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Abstract—The increase in renewable energy generators introduced
into the electricity grid is putting pressure on its stability and
management as predictions of renewable energy sources cannot
be accurate or fully controlled. This, with the additional pressure
of fluctuations in demand, presents a problem more complex than
the current methods of controlling electricity distribution were
designed for. A global approximate and distributed optimisation
method for power allocation that accommodates uncertainties and
volatility is suggested and analysed. It is based on a probabilistic
method known as message passing [1], which has deep links to
statistical physics methodology. This principled method of optimi-
sation is based on local calculations and inherently accommodates
uncertainties; it is of modest computational complexity and
provides good approximate solutions. We consider uncertainty and
fluctuations drawn from a Gaussian distribution and incorporate
them into the message-passing algorithm. We see the effect that
increasing uncertainty has on the transmission cost and how the
placement of volatile nodes within a grid, such as renewable
generators or consumers, effects it.

Keywords—Message passing, optimisation, power flow, distri-
bution, renewable energy, uncertainty, electricity, networks

I. INTRODUCTION

Due to the environmental effects and the non renewable
nature of mainstream power sources such as coal and oil,
there have been legislations and international agreements to
curb CO2 emission. Electricity producers must incorporate
more renewable energy sources into the power grid and reduce
their reliance on non-renewable energy sources. Technologies
to harness renewable energy sources such as wind and solar
are advanced enough that they can be used in electrical
power grids. However, renewable sources are uncertain and
fluctuating, reducing the reliability of power grids making them
increasingly hard to manage. Power grids in the US, Europe
and Asia have all experienced large blackouts [2] from not
being able to fully control or manage the volatility of power
grids, a trend that is bound to increase in years to come. This
paper proposes a principled, probabilistic and computationally
efficient Message Passing (MP) algorithm which can inherently

consider the uncertainties and fluctuations of generators and
consumers within a grid at the resource dispatch stage.

The current method of optimal power flow (OPF) [3] works
by alternately repeating two steps until the overall optimum
is found. The first step uses the Newton Raphson method to
estimate initial values for distributing the electricity in order
to achieve zero excess, enforcing Kirchoff’s law, the second
finds a better solution which reduces power loss and generating
costs, while ensuring that all of the constraints are met, using
gradient-descent or similar techniques. OPF is capable of
considering small scale fluctuations from consumers, but not
the more substantial fluctuations from renewable sources.

The power grid requires a dispatch method that is more
robust to accidental damage or deliberate attack and can ef-
fectively consider bandwidth to eliminate tripping power lines.
Fluctuations and uncertainties in generators and consumers
need to be better incorporated to accommodate the growth
in volatile components of the grid to ensure that power grids
run smoothly and reliably. A recent report [4] shows that the
UK is relying less on renewable energies than other European
countries, arguably, due to the difficulty in incorporating them
into the existing grid.

There are alternative methods of optimal dispatch; Chance
Constrained OPF develops upon the already used OPF method
but changes the constraints so that they are satisfied within a
certain probability [5], [6], Interior Point method uses matrices
to satisfy the constraints and uses a heuristic strategy of
predictor-corrector to minimise the matrix equations [7], [8],
but these methods only consider uncertainty heuristically and
superficially without incorporating their probabilistic nature
within the algorithmic framework.

As a probabilistic algorithm MP [1] offers a principled,
distributed optimisation method which passes messages lo-
cally in order to obtain a global optimum; this allows the
computational complexity to increase as O(N) where N is
the number of vertices in the grid. Its probabilistic properties
allow it to consider generator uncertainties inherently within
the calculations.

In Section II we describe the MP method and explain how
it can accommodate uncertainties; in Section III we show978-1-4673-8473-5/16$31.00 2016 IEEE
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results validating the use of these methods on synthetically
generated systems. In Section IV we discusses the advantages,
disadvantages and possible extensions of the MP algorithm.

II. METHODOLOGY

A. Message Passing

Resource allocation is the distribution of a resource in a net-
work according to some objective function and constraints. An
efficient resource allocation method based on statistical physics
methodology was presented in [1], both macroscopically and
microscopically. The framework is based on assigning a cost
to each state of the system with the aim of minimising it to
obtain the ground state or the state of the lowest cost for a given
system. This is carried out by minimising the free energy F that
accounts for both the related cost of a state and the multiplicity
of states of the same cost. Links between the macroscopic
state of a system and algorithms aimed at finding the state
of each variable microscopically for a given system realisation
have been explained in the literature [9], [10] and utilised in
a number of hard computational tasks, from error-correcting
codes [11] to graph colouring [12] and routing [13].

