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A protein microarray hybridisation system has been implemented by employing patterned

hydrophobic thin films on hydrophilic substrates as a means of confinement for aqueous samples.

This approach has the ability to handle, and keep separate, small sample volumes of just a few

microlitres. In addition, the system is more straightforward to use than the existing multi-well

gasket solution. The paper describes the fabrication method and the system is demonstrated for a

model protein microarray assay. VC 2011 American Institute of Physics. [doi:10.1063/1.3626037]

There is currently a broad interest in analytical formats

involving micro-features spotted onto planar surfaces for bi-

ological applications, such as in the study of proteins, DNA,

lipids, and cells.1–5 Such planar systems on microscope

slides are often termed “biochips” or “microarrays” and they

require a reliable means of applying and corralling microlitre

scale liquid samples. Existing systems designed for use with

arrays made on microscope slides typically use a frame of

chambers or wells and a gasket to keep liquid samples sepa-

rated, preventing mixing of hybridisation liquid between sec-

tions of the protein microarray slides, as schematically

illustrated in Fig. 1. Such wells usually require the use of

several tens of microlitres of sample fluid and are prone to

problems related to the nature of the gasket structure. These

include cross-contamination between adjacent liquid pools

caused by gasket leaks, non-uniformity caused by air bub-

bles, evaporation, and issues associated with the liquid me-

niscus present with small sample volumes.

Fig. 2 presents an improved approach for keeping small

volumes of liquid separated using wall-less reaction chambers,

which simply employs surface tension to confine the liquid.

Hence, the gasket shown in Fig. 1 is replaced with a patterned

hydrophobic surface that separates the liquid hybridisation

samples (Fig. 2(a)). The microarray slide is placed on top of

the array of liquid droplets, the separation of the two facing

surfaces being determined using gap-defining spacers (�100

lm thick). The parallel plate structure defined by these spacers

ensures a pre-defined and uniform thickness of liquid across

the protein array, with the shape of the contact areas of the

sample liquid on the protein microarray slide being set by the

hydrophilic pattern on the substrate.

Fig. 3 compares the differences in microarray spot sig-

nal uniformity obtained from gasket confinement and the

wall-less format. The two slides shown were spotted with

BSA (bovine serum albumin) and probed using an anti-BSA

antibody. The slides were processed in parallel with reagents

from the same batch; hence, intensity variations observed

can mainly be attributed to the method of sample application.

Fig. 3(a) reveals some frequently observed non-uniformities

of the average spot fluorescent signal of each square arrays

when using a gasket-based format. These non-uniformities

greatly affect the precision and accuracy of the microarray

analysis. Importantly, effects of this nature usually only

become apparent at the end of the experiment. Even worse,

in cases when a range of concentrations or biological compo-

sitions are used in different wells, these issues may escape

undetected and lead to incorrect conclusions. In comparison,

Fig. 3(b) shows the improved uniformity across the slide

with the wall-less containment system, resulting in a more

uniform spot fluorescent signal (the inter-block coefficient of

variation (CV) is reduced from 29.8% to 8.6%). Even when

the gasket frame technology produces equally uniform

results such as the two middle blocks in Fig. 3(a), the spo-

radic unpredictable nature of the effect introduces uncer-

tainty in the result.

Patterned hydrophobic/hydrophilic surfaces have been

employed in a number of microfluidic applications for liquid

manipulation using surface tension directed capillary

force.6–14 In this work, they have been used to divide liquid

samples in a protein microarray application, which requires

that each droplet in the array is kept separate, i.e., clear

hydrophobic and hydrophilic zones to provide stable reliable

FIG. 1. (Color online) A schematic representation of a micro-array slide

using conventional gasket-based confinement system showing of three aque-

ous liquid samples in separate wells interacting with a microarray slide. (a)

Top view and (b) side view.

a)Author to whom correspondence should be addressed. Electronic mail:

Y.Li@ed.ac.uk.
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“virtual” walls. In this study, Teflon
VR

-AF, CYTOP
TM

, and

Parylene-C
TM

were selected as hydrophobic surface candi-

dates that are biologically and chemically inert.15 Thermally

grown SiO2 on Si provided the hydrophilic substrate.

Figs. 4(a)–4(c) shows the fabrication sequence used to

create patterns on silicon with a high wettability contrast. A

layer of SiO2, which provides the hydrophilic substrate, is

initially thermally grown on silicon, followed by the deposi-

tion of a hydrophobic layer. An adhesion promoter is typi-

cally required before photoresist is coated onto hydrophobic

surfaces such as Teflon-AF and CYTOP
VR

,16 which can

reduce the surface hydrophobicity. For example, the contact

angles (a measure of surface hydrophobicity17) on Teflon-

AF (120�) and CYTOP (114�) were found to reduce to 104�

after surfactant Zonyl
VR

FSN treatment, while a worse degra-

dation is observed with oxygen plasmas. However, high vis-

cosity photoresist Shipley SPRTM 220-3 and 220-7 proved to

be compatible with both Parylene-C
VR

and CYTOP without

compromising hydrophobicity. Standard photolithography

was employed to pattern the resist, which was then used as a

mask while oxygen plasma was used to selectively remove

the hydrophobic coating to expose hydrophilic areas of SiO2.

