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Abstract—In this paper we summarize our recently proposed
work on the information theory analysis of nonlinear regenerative
channels. We discuss fundamental assumptions in our modelling
approach and we show that through proper manipulation of the
regenerator properties Shannon capacities higher than the limits
of the corresponding linear channels can be achieved.
Index Terms—Shannon theory, channel coding, regeneration.

I. INTRODUCTION

Understanding the true capacity limits of a transmission
channel is immensely important for the efficient design of
future communication systems. Although the linear case is
now well understood [1] a general theory analyzing the
capacity performance of nonlinear channels and define cor-
responding upper bounds has not been established yet. This
is because nonlinearity can manifest itself in multiple ways
along the transmission link. It can be destructive, giving rise
to impairments that affect the signal quality, or it can be
constructive achieving the reshaping the signal waveform and
the squeezing of any accumulated noise distortion. The latter
scenario can be realized by means of all-optical regenerators.
Recent progress in the field has led to a variety of such
subsystems, characterized by different transfer functions [2]-
[4], that accordingly define nonlinear channels of different
properties. As there is a surge in search of new techniques to
increase the information throughput, all-optical regeneration
represents a unique solution for improving the transparent
length and enabling high capacity networking. Nevertheless,
information-theoretic analysis of such channels only recently
has started appearing in the scientific literature [5], [6].

Here we extend our previous work in the field [6] by
proposing a general method to calculate the Shannon capacity
in regenerative channels. We show that we can identify the
optimum modulation format for a given nonlinear element as a
result of a transfer function analysis, rather than optimizing the
mutual information functional. The same mapping technique
we can be used as well to manipulate the properties of a
nonlinear channel for maximizing its transmitted capacity.
An example of a regenerative channel that enables higher
information rate than the corresponding linear channel is
also presented. This demonstrates the fascinating potentials
of nonlinearity engineering in information transmission and
changes our view on coding and signal packing problem.
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Fig. 1. a) Scheme of 3R regenerator consisting of a 2R regeneration stage,
optical sampling and a pulse reformatting filter. Optical sampling is achieved
by a switching window of short duration and the NRZ pulse recovery with the
use of a matched filter. b) The regenerative channel model where a number
of 3R regenerators are placed equidistantly along the transmission line.

II. DISCRETE-TIME REGENERATIVE CHANNEL MODEL

To perform our capacity analysis we made use of a discrete-
time model, where the non-linear channel was represented by
a cascade of noise elements and regenerative transfer functions
and the simulations were performed at one sample per symbol.
As this approach ignores potential pulse shaping effects in
the transmission line, it is important to examine its accuracy
against a continuous time model.

The verification has been performed on the specific nonlin-
ear channel example of Fig. 1 (a). It consists of R identical
regenerators connected by linear transmission sections of equal
length. The signal transmission was distorted by additive white
Gaussian noise (AWGN) distributed uniformly along each
span m = 1..R + 1. To maximize the Shannon capacity the
regenerators should be able to suppress both the amplitude
and timing distortion of the incoming signal by offering a
3R functionality [7], i.e. re-amplification, re-shaping and re-
timing. The architecture of such a 3R subsystem is depicted
in Fig.??. At its input a continuous time signal Xm(t) expe-
rienced the impulse response h(t) of a matched filter which
removed the out-of-band noise. Our analysis assumed the use
of rectangular pulses, therefore, the matched filter had a sinc-
shaped frequency response, i.e. Hin( f ) =

∫ T
0 h(t)e− j2π f tdt =

sinc( f T )e− j2π f T , where T is the symbol duration. The filtered
waveform Ym(t) was subsequently reshaped by the nonlinear
element of the regenerator. We have assumed that the two sig-
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nal quadratures were handled independently and experienced
the same nonlinear transformation T (y). This enabled to max-
imize the regenerative efficiency by avoiding any signal-signal
interference and to reduce a two-dimensional problem into two
independent one-dimensional lattices. Although our method is
generic and can be applied to any nonlinear element, here, we
have considered without loss of generality, a particular transfer
function example : T (y) = y+ asin(by), characterized by a
large number of regular plateau levels and it can be realized
with the scheme proposed in [6].

Optical sampling, followed by signal amplification and
linear pulse filtering, complemented the regeneration process
with the re-timing functionality. The sampling was performed
with an ideal rectangular switching window selecting the
central part of each pulse, where the amplitude distortion
had been adequately suppressed and there was no influence
of timing jitter. The duration of the switching window was
a fraction of the symbol period T and it was subject to
optimization. After amplifying the signal to compensate the
corresponding energy loss, a second matched filter restored
the pulses back to their initial shape and duration.

We have simulated the transmission of a continuous time
signal through the aforementioned nonlinear channel. The sig-
nal was modulated in 16-QAM format using ideal rectangular
pulses at a baud rate of B = 28 GBaud/s. In Fig. 2 (a)-(c) the
eye-diagram, the waveform and spectrum of the propagating
signal after 20 cascaded regenerators have been plotted, and
in Fig. 2(d) the ratio of the signal power at the output of
each regenerator stage to the power of the launched signal.
The results were taken for a switching window which was 2%
of the symbol period T . They clearly show that the pulses
preserve their initial shape and their average power along the
transmission line.

