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Abstract

A number of recent studies have investigated the introduction of decoherence in
quantum walks and the resulting transition to classical random walks. Interest-
ingly, it has been shown that algorithmic properties of quantum walks with deco-
herence such as the spreading rate are sometimes better than their purely quantum
counterparts. Not only quantum walks with decoherence provide a generalization
of quantum walks that naturally encompasses both the quantum and classical case,
but they also give rise to new and different probability distribution. The applica-
tion of quantum walks with decoherence to large graphs is limited by the necessity
of evolving a state vector whose size is quadratic in the number of nodes of the
graph, as opposed to the linear state vector of the purely quantum (or classical)
case. In this technical report, we show how to use perturbation theory to reduce
the computational complexity of evolving a continuous-time quantum walk sub-
ject to decoherence. More specifically, given a graph overn nodes, we show how
to approximate the eigendecomposition of then2 × n2 Lindblad super-operator
from the eigendecomposition of then× n graph Hamiltonian.

1 Introduction

Quantum walks on graphs represent the quantum mechanical analogue of classical random
walks [1, 2, 3]. Despite being similar in the definition, the dynamics of the two types of walks
can be remarkably different, with quantum walks possessing a number of interesting properties not
exhibited by their classical counterparts. In the classical case, the evolution of the walk is described
by a real-valued probability vector. In the quantum case, the state is characterized by a complex-
valued amplitude vector. An interesting consequence of this is that different paths are naturally
allowed to destructively (constructively) interfere with each other.

Most of the work in the literature has considered pure quantum dynamics [1, 2, 3, 4, 5, 6, 7], i.e,
fully coherent quantum walks. However, it has been shown that the introduction of decoherence can
result in some algorithmic properties of the walk, such as the spreading rate, being better than in
the purely quantum case case [8, 9]. Most importantly, quantum walks with decoherence represent
a generalization of quantum walks that encompasses both classical and quantum walks, as well as
new types of walks that result in different probability distributions [9].

Recall that decoherence is the process by which a quantum system is altered by its interaction with
the environment. The result of this process is a transition of the system from quantum to classical.
For example, a quantum walk subject to decoherence transitions to a classical random walk, with
a speed that depends on the decoherence rate. Unfortunately, while in the fully classical and fully
quantum cases the size of the state vector isn, wheren denotes the number of nodes of the graph,
in the decoherent case the size of the state vector isn2. The Hamiltonian operator acting on the
state vector of a unitary quantum walk is represented by an × n matrix. With the addition of
decoherence, on the other hand, the evolution is defined by the Lindblad super-operator, which is
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represented by an2×n2 matrix. This clearly limits the possibility of analysing large graph structures
using decoherent quantum walks.

In this technical report we propose to use perturbation theory [10, 11] to reduce the computational
complexity of evolving a continuous-time quantum walk subject to decoherence. In Section 2 we
introduce the necessary quantum mechanical background. InSection 3 we review the eigenvalue
perturbation problem and in Section 4 we show how this can be applied to the problem at hand.

2 Continuous-time Quantum Walks with Decoherence

2.1 Continuous-Time Quantum Walks

The continuous-time quantum walk is the quantum analogous of the continuous-time random
walk [1]. Let G = (V,E) denote an undirected graph withn nodes. Ifp(t) ∈ Rn denotes the
state of walk at timet, in a continuous-time random walk the state vector evolves according to the
equationp(t) = e−Ltp(0), where the graph LaplacianL is the infinitesimal generator matrix of the
underlying continuous-time Markov process.

Similarly to its classical counterpart, the state space of the continuous-time quantum walks is the
vertex set of the graph. The classical state vector is replaced by a vector of complex amplitudes over
V whose squared norm sums to unity, and as such the state of the system is not constrained to lie in
a probability space, thus allowing interference to take place. The general state of the walk at timet
is a complex linear combination of the basis states|u〉, i.e.,

|ψ(t)〉 =
∑

u∈V

αu(t) |u〉 , (1)

where the amplitudeαu(t) ∈ C and |ψ(t)〉 ∈ C|V | are both complex. Moreover, we have
that αu(t)α

∗
u(t) gives the probability that at timet the walker is at the vertexu, and thus

∑

u∈V αu(t)α
∗
u(t) = 1 andαu(t)α

∗
u(t) ∈ [0, 1], for all u ∈ V , t ∈ R

+.

