
 

 

On the Theory of the Modulation Instability in Optical Fiber and 
Laser Amplifiers 

 

* Alexander M. Rubenchik,1 Sergei K. Turitsyn,2and Michail P. Fedoruk3, 4 
1 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 
2Photonics Research Group, Aston University, Birmingham, B4 7ET, UK 

3 Institute of Computational Technologies, Novosibirsk 630090 Russia 
4  Novosibirsk State University, Novosibirsk 630090 Russia 

*Corresponding author: rubenchik1@llnl.gov 

Abstract 
The modulation instability (MI) in optical fiber amplifiers and lasers with anomalous dispersion leads to CW beam 
breakup and the growth of multiple pulses. This can be both a detrimental effect, limiting the performance of 
amplifiers, and also an underlying physical mechanism in the operation of MI-based devices. Here we revisit the 
analytical theory of MI in fiber optical amplifiers. The results of the exact theory are compared with the previously 
used adiabatic approximation model, and the range of applicability of the latter is determined. The same technique is 
applicable to the study of spatial MI in solid state laser amplifiers and MI in non-uniform media. 
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Modulation instability (MI) is a fundamental nonlinear effect [1-3] that manifest itself in optics, for 
example, as the spontaneous breakup of a continuous wave (CW) beam with sufficiently high power. In optical 
fibers, MI occurs as a result of the interplay between the effects of the anomalous group-velocity dispersion (GVD) 
and self-phase modulation. The spatial modulation instability of stationary CW propagated in nonlinear material 
produces wave transversal modulations and filamentation. Usually, MI is a detrimental effect that degrades the beam 
quality. However, MI can also be exploited in a constructive way, for instance, as a technique to generate an optical 
pulse train or as a passive mode-locking mechanism in fiber lasers [4-10]. In this context, MI is a passive nonlinear 
effect that has economic advantage over schemes using ultrafast modulators.  An important feature of this technique 
is that the generation of continuous streams of short-pulses via MI can be realized at high repetition rates. As a 
nonlinear fiber effect sensitive to dispersion, MI is also very attractive for various measurement techniques [11, 12]. 
Recent progress in micro-structured optical fibers offers new opportunities for the control of dispersive properties 
and, thus, to new potential applications of MI across a broad spectral range. 

The growth rate of the instability and of the most unstable scale (temporalor spatial) are determined by the 
field amplitude. Here we consider MI in amplifiers, where the intensity continuously increases, changing the 
instability growth and modulation scale. The usual way to study this problem is to assume that, locally, we have MI 
of a constant field amplitude which adiabatically changes with propagation (adiabatic approximation [3, 15]), but the 
accuracy of this approximation is not clear. Fortunately, the problem can be solved analytically [13, 15, 16, 17]. 
Below we consider the exact solution and compare it with the results of adiabatic approximation. 

Over a wide range of physical parameters, the propagation of the optical field down a fiber amplifier at 
leading order is described by the nonlinear Schrödinger equation (NLSE) with gain terms:  
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Here 2β  is the group velocity dispersion. The nonlinear parameter is )/(2 02 effAn λπγ = where
 0λ  is the 

operational wavelength, 2n is the nonlinear refractive index, and effA is the effective area of the fiber. Finally, 0g is 
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the small signal gain of the amplifier. The parameter 2T  characterizes the gain bandwidth of an amplifier (or the 
effect of external filtering). We consider here an optical field propagating from z = 0 to z = L. Consider the 
modulation instability of the CW field:  

Ψ(z, t) = ( P0 + a + ib) × exp[g0z
2

+ iP0 γ(z')dz']∫ , 

where ]exp[)0()( 0 zgz γγ = . A perturbation to the power evolution can then be found as:  
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Assuming 0, Pba << and expressing the fields ba, through the corresponding Fourier modes 

]exp[, tiba ωωω −∝  (for notational simplicity, we henceforth omit the indexω ) yields the standard linear 
evolution equations (4) for the spectral modes of perturbations with initial conditions appropriate to the Cauchy 
problem. 

Assuming 0, 2 == Tconstγ , ]exp[ zika z∝  we obtain the standard MI relation [1]:       
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with kz increasing for small values of ω, reaching its maximum at 20
2
max /2 βγω P−= , and approaching zero at 

20
2
0 /4 βγω P−= . In amplifiers, however, where the field power grows as zgePzP 0

0)( = , the most unstable 
perturbation frequency increases during propagation due to the power exponential growth. To estimate the growth 
due to MI in an amplifying medium, one can use the expression for the uniform MI, but replace constant power with 
a growing power, zgePP 0

00 → . This corresponds to the so-called adiabatic approximation (see e.g. [3, 15]).  