Also, we compared the symbol error rate (SER) perfor-
mance of the discrete- and continuous- time system models.
The SER was calculated by direct error counting using Monte
Carlo simulations as a function of optical SNR (OSNR)
OSNR = SNR B

2Bre f
, where Bre f = 12.5 GHz. For the discrete

and continuous time signal cases we considered a total number
of 225 and 5 · 105 equiprobable symbols, respectively. The
SNR was defined as the ratio of the input signal power S
to the noise (zero mean AWGN with variance Nm) added
linearly to the signal during transmission at each node m =
1, . . . ,R+1: SNR = S/N, where accumulated noise is given by
N = ∑Nm, where Nm is noise power added after transmission
via m− th node. The calculated SER results are depicted in
Fig. 3. Evidently, the effect of noise squeezing is enhanced
with the number of regenerators. Furthermore, one can see
that for small switching windows using the discrete-time-
effective noise source approximation allows capturing the real
behaviour of the regenerative system which is represented
by the continuous-time model. However, longer switching
window durations affect the shape of the propagating pulses
and gives rise to timing jitter phenomena that the discrete-time
approach fails to take into account into the SER performance.
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Fig. 2. Waveforms for noiseless transmission via R = 20 regenerators a) Eye-
diagram, b) waveform, and c) spectrum of the signal at the output of the last
regenerator (blue solid line) plotted alongside the input signal (green dashed
line); d) power ratio of the output signal power at the last regenerator to the
power of input signal
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Fig. 3. Comparison of discrete-time and continuous-time modelling SER as
a function of OSNR for different values of SW – percentage of the switching
window duration with respect to the symbol period. Discrete-time simulations
(solid lines) show the upper limit of regenerative continuous-time transmission
(shown by lines with circles), which can be achieved with small switching
windows. The increase of SW leads to performance degradation. The number
of regenerative elements R (with nonlinear TF: T (y) = y+π−1 sin(πy)) was
varied.

III. CAPACITY CALCULATIONS

The definition of the Shannon capacity [1] for an arbitrary
memoryless channel involves maximizing the mutual informa-
tion (MI) functional:

C = max
p(x)

∫
dxdyp(x)p(y|x) log2

p(y|x)∫
dxp(x)p(y|x)

, (1)

over all valid input probability distributions p(x) subject to the
power constraint

∫
dx p(x) |x|2 ≤ S. Here statistical properties

of the channel are given by the conditional input-output
probability density function (pdf) p(y|x). The signal evolution
is presented by the stochastic map – a discrete version of the
Langevin equation for stochastic processes:

Ym = T (Ym−1)+ηm, m = 1, . . . ,R+1, Y0 = x (2)

As we assume regenerators to be placed equidistantly, so for
all m: Nm = Nm+1 = N/(R+ 1), where N is total power of



noise added to the signal during transmission. The conditional
pdf for the output at m-th node for each quadrature ym given
the input ym−1 is found as

p(ym|ym−1) =
1√

2πNm
exp

[
− (ym −T (ym−1))

2

2Nm

]
(3)

Because of the Markovian property of the process, the condi-
tional pdf of the received signal after propagation through R
links, yR+1, given the input, y0 = xk, is expressed by a product
of single-step conditional probabilities

p(yR+1|y0 = xk) =
∫

dyR . . .dy1 p(yR|yR−1) . . . p(y1|xk) (4)

Consequently, the conditional pdf can be expressed through
an Onsager-Machlup function or action of the path given by

S = ΣR+1
m=1

1√
2πNm

(ym −T (ym−1))
2

2Nm
(5)

as follows
p(yR+1|y0) =

∫
dyR . . .dy1e−S (6)

The knowledge of conditional pdf allows one to calculate
capacity (or lower bounds) for any regenerative channel by
substituting appropriate TF. Further, we consider as example
T (y) = y+asin(by).

A. Analysis of conditional pdf

Thus, we obtain the conditional pdf for the channel output
yR+1 given input – alphabet point xk:

p(yR+1|y0 = xk)=
∫ R

∏
m=1

dym
1√

2πNm
e−(ym+1−ym−asin(bym))

2/2Nm

(7)
This expression calculated numerically is plotted in Fig.