The evolution of the walk is governed by the Schrödinger equation
∂

∂t
|ψ(t)〉 = −iH |ψ(t)〉 , (2)

where we denote the time-independent Hamiltonian asH . Generally speaking, a continuous-time
quantum walk is induced whenever the structure of the graphsis reflected by the (0,1) pattern of the
Hamiltonian. For example, we could take the adjacency matrix or the Laplacian. In the following
we assumeH = L.

Given an initial state|ψ(0)〉, solving the Schrödinger equation gives the expression ofthe state
vector at timet,

|ψ(t)〉 = e−iLt |ψ(0)〉 . (3)
This can be conveniently expressed in terms of the spectral decomposition of the HamiltonianH =
ΦΛΦ⊤, i.e.,|ψ(t)〉 = Φ⊤e−iΛtΦ |ψ(0)〉, whereΦ denotes then×nmatrixΦ = (φ1|φ2|...|φj |...|φn)
with the ordered eigenvectorsφjs ofH as columns andΛ = diag(λ1, λ2, ..., λj , ..., λn) is then×n
diagonal matrix with the ordered eigenvaluesλj ofH as elements, and we have made use of the fact
that exp[−iLt] = Φ⊤exp[−iΛt]Φ.

2.2 Quantum Walks with Decoherence

The density matrix is introduced in quantum mechanics to describe a system whose state is an
ensemble of pure quantum states|ψ(i)〉, each with probabilityp(i) [12]. The density operator of
such a system is defined as

ρ =
∑

i

p(i) |ψ(i)〉 〈ψ(i)| . (4)

For a quantum walk with state vector|ψ(t)〉, the corresponding density matrix at timet is ρ(t) =
〈ψ(t) |ψ(t)〉. Similarly to the Schrödinger equation, the Liouville-von Neumann equation describes
how a density operator evolves in time

∂

∂t
ρ(t) = −i[L, ρ(t)], (5)
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whereL is the graph Laplacian and[A,B] = AB −BA denotes the commutator.

We can add non-unitary decoherence to the system by writing [8]

∂

∂t
ρ(t) = −i[L, ρ(t)]− pρ(t) + pPρ(t), (6)

wherep is the rate per unit time with which we add decoherence to the walk, andPρ(t) =
∑

j Pjρ(t)P
†
j represents the effect of noise onρ(t), where{Pj} is a set of projectors. Intuitively,

the effect of the extra terms is to reduce the off-diagonal elements ofρ(t), i.e., the coherence terms,
at a ratep per unit time [8], while leaving the diagonal elements unaffected. More specifically, let
vec
(

ρ(t)
)

be the vectorization of the density matrixρ(t). Then we can write

∂

∂t
vec
(

ρ(t)
)

=

[

−i (L⊗ I + I ⊗−L) + p

(

∑

v∈V

Evv ⊗ Evv − I ⊗ I

)]

vec
(

ρ(t)
)

, (7)

whereEvv is the matrix which is 1 in(v, v) and 0 elsewhere, i.e., the projector on the nodev.

3 Eigenvalue Perturbation

Let A(t) be an × n complex matrix parametrized byt ∈ T ⊆ R. Further, assume thatA(t) is
diagonalizable for all values oft, i.e., there exist twon× n parametric matricesX(t), Y (t), and a
diagonaln× n matrixΛ(t) such that for allt ∈ T

A(t)X(t) = X(t)Λ(t) (8)

Y (t)A(t) = Λ(t)Y (t). (9)

Without lack of generality, assume

Y (t)X(t) = I (10)

diag
(

X(t)†X(t)
)

= 1. (11)

We want to reconstructX(t), Y (t), andΛ(t) to the first order:

X(t) ≈ X + tX ′ (12)

Y (t) ≈ Y + tY ′ (13)

Λ(t) ≈ Λ + tΛ′, (14)

whereX ,X ′, Y , Y ′, Λ, andΛ′ are computed at timet = 0.

