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Abstract

A number of recent studies have investigated the introduction of decoherence in
quantum walks and the resulting transition to classical random walks. Interest-
ingly, it has been shown that algorithmic properties of quantum walks with deco-
herence such as the spreading rate are sometimes better than their purely quantum
counterparts. Not only quantum walks with decoherence provide a generalization
of quantum walks that naturally encompasses both the quantum and classical case,
but they also give rise to new and different probability distribution. The applica-
tion of quantum walks with decoherence to large graphs is limited by the necessity
of evolving a state vector whose size is quadratic in the number of nodes of the
graph, as opposed to the linear state vector of the purely quantum (or classical)
case. In this technical report, we show how to use perturbation theory to reduce
the computational complexity of evolving a continuous-time quantum walk sub-
ject to decoherence. More specifically, given a graph eveodes, we show how

to approximate the eigendecomposition of tifex n? Lindblad super-operator

from the eigendecomposition of thex n graph Hamiltonian.

1 Introduction

Quantum walks on graphs represent the quantum mechanical analogue of classical random
walks [1,[2,3]. Despite being similar in the definition, the dynamics of the two types of walks
can be remarkably different, with quantum walks possessing a number of interesting properties not
exhibited by their classical counterparts. In the classical case, the evolution of the walk is described
by a real-valued probability vector. In the quantum case, the state is characterized by a complex-
valued amplitude vector. An interesting consequence of this is that different paths are naturally
allowed to destructively (constructively) interfere with each other.

Most of the work in the literature has considered pure quantum dynamics[[1, 2,13,14,/5, 6, 7], i.e,
fully coherent quantum walks. However, it has been shown that the introduction of decoherence can
result in some algorithmic properties of the walk, such as the spreading rate, being better than in
the purely quantum case case([8, 9]. Most importantly, quantum walks with decoherence represent
a generalization of quantum walks that encompasses both classical and quantum walks, as well as
new types of walks that result in different probability distributians [9].

Recall that decoherence is the process by which a quantum system is altered by its interaction with
the environment. The result of this process is a transition of the system from quantum to classical.
For example, a quantum walk subject to decoherence transitions to a classical random walk, with
a speed that depends on the decoherence rate. Unfortunately, while in the fully classical and fully
guantum cases the size of the state vectar, iwheren denotes the number of nodes of the graph,

in the decoherent case the size of the state vectof.isThe Hamiltonian operator acting on the
state vector of a unitary quantum walk is represented by>an matrix. With the addition of
decoherence, on the other hand, the evolution is defined by the Lindblad super-operator, which is
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represented by@aZ x n? matrix. This clearly limits the possibility of analysingtge graph structures
using decoherent quantum walks.

In this technical report we propose to use perturbationrthfd, [11] to reduce the computational
complexity of evolving a continuous-time quantum walk ®dbjto decoherence. In Sectigh 2 we
introduce the necessary quantum mechanical backgroun8edtior 8 we review the eigenvalue
perturbation problem and in Sectigh 4 we show how this carpbéea to the problem at hand.

2 Continuous-time Quantum Walks with Decoherence

2.1 Continuous-Time Quantum Walks

The continuous-time quantum walk is the quantum analogduhe continuous-time random
walk [1]. LetG = (V, E) denote an undirected graph withnodes. Ifp(t) € R™ denotes the
state of walk at time, in a continuous-time random walk the state vector evoleesming to the
equationp(t) = e~ Lp(0), where the graph Laplacianis the infinitesimal generator matrix of the
underlying continuous-time Markov process.

Similarly to its classical counterpart, the state spaceéhefdontinuous-time quantum walks is the
vertex set of the graph. The classical state vector is regdlag a vector of complex amplitudes over
V whose squared norm sums to unity, and as such the state gfsieesis not constrained to lie in
a probability space, thus allowing interference to take@la he general state of the walk at time
is a complex linear combination of the basis stdtesi.e.,

(1) = D ou(t) [u), &
ucV
where the amplitudev,(t) € C and |(t)) € C!VI are both complex. Moreover, we have
that «, (t)az (t) gives the probability that at time the walker is at the vertex, and thus

u

Y owey Qu(t)ar(t) = 1anday () (t) € [0,1], forallu € V, ¢t € RT.
The evolution of the walk is governed by the Schrodingeratign

0 .
o () = ~iH [9(0) @

where we denote the time-independent HamiltonialasGenerally speaking, a continuous-time
guantum walk is induced whenever the structure of the graptedlected by the (0,1) pattern of the
Hamiltonian. For example, we could take the adjacency matrthe Laplacian. In the following
we assuméd = L.

