
  

 

Abstract— Hospitals can experience difficulty in detecting 

and responding to early signs of patient deterioration leading to 

late intensive care referrals, excess mortality and morbidity, 

and increased hospital costs. Our study aims to explore 

potential indicators of physiological deterioration by the 

analysis of vital-signs. The dataset used comprises heart rate 

(HR) measurements from MIMIC II waveform database, taken 

from six patients admitted to the Intensive Care Unit (ICU) and 

diagnosed with severe sepsis. Different indicators were 

considered: 1) generic early warning indicators used in 

ecosystems analysis (autocorrelation at-1-lag (ACF1), standard 

deviation (SD), skewness, kurtosis and heteroskedasticity) and 

2) entropy analysis (kernel entropy and multi scale entropy). 

Our preliminary findings suggest that when a critical transition 

is approaching, the equilibrium state changes what is visible in 

the ACF1 and SD values, but also by the analysis of the 

entropy. Entropy allows to characterize the complexity of the 

time series during the hospital stay and can be used as an 

indicator of regime shifts in a patient’s condition. One of the 

main problems is its dependency of the scale used. Our results 

demonstrate that different entropy scales should be used 

depending of the level of entropy verified. 

I. INTRODUCTION 

Hospitals can experience difficulty in detecting and 

responding to early signs of patient deterioration, leading to 

late intensive care referrals, excess mortality and morbidity, 

and increased hospital costs. Critical illness in hospitalised 

patients are preceded by physiological abnormalities that can 

be observed, detected and acted upon: some examples 

include changes in respiratory rate (RR), heart rate (HR) and 

blood pressure [1-3]. In clinical practise, the early detection 

of patient deterioration is supported by regular bedside 

observations, but research has suggested that monitoring and 

charting of patients’ vital signs may not be satisfactory on 

hospital wards [4]. A landmark study in patient safety, the 

Harvard Medical Practice Study, estimated that adverse 

events such as cardiac and respiratory arrests occurred in 

3.7% of hospitalisations, and that over a quarter of the events 

were caused by medical management rather than by disease 

or the original condition itself [5]. Other studies suggest that 

ward staff can miss, misinterpret or mismanage the signs [6], 

partly due to overloaded work schedules [7]. In addition, 

‘regular’ observations are measured relatively infrequently 

(e.g. at 4-hour intervals) and do not support analysis of 

patterns in vital signs.  
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Nowadays, with the emergence of mobile health, new 

challenges are focused on how effectively use vital-sign 

monitoring to improve health outcomes, [8]. Wearable 

devices such as SensiumVitals® patches [9] can provide 

long-term monitoring allowing with increased frequency and 

accuracy compared to bedside observations, providing a 

better decision-support system capable to improve the 

detection of, and response to, early signs of deterioration. 

In spite of the increasing importance of personalised 

health care systems, progress in the development of models 

dedicated to early warning of clinical deterioration is still 

slow [10]. The goal is to identify regime shifts in a patient’s 

condition. Such transitions, commonly called tipping points, 

can result from an external factor, but also result from a 

stepwise change in the patient’s health [11]. Recent studies of 

generic warning signals in other domains suggests a range of 

novel approaches capable of bringing new insight to this 

field. There is ample evidence that climate or ecosystems 

when approaching a tipping point tend to be dominated by a 

phenomenon known as critical slowing down [11-14]. Other 

studies have also provided evidence that biological systems 

are subject to similar types of tipping points, such as the 

onset of an epileptic episode or the onset and remission of 

clinical depression [15].  

This work aims to explore different indicators capable to 

identify regime shifts in a patient’s condition that can be 

correlated with a process of physiological deterioration, by 

the analysis of HR measurements. There are an enormous 

range of methods available that can be used to assess critical 

transitions, as reviewed by Dakos et. al. [14]. We 

implemented some of these methods according to Early 

Warnings Signals Toolbox (http://www.early-warning-

signals.org/). Additionally, entropy measures were computed, 

namely Kernel Entropy (KerEnt) and Multi Scale Entropy 

(MSE), to model signal complexity. This paper is organised 

as follows. An overview of the methodology followed is 

presented in Section II. Results are presented and discussed 

in Section III and conclusions are presented in Section IV. 

II. EXPERIMENTS 

A. Dataset 

HR measurements from the MIMIC II waveform dataset 

[16, 17], taken from six patients (P1-P6) admitted to the 

Intensive Care Unit (ICU) and diagnosed with severe sepsis 

(ICD9 code – 995.92). The data analysis focuses on the 

computation of generic early warning signals and entropy 

measures for HR segments subject to tipping points, clearly 

identifiable by visual inspection. To access the research data 

see http://dx.doi.org/10.17036/ae7f18ce-a8d8-4c6d-a0b5-

f5916dde49bc. 

