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Highlights 
We have recently suggested and implemented a new approach to the problem of computing liquids at multiple scales 
in space and time based on the two-phase hydrodynamics analogy. Instead of separating the system into parts using 
boundaries, in the current hybrid approach the liquid is described as a nominally two-phase system consisting of 
both particle and continuum at the same time and using the continuum part of the model as an effective open-
domain boundary condition for atomistic simulations. 
For the current paper, the method has been extended to dynamically tracking the atomistic-resolution features of 
interest which can evolve in the flow. Simulations of two very different biomolecular systems have been performed 
using our hybrid method implemented in the framework of the popular open-source GROMACS software. For both 
examples, it has been shown that the hybrid model can preserve important properties of the molecular part of the 
system. For the problem of peptide diffusion in water, the method has allowed obtaining the value of diffusion 
coefficient which is very close to that one of the reference all-atom simulation. For the virus in water problem, the 
method has preserved the structure of the virus capsid despite a relatively thin layer of molecular water around the 
proteins constituting the capsid, and which is in contrast with the all-atom simulation with the standard periodic 
boundary conditions. 
  



3 

 

Abstract 

A hybrid Molecular Dynamics/ Fluctuating Hydrodynamics framework based on the analogy with two-phase hydrodynamics has 
been extended to dynamically tracking the feature of interest at all-atom resolution. In the model, the hydrodynamics description 
is used as an effective boundary condition to close the molecular dynamics solution without resorting to standard periodic 
boundary conditions.  The approach is implemented in a popular Molecular Dynamics package GROMACS and results for two 
biomolecular systems are reported. A small peptide dialanine and a complete capsid of a virus porcine circovirus 2 in water are 
considered and shown to reproduce the structural and dynamic properties compared to those obtained in theory, purely atomistic 
simulations, and experiment. 
 

Keywords: hybrid atomistic/continuum; multiscale; Molecular Dynamics; Fluctuating Hydrodynamics; dialanine; all-atom whole virus 
simulation; capsid; PCV2 
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1. Introduction 

Recent advances in hydrodynamics theory make it applicable to problems of space and time scales approaching 
molecular level. For example, it has been demonstrated [1,2] that the statistics of the thermal fluctuations of 
hydrodynamic fields can be quantitatively reproduced at the scale when the elementary volume contains only a few 
dozens of atoms. Such results motivated a wide spectrum of research where classical molecular dynamics is 
consistently connected to continuum hydrodynamics. These methods are particularly promising from the technical 
point of view since they have a potential of significant savings in computing resources without substantial loss of 
accuracy in critical regions. Biomolecular systems benefit especially strongly here because biomolecules necessarily 
have critical regions where atomistic representation is needed, while the system overall usually functions in close 
connection to a large medium of water and other molecules. The latter is critically important, but impossible to 
model at atomistic level because of the sheer size of the system. 

In most approaches connecting particle and continuum dynamics either local hydrodynamic properties are 
computed with the help of molecular dynamics [3, 4]; or hydrodynamic fields serve as boundary conditions to 
molecular dynamics part of the system [5]. This ‘mechanistic’ partitioning of the system often creates problems and 
even artefacts in cases where there is no clear scale separation between different parts of the multiscale system in 
space and time. A straightforward example is the problem of particles leaving and entering the molecular dynamics 
zone. Several computational tricks are suggested, for example periodic boundary conditions in the molecular 
dynamics zone with prescribing a required meanflow gradient, however, more consistent, physically justified 
approaches are needed in the case of a strong coupling between the atomistic and the fluid dynamics regions. 

We have recently suggested and implemented a new approach to the problem of computing liquids at multiple 
scales in space and time based on the two-phase hydrodynamics analogy [6].  Instead of separating the system into 
parts using boundaries, we describe the liquid as a nominally two-phase system consisting of both particle and 
continuum at the same time. The contribution of each property (particles or continuum), for example their ‘partial 
volume’, can vary depending on location and time, such as in the limiting cases only one of the descriptions remains. 
The governing equations are formulated as a system of the conservation laws for mass and momentum of the 
particle/continuum ‘mixture’. This allows to solve several problems, for example the above mentioned problem of 
leaving/entering particles that is solved naturally as the particles are allowed to move freely in all parts of the system 
while having impact on the solution only in the regions where their ‘partial volume’ is nonzero, which happens 
without any violation of the governing conservation laws.  