The resulting surfaces were evaluated for suitability by

observing the contact angles, which were 114� for CYTOP

and 89� for Parylene-C. Fig. 4(d) shows the mask layout of a

hydrophilic pattern on hydrophobic surface, and Fig. 4(e)

shows patterned hydrophilic areas filled with sample dye af-

ter system assembly with the cover-glass on top.

The model microarray assay used to test the concept used

a reverse-phase type-BSA (Roche Diagnostics Ltd.) immobi-

lised on the surface and probed with anti-BSA antibody. In-

house prepared glass slides silanized with 3-(aminopropyl)

triethoxysilane (APTES, Sigma) and also commercial thin

nitrocellulose microarray slides (PATHTMplus, GenTel Bio-

sciences) were spotted using a PiezorrayTM arrayer (Perkin

Elmer) with volumes of 1 nl of 0.2 mg/ml BSA in phosphate

buffer saline (PBS). These were on a 10� 10 grid with a

centre to centre spot spacing of 500 lm and with a pitch of

9 mm between the array blocks. The arrays were blocked with

1% b-lactoglobulin (Sigma) in PBS for 1 h in a slide mailer,

and the slide edges dried on a paper towel and the slides air

dried. Anti-BSA polyclonal whole rabbit serum (Sigma-

Aldrich) at 1:1000 dilutions in PBS was then applied to the

array for 1 h. 7 ll per 10� 10 pad was used for the wall-less

approach and compared with the conventional gasket frame

(ArraySlide, Gel Company), which was filled with 70 ll.

After the first binding reaction, the microarray/patterned sur-

face assembly was flooded with PBST (PBS containing 0.1%

Tween20). The modular nature then allowed the array slide to

be lifted with tweezers, placed in a slide chamber and washed

further with PBST. The patterned chip was also washed in a

separate vessel at the same time. The gasket frames were emp-

tied of probe solution, and the arrays washed in situ with

PBST. All components were then briefly flushed with dry

nitrogen, reassembled, and a solution of AlexaFluor647

FIG. 4. (Color online) Cross-section of the processing steps used to fabri-

cate the wall-less hybridisation chamber array on a silicon wafer: (a) photo-

resist exposure and development, (b) oxygen plasma etching of Parylene-C,

(c) photoresist removal; and the top view of (d) hydrophilic mask patterns,

(e) assembled device with hydrophilic areas filled with sample dye.

FIG. 2. (Color online) A schematic cross-section of (a) protein micro-array

slide separated from the substrate with a hydrophilic surface patterned with

a hydrophobic layer for liquid sample confinement and (b) hydrophobic pat-

terned surface in a “sandwich” with the microarray slide.

FIG. 3. (Color online) Fluorescent scans of two APTES microarray slides

containing identical 10� 10 spot array blocks (500 lm spot-to-spot BSA-

anti-BSA assay) processed using: (a) a gasket frame (70 ll sample per well

requires to be added), which shows a particularly poor example of the varia-

tion of the spot signal that can be observed with such a multi-well microar-

ray and (b) hydrophobic patterned chip with square features (7 ll sample per

“well”), which illustrates improved uniformly.
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labelled anti-rabbit antibody (Invitrogen) applied for 30 min.

Slides were then processed as before, dried, and scanned on a

Perkin Elmer ScanArrayExpress. Fluorescence intensity pro-

files indicated that the good registration between the microar-

rays and the wall-less sample “wells” on the chip ensured the

samples remained separated and confined during sample

application and probing (Figs. 5(a) and 5(b)). Furthermore,

when a similar experiment was carried out to assess cross-

contamination, in which every other well was filled with the

buffer without the anti-BSA antibody in a checkerboard pat-

tern, no cross-contamination was observed for the wall-less

assembly (Fig. 5(c)).

To conclude, we have demonstrated that the use of a

hydrophobically patterned SiO2 surface provides a robust and

simple to use platform for probing a multi-well microarray,

producing either similar or higher quality results from 10 times

smaller sample volumes than conventional gasket systems.

This approach is based on surface patterning and offers design

flexibility. It works well with a commonly used wettable

microarray surfaces, and the fabrication method yields robust

surfaces for exploiting capillary phenomena in microarray

processing devices. The advantages are particularly apparent

in biological microarray applications where sample volumes

are limited and dilution of the probes is undesirable. This tech-

nology can also be applied to a wider range of applications,

such as controlling nucleation, moisture trapping, etc.18–20 The

ability to generate small features in the hydrophilic pattern

perfectly complements arrays of very small lateral dimensions

that are becoming available due to advances in microfabrica-

tion technology.
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FIG. 5. (Color online) (a) A fluorescent image at resolution of 10 lm per

pixel of four microarray blocks of BSA, 100 spots each, 10� 10 grid,

500 lm spot-to-spot, APTES surface processed using 7 ll of anti-BSA se-

rum at 1:1000 per well, with block average spot signals (in relative fluores-

cence units, RFU) and CVs. (b) Fluorescence intensity profiles in the middle

of the probed areas. (c) An example of an image of an array probed with the

use of the patterned chip for cross-contamination.
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