacture of Rubber and 

Plastics Products 
0.9893  0.9310  1.0629  0.9997  1.0052  0.9766  1.0295  0.9998  

Manufacture of Measuring 

Instruments and Machinery 
0.9957  1.0000  0.9958  0.9999  0.9971  1.0000  0.9984  0.9987  

 
         

Table B-2 (cont'd). Productivity growth, efficiency and technical changes of Chinese light 

manufacturing industries (VRS technology).  

DMUs 

2009-2010 2011-2012 

Global 

MLP 
PEC BPC SCH 

Global 

MLP 
PEC BPC SCH 

Processing of Food from 

Agricultural Products 
1.0142  1.0000  1.0097  1.0044  1.0084  1.0000  1.0052  1.0032  

Manufacture of Foods 1.0026  0.9990  1.0028  1.0008  0.9913  0.9838  1.0037  1.0039  

Manufacture of Liquor, 

Beverages and Refined Tea 
1.0012  0.9988  1.0027  0.9997  0.9966  0.9934  1.0039  0.9993  

Manufacture of Tobacco 1.0027  1.0000  1.0012  1.0015  1.0013  1.0000  1.0000  1.0013  

Manufacture of Textile 1.0145  1.0112  1.0033  1.0000  1.0100  0.9971  1.0132  0.9997  

Manufacture of Textile, 

Wearing Apparel and 

Accessories 

1.0147  1.0000  1.0472  0.9690  0.9898  1.0000  1.0701  0.9250  

Manufacture of Leather, Fur, 

Feather and Related Products 

and Footwear 

1.0172  1.0000  1.0132  1.0039  0.9810  1.0000  1.0000  0.9810  

Processing of Timber, 

Manufacture of Wood, Bamboo, 

Rattan, Palm and Straw 

Products 

1.0042  1.0000  1.0061  0.9981  1.0000  1.0000  1.0000  1.0000  

Manufacture of Furniture 1.0050  1.0000  1.0000  1.0050  0.9951  1.0000  1.0000  0.9951  
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Manufacture of Paper and 

Paper Products 
1.0025  1.0023  1.0009  0.9994  0.9937  0.9922  1.0017  0.9998  

Printing and Reproduction of 

Recording Media 
1.0019  1.0000  0.9977  1.0042  0.9956  1.0000  0.9930  1.0026  

Manufacture of Articles for 

Culture, Education, Arts and 

Crafts, Sport and Entertainment 

Activities 

1.0161  1.0000  1.0003  1.0157  1.0180  1.0000  1.0000  1.0180  

Manufacture of Raw Chemical 

Materials and Chemical 

Products 

1.0323  1.0000  1.5182  0.6800  0.9303  1.0000  1.0000  0.9303  

Manufacture of Medicines 1.0005  0.9996  1.0016  0.9993  0.9882  0.9852  1.0040  0.9990  

Manufacture of Chemical Fibres 1.0037  1.0000  0.9934  1.0104  0.9959  1.0000  0.9836  1.0125  

Manufacture of Rubber and 

Plastics Products 
1.0028  0.9987  1.0044  0.9997  1.0002  0.9927  1.0081  0.9994  

Manufacture of Measuring 

Instruments and Machinery 
1.0072  1.0000  1.0058  1.0014  0.9872  1.0000  0.9924  0.9948  

 

 