To this end, sinceA(t) is diagonalizable,X andY have full rank, so we can write

X ′ = XB (15)

Y ′ = CY, (16)

for some matricesB andC.

3.1 Distinct Eigenvalues

In the case where all the eigenvalues are distinct one can compute the eigenvalue and eigenvector
derivatives directly. Differentiating (8), we have

A′X +AX ′ = X ′Λ +XΛ′. (17)

Left-multiplying both sides byY and recalling thatY AX = Λ, we have

Y A′X + ΛB = BΛ + Λ′, (18)

from which
diag(Λ′) = diag(Y A′X) + diag(ΛB −BΛ) = diag(Y A′X), (19)

from which we have the eigenvalue derivatives

λ′i = y
†
iA

′xi, (20)
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wherexi andyi are respectively the right and left eigenvectors corresponding to eigenvalueλi of
A(0).

For the Eigenvectors, from (18) we have, fori 6= j

(Y A′X)ij + (ΛB)ij = (BΛ)ij + (Λ′)ij (21)

y
†
iA

′xj + λibij = bijλj + 0, (22)

from which

bij =
y
†
iA

′xj

λj − λi
. (23)

Differentiating (11), we obtain

0 = diag
(

X(t)†X(t)
)′

= diag
(

(X ′)†X +X†X ′
)

(24)

= diag(B†X†X +X†XB) = 2Re
(

diag(X†XB)
)

so, for alli, we have
∑

k

Re
(

(X†X)ikbki
)

= 0 , (25)

or, extracting the term fork = i, and recalling that(X†X)ii=1

Re(bii) = −
∑

k 6=i

Re
(

(X†X)ikbki
)

(26)

As for the imaginary part ofbii, recall that even after the normalization constraint (11) there is still
a degree of freedom in the choice of the global phase of the eigenvectorsxi which is reflected in an
arbitrariness in the choice ofIm(bii). Here we setIm(bii) = 0.

Note, also, that differentiating (10) we obtain

0 =
(

Y (t)X(t)
)′

= Y ′X + Y X ′ = CY X + Y XB = C +B, (27)

from which we obtain
C = −B. (28)

3.2 Repeated Eigenvalues

In the case of repeated eigenvalues we have an additional degree of freedom from the choice of the
eigenbasis. Any linear combination of eigenvectors corresponding to the same eigenvalue is still
an eigenvector of the matrix, thus the observed eigenvectorsxi can indeed be linear combinations
of the limiting eigenvectors ofA(t) ast → 0, resulting in a discontinuity. This can be solved by
assuming that there is an unknown eigenvector basisX that is continuous int and expressing it in
terms of the observed eigenvector matrixX̂:

X = X̂Γ. (29)

Substituting into (8) and left-multiplying bŷY = X̂−1 we have

Ŷ AX̂Γ = X̂ΓΛ (30)

ΛΓ = ΓΛ, (31)

Hence,Γ is co-diagonalizable withΛ. Recall thatΛ is diagonal, thusΓ must be block diagonal with
the blocks corresponding to the repeated values ofΛ.

Let λ̄ be one such repeated eigenvalue, repeated with multiplicity r. We can partition the eigen-
value/eigenvector matrices as follows:

Λ =

(

Λ1 0

0 λ̄I

)

Γ =

(

Γ1 0

0 Γ2

)

B =

(

B11 B12

B21 B22

)

(32)

X̂ = (X1 X2) Ŷ =

(

Y1
Y2

)

. (33)
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From (18) we obtain
(

Y1A
′X1Γ1 Y1A

′X2Γ2

Y2A
′X1Γ1 Y2A

′X2Γ2

)

=

(

Γ1(B11Λ1 − Λ1B11 − Λ′
1) Γ1(λ̄I − Λ1)B12

−Γ2B21(λ̄I − Λ1) Γ2Λ
′
2

)

. (34)

Hence, the block-diagonal elementΓ2 can be obtained by solving the eigenvalue problem

Y2A
′X2Γ2 = Γ2Λ

′
2, (35)

where the derivativesΛ′
2 of the repeated eigenvaluesλ̄ are the eigenvalues ofY2A′X2Γ2. If these

eigenvalues are distinct the matrixΓ2 is unique up to a multiplicative factor.