In a resource allocation system with N nodes, each con-
nected to c other nodes and with a capacity Λj , representing
either power generation (positive values) or demand (negative
values), we want to satisfy the demands, i.e. render the final
capacities of all nodes to positive or zero, while minimising
an objective function. To do this we dispatch resources from
node j to i along an edge, yij = −yji. Satisfying the constraint
requires that every node’s capacity plus any resource dispatched
from neighbouring nodes to be greater than or equal to zero.
This is written mathematically as:

N∑
i=1

Aijyij + Λj ≥ 0 (1)

where Aij is an adjacency matrix; if the node i and j are
connected Aij = 1, or Aij = 0 otherwise. The summation is
over all nodes in the network.

As well as enforcing the capacity of all nodes to be non-
negative, the algorithm minimises the transportation costs,
which in this paper we will consider to be quadratic; φ(yij) =
y2
ij

2 but can assume other functional forms as well. We can write
the energy function of the system as E =

∑
(ij)Aijφ(yij),

where the summation over (ij) is all pairs of nodes in the
network.

The partition function Z is a normalization constant, subject
to the constraint, and can be written as:

Z =

∏
(ij)

∫
dyij

∏
j

Θ
(∑

i

Aijyij + Λj

)
×e−

1
T

∑
(ij)Aijφ(yij) (2)

where T is the temperature of the system, a parameter that
determines how strictly the optimisation is carried out, and
Θ(∗) is the step function; it returns 0 if ∗ is negative, and

Fig. 1. Tree of node j with ancestor i and descendants k.

1 otherwise. The free energy to be minimised is written as
F = −T lnZ. However, it is generally difficult to minimise
the free energy due to the computational cost involved and one
resorts to approximations, some more principled than others.

The Bethe approximation is based on the assumption that
the network is sparsely connected, i.e., that the number of
connections per node is much smaller than the systems size N .
As the probability of finding loops is small, the network can be
approximated by considering just one node and its neighbours
at a time, assuming a locally tree-like topology and ignoring
long-range correlations. This gives rise to local passing of
messages, conditional probabilities, since once the node to
be studied is removed (hence the term cavity method in the
physics literature) neighbouring nodes are weakly correlated
with one another and are considered probabilistically indepen-
dent. Considering a node j, we set aside one of its neighbours
to be an ancestor, i, and the remaining c− 1 neighbours to be
descendants, k. Using this we can now write the free energy
of node j according to the free energy of its descendants,
F (yjk|Tk), this is sent to node i. Tk represents the tree of
node k and its descendants.

F (y|T) =−T ln

{
c−1∏
k=1

(∫
dyjk

)
Θ

(
c−1∑
k=1

yjk − yij + Λj

)

× exp

[
− 1

T

c−1∑
k=1

(
F (yjk|Tk) + φ(yjk)

)]}
(3)

The free energy can be split into two parts, F (y|T) =
NTFav + FV (y|T ) where NT is the number of nodes in tree
T, Fav is the average free energy per node and FV (y|T) is
the Vertex Free Energy (VFE). When a node is added to a
tree this changes its free energy. The addition of a node means
that the VFE is found when the average free energy of the
remainder of the tree is subtracted from the change in free
energy. Rearranging this gives us the recursion relation in terms
of VFE’s (for the derivation see [1]):

FV (y|T) =−T ln

{
c−1∏
k=1

( ∫
dyjk

)
Θ

(
c−1∑
k=1

yjk − yij + Λj

)

× exp

[
− 1

T

c−1∑
k=1

(
FV (yjk|Tk) + φ(yjk)

)]}
−Fav. (4)



In the case of strict optimisation, or when temperature is set
to zero:

FV (yij |T) = min

[
c−1∑
k=1

(
FV (yjk|Tk) + φ(yjk)

)]
− Fav

s.t.
c−1∑
k=1

yjk − yij + Λj ≥ 0. (5)

This is the message to be passed between nodes in order to
find the global optimal. However, in the case of continuous
variables this is a continuous function and it is difficult to
send it using MP. The alternative is to represent the message-
passing function by a small number of parameters; in [1] it
was assumed that the function can be accurately represented
by its first and second derivatives. Instead of sending the full
function the messages consisted of [Ajk, Bjk] =

[
∂FV
∂yjk

, ∂
2FV
∂y2
jk

]
.

