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Abstract—Stochastic anti-resonance, that is resonant 

enhancement of randomness caused by polarization mode 

beatings, is analyzed both numerically and analytically on an 

example of fibre Raman amplifier with randomly varying 

birefringence. As a result of such anti-resonance, the polarization 

mode dispersion growth causes an escape of the signal state of 

polarization from a metastable state corresponding to the pulling 

of the signal to the pump state of polarization.This phenomenon 

reveals itself in abrupt growth of gain fluctuations as well as in 

dropping of Hurst parameter and Kramers length characterizing 

long memory in a system and noise induced escape from the 

polarization pulling state. The results based on analytical multi-

scale averaging technique agree perfectly with the numerical data 

obtained by direct numerical simulations of underlying stochastic 

differential equations. This challenging outcome would allow 

replacing the cumbersome numerical simulations for real-world 

extra-long high-speed communication systems.  
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I.  INTRODUCTION 

Most processes in nature are affected by noise leading to a 
complexity of dynamics. Noise cannot be considered as only 
disturbing factor because it can modify essentially phase space 
and evolution of a system. One has to note three main 
phenomena in this context: i) stochastic resonance, when a 
noise enhances system response to an external periodic 
perturbation, ii) stochastic anti-resonance, when an external 
periodic perturbation enhances a noise action, and iii) 
coherence resonance, when a noise creates some new 
coherent-like states in a system [1,2]. 

In this work we present the results of extensive numerical 

simulations of a fibre Raman amplifier with inherent 

stochastic birefringence, which demonstrates the resonant 

enhancement of noise within a confined range of the 

polarization mode dispersion parameter. Such an enhancement 

manifests itself through resonance-like growth of gain 

fluctuations due to escape of the signal state of polarization 

from the “polarization trapping” state [3], threshold-like 

dropping of the Kramers length and the Hurst parameter. The 

average polarization state remains “localized” but its 

sensitivity to an input state of polarization vanishes with the 

growth of polarization mode dispersion parameter. In this 

sense, a Raman gain in the vicinity of stochastic anti-

resonance plays a role of a “depolarizer” reducing the 

polarization dependent gain. 
 

II. MODEL 

The model for analysis of fibre Raman amplifier with 
randomly varying birefringence is based on the results of [4,5]. 
Transition to the reference frame, in which the birefringence 
vector on the Poincaré sphere is  Wi = (2bi,0,0), results in 
representation corresponding to random wandering of Wi in 
horizontal plane and rotation of the unit signal s = (s1, s2, s3) 
(i=s) and pump p = (p1, p2, p3) (i=p) Stokes vectors around the 
birefringence vector with the frequencies bi=2π/Li (Li is a 
polarization beat-length). Excluding of average scalar gain by 
the means of normalization of signal power to 
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coefficient, and Pin is an input pump power) results in the 
following set of stochastic differential equations describing an 
evolution of signal and pump states of polarization [5]:  

 

    

 

 .

,

0

0

2

,

0

0

2
2

,2
2

,
2

1

2

2

3

1

2

2

300

322300

0
0

z
dz

d

p

p

p

pb
dz

d

s

s

s

sbszP
g

dz

d

spspbbszP
g

dz

dx

xzP
g

dz

ds

p

s

sp




















































































p

p
s

          (1) 

Here s0 is a signal power, x=s·p is a projection of signal state of 
polarization (SOP) to pump SOP, θ is a randomly varying 
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angle between W and X-axis of the Poincaré sphere. In the 
frameworks of fixed modulus model of random birefringence, 
the noise source β(z) can be treated as a Wiener process with 

        ,,,0 2 zzzzz                   (2) 

where ...  means averaging over z, and σ2 = 1/Lc (Lc is a 

birefringence correlation length). 

III. STOCHASTIC ANTI-RESONANCE 

Stochastic differential equations (1,2) were solved by direct 
numerical simulations as well as by applying the analytical 
multi-scale averaging procedure taking into account  scales of 
both regular and random birefringence [5-7]. The dependences 
of normalized average gain coefficient 

    0 010log 0G s L s  and dispersion of its fluctuations 
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0 0 1G s L s L    on the polarization mode 

dispersion parameter Dp [8] are shown in Figure 1. The 
numerical averaging was performed over ensemble of 100 
independent stochastic trajectories. 