Given an initial statdy(0)), solving the Schrodinger equation gives the expressiothefstate

vector at time, _

[U(1)) = e [1(0)). 3
This can be conveniently expressed in terms of the speartalrdposition of the HamiltoniaH =
PADT Qe [th(t)) = @Te " |1(0)), whered denotes the xn matrix® = (¢1|pz]...|¢;|...|on)
with the ordered eigenvectoggs of H as columns and = diag(Ai, Az, ..., Aj, ..., Ap) isthen x n
diagonal matrix with the ordered eigenvalugsf H as elements, and we have made use of the fact
that exp—iLt] = ® T exp—iAt]®.

2.2 Quantum Walks with Decoherence

The density matrix is introduced in quantum mechanics teriles a system whose state is an
ensemble of pure quantum stateg:)), each with probability(i) [12]. The density operator of
such a system is defined as

p= Zp(i) (@) ()] - (4)

For a quantum walk with state vectps(¢)), the corresponding density matrix at tirhés p(t) =
(¥(t) | (t)). Similarly to the Schrodinger equation, the Liouvillervideumann equation describes
how a density operator evolves in time

%p(t) = —i[L, p(t)], (5)
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wherelL is the graph Laplacian arjdl, B] = AB — BA denotes the commutator.

We can add non-unitary decoherence to the system by wriBhg [

0 .

7P (t) = —ilL, p(t)] = po(t) + pPp(t), (6)
wherep is the rate per unit time with which we add decoherence to thtkwandPp(t) =
> Pjp(t)P;r represents the effect of noise p(t), where{P;} is a set of projectors. Intuitively,

the effect of the extra terms is to reduce the off-diagoreheints of(¢), i.e., the coherence terms,
at a ratep per unit time [8], while leaving the diagonal elements ueetiéd. More specifically, let
vec (p(t)) be the vectorization of the density matyik). Then we can write

%Vec(p(t))z —i(L®I+I®—L)+p<ZEW®EW—I®I> vec (p(1)),  (7)

veV

whereE,, is the matrix which is 1 ifv, v) and 0 elsewhere, i.e., the projector on the nede

3 Eigenvalue Perturbation

Let A(t) be an x n complex matrix parametrized blye 7' C R. Further, assume that(t) is
diagonalizable for all values df i.e., there exist twax x n parametric matriceX (¢), Y (¢), and a
diagonaln x n matrix A(¢) such that foralt € T

A)X(t) = X()A({F) 8)
Y(#)A(E) = A@®)Y (). 9)
Without lack of generality, assume
YO)X(t) = I (10)
diag (X()TX (1)) = 1. (11)

We want to reconstrucX (¢), Y (¢), andA(¢) to the first order:

X(t) ~ X+tX’ (12)
Y(t) =~ Y +tY’ (13)
Alt) ~ A+tN, (14)

whereX, X', Y,Y’, A, andA’ are computed at time= 0.
To this end, sincel(t) is diagonalizableX andY” have full rank, so we can write
X'=XB (15)
Y’ =Y, (16)
for some matrice®? andC'.

3.1 Distinct Eigenvalues

In the case where all the eigenvalues are distinct one capuei@nthe eigenvalue and eigenvector
derivatives directly. Differentiating {8), we have

AX + AX' = X'A+ XN a7)
Left-multiplying both sides by and recalling that’ AX = A, we have
YA'X +AB=BA+ N, (18)
from which
diag(A’") = diag(Y A’ X) + diag(AB — BA) = diag(Y A'X), (19)

from which we have the eigenvalue derivatives

N =yl Az, (20)



wherez; andy; are respectively the right and left eigenvectors corredpanto eigenvalue\; of
A(0).

For the Eigenvectors, frori (IL8) we have, fof j

(YA'X)ij+(AB)ij = (BA)i + (A)y (21)
y;rAlfL'j +XNbi; = bijA +0, (22)
from which )
Y Az
by = (23)

Differentiating [11), we obtain
0 = diag (X(®)'X(1)) = diag (X)X + XTX") (24)
= diag(B'X'X + X'XB) = 2Re (diag(X'XB))

so, for allz, we have

> Re ((XTX)ibii) =0, (25)
k

or, extracting the term fok = i, and recalling thatX f X);;=1
Re(b“) = — Z Re ((XTX)Zkka) (26)
ki

As for the imaginary part ob;;, recall that even after the normalization constrdint (h&)¢ is still
a degree of freedom in the choice of the global phase of theneagtorse; which is reflected in an
arbitrariness in the choice dfa(b;;). Here we seim(b;;) = 0.

