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Abstract—In this work we introduce the periodic nonlinear
Fourier transform (PNFT) and propose a proof-of-concept com-
munication system based on it by using a simple waveform
with known nonlinear spectrum (NS). We study the performance
(addressing the bit-error-rate (BER), as a function of the prop-
agation distance) of the transmission system based on the use of
the PNFT processing method and show the benefits of the latter
approach. By analysing our simulation results for the system with
lumped amplification, we demonstrate the decent potential of the
new processing method.

I. INTRODUCTION

Skyrocketing capacity demand due to the quickly emerging
bandwidth-consuming on-line services (like cloud comput-
ing, HD on-demand video streams, etc.) and corresponding
increasing requirements for the data rates in the fiber-optic
communication systems stimulate the continuous progress in
optical communication technology [1], [2]. Inverse scatter-
ing transform method, also known as the nonlinear Fourier
transform (NFT), is a well-developed tool for solving the so-
called integrable nonlinear equations [2], [3]. The nonlinear
Schrödinger equation (NLSE), which is a common model
describing the electrical field evolution along a single-mode
optical fiber, belongs to the aforementioned class of equations
that can be solved by the NFT. Various modifications of the
NFT-based approaches have been recently intensively studied
as an efficacious tool for the nonlinearity compensation in high
spectral efficiency (SE) optical transmission systems [2], [4]–
[14]. The original idea of using the NFT and the associated
NS for the data transmission dates back to the pioneering
work on eigenvalue communications by Hasegawa and Nyu
[15] from 1993. The advantage of the NFT-based fiber-optic
communications is that the nonlinearity is included into the
NFT processing, and, in turn, the NS propagation inside the
NFT domain is essentially linear [2]. Thus, the nonlinearity
itself becomes an undetachable part of the processing method.

Within the NFT-based approach we can define the analog
of Fourier spectrum – the NS associated with a given input
waveform q(t, 0) in the time domain (at the initial distance
z = 0). Then we propagate the NS towards the receiver. If
one seeks for the resulting waveform q(t, L) at the end of
the fiber, say at z = L, we can go back to the temporal
domain by employing the inverse transform (INFT) using the
evolved nonlinear spectrum. At this point, we note that all
previous studies with regard to the NFT-based transmission
methods exploited the infinite-line (ordinary) version of the

NFT, where it is explicitly assumed that the signal decays (at
least, exponentially) when t → ±∞. This fact caused some
processing difficulties and performance degradation, as one
needs to keep the whole signal inside the processing (symbol
duration) window, while some parts of the evolved signal can
already escape out of this window at the receiver causing
the inter-symbol interference (ISI). For the nonlinear inverse
synthesis method [7]–[9], the INFT-based signal synthesis
results in the effective broadening of the generated wave-
shape in time domain, thus reducing the overall SE of the
communication system, and the latter effect becomes a serious
limitation at high signal powers where the NFT usage could
become most beneficial. On the other hand, the processing
based on the PNFT can bring the following benefits. One of
the challenges of any communication systems is the signal
broadening due to the chromatic dispersion (CD). The CD
effects can be compensated either at the transmitter, along
the fiber or at the receiver [1]. In an ordinary fiber link, the
usage of filters to compensate the CD introduces delay and
additional costs. Another way of dealing with this problem
is to insert guard intervals (exceeding the channel memory)
to prevent the ISI or to use the burst mode at the expense of
lowering the effective data rates [8]. Using the periodic signals
equipped with cyclic extensions leads to the ISI mitigation
while one can still keep the processing window as small as
the data-bearing part. As shown in Fig. 1, to recover the signal
in the burst mode (upper part of the figure), which is the
usual requirement for the traditional NFT-based methods [8],
[9], [11], one has to gather all signal-related samples inside
an extended window according to the channel memory, as
opposed to the continuous mode (lower part of the figure),
in which all the information stays within the data-bearing part
of the received signal. This reduces the computational burden
especially in high data rate communication where the channel
memory is large. Moreover, one of the difficulties of ordinary
NFT-based communication systems is that the set of signals
from which the transmitting one is drawn, basically comprises
elements with possibly different signal characteristics such as
bandwidth and time duration [11]. This is, however, not an
issue for the PNFT inasmuch as in this case the time duration
of signal (period) is fixed for all participating signals (symbols)
and one can fix a limited variation of the bandwidth for all
symbols. Along with this, one can mention the simpler signal
synthesis and the absence of power gaps in-between the bursts
in the stream as additional advantages of the PNFT over the
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Fig. 1: Comparing the processing window necessary to mit-
igate the ISI at the receiver in burst mode (upper part) and
continuous mode (lower part).

ordinary NFT-based processing.

II. BASICS OF DIRECT PNFT
PNFT is based on the calculation of the so-called mon-

odromy matrix obtained from the Zakharov-Shabat system
(ZSS). ZSS associated to the NLSE was introduced in [3].
The result of the transformation is the NS which consists of
the main and auxiliary parts. The process of finding the NS
from the signal is the direct PNFT. Genrally, the NS comprises
the dynamical and conserved quantities (the latter, i.e. the
conserved eigenvalues were utilized in the eigenvalue com-
munication idea [15]). For the PNFT the conserved quantities
constitute the so-called main spectrum, and in this work we
deal with this conserved spectrum part.