 

Figure 1 demonstrates a perfect agreement between the results 

of analytical multi-scale averaging technique and the direct 

numerical simulations of Equations (1,2). Thus, cumbersome 

numerical simulations of long high-speed telecommunication 

lines can be replaced by comparatively simple analytical 

methods. 

 Figure 1 demonstrates an asymptotical behaviour of 

averaged gain for large and small PMDs. The maximal gain 

for Dp→0 (Li >> Lc) and the minimum dispersions correspond 

to the Manakov’s limit [3] when a single averaging scale 

coincides with Lc: 
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where the pump depletion is taken into account, ωp and ωs are 

the pump and signal frequencies, respectively [9]. In this limit, 

a fibre behaves like an isotropic medium and the gain is 

defined by polarization pulling caused by attraction of the 

signal SOP to the pump SOP (i.e., 1x  ) [3]. Such a 

phenomenon can be described as a trapping of randomly 

fluctuating particle in a potential well (Figure 2). 

 

 
Large PMDs (Li<< Lc) result in minimum gain and dispersion 

(Figure 1) as the pump and signal SOPs are almost 

decorrelated due to fast polarization beatings (i.e., 0x  ). 

A “particle” is out potential well that is it escapes from the 

polarization pulling state (Figure 2). A fibre resembles the 

polarization maintaining one with rare “kicks” induced by 

random birefringence. Raman gain is defined by averaged 

pump SOP and is close to the scalar gain Gave [3]. 
The most interesting phenomenon appears in the 

intermedium region of Dp≈10-2÷10-1 ps/km1/2. The gain 
fluctuations (Figure 1) and the rate of escape from potential 
well increase abruptly [4,6]. The last corresponds to the 
threshold-like drop of the Kramers length [10] in Figure 3. 
Simultaneously, the Hurst parameter characterizing a long-
scale memory in a system [11] decreases from 1 (persistent 
statistics) for small PMDs and approaches the Brownian limit 
of H=1/2 (Figure 3). This noise-induced intensification of 
escape from metastable (polarization pulling) state [12] can be 
interpreted as a stochastic anti-resonance. The noise 
enhancement distinguishes this phenomenon from the 
stochastic resonance for which the relative intensity noise is 
suppressed [1,2]. Nevertheless, there is no complete 
chaotization in the case of stochastic anti-resonance because 
the Hurst parameter 0.9>H >1/2 (Figure 3) that is it remains in 
the region of persistent statistic.  

CONCLUSION 

It was shown both numerically and analytically, that a fibre 
Raman amplifier with randomly varying birefringence 
demonstrates a resonant-like enhancement of gain fluctuations 
within diapason of PMDs corresponding to modern 
telecommunication systems. Such an enhancement can be 
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Figure 1. Dependencies of numerical (solid curves) and analytical 

(dashed curves) averaged gain G  (black) and its dispersion σG 

(red) on the PMD parameter Dp. The initial SOPs are s = (1,0,0), p = 

(1,0,0), s0=10 mW, Pin=1 W.  
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Figure 2. Potential well ΔU created by polarization pulling and 

modulated by birefringence with the period T defined by beat-
length. Fluctuations of SOP caused by random birefringence are 

characterized by the relaxation length τi and by the escape rate r=1/ 

τk (τk is a Kramers length). 



interpreted as a stochastic anti-resonance and is characterized 
by abrupt growth of gain dispersion as well as by threshold-like 
drop of the Kramers length and the Hurst parameter. As was 
demonstrated analytically, the stochastic anti-resonance is 
multi-scaling phenomenon and develops when the scales of 
polarization beat-lengths and correlation length of random 
birefringence become commensurable. The results obtained 
provide with a new insight into multi-scaling nature of 
stochastic phenomena in the periodically driven systems and 
are usable for simulations of real-world high-speed 
communication lines. 
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Figure 3. The Kramers (solid black curve) and relaxation (dashed 

black curve) lengths as well as the Hurst parameter (solid red curve) 

vs. the PMD parameter Dp. 


