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Stokes perturbative solution of the nonlinear (boundary value dependent) surface gravity wave
problem is known to provide results of reasonable accuracy to engineers in estimating the phase
speed and amplitudes of such nonlinear waves. The weakling in this structure though is the pres-
ence of aperiodic “secular variation” in the solution that does not agree with the known periodic
propagation of surface waves. This has historically necessitated increasingly higher ordered (pertur-
bative) approximations in the representation of the velocity profile. The present article ameliorates
this long standing theoretical insufficiency by invoking a compact exact n-ordered solution in the
asymptotic infinite depth limit, primarily based on a representation structured around the third
ordered perturbative solution, that leads to a seamless extension to higher order (e.g. fifth order)
forms existing in the literature. The result from this study is expected to improve phenomenological
engineering estimates, now that any desired higher ordered expansion may be compacted within the
same representation, but without any aperiodicity in the spectral pattern of the wave guides.

PACS numbers: 47.35.-i, 47.35.Bb, 47.11.+j, 47.10.A-

Deep water surface gravity waves are conspicuous in
their typical crest-trough nonlinear patterns which show
periodicity in their spectral pattern [1, 2]. The generic is-
sue confronting theoretical solutions of associated models
is that of the boundary condition dependence of related
nonlinear, but often periodic, waveguides. This difficult
problem was tackled by Stokes in what then became a
high point of the success of mathematical analysis in ex-
plaining fluid wave propagation. Using a Taylor series ex-
pansion around the mean surface height profile, the later
day equivalent of a linear stability analysis [3], Stokes was
able to derive a perturbative solution of the wave veloc-
ity, using wave steepness as a measurable perturbation
parameter. The result in turn led to a formal quantita-
tive explanation of phase speeds and amplitude spectra
observed in coastal waves, including advected tidal waves
generated by the motion of ships.

Stokes analysis had some restrictions though. While
being reasonably accurate in deep water surroundings,
at shallow water, characterized by a large wavelength (λ)
to mean depth (h) ratio (r = λ

h >> 1), the perturbative
Stokes solution breaks down. This is not very difficult
to perceive either. A large value of the wavelength:depth
ratio r effectively implies a large enough value for the
wave steepness at which point the very nature of a per-
turbative analysis becomes at stake, eventually break-
ing down. Later modified theories using a Boussinesq
approximation (instead of the initial Poincare-Lindstedt
method used by Stokes [4]) improved the quantitative
match but the solitonic solutions [5] still remained lim-
ited to the deep to intermediate water depths. Two major
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works on finite depth Stokes waves were firstly the third
order [6, 7] and later the fifth order theories [8] that cal-
culated the phase speed (celerity) up to fifth order of
accuracy.

A series of next generation breakthroughs in this lin-
eage resulted in extending De’s fifth-ordered perturba-
tive solution of the Stokes form by Fenton [9] and com-
parable cnoidal wave theories [10]. All these analyses
relied on close association of statistical modelling to phe-
nomenological studies that were gratifying to engineers
who depended on numbers to hardgrind their estimates
but from a theoretical perspective, there were two un-
founded issues that demanded explanation. Firstly, while
convergence of the Stokes expansion could be proved in
the infinite ranged expansion [11], a finite ordered small
amplitude theory had a closure issue, leading to a lack of
convergence. In other words, a compact representation
of the Stokes’ wave formulation for the infinite depth sit-
uation is still lacking. Secondly, even in the deep water
limit, Stokes waves were shown to be unstable [12]. This
instability is known in the literature as a Benjamin-Feir
instability and arises due to side-band modulations of the
propagating surface waves. The technical issue with such
an instability is the fact that the instability arises from
a nonlinearity in the structure leading to a model that
can be mapped onto a nonlinear Schrödinger equation,
which then can only be solved approximately analyti-
cally, or else numerically only. Also this model lacks a
generic periodic solution for most boundary conditions.
The lineage of approximate perturbative solutions based
on Stokes original model led to a series of relevant com-
puter modelling works as well [13], a consummate sum-
mary of which is available in the book by Mader [14]. In
this work, we will address the asymptotic infinite depth
Stokes’ theory to obtain a closed form compact solution
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of the velocity, acceleration and kinetic energy represen-
tations for any perturbative order.