We calculate the A and B messages using the Taylor expansion
of the VFE (4) around some adjustment of yjk, εjk and with
a Lagrange multiplier µij to consider the constraint:

Fij =
∑
k 6=i

[
(Ajk + φ′jk)εjk +

1

2
(Bjk + φ′′jk)ε2

jk

]
+µij

(∑
k 6=i

(yjk + εjk)− yij + Λj
)
. (6)

Optimising this function gives rise to the messages:

Aij←max

[
0,
yij −

∑
k 6=i(yjk −

Ajk+φ′jk
Bjk+φ′′

jk
)− Λj∑

k 6=i
1

Bjk+φ′′
jk

]
, (7)

Bij←
Θ(Aij − ε)∑
k 6=i

1
Bjk+φ′′

jk

, (8)

where ε represents a small positive value, and a message to
node i indicating its new current according to the adjustments
εij is written as:

yij ←
Bijyij −Aij −Bjiyji +Aji − φ′ij + φ′′ijyij

Bij +Bji + φ′′ij
. (9)

The algorithm chooses a node j and ancestor i at random,
it uses the messages from descendant nodes k, and according
to these sends the values of Aij , Bij and yij to node i. This is
done iteratively for all nodes in the network until convergence,
by which time the results of the edges yij give an approximate
optimal solution. Figure 2 shows an example of this resource
allocation on a small network.

B. Message passing for optimal dispatch in a power grid

In this paper we assume a simple network. Power stations,
sub-stations and consumers (this paper concentrates on the
transmission and not the distribution stage of a power grid so
by a consumer we mean the sub-station leading to a group
of consumers) are represented as nodes with a starting value

Fig. 2. An example of the algorithm applied to a 10-Node network. Left:
The original capacities Λ at each node. Centre: the calculated values of the
resource passed along each edge y. Right: The nodes’ capacities after receiving
or giving resource, all non-negative.

Λj indicating the power at the node (the value of Λj is
positive for generators and negative for consumers). Power lines
are represented by edges and any two nodes connected by a
power line are described as neighbours. Excess at an uncertain
node indicates the remaining reserve power at a node (we
assume that satisfying all nodes is more important than unused
capacity [14]).

Here, we extend the MP algorithm [1] to include volatile
nodes by minimising the expected VFE considering the prob-
ability distribution that represents the volatility of each node.
Nodes with a definite power generation or consumption will
have a dirac delta distribution at Λ̄j , and any uncertain nodes
will be assumed to have a Gaussian distribution with mean,
Λ̄j , and variance, σ2

j . Carrying out averages with respect to
the distributions is non trivial and we will consider two cases:
annealed and quenched averaging.

1) Annealed approximation: Calculating the expected free
energy is difficult as 〈F 〉 = −T 〈lnZ〉 (angled brackets 〈〉
denote an average over the capacity distribution) and averages
over a logarithm are non-trivial. However, averaging over the
partition function first, 〈Z〉 and then taking the logarithm is
easier. This is called annealed approximation, 〈F 〉annealed =
−T ln〈Z〉 and it is a good approximation in many cases.

As the uncertain nodes are now drawn from a Gaussian
distribution which has an infinite tail, the hard constraint that
each node must be non-negative is unsatisfiable, since very low
capacity values are bound to exist in the large system limit.
Instead, we require that the probability of the total resource at
a node being smaller than zero, after the program converges,
should be less than a predetermined value p. This gives a
constraint of:

〈
Θ

[∑
k 6=i

Ajk(yjk + εjk)− yij + Λj

]〉
Λ

= (10)

1

2
erfc

(
−
∑
k 6=iAjk(yjk + εjk) + yij − Λ̄j√

2σ2
j

)
> 1− p,

As the only dependence on Λj in (6) is found in the con-
straint, this is the only place averaging needs to be considered.
The difference these calculations give is in the A messages:



Fig. 3. The excess capacity at a node as a function of the standard deviation,
σ using the annealed approximation (purple), presented jointly with the
probability of the node being unsatisfied (pink). In a 20-node network with
one uncertain consumer with mean Λ̄ = −200 and fraction of unsatisfied
nodes p = 0.01.