In [7] a one-way coupling implementation of the same hybrid framework, which accounts for the effect of 
molecular dynamics on continuum hydrodynamics without the feedback, was considered and tested as an alternative 
open boundary treatment  in the popular Molecular Dynamics (MD) package GROMACS [8].  In the current paper, 
the former implementation in GROMACS has been extended to dynamically tracking the atomistic-resolution 
features of interest. To illustrate the accuracy and efficiency of the new extended method, two simulations of two 
biomolecular systems from the opposite ends of the spectrum of possibilities are considered: diffusion of a small 
peptide, dialanine, molecule in water for long simulation times and the interaction of the capsid of a complete virus, 
porcine circovirus 2, with water at equilibrium conditions.  

2. The underlying two-way coupling approach and its reduction to a one-way coupling model  

Two representations of liquid are combined in the same framework: 1) standard classical MD description where 
the matter is the collection of point masses interacting with each other through an empirically defined potential and 
2) Landau-Lifshitz Fluctuating Hydrodynamics (LL-FH) continuum, that is the generalisation of Navier-Stokes 
hydrodynamics with stochastic sources added to statistically mimic thermal fluctuations at small scales. A nominally 
two-phase liquid model is considered as a representation of the same chemical substance (Fig. 1). The ‘phases’ are 
immersed into each other as ‘fine grains’, the surface tension effects are irrelevant, and both ‘phases’ simultaneously 
occupy the same control volume. The partial concentrations of the MD ‘phase’ and the LL-FH ‘phase’ are equal to 
s  and 1 s , respectively, where s is a parameter of the model 0  s  1. In general s is a user-defined function of 
space and time which controls how much atomistic information is required in a particular region of the simulation 
domain, Fig. 1. 
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The most general form of the governing equations which are suitable for the continuous and discontinuous 
(particle) part of the hybrid model is integral conservation laws. The integral conservation laws are formulated 
through a state variable coupling method so that the mass of the mixture containing the two ‘phases’ is strictly 
preserved as well as satisfying the second law of Newton so that the change of total momentum of the system is 
equal to the sum of all forces. Notably, an alternative approach would be to formulate the same model in the 
framework of generalised functions where discrete particles are represented as Heaviside functions (e.g. by 
representing atoms as particles of a finite size corresponding to the characteristic width of the interaction potential 
well), their derivatives become Dirac delta functions, and so on, the model derivation is similar to obtaining the 
Navier-Stokes solutions with discontinuous variables [9]. 

Following [7], let us consider a solution domain of volume V0 which is broken down into elementary Eulerian 
cubical cells of volume V. Each cell has 6 faces 6,..,1  and it is filled with the continuum part of the liquid and, 
at the same time, with the MD particles which correspond to the discrete representation of the same chemical 
substance. It is assumed that the continuum part of the nominally two-phase fluid has the same transport velocity as 
that of the mixture. At isothermal condition this nominally two-phase liquid in addition to the macroscopic equation 
of state satisfies the following macroscopic conservation laws. For mass: 
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where Π  and Π~  are the deterministic and stochastic parts of the Reynolds stress tensor in the LL-FH model, ipF  

is the MD force exerted on particle p due to the pair potential interactions, and 
)(u

itJ  is the LL-FH/MD exchange 
term corresponding to the ith momentum component. 
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corresponding counters of particle mass and momentum crossing the cell’s boundaries 1, .., 6.   
The flux terms can be calculated from the particle distributions at each point of the cell boundary either directly or 

approximately. In [6,7], for computing the cell-boundary values an interpolation method is used that is based on the 
particle distributions specified at the centres of adjacent volumes V in a finite-volume framework. 

By summing up the mass equations, (1) and (2), and assuming the conservation fluxes vanish at the domain 
boundaries, it follows from the divergence theorem that the mass conservation law for the mixture is exactly 
satisfied, ( ) ( ),m t t m t   m V . In a similar way, by combining the momentum equations, (3) and (4), it 

can be seen that Newton’s second law, which equates the change of the total momentum m u  to the force applied 

to each control volume,  
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include both conservative and non-conservative forces because of the continuum fluid dynamics involved in the 
hybrid coupling scheme. 