The problem of Stokes surface waves, leading to Stokes
turbulence at low Reynold’s number, is a classic bound-
ary layer problem. When a periodically ramped flow hits
a solid wall, or else if an oscillating plate moves relatively
in a viscous fluid at rest, the fluid boundary layer close to
the solid wall assumes a nonlinear profile driven by non-
inertial forces. In a seminal work, Stokes showed that
such oscillatory flows give rise to boundary-layer eddies
close to the boundary wall, away from which they decay
exponentially to a stable inertial regime [15].

In this article, we will provide a simple yet compact,
and importantly, converging solution of Stokes gravity
wave model for free surface boundary conditions. Our
generic solution can also be extended to the oscillating
pressure gradient regime, as also in most other waveforms
that admit of progressive wave solution. Our formulation
starts with the progressive wave hypothesis for the prop-
agation vector z that defines the free surface elevation
in the (x,y) plane: η(x, t) = η(x − ct) and u(x, z, t) =
u(x − ct, z). Defining θ(x, t) = kx − ωt = k(x − ct) as
the spatially varying wave phase, where phase velocity
c = ω

k , the free surface elevation η(x, t) and the velocity
potential φ(x, z, t) can be represented through Fourier
series sums:

η(θ, x, t) =
∞∑
n=1

An cos(nθ) (1a)

φ(θ, x, z, t) = βx− γt+
∞∑
n=1

Bn[cosh(nk(z + h))] sin(nθ),

(1b)
where h(x, y) relates to the normal component of the

flow velocity defined through the relation ∂φ
∂z = 0 at z =

−h. As to the form of the constants An’s, the third order
Stokes solution [6, 7] is indicative:

η(θ, x, t) = a

[
cos(θ) + 1

2(ka) cos(2θ) + 3
8(ka)2 cos(3θ)

]
+ O((ka)4), (2)

in which a is the first-order wave amplitude and θ is the
wave phase. What we do now is to hypothesise an n-order
generalization based on this third order formulation and
later show that this conforms to the fifth order solution
(Figures 1-3). The alluded n-ordered representation is
proposed as follows:

η(θ, x, t) = ζ

k
cos(θ) +

∞∑
n=2

ζn
( n

2n
)

cos(nθ), (3)

where ζ2 = ka, ζ3 = (ka)2, etc., i. e. ζ = ka. The
formulation in equation (3) has the advantage that it is

perturbatively accurate up to any higher order, for ex-
ample to the third [7] or to the fifth order [9] expansions.
It must be noted that this n-ordered representation as
suggested in equation (3) is not an ab initio deduction,
rather this is based on a correct comprehension of the un-
derlying symmetry in the third order perturbative solu-
tion, that eventually continues to higher orders (we have
checked up to the seventh ordered form) with reasonable
levels of accuracy.
Comparing the two expressions in equations (2) and

(3), the latter up to n = 5, we can see that in the Stokes
equation formulation, the third and fourth terms in equa-
tion (2) might be combined, the focal term here being the
cos(3θ) harmonics in equation (2). Perturbatively, the
amplitudes from the higher ordered terms e.g. fourth,
fifth and sixth terms will have negligible effect on an ob-
served wave height. Equation (3) can be exactly solved to
obtain a converging solution for all higher ordered wave
forms to a high level of accuracy, resulting in the follow-
ing solution

ηn→∞ = ζe2ix[(ζ4 + 24ζ2 + 32) cos(θ)
2(ζ − 2eix)2(ζeix − 2)2

− 4ζ(8 + ζ2 + (4 + ζ2) cos(2θ)− ζ cos(3θ))]
2(ζ − 2eix)2(ζeix − 2)2 (4)