Early Warnings of Heart Rate Deterioration 

Vânia G. Almeida, Ian T. Nabney 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/78898537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  

B. Generic early warning signals 

A ‘critical slowing down’, in other words a slower rate of 

return to equilibrium following a disturbance is a generic risk 

marker of a critical transition [14]. A lower return rate can be 

detected by different methods (Table I): 1) changes in its 

correlation structure, as the state of the system become 

increasingly similar due to an increase in the ‘short-term 

memory’ prior to a transition; 2) changes in the pattern of 

variability, namely its increase prior to a complete transition 

and the increase of the conditional heteroskedasticity – a 

positive relationship with the previous time steps; 3) the 

dynamics at the boundary between two states become slow 

and as result the time series become asymmetric (skewness) 

and reach extreme values (kurtosis).  

C. Entropy 

Entropy is a family of metrics that allow the 

quantification of the complexity of time series. It can be 

computed in many ways [18]. Over the last years there have 

been many applications of entropy for evaluating 

physiological and biological signals. There is clinical 

evidence that healthy systems are more complex in 

comparison to pathologic systems, e.g. disease, aging, drug 

toxicities contribute to degrade the physiologic information 

content [19]. In this study, two distinct measures were 

computed: KerEnt and MSE. The first one [20] was 

developed in the context of electrocardiogram analysis. It 

also demonstrated its value as a measure of irregularity in 

other domains, such as in nocturnal oxygen saturation (SaO2) 

analysis [21]. MSE analysis was introduced by Costa et. al. to 

separate healthy and pathologic groups at different scales [22, 

23]. 

 KerEnt 

KerEnt is obtained by incorporating the Renyi entropy 

[24], computed by Eq. 1 of order 2 (α=2), into the concept of 

entropy rate (Eq. 2), as presented in Table I.  

TABLE I.  LIST OF PARAMETERS USED IN THE HR ANALYSIS. 

Effect Indicator Method used to compute  

Correlation 
Increase in the 
autocorrelation 

at-lag-1 

Autocorrelation function (ACF1)) 

Variance 

Increase 
variability 

Standard deviation (SD) 

Increase 

conditional 
heteroskedasticity 

Langrange multiplier test 

Dynamics 

at the 

boundary  

Increase 

Skewness 

Standardized third moment around 

the mean of a distribution 

Increase Kurtosis 
Standardized fourth moment 
around the mean of a distribution 

Entropy 

KerEnt 

    
 

MSE 

1) Multiple coarse-grained time 

series  

 
2) SampEn computed according to 
[25] 

The values are computed using Gaussian kernels for specific 

time scales (m) and distribution width (σ). The choice of m is 

similar to other entropy measures, where m=1 or m=2 are 

common values [19]. Different methods can be used for 

choosing appropriate σ: Bayesian inference using the 

Metropolis-Hastings algorithm is the most rigorous [20]. 

 MSE 

MSE method evaluates the entropy of a signal on 

different scales. Firstly, according to Eq (3) - Table I- 

multiple coarse-grained time series (yj) are constructed by 

averaging the data points{x1,x2,…xi} within non-overlapping 

windows of increasing length, for different scale factors (τ), 

where the length of each coarse-grained time series is N/τ and 

1 ≤ j ≤ N/τ. The Sample Entropy (SampEn), proposed 

originally by Richman and Moorman [25], is then calculated 

for each coarse-grained time series.  

III. RESULTS AND DISCUSSION 

KerEnt, ACF1, SD, heteroscedasticity, skewness and 

kurtosis were computed for segments with the same length 

(approx. 4h) where HR changes are identifiable by visual 

inspection. Boxplots presented in Figure 1 show that KerEnt 

mean values are higher for P1, P5 and P6 (1.29±0.18, 

1.52±0.14 and 1.32±0.12; respectively) compared to P2 and 

P4 (0.66±0.09, 0.66±0.06; respectively) leading to the 

conclusion that P2 and P4 time series are less complex. P3 

values are in the middle of both groups (1.02±0.13). 

Spearman rank correlation was used to explore correlations 

between indicators. We observed that the KerEnt is most 

(anti-) correlated with ACF1 for P1 (ρ=-0.43, p<0.05) and P5 

(ρ =-0.48, p<0.05), both characterized by high entropy 

values. In opposition, KerEnt is most correlated with SD 

when the KerEnt is low: strong/moderate values were 

observed (ρ=0.76, p<0.05 and ρ=0.46, p<0.05; for P2 and P4 

respectively). Between ACF1-SD, it was observed ρ=0.35 

p<0.05, taking into account all the subjects. 

Heteroskedasticity, kurtosis and skewness values are less 

variable among subjects than ACF1, SD and KerEnt 

(excluding P4). However, strong correlations were observed 

among them, namely between kurtosis and skewness 

(ρ=0.71, p<0.05). Heteroskedasticity is most correlated with 

kurtosis (ρ=0.38, p<0.05). 

 
Figure 1.  Boxplots for each patient and indicator,including the median. 

box edges represent the 25th and 75th percentiles, and box whiskers 

indicate the 5th and 95th percentiles. 