In (1)-(4), )(Jt  and )(u
itJ  are the user defined functions which need to be specified to close the model. Rather 

than specifying them explicitly, for example as constants, these functions are obtained from specifying how fast the 
mixture averaged values   and iu  should equilibrate to the cell averaged parameters from the MD ‘phase’ of the 

simulation, 
 )(,1 tNp

pm  and 
 )(,1 tNp

pipmu . This is achieved by setting the corresponding forcing terms in the mass and 

momentum equations for mixture averages so that the differences from the target cell-averaged particle values are 
gradually diffused. This is similar to the sponge zone boundary conditions for open domain problems in unsteady 
computational fluid dynamics (CFD). The gradual elimination of discrepancy between the cell-averaged properties 
of the continuum and atomistic parts of the solution is essential for excluding abrupt changes which could lead to 
artificial ‘phase separation’, i.e. to smoothly enforce the same density and momentum both ‘phases’ which represent 
the same chemical substance. 
Further details of the full two-way coupling model are available in [6,7] and the current work focuses on a simpler, 
one-way coupling model where the equation for mixture averages are computed separately from the particles. 
Indeed, for macroscopically stationary liquids in the absence of major hydrodynamic gradients and away from solid 
boundaries, thermal fluctuations are the only source of macroscopic fluctuations in liquids described by the Landau-
Lifshitz Fluctuating Hydrodynamics (LL-FH) model. 

Under this approximation, the ‘two-phase mixture’ mass and momentum  are completely decoupled from the MD 
‘phase’, and the corresponding conservation variables,   and iu , are treated as a solution of the LL-FH equations:  
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where the Equation Of State (EOS), )(pp  , and the shear and bulk viscosity coefficients,   and  , of the 

Reynolds stress Π  and its fluctuating component Π~ , 
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are defined in accordance with the MD model, and where the stochastic stress tensor Π~  is described as a random 
Gaussian matrix with zero mean and covariance, given by the formula 

   1
, 1 1 , 2 2 , , , , , , 1 2 1 2( , ) ( , ) 2 2 ( ) ( ).i j k l B i k j l i l j k i j k lΠ t Π t k T D t t                 r r r r   (7) 
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where  , 0    are numerical adjustable parameters, which characterize the ‘diffusion rate’ of the difference 
between the two ‘phases’. The latter parameters define how fast the two ‘phases’ equilibrate to the same 
macroscopic condition, i.e. converge to the same liquid they represent. The characteristic relaxation time associated 
with these parameters  

2 2~ / ~ /diff x x    ,          (9) 

where 3 Vx  is the length scale associated with the control volume V, should be comparable to the time step of 
the particles ~diff MD   so that the relaxation process affects the particle trajectories over their characteristic 
molecular dynamics time scale. 

Detailed derivation of the above equations can be found in [6,7] but the following should be highlighted. 

1. The cell-average fields  , u, 
 )(,1 tNq

q  and 
 )(,1 tNp

qqu , which appear on the right-hand-side of the above 

equations, correspond to the centres of the cell-volumes and need to be evaluated for each location x of MD particle 
p, for example, using a bilinear interpolation in space for the particle location between the cell centre points, and an 
interpolation in time in case the hydrodynamics solution is advanced in time with a bigger time step in comparison 
with the MD solution. 
2. The summations on the right-hand side correspond to the volume average field gradients (first derivatives and 

second derivatives in pd
dt
x

  and ipdu
dt

 equations, respectively), e.g. using the divergence theorem to eliminate one 

derivative and assuming the implementation within a finite-volume framework. 

3. Implementation 

In [7], the one-way coupling model (5-8) was implemented for a spatially variable resolution with the following 
3D shape function  , ,s s x y z  that was centred at the origin of the solution domain: 
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where      2 2 22 2 2r x L y L z L      , L is the computation box size,  , , 0,x y z L , min 0S  , max 1S   
centred at the origin of the molecular dynamics zone (r = 0).  