The importance of the third harmonic (cos(3θ)) term
relates to the origin of this presentation; while the form
above does not uniquely prove the level of convergence
to higher ordered (perturbative) representations, the nu-
merical solutions presented through Figures 1-3 do.
η(x, t) is the maximum height of the observed group

wave, with a wavelength of 2π that gives the wave a steep-
ness of π, for each harmonic, which is approximately 1/3
or 0.3 as predicted by Stokes and the steepness of the
group wave formation will be closer to around 0.4. In
order to examine the wave profile over a period, we also
need to estimate the profiles for the acceleration and ki-
netic energy of the wave; starting from the expression in
equation (3), these will respectively be the first and sec-
ond derivatives of the function η(x, t) against the variable
θ, thereby leading to the following expressions for accel-
eration (f) and kinetic energy (KE) respectively as

f = dη

dθ
= −a sin(θ)−

∞∑
n=2

ζn
(
n2

2n

)
sin(nθ), (5a)

KE = d2η

dθ2 = −a cos(θ)−
∞∑
n=2

ζn
(
n3

2n

)
cos(nθ). (5b)

The above expressions depicted in equations (3), (5a)
and (5b) are the n-ordered sums respectively of the veloc-
ity, acceleration and kinetic energy of the Stokes surface
wave.
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FIG. 1. The velocity plotted against the spatial distance x for
ζ = 0.99. The solid line represents the exact n-order solution
from equation (3) while the dot-dashed line represents the
approximate Fourier series solution up to fifth order of the
Stokes approximation as given in equation (6a).

Instead of this new representation, if we were to use
the Fourier series representation due to Stokes, the cor-
responding forms for velocity, acceleration and kinetic
energy will respectively have been

vStokes =
n=5∑
n=1

2n−1 cos(nθ) (6a)

fStokes = −
n=5∑
n=1

n2n−1 sin(nθ) (6b)

KEStokes = −
n=5∑
n=1

n2 2n−1 cos(nθ) (6c)
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FIG. 2. The acceleration plotted against the spatial distance
x. The solid line represents the exact n-order solution from
equation (5a) while the dot-dashed line represents the approx-
imate Fourier series solution up to fifth order of the Stokes
approximation as given in equation (6b) for ζ = 0.99.

In the following, we compare the Stokes solutions
shown in equation (6a), (6b), (6c), going up to the fifth

ordered expansions as in [9] against the n-order accu-
rate sum that we have propounded through equations
(3), (5a) and (5b) for ζ = 0.99.
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FIG. 3. The kinetic energy plotted against the spatial dis-
tance x. The solid line represents the exact n-order solution
from equation (5b) while the dot-dashed line represents the
approximate Fourier series solution up to fifth order of the
Stokes approximation as given in equation (6c) for ζ = 0.99.
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As shown in Figures 1, 2 and 3, the solid lines re-
spectively representing the velocity, acceleration and the
kinetic energy from our new n-ordered solutions match
closely with that of the equivalent quantities from Stokes
Fourier series expansions, represented by the dot-dashed
curves. The value for ζ = 0.99 chosen is indicative of
the Fourier amplitude limit ζ → 1. It is easy to see that
choosing a slightly different value of ζ away from this
limit will result in minor aberrations from these almost
perfect fits but will nevertheless not obfuscate the con-
verging form.

To summarize, the n-ordered solution for the Stokes
surface velocity wave as presented in equation (3) and
shown in closed form in equation (4) provides a com-
pact solution accurate to all orders compared to the
approximate fifth order perturbative solution as given
in [9] or using Stokes original Fourier series piecewise
continuity, as shown in equation (6a). Such a closed

form solution has the unique advantage of convergence
for all values of x, thereby providing a generic hypoth-
esized solution for all perturbative orders, that none of
the previous perturbative or Fourier solutions could of-
fer. This is much more than an aesthetic analytical in-
sight in to a long standing non-convergent problem. As
an example, we can now provide a closed form solution
of the oscillating pressure gradient near a rigid bound-
ary layer plate as a function of the closed form solution:
uosc = uo(x)[cos(ωt) − e−kzηn→∞], a much improved
higher ordered accurate solution compared to the first
order approximation as was previously presented in [16].
The method presented here could also serve as a comple-
mentary approach to the more detailed, and hence ten-
uous, estimation of Stokes wave asymmetry, leading to
chaoticity, in analyzing modulated Stokes flows in deep
water [18] or in instability prediction of geometries in-
volving coaxially sheared cylinders [19].
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