If we assume that both the observed and the continuous eigenvectors are normalized, i.e.,

diag
(

X(t)†X(t)
)

= 1 diag
(

Γ†X(t)†X(t)Γ
)

= 1, (36)

it is clear that on non-repeated eigenvalues, the corresponding diagonal element ofΓ must have
norm 1. As usual the phase remains arbitrary, but we can pickγii = 1 without loss of generality.

The equation
Y1A

′X1Γ1 = Γ1(B11Λ1 − Λ1B11 − Λ′
1) (37)

is equivalent to (18) on the reduced eigenvalue set and can berecursively partitioned ifΛ1 still
contains repeated eigenvalues and solved as in the case of non-repeated eigenvalues. On the other
hand, the values ofB12 andB21 can be computed from the following equations

Y1A
′X2Γ2 = Γ1(λ̄I − Λ1)B12 (38)

Y2A
′X1Γ1 = −Γ2B21(λ̄I − Λ1). (39)

To computeB22, we differentiate (17) one more time, settingX ′′ = XD, we left-multiply byY
and we concentrate on the sub-matrix corresponding to the repeated eigenvalues:

Y2A
′′X2Γ2 + 2Y2A

′Γ2B22 + λ̄Γ2D = Γ2Dλ̄+ 2Γ2B22Λ
′
2 + γ2Λ

′′
2 . (40)

Recalling thatΓ2 is a solution to the eigenvalue problem (35), we have

Y2A
′′X2Γ2 + 2Γ2Λ

′
2B22 = 2Γ2B22Λ

′
2 + γ2Λ

′′
2 (41)

or
2(B22Λ

′
2 − Λ′

2B22) = Γ−1
2 Y2A

′′X2Γ2 − Λ′′
2 , (42)

from which we can extract the off-diagonal elements ofB22:

(B22)ij =
Γ−1
2 Y2A

′′X2Γ2

2(λ̄′j − λ̄′i)
. (43)

Note that in the special case where the matrixA(t) is a linear function oft, i.e., A(t) = A + tA′,
thenA′′ = 0 and thus(B22)ij = 0.

As for the non-repeated eigenvalue case, the diagonal ofB22 is computed from the constraint

diag
(

Γ†X(t)†X(t)Γ
)

= 1, (44)

resulting in
Re(bii) = −

∑

k 6=i

Re
(

(Γ†X†XΓ)ikbki
)

(45)

and, without loss of generalityIm(bii) = 0.

3.3 Hermitian Matrices

If A is Hermitian, thenX is unitary andY = X†. With this in mind, in the distinct eigenvalue case,
we have

λ′i = x
†
iA

′xi (46)

bij =
x
†
iA

′xj

λj − λi
(47)

bii = 0. (48)

Thus, if alsoA′ is Hermitian,B is skew-symmetric.
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4 Application to Quantum Walks with Decoherence

Recall that the evolution of a quantum walk with decoherenceexpressed in terms of the density
matrixρ is given by Eq. 7. In order to compute the evolution ofρ(t), we analyze the behavior of the
eigenvalues and eigenvectors of

A(p) = −i (L⊗ I + I ⊗−L) + p

(

∑

v∈V

Evv ⊗ Evv − I ⊗ I

)

= iA+ pA′ (49)

as a function of the decoherence ratep.

Forp = 0 the eigenvalues ofA(p) are all of the form

πjk = i(λk − λj), (50)

whereλk andλj are eigenvalues ofL. The corresponding eigenvectors are of the form

ξjk = φj ⊗ φk, (51)

whereφj is an eigenvector ofL corresponding toλj andφk is an eigenvector corresponding toλk.

Note that there is at least one repeated eigenvalue inA(0), namely0 with multiplicity at leastn. In
fact, for all i = 1, . . . , n we haveπjj = i(λj − λj) = 0 which is an eigenvalue with eigenvector
ξjj = φj ⊗ φj . In the following we make the simplifying assumption that this is the only case of
repeated eigenvalue, namely that the eigenvalue gapsλj − λk in L are all unique forj 6= k.