The NLSE describing the signal propagation is written as

jqz −
β2
2
qtt + γq|q|2 = 0, (1)

where q(t, z) is the slowly varying envelop of the electro-
magnetic field, β2 < 0 is a chromatic dispersion parameter
and γ is a nonlinearity (Kerr) coefficient. After the standard
normalizations [8], [9], we arrive at the NLSE in the form
jqz + qtt + 2q|q|2 = 0 for a periodic signal q(t, z), with the
period T : q(t, z) = q(t + T, z). We aim at defining the NS
using the associated periodic version of the ZSS [3]:[

i∂t q(t, z)
−q∗(t, z) −i∂t

] [
φ1
φ2

]
= λ

[
φ1
φ2

]
, (2)

and find the eigenvalues, λ, and the eigenfunctions Φ =
[φ1, φ2]

T , to form the fundamental matrix comprising two
linearly independent ZSS solutions with the conditions set at
some point t0 [16]:

φ(t0, t0;λ) =

(
1
0

)
, φ̃(t0, t0;λ) =

(
0
1

)
. (3)

The monodromy matrix M is then defined as the value of the
fundamental matrix at one period from the base point [16]:
M = [φ(t0 + T, t0;λ), φ̃(t0 + T, t0;λ)]

T
. The main spectrum

is defined as points, λi, in the complex plane at which the
ZSS solutions are anti-periodic or periodic:

Γ = {λi; M11(t0, λi) +M22(t0, λi) = ±2 }. (4)

Main spectrum remains invariant along the signal transmission
in the unperturbed NLSE. This property gives as an opportu-
nity to use this main spectrum for transmitting our encoded
data uncorrupted along the nonlinear fiber (the same idea but
for the non-periodic NFT was proposed in [15]).

There exist several efficient numerical methods to calculate
the NS associated with the PNFT of a signal, e.g. a piece-wise
constant approximation, spectral collocation and Ablowitz-
Ladik discretization scheme [17]. We compared these methods
(results are not provided here) and conclued that the Ablowitz-
Ladik scheme provides the best accuracy of the resulting NS.
Importantly, the latter method can be recast into the superfast
form using the FFT-based polynomial arithmetic [17].

III. AN EXAMPLE OF COMMUNICATION SYSTEM BASED ON
THE PNFT PROCESSING

Taking advantage of the invariance of main spectrum, we
can construct the signal corresponding to an encoded complex
set of points (taken from arbitrary constellation) considering
these constellation points as a main spectrum λi of an un-
known waveform in the time domain, then synthesize this
waveform by the inverse PNFT, launch our generated signal
into the fiber, and performing the PNFT at the receiver we
retrieve the transmitted data from the set λi (Fig. 2). Instead
of carrying out the inverse PNFT to construct the signal, we
use a simple example signal where the analytical expression
for the main spectrum is known [18]:

q(t, z) = A
cosh (φz − iσ) +B cos (ξt− α)

coshφz +B cos (ξt− α)
eiNz. (5)

For this simple case where the main spectrum merely consists
of two purely imaginary points and their complex conjugates,
the parameters used in Eq. (5) are determined by one of these
points and the signal period, see [18] for details. In this way,
the constellation is formed by some imaginary numbers from
which, according to some encoding scheme, a point is drawn.
Using the selected point, one has to calculate the parameters
entering Eq. (5) and send this q(t, 0) to the fiber. At the
receiver, getting back the set λi by the PNFT, the decision
on the transmitted value is made (Fig. 2).

Fig. 2: Blueprint of the PNFT-based communication system.
Data stream is mapped on the NS (here it is the main
spectrum) and the signal in the time domain at the transmitter
is constructed from this main spectrum via the inverse PNFT.
At the receiver side, by performing the direct PNFT one
retrieves the initial data.



Fig. 3: Receiver constellation in a link consisting of 10 spans
each having the 100 Km length for the signal given by Eq.
(5) with 2.4 dBm power at 0.5 Gbaud/s (2 Gb/s) rate.

Fig. 4: BER vs propagation distance for the signal given by
Eq. (5) with 2.4 dBm power at 0.5 Gbaud/s (2 Gb/s).

IV. SIMULATION RESULTS

For a 0.5 Gbaud/s communication, we drew a random point
from a purely imaginary one-layer constellation (Fig. 3) and
sent the corresponding signal into a link with 10 spans of
100 km length with the spontaneous emission noise added at
the end of each span (each span is considered as lossless which
is now plausible using Raman amplification [19]). Herein,
no other linear/nonlinear distortion compensation or filtering
was used. To eliminate the ISI, the signal was appended with
cyclic extensions of length 3.6 times the signal length; such
a significant prefix value was used due to the non-optimized
characteristics in our proof-of-concept experiment. The signal
power is 2.4 dBm and we transmit signal in bundles of 16
symbols. Fig. 3 shows the received constellation at 103 Km,
which is degraded due to the PNFT numerical errors and
(mainly) noise action. We repeated the transmission 105 times
and counted the mismatches between the transmitted bit stream
and the estimated one at the receiver, which is depicted in
Fig. 4 and shows that the BER is small enough for this example
PNFT-based system to be counted as a reliable system.

V. CONCLUSION AND DISCUSSION

In this work, for the first time, we introduced the basic
concepts of PNFT for fiber optical communication systems
and proposed a proof-of-concept example, where instead of
performing the inverse PNFT we used a simple signal with
known main spectrum [18] and mapped our data onto its

main spectrum. At the receiver, by performing the PNFT we
retrieved the transmitted data and calculated the BER via the
direct error counting. Simulation results show an adequate
performance for the system proposed. However, since the
signal used is quite simple, we do not expect a significant
data rate by using this type of encoding. Inverse PNFT should
help to compose better signals, where, for instance, the amount
of cyclic extension necessary to mitigate ISI is not as high as
we have had in this work (which has confined data rate to
2 Gb/s), and more degrees of freedom for encoding (bits in
one symbol) at the same signal power can be used.
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