The former implementation was based on the following algorithm: 
 Define s -function, which specifies the (stationary) space decomposition between the MD and the 

hydrodynamics driven parts of the computational domain, 
 For each particle location, find the corresponding control volume it belongs to, interpolate the 

hydrodynamic fields obtained from solving (5)-(7), compute s -function value at the particle location, 
and integrate equations (8) over one time step, 

 Update positions of all particles and repeat. 
However, the assumption about the stationarity of s -function is not necessary. Indeed, the governing ‘two-phase 

like’ equations (1-4) have been formulated with the space-time variable s -function in mind, which plays the role of 
a phase concentration in the two-phase hydrodynamics analogy model. The derivation of equations (8) neither 
requires the stationarity of s -function. Moreover, in principle, the s -function may not even be singly connected: 
one can specify and dynamically track more than one MD zone of interest. 

Hence, the following modification of the original algorithm is suggested to adaptively track the atomistic region 
of interest: 

 Specify the feature of interest, e.g. the centre of mass of a complex molecule that needs to be treated at 
all-atom resolution. 

 Lock the centre of s -function to this feature so that the coordinates of the origin are updated at each 
time step. 

 For each particle location corresponding to a certain time moment, find the control volume it belongs to, 
interpolate the hydrodynamic fields from (5)-(7) to its location, calculate the space-time variable s -
function at that location, and integrate equations (8) over one time step, then update positions of all 
particles, move the origin of S-function in accordance with the kinematics of the feature of interest, and 
repeat. 

 
The current one-way coupling model with locking the origin of s -function to the centre of the MD region of 

interest has been implemented in the open-source package GROMACS. GROMACS is a versatile C/C++ code 
allowing one to conduct high performance molecular dynamics simulations, that is to solve the Newtonian equations 
of motion for systems of up to several millions of particles. Our coupled MD/LL-FH model implementation consists 
of two general parts: the MD solver (provided by GROMACS) and the LL-FH solver (standalone C function). The 
Fluctuating Hydrodynamics equations are solved on a Eulerian uniform orthogonal grid using a conservative low-
dissipative finite-difference scheme developed in [10].  The MD solver is based on the velocity Verlet scheme that 
allows one to easily include additional forcing terms in the equations of motion for the coordinate and velocity of 
each particle at each time step in accordance with (8). The additional forcing terms correspond to the fields obtained 
from the LL-FH solution defined on the Eulerian grid with spacing defined in accordance with the control volume 
size. In order to obtain the LL-FH field values for particle locations between the grid points a linear interpolation is 
used. The implementation supports GROMACS intrinsic parallelism meaning that the simulation with the hybrid 
MD/LL-FH model can be performed using CUDA, MPI or GROMACS Thread MPI communication protocols. 

3.1. Dialanine simulations 

Dialanine (L-alanyl-L-alanine) is the smallest protein consisting of only two aminoacid residues. It is a workhorse 
for biomolecular research because of its simplicity and ease of analysis. In its zwitterionic form the opposite ends of 
the peptide are charged that makes them strongly interact with the surrounding water. The interaction is realised 
through hydrogen bonding to water molecules, therefore, an explicit atom representation of water in the vicinity of 
the peptide molecule is critical. At the same time, many water layers around the peptide molecule are involved in 
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this interaction, therefore, a correct coupling to the bulk of the liquid is necessary. The dynamics of the biomolecule 
cannot be modelled correctly in isolation from the relatively large volume of water. 

The peptide diffusion in water was simulated in accordance with the hybrid model following [7]. The 
GROMOS96 53a6 force field [11] was used for the peptide and the SPC/E model was used for water. The conditions 
for molecular dynamics calculation were the following: T = 298 K (maintained by the Nose-Hoover thermostat with 
time constant 0.5 ps), ρ = 993.3 g/cm3, the time step was 1 fs, the cut-off length of reaction field electrostatics was 
1.0 nm, the dielectric constant was 78, and the van der Waals cut-off length was 1.0 nm. The entire computational 
domain including the hydrodynamic region corresponded to a cube with the edge length of 7.2 nm (~12 thousands 
water molecules) with periodic boundary conditions for solving (5)-(8). The location of the pure MD and LL-FH 
zones are shown in Fig. 2. 