Using (20) we can compute the eigenvalue derivativesπjk′ for j 6= k:

πjk′ = ξTjkA
′ξjk = (φj ⊗ φk)

T

(

∑

v∈V

Evv ⊗ Evv − I ⊗ I

)

(φj ⊗ φk)

=
∑

v∈V

(φTj Evvφj)⊗ (φTk Evvφk)− 1 = −

(

1−
∑

v∈V

φ2jvφ
2
kv

)

, (52)

where the quantity
ojk =

∑

v∈V

φ2jvφ
2
kv (53)

is the probability of co-observation of the standing wavesφj andφk. This means that the (real)
decay of the mixed eigenvectorξjk introduced by the decoherence is proportional to the probability
that the two componentsφj andφk are not observed on the same node.

For the eigenvector derivative, we compute the mixing proportion blmjk for j 6= k, l 6= m, and
(j, k) 6= (l,m). Intuitively, this tells us how much ofξjk goes intoξ′lm

blmjk =
ξTjkA

′ξlm

πlm − πjk
=

(φj ⊗ φk)
T
(
∑

v∈V Evv ⊗ Evv − I ⊗ I
)

(φl ⊗ φm)

i(λm + λj − λl − λk)

=

∑

v∈V (φ
T
j Evvφl)⊗ (φTkEvvφm)

i(λm + λj − λl − λk)
=

∑

v∈V φjvφlvφkvφmv

i(λm + λj − λl − λk)
. (54)

Hence, the mixing is proportional to the probability of co-observation of the standing wavesφj , φk,
φl, andφm.

For j = k we have repeated eigenvalues, so we need to solve the following eigensystem:

ΞΓ = ΓΛ(0)′, (55)

with Ξ = (ξjk)

ξjk = ξjjA
′ξkk = (φj ⊗ φj)

T

(

∑

v∈V

Evv ⊗ Evv − I ⊗ I

)

(φk ⊗ φk)

=
∑

v∈V

φ2jvφ
2
kv − δjk, (56)
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thus we have thatΞ = O − I whereO is the matrix of co-observations of the standing waves. It is
easy to show thatO is doubly stochastic, in fact

∑

j

ojk =
∑

j

∑

v∈V

φ2jvφ
2
kv =

∑

v∈V





∑

j

φ2jv



φ2kv =
∑

v∈V

φ2kv = 1 (57)

∑

k

ojk =
∑

k

∑

v∈V

φ2jvφ
2
kv =

∑

v∈V

φ2jv

(

∑

k

φ2kv

)

=
∑

v∈V

φ2jv = 1, (58)

thus,Ξ has all real negative eigenvalue with the exception of at least one zero eigenvalue corre-
sponding to the steady state ofO.

4.1 Computational Complexity

We conclude this technical report with some remarks on the computational complexity of the pro-
posed approach. To this end, note that we first need to computethe eigendecomposition of the
Laplacian matrixL, which has complexityO(n3), wheren is the number of nodes of the graph.
Similarly, solving the eigensystem of Eq. 55 has complexityO(n3), whereΞ is a real-valued sym-
metric matrix andΓ is orthogonal.

The computation ofB12 in Eq. 38 requires invertingΓ1, which in our case is the identity matrix, and
a diagonal matrix, i.e.,(λ̄I − Λ1). Similarly, solving Eq. 39 forB21 requires inverting(λ̄I − Λ1)
andΓ2. SinceΓ is orthogonal and block-diagonal, we conclude thatΓ2 is an orthogonal matrix. In
general, note thatB is ann2 × n2 matrix and therefore the complexity of constructing it is atleast
O(n4). In particular, from Eq. 54 it follows that the complexity ofcomputing then4 elements ofB
isO(n5). We should stress, however, that the computation of theblmjk can be easily parallelized.

As a result, we conclude that the complexity of the proposed approach is dominated by theO(n5)
computation of the matrixB. This should be contrasted with the cost of directly computing the
eigendecomposition of then2 × n2 super-operatorA(p), which isO(n6). Finally, note that for a
genericp > 0, A(p) is not Hermitian and therefore techniques like singular value decomposition
cannot be employed.
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