Note, also, that differentiating _(ILO) we obtain
0=(YH)X(1) =Y'X+YX =CYX +YXB=C+B, (27)
from which we obtain
C=-B. (28)

3.2 Repeated Eigenvalues

In the case of repeated eigenvalues we have an additionaalefifreedom from the choice of the
eigenbasis. Any linear combination of eigenvectors cpowading to the same eigenvalue is still
an eigenvector of the matrix, thus the observed eigenvegtaran indeed be linear combinations
of the limiting eigenvectors ofi(¢) ast — 0, resulting in a discontinuity. This can be solved by
assuming that there is an unknown eigenvector h&sihat is continuous i and expressing it in

terms of the observed eigenvector matkix

X = XT. (29)

Substituting into[(B) and left-multiplying by = X ~! we have
YAXI = XTA (30)
AT = TA, (31)

Hence [l is co-diagonalizable withh. Recall thatA is diagonal, thu§ must be block diagonal with
the blocks corresponding to the repeated values. of

Let \ be one such repeated eigenvalue, repeated with multiplicitWe can partition the eigen-
value/eigenvector matrices as follows:

- A1 _O o Fl 0 o Bll B12
A_<O /\I> F_(O FQ) B_(le B22> (32)

X = (X1 Xa) y:(yl) . (33)



From [I8) we obtain

S/IA/Xll—‘l YlAIXQFQ _ Fl(BllAl _/_XlBll —All) Fl(;\I—Al)Blg (34)
YA XiT, YaA'Xol T3 Boy (M — Ay) Ty, :

Hence, the block-diagonal elemdnt can be obtained by solving the eigenvalue problem
Yo A’ X5 = oA, (35)
where the derivatived’, of the repeated eigenvalugsare the eigenvalues df A’ X,T'. If these
eigenvalues are distinct the matfix is unique up to a multiplicative factor.
If we assume that both the observed and the continuous eigtamg are normalized, i.e.,
diag (X)X (1)) =1  diag(T'X®)'X(@#)T) =1, (36)
it is clear that on non-repeated eigenvalues, the correipgriliagonal element df must have
norm 1. As usual the phase remains arbitrary, but we canpjck 1 without loss of generality.
The equation
HA/XlI‘l = Fl(BllAl — AlBll — All) (37)
is equivalent to[(TI8) on the reduced eigenvalue set and caeduwesively partitioned ifA; still

contains repeated eigenvalues and solved as in the cas@a-oépeated eigenvalues. On the other
hand, the values aB,>, andBy; can be computed from the following equations

ViA'XoTy = Ty(M —A1)Bis (38)
Vo A'X1 Ty = —T3Boy(AM — Ay). (39)

To computeBsy,, we differentiate[(1I7) one more time, settidd’ = X D, we left-multiply by Y’
and we concentrate on the sub-matrix corresponding to peated eigenvalues:

YVQA”XQFQ + 2}/214/1—‘2322 + ;\FQD = FQD;\ + 2F2322A/2 + ’}/QA/Q/. (40)
Recalling thaf, is a solution to the eigenvalue problem](35), we have
BA”XQFQ + 2F2A/2322 = QFQBQQAIQ + ’72A12/ (41)
or
2(BaaAly — AyBas) = T Yo A" XoTg — A, (42)

from which we can extract the off-diagonal elementd3g$:
5 Y2 A" XoT,
2()\;. — )

Note that in the special case where the matt{x) is a linear function of, i.e, A(¢t) = A + tA/,
thenA” = 0 and thug Ba2);; = 0.

As for the non-repeated eigenvalue case, the diagona}pfs computed from the constraint

(B22)ij = (43)

diag (TTX (¢)'X(1)I') =1, (44)
resulting in
Re(bii) = — Y Re (T XTXT)xbs,) (45)
ki

and, without loss of generalifyn(b;;) = 0.

3.3 Hermitian Matrices

If AisHermitian, thenX is unitary andy” = X T. With this in mind, in the distinct eigenvalue case,
we have

o= zlA (46)
ToAr
zl Az
by = ——L (47)
J A — A
bii = 0. (48)

Thus, if alsoA’ is Hermitian,B is skew-symmetric.