In order to investigate the influence of the hydrodynamic region (s > 0) on the pure atomistic region (s = 0), the 
translational diffusion coefficient D was calculated for the peptide molecule. The result was compared with the 
reference solution obtained from the all-atom simulation that conducted in the same domain with the standard 
periodic boundary conditions. For calculating D, the Einstein relation was used    2 6MSD t r t A Dt    , 

where A is an arbitrary constant and MSD is mean-square deviation. The formula is valid in the limit of large 
statistical sampling that corresponds to long times t. 

In our previous work [7]  the method with a stationary s-function considered with the origin fixed to the centre of 
computational domain, which corresponded to the initial location of the peptide molecule (r = 0). For the stationary 
function (10), as the peptide drifts away from the domain centre, only a relatively short part of its trajectory lies 
inside the ‘useful’ pure atomistic region, which resulted in relatively short time of the signal available for post-
processing. To compensate for the short simulations times of the hybrid model, sophisticated post-processing of 
molecular trajectories was necessary, which inevitably reduced the accuracy of the final result in [7].  In the current 
work, the centre of the shape function s = s(x, y, z, t) was linked to the peptide’s centre of mass so that the peptide 
molecule remained inside the atomistic region at all times. This has allowed us to increase the simulation times by an 
order of magnitude and, thus, directly calculate the trajectories of the peptide without any intermediate assumptions. 
In turn, this resulted in obtaining an estimate of the diffusion coefficient of peptide in water much less contaminated 
by the statistical post-processing. 

3.2. Whole virus simulation 

Porcine circovirus type 2 (PCV2) has been linked to various diseases in pigs including postweaning 
multisystemic wasting syndrome (PMWS) and porcine dermatitis and nephropathy syndrome (PDNS), collectively 
named as porcine circovirus-associated disease (PCVADs), causing significant economic problems in swine 
industry worldwide [12, 13, 14]. As a member of the family Circoviridae, genus Circovirus, PCV2 has small 
nonenveloped icosahedral virus shell with a single-stranded circular DNA genome inside. The genome contains two 
major open-reading frames (ORFs), where ORF1 encodes the replicase proteins (Rep, Rep’) and ORF2 encodes the 
capsid protein (Cap) [12, 15, 16].  The capsid protein can spontaneously assemble into empty PCV2-like particles. 
Empty capsids with morphology similar to PCV2 virus were detected experimentally [16, 17]. 

The authors are not familiar with any previous simulation of PVC2 virus at all-atom resolution, which will be 
considered in the present work, but the topic of all-atom simulation of viruses has attracted a notable attention in the 
literature. One of the key questions addressed in these simulations is the stability of the virus capsid in solution. For 
example, previous publications on all-atom simulation of the satellite tobacco mosaic virus [18] reported that after 
10 ns of simulation the empty capsid was deformed. The simulated system had 932500 atoms which included an 
empty capsid of the virus (without RNA) immersed in water, where the capsid of the virus alone was around 132000 
atoms. The authors argued that the collapse of the virus could be caused by the absence of RNA. All-atom 
simulation was also used for studying the capsid of the satellite tobacco necrosis virus [19], where similar changes 
in the capsid were connected to the lack of the calcium ions. In this case the system consisted of roughly 1 200 000 
atoms.  

The importance of having a large enough computational domain in the case of all-atom virus simulation was 
confirmed by [20] where capsids of the poliovirus in water solutions were found to be stable unlike in the previous 
examples. The simulation included 60 sphingosine molecules,1 884 218 water molecules, 5310 sodium ions, 136 
potassium ions, and 5206 chloride ions. The total number of atoms considered in that simulation was 6 480 236. 
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For the current publication, an isolated circovirus capsid placed in a large water bath under normal temperature and 
pressure conditions is considered. Under such conditions, in accordance with the experimental observations [16,17], 
the virus structure is known to remain stable. Detailed crystallographic structure of the protein subunit of the capsid 
has been reported [21] with atomistic resolution (PDB entry 3R0R). For the current modelling, the structure of the 
virus capsid reported in the latter experiment is used for building the initial structure of the atomistic virus model 
without considering the DNA inside (Fig. 6). When immersed in water, the shape of the virus will self-adjust to 
correspond to the minimum free energy of the entire system and then the adjusted capsid shape should be further 
preserved in the simulation as it is observed in the experiment. Therefore, for atomistic modelling, any discrepancy 
of the solution from the initial state could be attributed to inaccuracies of the numerical boundary conditions which 
are imposed in the truncated computational domain to approximate the infinite water bath effects. For the same size 
of the computational domain, which contains the virus capsid surrounded by water, two boundary treatments were 
applied in the current study. One is the standard periodic boundary condition for the all-atom simulation and the 
other corresponds to the hybrid LL-FH/MD model (8).  