  

T1 T4 T5 T6

Time (s) Time (s)

T1 T2 T1T2 T2

Time (s)

T3

5000 15000

I II III
A

B

C

D

10000 5000

5000

5000

15000

15000

10000

10000

5000

5000

Transition 

time

Transition 

time

State2

State1

State1
State1

Tipping 

point

State2

State1

 
Figure 2.  HR segments analysed in detail (A): ACF1 (B), SD (C) and KerEnt (D) for P1, P2 and P3, respectively. 

ACF1, SD and KerEnt are analysed in detail for P1, P2 

and P3 in Figure 2. Three different situations are depicted: I) 

it is presented a continuous transition, while the segment 

presented in II) suffers an abrupt increase, and III) represents 

a system that switches back and forth between alternative 

states – a phenomenon termed flickering. A sliding window 

(6 min) was used to compute ACF1 (B) and SD (C). The 

values were estimated within each rolling window. A similar 

process was used to compute KerEnt using m=2 and σ=0.2 

(D). In the case I, the first evidence of a transition occurs 

during T1-T2. During this period, the KerEnt decreases, 

while the ACF1 and SD values increase. During T3-T4 all 

the indicators imply that the system is about to move to a new 

state (KerEnt at minimum, ACF1 and SD at maximum). The 

KerEnt values observed before T5 are highly variable (T4-

T5). At the end, new evidence of instability appears. For the 

case presented in II, it is visible that both ACF1 and SD 

increase at T1. During T1-T2 both decrease, but these 

increase again just prior to T2. KerEnt increased slightly at 

T1, which would not be expected a priori. We assumed that 

this occurred as a consequence of the low entropy values. 

This is consistent with the positive correlation between 

KerEnt and SD observed for P2 and P4. The segment 

presented in III exemplifies a flickering transition that 

confounded both ACF1 and SD. KerEnt starts to increase at 

T1, and then to decrease at T2. From the comparison of the 

states before T1 and after T2, it is possible to point out the 

KerEnt decrease. These three examples suggest that a patient 

can experience different transitions and the analysis of a 

single indicator is not enough to the identification (as verified 

in III). In the case of a continuous transition, entropy analysis 

can be used as an indicator of the progressive stages. 

Additionally, it allows to follow and identify low 

physiological complexity in time series. 

KerEnt analysis lacks a thorough analysis of entropy 

values at different scales. We evaluated MSE analysis 

considering a maximum scale of 20, as presented in Figure 3. 

Results are presented using a sliding window of 1 h which 

means that e.g. at scale 20 the entropy is computed using the 

last 20 non-overlapping windows of 3 min. A longer segment 

collected after the segment presented in III is presented in the 

Figure 3 (a). We concluded that the flickering behaviour is 

common for this patient (e.g. a similar transition was 

observed at T1). The entropy decreases at all scales (during 

approx. 20 h), what lead us to identify this as a case of 

physiological deterioration. The signal presented in b) lasts 

for approx. 30 h enclosing the segment II presented in Figure 

2. At its beginning the entropy values observed are quite low 

for all scales (different colour scales are used for a) and b)), 

but during the monitoring time, the patient is subject to 

abrupt HR changes that increase the entropy values at high 

scales. This conclusion justifies the KerEnt results discussed 

before for the patients P2 and P4. We were not able to 

identify relevant KerEnt changes due to the inappropriate 

time scale used. This case is an example of normal changes in 

HR that can occur to any patient during a long acquisition, 

and cannot be considered as part of a degradation process. 

IV. CONCLUSION AND FUTURE WORK 

This study was a preliminary work to explore potential 

indicators of vital signs deterioration in clinical wards. We 

explored some indicators used in other domains and also 

introduced new indicators based on entropy-based measures. 

Our findings suggest that when a transition is approaching, 

the equilibrium state changes and early warning of the new 

state is identifiable by both ACF1 and SD but also by the 

entropy analysis. Entropy values are intrinsically related to 

the time series complexity of the time series, providing 

additional information that can be used as an indicator of the 

pathological state. We concluded also that different entropy 

scales should be used depending of the level of complexity 

verified. We agree with Dakos et. al that there was no single 

best indicator or method capable of identifying an upcoming 

change [14]. One of the main limitations that we will address 

in future studies will be the evaluation of the effect of non-

stationarities.   



  

 
Figure 3.  MSE analysis for P3 and P2, respectively: a) signal monitored after the segment III presented in Figure 2, b) signal containing the segment II 

presented in the same figure. 

Future studies will involve controlled clinical trials to 

explore vital-sign deterioration (HR, RR and temperature). It 

is expected that the physiological variability inherent to 

different individuals leads to the increase of the complexity 

of states that can be observed. Additionally, it may depend on 

the patient medical condition itself (as in this case, HR values 

are dependent of the severe sepsis condition), as well as other 

comorbidities. The results can only be reliable if we are able 

to collect continuous data records, as the major limitation of 

current early warning systems is that they are based on 

manual checks performed by nursing staff, occurring these 

observations intermittently. 
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