Equation (2) can be solved analytically. Introducing ,
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the equations for a(z) and b(z) take the form:  
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The solution to (4) can be obtained in terms of the Bessel functions )(xIiμ and )(xKiμ  (compare to approaches 
used in [16] in context of short-scale self-focusing and in [17] for analysis of modulation instability in lossy fibers): 
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Here 

,)]()0()()0([ ' sz
ii eKbKaA −+−= ημηη μμ ,)]()0()()0([ ' sz

ii eIbIaB −−= ημηη μμ ,2/1 0 AeC zg−−= ημ  

.2/1 0 BeD zg−=ημ   

The solutions (5) are functions of the real and imaginary parts of the initial perturbations and three dimensionless 
parameters: .,,0 ημzg  The dependence of the solution on nonzero bandwidth s is trivial, and later we mostly 
consider s = 0. 

The nonlinear Schrödinger equation (NLSE) governs the propagation of a high-power beam through an 
amplifier medium according to 
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Here 0k is the propagation vector in vacuum; 0n and 2n are the linear and nonlinear refractive indices, respectively; 

and 0g is the amplifier gain. Similar to (1), this has a uniformly growing solution. Consider the following 
perturbation of this solution: 

Ψ(z,r⊥ ) = ( P0 + a + ib) × exp[g0z
2

+ iP0 n2(z')dz']∫   

with a,b∝eik⊥ r⊥ .  For the perturbations a and b we have Eq. (4) with s = 0 and μ = k⊥
2

k0n0g0

;η =
2k⊥ n2P 0

g0 n0

. 

Similar equations can be derived for the evaluation of the instability of an intense wave propagating in a 

non-uniform atmosphere with n2(z) = n2(0)e
−
z
h  [14]. For perturbations a,b∝eik⊥ r⊥  we obtain (4) with g0 = 1/h. 

The initially stable perturbations propagating in an amplifier can eventually become unstable, growing 
ones. The Stürmian theory [18] guarantees for the Sturm–Liouville problem (4) that the solutions (5) are growing 
with z under the condition .2/0zgeημ <  For μη >2/0zge  and 1>>μ  the leading term in the expansion of the 
exact solution reads: 
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In this limit, it is seen that μiK is decaying and μiI  is growing, and the solutions (5) we used in the unstable case 
are similar to the growing and decaying exponents without amplifications. The growth of perturbations in the 

amplifier is super-exponential a∝eηe
g0z

. In the opposite limit .2/0zgeημ > ,
 
both μiK  and μiI  are oscillating. 

In most of the MI studies, it was assumed that the perturbations grow from the thermal level, and that to 
become noticeable the initial perturbations must grow by a few orders of magnitude. This means that in (5) only the 
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terms with the growing function μiI  must be taken into account. The power growth of the initial perturbations can 
be characterized by an increment factor (similar to the homogeneous case, making comparison more convenient) 

defined as: [ ] ;,)0(/)(ln2 ημ <=Γ aLa ].ln[1,)],(/)(ln[2 2
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Here we assume .0*)(),0( ≠zaa  For large )0(/)( aLa , Γ is practically independent of boundary conditions. 

 In the adiabatic approximation (AA), we have Γ = 2 Imkz
z*

z

∫ dz  where kz is given by (3) with P0 replaced 

by the local intensity P = P0e
g0z . After integration we have 

LsLgf 2),,,(2 0 −=Γ ημ ,  

with f (μ,η,g0 L) defined as: 
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The second formula means that the growth starts not at the entrance of the amplifier but later, at z=z*. This is a most 
practical case, and later we will focus our attention on it. Formally, AA is applicable when Γ >> 1. It means that the 
expression for the growth rate Γ is accurate only at z >> z*, and by keeping the constants in (8) one is exceeding the 
accuracy of the approximation. 

Comparing (8) with (7), we see that the asymptotic form of the exact solution coincides closely to the 
adiabatic approximation [3,15], but that there are two important differences. First is the presence of the pre-
exponential factor, which can be included as a next expansion term in AA. Also the term -µπ/2 in the exponent of 
the asymptotic (7) is absent in (8). This means that the asymptotic growth, as calculated via (8), will be smaller then 

exact value by the factor e
−
μπ
2 . This is a small effect for small µ but can be important factor for large µ values. The 

accuracy of the approximation at finite z is not clear. To clarify it we plot on Fig.1 the asymptotic value of μiI (x) 
given by (7) (green line) and the result of exact calculations for few values of µ (red line). Also we included the 
standard AA expression [3, 15] (black line) and an improved AA including the pre-exponential factor (blue line). 

 We note the fast convergence of the exact solution and the asymptotic one (7). However, the AA results are 
noticeably different from the exact solution. We can see that for small µ, AA overestimates the exact solution, and 
for large µ, AA overestimates it.  

 These general features are manifested in calculations of integrated growth. It is convenient to plot the 
integrated growth as a function of p. Without amplification the maximum growth rate takes place at p2 = 1/2 and for 
adiabatically growing intensity P the point of maximal growth rate increases as P/2P0. 