The capsid has the diameter of ~18-20 nm and consists of 126 180 atoms which was immersed in the cubic cell 
with water with the edge length of 26.68 nm. For the LL-FH/MD model, the pure MD region was linked to the 
centre of mass of the capsid which could freely flow inside the computational domain, similar to the dialanine 
simulations. The internal MD region of 22.68 nm diameter also included a layer of water molecules that interacted 
with the capsid. The total number of atoms in the MD zone was approximately 590 000, which corresponded to the 
total of 1 837 905 particles in the entire computational domain including in the intermediate LL-FH/MD zone and 
the FH region (Fig. 3). 

 
All MD calculations were performed with GROMOS96 53a6 force field [11], SPC water model. Hybrid LL-

FH/MD simulations were performed with the Nose-Hoover thermostat (T = 300 K), reaction field electrostatics with 
cut-off length 1.0 nm and dielectric constant 78, van der Waals cut-off length 1.0 nm. The MD time step was 1 fs 
while the time step for the FH solver was 10 times larger (10 fs). The total simulation time was ~2 ns (220 000 MD 
time steps per day on 256 MPI cores).  

For all-atom simulations, the same atomistic virus model inside the same cell was considered but with explicit 
atomistic modelling of all surrounding water and periodic boundary conditions applied at the cell boundaries. The 
total number of atoms in the all-atom model was equal to the number of particles in the LL-FH/MD model 
(1837905).  

The parameters of the MD simulation are summarised in table 1 
 
The molecular dynamics simulations were performed at constant volume using vdwtype equal to cut-off, Particle-

Mesh Ewald electrostatics, v-rescale thermostat, and Verlet cutoff-scheme. For all-atom simulation, periodic 
boundary conditions in all 3 directions are used. It was made sure that the distance between the capsid and its 
periodic image is large enough in accordance with [22] who suggest to use at least 2 nm of water layers for making 
the effective protein-protein interaction negligible.  

In preparing the initial conditions, after energy minimization, the MD calculation was carried out with position 
restraints of the capsid for the same MD parameters as used in the production run (table 1).  After 1 ns of simulation 
position restraints were removed and the equilibration run was conducted until the energy of the system reached a 
constant value. 

4. Results 

4.1. Dialanine diffusion in water 

Before calculating the diffusion coefficient, the hybrid model of the dialanine in water has been checked on the 
preservation of correct mass and momentum fluctuations inside the pure molecular dynamics zone s=0. This test 
was essential to confirm that atoms corresponding to the volume locked to the moving centre of mass of the peptide 
has the correct statistics in accordance to the theory for pure water at equilibrium conditions (neglecting the effect of 
the peptide on the relatively large water volume inside the sphere). It can be recalled at this point that it is only the 
combined mixture fluctuations which are automatically preserved in the current one-way coupling model and the 
solution representing the MD particles needs to be checked a posteriori. Notably, the necessity of an a-posteriori 
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performance analysis for the current LL-FH/MD technique is similar to what is typical of other numerical open-
boundary treatments in the modelling literature. 

Fig. 4 show histograms of the computed probability density functions of the fluctuations of mass, 
T

Np
pp

cV

um

00

,1
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  inside the moving MD sphere with the peptide, where 0  is the mean water 

density, 0V   is the volume of the MD zone, Tc  is the isothermal sound speed in water, pp um ,   are the mass and x-
velocity component of particle p. 

Theoretical Gaussian distributions of the mass and momentum corresponding to the prescribed temperature, 
volume, and speed of sound are plotted in the same graphs for comparison.  
 