4 Application to Quantum Walks with Decoherence

Recall that the evolution of a quantum walk with decoheremqaressed in terms of the density
matrix p is given by EqLT. In order to compute the evolutiorp@f), we analyze the behavior of the
eigenvalues and eigenvectors of

veV

as a function of the decoherence rate

Forp = 0 the eigenvalues odl(p) are all of the form

Tk = (A — Aj), (50)
where), and); are eigenvalues di. The corresponding eigenvectors are of the form
Sk = ¢j @ O, (51)

whereg; is an eigenvector of corresponding td\; and¢,, is an eigenvector correspondingtg.

Note that there is at least one repeated eigenvalug(n, namely0 with multiplicity at leastn. In
fact, foralli = 1,...,n we haver;; = i(A\; — ;) = 0 which is an eigenvalue with eigenvector
&5 = ¢; ® ¢;. In the following we make the simplifying assumption thastis the only case of
repeated eigenvalue, namely that the eigenvalue §aps)\;, in L are all unique forj # k.

Using [20) we can compute the eigenvalue derivativgsfor j # k:

Tkl = fﬁAl@k = (¢; @ dx)" (Z Ep®@FE,, —1I® I) (P; @ ¢r)

veV
= Z(¢?Evv¢7) ® ( zEvv¢k) - 1 = - (1 - Z ¢§v¢iv> ) (52)
veV veV
where the quantity
0k = Y B1ubhe (53)

veV

is the probability of co-observation of the standing wagesand ¢,. This means that the (real)
decay of the mixed eigenvectgy, introduced by the decoherence is proportional to the pritihab
that the two components; and¢,, are not observed on the same node.

For the eigenvector derivative, we compute the mixing prbpo bé.’,? forj # k, 1 # m, and
(4, k) # (I, m). Intuitively, this tells us how much d;;, goes intag;,,

Epl&n (6,0 01)T (Xoey Bov ® Bvy — I 1) (61 @ i)

pm = =
gk Tim — Tjk i()\m—i-/\j—)\l—/\k)
ZUGV(¢?E'UU¢l) &® ((ngvv(bm) _ ZUGV ¢j’u¢lv¢kv¢mv (54)
i(/\m—l-/\j -\ —)\k) i(/\m-l-/\j -\ —)\k).

Hence, the mixing is proportional to the probability of chservation of the standing waves, ¢,
o1, ando,y, .

Forj = k we have repeated eigenvalues, so we need to solve the fojaigensystem:
=l =TA(0), (55)
with = = (&%)

Gk = & A = (95 ©0;)" (Z Ep @ Epy — 1 ® I) (Pr @ bx)

veV

= D b — O (56)

veV



thus we have thaf = O — I whereO is the matrix of co-observations of the standing waves. Itis
easy to show thab is doubly stochastic, in fact

Dok = DY Gd =D (D | =D b =1 (57)
J

j weV veV 7 VeV
ok = DD Gbh =Y b <Z ¢iv> => ¢, =1, (58)
k k veV veV k veV

thus, = has all real negative eigenvalue with the exception of adtleae zero eigenvalue corre-
sponding to the steady state@f

4.1 Computational Complexity

We conclude this technical report with some remarks on tmepedational complexity of the pro-
posed approach. To this end, note that we first need to contipeiteigendecomposition of the
Laplacian matrixZL, which has complexity)(n?), wheren is the number of nodes of the graph.
Similarly, solving the eigensystem of Hg.]55 has comple&ify.®), whereZ is a real-valued sym-
metric matrix and” is orthogonal.

The computation 0B in Eq.[38 requires inverting,, which in our case is the identity matrix, and
a diagonal matrix, i.e(A\I — A;). Similarly, solving Eq[ 3P foiB,; requires inverting A\l — A;)
andrI's. Sincel is orthogonal and block-diagonal, we conclude thats an orthogonal matrix. In
general, note thaB is ann? x n? matrix and therefore the complexity of constructing it idestst
O(n*). In particular, from EJ.54 it follows that the complexity @dmputing the:* elements of3

is O(n®). We should stress, however, that the computation obme:an be easily parallelized.

As a result, we conclude that the complexity of the propoggmt@ach is dominated by th@(n?)
computation of the matri8. This should be contrasted with the cost of directly commuthe
eigendecomposition of the? x n? super-operator(p), which isO(n°). Finally, note that for a
genericp > 0, A(p) is not Hermitian and therefore techniques like singulaugalecomposition
cannot be employed.
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