In Fig. 2 we plot a comparison of the exact solution with AA results given by (8). We use parameters from 
the paper [3] and plot the integrated growth for a few amplifier lengths. The vertical dotted lines indicate the 
maximum growth rate for the intensity at the amplifier exit. 

We see that the adiabatic approximation can be inaccurate in many real situations. 
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Small p corresponds, for fixed gain, to the small values of µ, and according to Fig.1 AA overestimates the 
growth. For large p and correspondingly large µ, AA underestimates the growth. Improvement of AA by inclusion 
of the pre-exponential factor does not help much. 

In general, the increment factor Γ(μ, p,g0,s,L)  is a multi-parametric function of the parameters 
p,μ,g0,s  and L. Therefore, the existence of the analytical solution provides the useful tool for design analysis, and 

the use of simple AA can produce noticeable errors. For fixed values of other parameters we have to determine the 
maximum value of the increment growthΓ as a function ofω . The s dependence is trivial and later we put s = 0. It 
is convenient to use p as a parameter. In a uniform media (g0L = 0), the most unstable mode corresponds to p2=1/2 

and cutoff at p2 = 1.  In contrast, in the amplifier, the most unstable value of ω  increases during propagation, and 
the value of corresponding to the most unstable mode increases. We see that maximal unstable frequency 
(transversal perturbation wave-number) increases with amplifier length but remains smaller than the values 
corresponds to the final power. For a sufficiently long amplifier, the most unstable modes were stable initially. The 
effect of this sliding of the most unstable frequency with the development of MI in the optical fiber amplifier has a 
direct impact on the operation of MI-based fiber laser and the generation of pulse trains using MI. For instance, in 
fiber lasers where MI triggers passive mode-locking, the instability frequency should be in resonance with the 
resonator frequency and this sliding of the maximum of instability should be taken into account. 

Frequently, MI growth is initiated by finite perturbations. In fiber amplifiers these are the deviations of the 
pulse shape from a flat top. For spatial instability in amplifiers, these can be material defects or misalignments.  

 When perturbations must grow only a few times to be noticeable, the initial conditions become important. 
Initial conditions also become important near the cutoff instability as the growth is not large near such points. From 
(3) one can see that in the linear stage of instability the intensity variations are proportional to the real part of the 
perturbation a, and are determined by the coefficient A in (5). The value of A is related to the amplitude, phase and 
scale of the perturbations in a nontrivial way. The contours of A are presented in Fig.3, where the relative impact of 
the initial phase ( )0b  and amplitude a(0) perturbations on the growing solution are shown. Here 

1)0()0( 22 =+ba and )].0(/)0([tan 1 ab−=φ   
 We see that the values of A for different phases can vary by a factor of 10. This result can be used for the 
optimization of soliton laser design, in that optimization of the initial perturbation can reduce the laser size. For the 
spatial instability we can find the most dangerous type of optical defects producing the beam perturbations. 

The above results indicate the usefulness of the exact solution (5). In a situation when the most unstable 
mode does not grow at the amplifier entrance, (5) must be used to calculate the values of a and b at the moment the 
growth started, which can be different from the initial conditions. 

  In addition, a real system frequently has several elements and amplifiers. Using the analytical result (5) 
we can find the values of a and b after an amplifier and propagate the perturbations through the next optical element. 
Thus we are now able to provide complete modeling of MI through all complex optical systems. The modeling of 
nonlinear propagation in a powerful laser can now be upgraded to the level of modeling of nonlinear effects in 
passive optical systems. 

We have revisited the theory of modulation instability in fiber amplifiers. We have found the complete 
analytical solution of the linear growth. This allows us to find the most unstable mode and to calculate the power 
growth exactly, without restricting considerations to the asymptotically growing mode as in most previous works.  
We have demonstrated that for practical situations the growth of the perturbation is sensitive to the initial 
perturbation and to its phases. In many applications, the initial perturbation fields are different from a plane wave 
and are amplified from some distribution other than noise. Our results indicate how to modulate the signal in order 
to accelerate the breakup into shorter pulses, and thus to optimize the design of the soliton laser. While our results 
are directly relevant to the modulation instability in optical fiber amplifiers and lasers, the underlying theory is quite 
general and has a variety of physical applications beyond fiber optics. 
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Fig.1 Red lines, Re μiI (x), asymptotic value of μiI (x) given by (7); green, AA results; black, improved AA; blue 
for few values of µ for x> µ, µ=0.1, µ=1, and µ=3, respectively. 

 

Fig.2 Integrated gain versus 2p for few amplifiers 
length L. Solid lines – exact solution; dashed – AA;  red 
line – L=80 m; green – 90 m; blue – 100 m.β2=-
20ps2/km , γ=10 1/Wkm.,P0=100mW ,g0=0.3 dB/m 

 
Fig. 3 Contour plot of the coefficient 
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growing solution in the plane ( )φη,  with .1=μ  
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