The theoretical distributions correspond to the following functions [1]: 
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where  А is a calibration constant,  σ is dispersion which is related to standard deviation (STD) so that 
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For the peptide diffusion in water, the length of the hybrid model simulation was 1 ns. In total, 50 runs were 
carried out starting from different initial configurations for better statistical averaging. For each run, the mean square 
deviation MSD(t) was calculated and the final result was obtained by averaging all 50 trajectories. Fig. 5 shows the 
comparison of the resulting MSD(t) trajectory obtained with the hybrid method where the reference MD result is 
also included. 

To calculate the diffusion coefficient D, the approximately linear interval between 100 and 400 ps was used. To 
estimate the uncertainty of the value obtained, the original interval of 300 ps was broken down into several regions 
of 100 ps each with the 50 ps overlap. Each interval produced its own diffusion coefficient Di in accordance with the 
local gradient and one half of the difference between the maximum and the minimum Di was taken to be the 
uncertainty ΔD. The final value of the diffusion coefficient D is then found to be (0.83±0.08)·10–5 cm2/s which is in 
a very good agreement with the reference value from the pure MD simulation, 0.86·10–5 cm2/s. 

It can be noticed that unlike for the MD simulation, the hybrid solution experiences a step change of trajectory in 
the initial time moment. This step change is most likely associated with the stronger initial transients in the hybrid 
simulation case due to starting the calculation from the initial conditions which are more difficult to make entirely 
consistent for the hybrid model in comparison with the all-atom simulation.  

4.2. Porcine circovirus in water 

In comparison with the LL-FH/MD model (Fig. 6,8), the all-atom computation in the domain of the same size 
with periodic boundary conditions gives a qualitatively different answer: the virus capsid collapses after 
approximately 1 ns of simulation time (Fig. 7). We attribute this to the artefact of the standard periodic boundary 
conditions in the all-atom simulation. 

To assess the preservation of the virus capsid shape qualitatively, the root mean square deviation (RMSD) of the 
protein atoms in comparison with the initial structure is computed in each case: for the all-atom simulation and for 
the hybrid LL-FH/MD approach. Fig.9a shows that the RMSD of the backbone atoms of the proteins in the case of 
pure MD simulations keeps increasing, which indicates that the system is not stabilised. In the case of LL-FH 
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(fig.9b), calculations of the RMSD values asymptotes to a constant value after ~60 ps. This residual RMSD value is 
about 0.4nm which small enough to suggest that the virus structure is stable in accordance with the literature [24] 
and [25] who find that the RMSD values of around 0.3 nm are acceptable for stability of large proteins. 

Interestingly, the collapse of the virus capsid is observed in pure MD simulation even when the simulation box is 
increased to contain about 4 000 000 atoms, that is much more water molecules surround the virus. On the contrary, 
for the LL-FH/MD model, a twice larger computational domain , corresponding to a twice larger size of the pure 
MD zone (approximately 1 180 000 atoms) and effectively bringing the ‘hybrid boundary’ away from the virus 
located in the centre of the pure MD zone, produced correct symmetric structure very similar to the experimental. 
The result of this verification test was that the shape of the virus remained virtually unchanged regardless of the size 
of computational domain used. Notably, RMSD of the capsid’s backbone atoms were 0.4 nm for smaller 
computational domain and 0.5 nm for the larger one, which demonstrates essentially unchanged structure compared 
to the crystallographic experimental data. 

The above results suggest that in order to preserve the virus in an all-atom simulation with the standard periodic 
boundary conditions the size of the computational domain, hence, the number of water atoms and the associated 
computational cost should be further increased. The introduction of the LL-FH/MD model, in turn, allows 
performing simulations of the problem in the same reasonably small computational box without notable numerical 
artifacts.  

Moreover, since the calculation of MD forces is turned off inside the FH region of the LL-FH/MD model it 
speeds up the simulation by several times (depending on the MD/FH volume ratio) in comparison with the all-atom 
simulation for the same computational box size. For example, in the current simulation the FH region contains 
approximately 1/2 part of the total number of particles in the box. Assuming that the MD potential calculation is the 
most computationally expensive part of the numerical algorithm (MD force estimation takes up to 90% of all 
computational time per each time iteration), one obtains a factor of two computational speed-up when calculating 
the MD forces only for the particles inside the pure MD zone and the intermediate LL-FH/MD region. The benefits 
of hybrid approach should become even more pronounced in comparison with the all-atom simulation for larger 
hydrodynamic (FH) regions of the computational domain. 