Aij ← min

[
0,
yij −

∑
k 6=i(yjk −

Ajk+φ′jk
Bjk+φ′′

jk
)− ζ − Λ̄j∑

k 6=i
1

Bjk+φ′′
jk

]
, (11)

where ζ =
√

2σ2
j erf−1(2p− 1).

Considering a scenario where demand and supply fluctuate,
the MP method will satisfy the problem with probability, 1−p.
It does this by leaving volatile node with extra power in case
it produces less than expected (generators) or uses more than
expected (consumers).

This approximation allows us to determine a confidence
level. It may be helpful for calculating what level of reserve to
set at controllable power stations.

To find the z-value of a Gaussian distribution we use the
equation:

z = Λ̄j + σj
√

2erf−1(2p− 1) (12)

This gives the value on the x-axis that satisfies the distribution
(1 − p)% of the time and proves that the annealed averaging
works as intended, and is effectively equivalent to the changing
the constraint.

Figure 3 shows how the excess (the extra power an uncertain
node receives to protect against fluctuations) given to an uncer-
tain node increases as the standard deviation of the fluctuations
at that node increases.

2) Quenched averaging: Although annealed averaging is a
good approximation it is not exact. Small fluctuations between
samples are amplified due to emerging correlations between
higher terms in the partition function which may lead to very
rare samples dominating the partition function. To carry out
quenched averaging one has to calculate 〈F 〉 = −T 〈lnZ〉.
The same framework as before, e.g. Eq. (4) but consider the
expected value of the vertex free energy with respect to the
capacity fluctuations. We expand the expected VFE with respect
to εjk, using the notation [A<>jk , B

<>
jk ] =

[∂〈FV 〉
∂yjk

, ∂
2〈FV 〉
∂y2
jk

]
for

the corresponding derivatives; note that this has the implicit
assumption that these messages will be sufficient to approxi-
mate the new expected messages. The corresponding optimal

Fig. 4. The amount of excess at a node as standard deviation σ increases
using quenched averaging (purple), with the probability of the node being
unsatisfied (pink). On a 20-node network with one uncertain consumer of mean
Λ̄ = −200.

F ∗ij becomes:

〈F ∗ij〉Λ =
1

2

∑
k 6=i

Ajk
〈µ2
ij〉Λ − (A<>jk + φ′jk)2

B<>jk + φ′′jk
, (13)

when µij is the Lagrange multiplier. To evaluate F ∗ij we need to
find 〈µ2

ij〉. The optimal µij is found, squared, and the average
is taken, resulting in the messages:

A<>ij ←−
1

2

(
erf(x−Λ̄j√

2σj
) + 1

)
(x− Λ̄j) + 2σ2e

−(
x−Λ̄j√

2σ)j
)2

√
2πσ2∑

k 6=iAjk
(

1
B<>jk +φ′′jk

) (14)

where x ≡ yij −
∑
k 6=iAjk(yjk +

A<>jk +φ′jk
B<>jk +φ′′jk

).

B<>ij ←−
1

2
∑
k 6=iAjk

1
B<>jk +φ′′jk

[
erf
(x− Λ̄j√

2σ

)
+ 1

]
, (15)

and with a forwards message as before. At σ → 0 the equations
of A<>ij and B<>ij return to those found in [1] and Eqs. (7) and
(8), validating the results.

Figure 4 shows that after convergence with the quenched
averaging based algorithm, the excess given to the volatile node
is almost zero. This means that the probability of the node
being unsatisfied is very high, which is unacceptable for any
functioning power distribution mechanism.

We speculate that the reasoning behind such a small excess is
that the function we minimise is the expected VFE; it includes
a hard constraint which outputs 0 if the node is unsatisfied,
and 1 if it is. It therefore may be biased towards a small
range of values that dominate the expected VFE due to their
probability of occurrence coupled with a high probabilistic
weight, possibly due to high cumulative transportation costs,
at the expense of unsatisfied nodes with a lower probabilistic
weight.