4 for the same power of added noise N = ∑R+1
m=1 Nm. The

conditional pdf demonstrates that the regenerator acts as a
quantizer by attracting signal points to the alphabet – one
can observe peaks formed around the alphabet points. The
alphabet is constructed in accordance with the proposed opti-
mization procedure as a solution of simple equation T ′(x) = x,
which for the considered TF defines amplitude distribution
xk = π(−K+1+2k)/b, with k= 1, . . . ,K. Note, the regnerative
mapping technique allows to identify optimum modulation
format without optimization of MI functional.Also, one can
see that for the optimal parameters choice, the noise squeezing
effect is more pronounced (compare suboptimal case plotted
in Fig. 4a with optimal in Fig. 4b), whereas, since suboptimal
case peaks are wider, the interference between them is more
clear (compare Fig. 4a with inset in Fig. 4b). This stresses the
discreteness of the problem: the cell size cannot be arbitrarily
small (this is in contrast to the linear channel) and the optimum
distribution is discrete. While the noise power N was fixed
(here N = 1), placing alphabet points closer to each other (that
is, decreasing cell size) resulted in higher interference between
the peaks and reduction of the regenerative effect (compare
Fig. 4b with tighter packing in Fig. 4c).
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Fig. 4. Conditional pdf p(y = yR+1|x) for a different number of regenerators
a) for suboptimal ab = 0.5 and b) optimal ab = 1 parameters choice and for
the same power of total noise N = 1. Regenerative transformation results in the
formation of peaks around alphabet points given by the regenerative mapping
procedure. Increasing the number of regenerators results in more narrow peaks
and higher noise squeezing, whereas suboptimal parameters choice, though it
results in significant noise reduction, has worse performance than the optimal
parameters choice ab = 1. Decreasing the cell size from d = 2 (panels a-b) to
d = 1 (panel c) results in worse system performance. It shows that the channel
is essentially discrete and the cell size needs to be optimized. Increasing the
number of regenerators improves regeneration efficiency.

B. Impact of parameter b

Using conditional pdf, one can calculate the Shannon
capacity of the channel with given TF and transformation
parameters. Regenerative mapping technique enables find-
ing amplitude distribution optimal for a given regenerative
nonlinearity. In considered case, the alphabet is given as
xk = π(−K + 1 + 2k)/b, where k = 1, . . . ,K is an index of
an alphabet point. The constraints were ∑Pk|xk|2 = S and
∑Pk = 1. The input parameters were: SNR = S/N and R. The
number of signal points (constellation size K) was varied until
its increase does not affect the capacity calculations by more
than 10−4.

The optimal input probability distribution is found to be
a discrete analogue of Gaussian distribution: Pk ∼ e−x2

k/2S.
We differentiate between constrained capacity (MI in Eq. 1
optimized over input probability distribution for a given mod-
ulation format, i.e. for fixed values b) and Shannon capacity
(MI in Eq. 1 optimized simultaneously over input probability
distribution and modulation format – parameter b).

The Fig. 5 demonstrates impact of parameter b on capacity.
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Fig. 5. Constrained capacity of the two-dimensional regenerative channel
and the corresponding gain (ratio to the linear Shannon limit log2(1+SNR))
optimized over probability distributions for a given modulation format:
equidistant modulation with the cell size 2π/b for b = π,2π,3π for a fixed
number of regenerators R = 10. Shannon capacity of the regenerative channel
(optimized over modulation (defined by b = bopt ) and probability distribution
) and Shannon capacity of a channel with ideal regenerators – regenerative
limit are plotted for comparison.

If b = π, the constrained capacity of regenerative channel
is higher than capacity of the corresponding linear channel
(linear Shannon limit) and the capacity gain (ratio between two
capacities) is higher than 1. If the cell size is reduced (=2π/b),
the constrained capacity becomes smaller, for b = 2π the
constrained capacity of the channel is approximately equal to
the linear Shannon limit and the gain, though still above unity,
is roughly equal to one. So, decreasing the cell size below
the optimal value, reduces the regenerative effect. Further,
decrease of the cell size b = 3π degrades the constrained
capacity below the linear Shannon limit – regeneration has
negative impact: the cell size is so small (compared to the
noise variance), that there is high probability that the distorted
point will be attracted to the wrong alphabet point and a
regenerator will only increase distortion. This demonstrates
that the optimal distribution is discrete and the cell size (and,
consequently, parameter b) needs to be optimized.

C. Impact of parameter a

Additional parameter a governs the strength of regenera-
tion. In accordance with stability requirement of regenerative
mapping technique: |T ′(x)|< 1, it follows that if a = 1/b one
can observe plateau formed around the alphabet points; in this
case, noise is completely suppressed within the plateaus (this
is the best choice of parameter values). When a= 0 there is no
regeneration - the channel converges to linear AWGN channel.

D. Shannon capacity of the regenerative channel

Optimizing over parameter b and input probabilities we
found maximum of MI over the set of {Pk,b} – Shannon
capacity of the regenerative channel for a = 1/b see dash-
dotted lines in Fig.5. The proposed regenerative channel
demonstrates that due to nonlinearity it is possible to achieve
Shannon capacity higher the Shannon capacity of the linear
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Fig. 6. Optimal input probability

AWGN channel. Here we demonstrate that though TF with
plateau is the most efficient, nevertheless, it is not necessary
for regeneration. One can see that suboptimal parameter val-
ues also provide a capacity increase. The simple analytical
equation defines optimization and design rules for optimum
modulation format for such nonlinear regenerative channels.
Optimal input distribution is plotted in Fig.6, it is discrete
with equidistantly placed alphabet points with probability – a
discrete analogue of Gaussian distribution.

IV. CONCLUSION

The results illustrate that by suppression of signal distor-
tions, one can achieve Shannon capacity higher than for a
system without regenerators operating with the same signal
launch power and with the same power of noise added to the
signal during transmission.
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