5. Conclusions 

The hybrid LL-FH/MD method [6,7] has been extended to dynamically tracking the atomistic-resolution features 
of interest which can evolve in the flow. Simulations of two very different biomolecular systems have been 
performed: the peptide diffusion in water and interaction of a circovirus capsid with water. It has been shown that 
the hybrid model can preserve important properties of the molecular part of the system. For the problem of peptide 
diffusion in water, the fluctuations of the mass and momentum of the pure molecular dynamics zone surrounding the 
peptide were found in an excellent agreement with the theory. The resulting diffusion coefficient from the hybrid 
solution was found in a very good agreement with the reference all atom simulation. For the simulation of a capsid 
of virus porcine circovirus 2 in water, in comparison with the all-atom simulations, the current hybrid method 
preserves the structure of the virus and leads to the root mean square deviation (RMSD) of the backbone atom 
structure which asymptotes to a constant value. This constant value is small enough to suggest the structure stability 
and it remains reasonably insensitive to the size of the computational domain in case of the hybrid method. This is in 
contrast with the all-atom simulation with the standard periodic boundary conditions which can neither produce a 
constant RMSD, nor preserve stability of the virus capsid even for an increased size of the computational domain. 

Further development of the current hybrid method will include its extensions to the two-way coupling algorithms 
in 3D to include the feedback from the molecular dynamics on hydrodynamics. Additional developments will 
involve extension of the current hybrid approach, which uses constant integration volumes for hydrodynamics and 
constant time steps for MD particles regardless of the value of s-parameter, which effectively plays the role of the 
‘coarse-graining’ (MD to LL-FH) scale, to multi-space-time stepping algorithms such as TARDIS [25] in order to 
further increase the computational efficiency. 
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Figure Captions 

Fig. 1. A schematic representation of the hybrid simulation framework; because of the shape of the s function (bottom) purely MD particles on 
the right are gradually transformed into passive traces that follow the hydrodynamics flows on the left. 

Fig. 2. Dialanine in hybrid MD/LL-FH water; the color of tracers gradually changes from blue (LL-FH region) through white (mixed MD/LL-FH 
region) to red (pure MD region). 

Fig. 3.  PCV2 capsid in hybrid LL-FH/MD water; the capsid is inside the pure MD region (white) that gradually changes through the intermediate 
LL-FH/MD region (grey) to the FH region (blue); the small cells have the size of 1 nm that approximately corresponds to the FH cell size. 

Fig.4. Probability Density Function (PDF) distribution for mass (a) and x- component of the momentum (b); theoretical distributions in each case 
are shown as solid black line. 

Fig. 5. The computed MSD(t) function for the peptide-in-water diffusion problem for the hybrid LL-FH/MD simulation (solid line) and in pure 
MD simulation (dashed line). 

Fig. 6. PCV2 capsid initial configuration from the experimental X-ray data. 

Fig. 7. PCV2 capsid is unstable in pure MD. 

Fig. 8. PCV2 capsid is stable for the hybrid LL-FH/MD simulation: A is initial virus shape after the equilibration corresponding to the 
experimental structure; B is the simulated structure from hybrid LL-FH/MD; C is the comparison of A and B (blue - simulation, red – initial virus 
structure after the equilibration). 

Fig.9. Running averages of the root mean square deviation (RMSD) of backbone atoms from their initial structure for pure MD calculation (a) 
and the hybrid LL-FH/MD simulation (b). 
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Tables 
Parameter Value Units 

L 26.68 nm 
t 2000 ps 
Δt 0.002 ps 
 τ 0.1 ps 
 T 300 K 

Rvdw 1.0 nm 
Rcoul 1.0 nm 

Table 1. Parameters of the MD simulations: L is the size of the cubic box, t is running time, Δt is the time step for 
integration, τ defines time constant for temperature coupling and T is the reference temperature for temperature 
coupling, Rvdw and Rcoul are cut-off distances (Lennard-Jones and Particle-Mesh Ewald electrostatics for Coulomb 
respectively).  