3) Quenched with soft constraint: To mitigate the weak-
nesses of the quenched averaging-based algorithm we intro-
duced soft constraints into the quenched averaging, similar to
the constraint used in annealed averaging. The reasoning behind
this is to consider uncertainty inherently, but with a constraint
that enforces a higher probability of satisfied nodes. Therefore
we will continue to use the equations from quenched averaging,



Fig. 5. The excess of quenched with soft constraints (purple *) and the
annealed approximation (pink o). On a 20-node network with one uncertain
consumer with mean, Λj = −200 and allowed fraction of unsatisfied nodes
p = 0.01. The inset shows quenched averaging with soft constraints minus
annealed results.

Fig. 6. Excess provided to a volatile consumer node as the generators move
further from the node, increasing the transportation length.

but adjust Λj to Λj +
√

2σ2
j erf−1(2p− 1).

Figure 5 shows that this new method of averaging gives
similar results to the annealed. The inset looks at Quenched
With Soft Constraints (QWSC) excess values minus those
from annealed averaging in order to understand the difference
between the two methods. This shows that as the standard de-
viation σ increases the quenched averaging adds extra capacity
to the node. This is much better as it protects against larger
uncertainties, arguably due to weighting against transportation
cost again.

III. RESULTS

From the results presented it can be seen that with smaller
uncertainties the annealed averaging technique will do, but as
the uncertainties grow a quenched average based technique
ensures that the network has extra security.

Figure 6 shows that the excess given to a volatile node
decreases as the shortest path between generators and con-
sumers increases. This demonstrates that the quenched averag-
ing excess is effected largely by transportation cost and reduces
the costs incurred by moving resource from far off locations
at the expense of providing additional capacity. Future work
will examine how to weight the two objectives more appro-
priately. Using the QWSC algorithm we calculate the effect
of uncertainties on the quadratic transportation cost. Figure 7
considers 5 cases of different fractions of volatile nodes in
the grid, the overall σ value is distributed between. It shows
that the distribution of uncertainty makes a huge difference to
the transportation cost and the importance of having smaller
and more spread out renewable sources throughout the grid

Fig. 7. Transportation cost as the standard deviation σ increases using QWSC
averaging, for when the overall standard deviation σ is distributed between
100%, 75%, 50%, 25% or 2.5% of nodes (in a 40-node network).

Fig. 8. The transportation cost when uncertainties are put on 4 nodes each
with a degree 2,3,4,5,6 and 7, in an 80-node network.

instead of many concentrated in one place. It is known that
a decentralised grid increases its robustness against structural
perturbations [15]. The graph also shows that if all nodes share
the given volatility, this does not give the lowest costs either, of
the cases available, 75% shows the lowest cost. Figure 8 shows
that a higher connectivity of volatile nodes within a power grid
reduces transportation costs too. This may be because a volatile
node is more likely to be connected to a node with the power
it needs, and so the power is sent along less edges, reducing
the cost.

IV. CONCLUSION

Using simple synthetic examples we demonstrate the poten-
tial of MP algorithms to inherently consider volatility within a
grid, and may facilitate higher network robustness.

The MP algorithms presented could be improved by making
the constraint softer in order to quantify the levels of impor-
tance between transportation cost and satisfaction at a given
node, this may make a huge difference in the excess given to
volatile nodes.

Distributive, probabilistic algorithms of this type have a lot
of scope for future work and one could consider issues specific
to power grids such as including resistance or changing from
passing power over edges to adjusting voltages or phase angles
at each node. Also there are other objectives of power grids to
be considered such as:

• Bandwidth - There is a maximum power that power lines
can handle without overheating and tripping. This would



be a constraint that prevents edges from exceeding their
limit [16] jointly with fluctuations.

• Minimising generation costs - The transportation cost
in this paper represents minimising power loss through
heat in the grid. However, electricity producers are more
concerned with the cost of power generation (economic
or environmental). A similar algorithm can be developed
to minimise generation costs for given demand, in a
distributive and computationally efficient manner.

• Minimising load shedding - In the scenario where the
amount of power being produced is insufficient to satisfy
all consumers, we can assign weights to the consumers
reflecting the importance of keeping their power supply
intact. Algorithms of the type used here can be employed
to minimise the damage caused by insufficient power.

We are currently working on developing appropriate algorithms
to address these issues.
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