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Abstract We study the probability density function of the group-delay in few-mode fibres, validating for 
the first time an analytical estimation for the maximum group-delay spread as a function of linear mode 
coupling for fibres with more than three LP modes. 

Introduction 
Mode-division multiplexing (MDM) over few-
mode fibres (FMFs) has been proposed as a 
promising candidate to overcome the capacity 
limit of single-mode fibres (SMFs). However, 
MDM-FMF systems require significantly higher 
equalizer complexity given the overall group-
delay (GD) spread due to differential mode delay 
and linear mode coupling1,2. Thereby, the 
estimation of the maximum GD spread is of 
foremost importance. However, the statistical 
properties of the GDs are only well known for the 
two extreme coupling regimes, weak and 
strong1,2. Recently, we validated one single 
expression linking the standard deviation of GDs 
to the coupling strength for any coupling regime3, 
considering a FMF guiding 3 linearly polarized 
(LP) modes (LP01, LP11a, LP11b). However, to 
accurately estimate the maximum GD spread 
with a given confidence level the probability 
density function of the GD has to be studied. 

In this paper, we extend our previous study3 to 
more than 3 LP modes and investigate for the first 
time the probability density function (PDF) of GD 
in FMFs for the intermediate coupling regime. 
Furthermore, we validate, for the first time, an 
analytical estimation for the maximum GD spread 
as a function of the coupling strength. 

Group-Delay Statistics 
In previous work4, it has been shown that the 
approach of considering principal states of 
polarization (PSPs) with well-defined GDs in 
SMFs, can be extended to FMFs. In FMFs, the 
coupled modes having well defined GDs were 
called principal modes (PMs). In both cases the 
statistics of the GDs are dependent on the linear 
coupling strength, which can be defined as a 
function of the correlation length Lc. In the SMF 
case, Lc is defined as the length for which the 
average power lost to the orthogonal polarization 
is within e-2 of the initial power5. In the FMF case, 
we generalize Lc as the length for which 
ൣPmሺLcሻ-∑ PvሺLcሻv≠m ൧ ∑ PnሺLcሻnൗ =e-2, where Pv 
is the power of mode v and mode m is the mode 
presenting higher coupling strength. The 
coupling regimes may then be broadly defined 
as: strong coupling when L >> Lc, weak coupling 

when L << Lc, and intermediate coupling 
otherwise. In the FMF case, the statistical 
properties of the GDs are only well known for the 
two extreme regimes1,2. In those regimes, the 
standard deviation of the coupled GDs of the 
output PMs (σgd) can be written as a function of 
the uncoupled GDs along one section (στ,sec). 
Assuming K fibre sections with identical statistical 
properties, it has been shown that1,2: in the weak 
coupling regime σgd=Kστ,sec and in the strong 

coupling regime σgd=K1/2στ,sec. In both cases, the 
σgd functional form is valid for any number of 
modes. Furthermore, the PDF of GDs has been 
derived analytically for strong coupling1,2. 

In the intermediate coupling regime, the 
statistics of the GDs are not yet fully understood. 
In this regime, we have shown that at least for 
fibres guiding 3 LP modes, the standard deviation 
of the GDs in SMFs5 can be extended to FMFs3: 

 

 σgd=√2στLc ቀe-L/Lc+
L

Lc
-1ቁ

1/2
 (1) 

 

where στ is the standard deviation of the 
uncoupled GDs per unit length. In this paper, we 
will show that Eq. (1) can be applied to fibres 
guiding 6 LP modes (LP01, LP11a, LP11b, LP02, 
LP21a, LP21b) despite the different coupling 
strengths between different pairs of modes 
belonging to different mode groups. 

Linear Mode Coupling 
To verify the applicability of Eq. (1), we use a 
numerical mode coupling model which divides the 
fibre in multiple sections of length Ls, each with a 
constant random displacement of the core centre 
position6. The model considers a random 
displacement of the radial and azimuthal 
coordinates. The mode coupling strength (XT) is 
quantified as XTm=∑ Pn Pm⁄n≠m  where Pn is the 
power of mode n, after a given segment under 
test, when only mode m was launched. If XTm is 
equal to 0 dB, then half of the power launched in 
mode m has been transferred to other modes.  

Fig. 1 shows the mode coupling strength 
averaged over the azimuth displacement, as a 
function of the normalised radial displacement, 
for a 6 LP mode fibre. Note that, coupling 
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strengths are calculated considering degenerate 
modes such as LP11a and LP11b as one mode.  

In Fig. 1, it can be seen that the mode coupling 
strength only depends significantly on the mode 
being considered for displacements higher than 
1 %. Such higher coupling for LP02 and LP21 can 
be explained noting they belong to the same LP 
mode group. Moreover, XTLP21

൏ XTLP02
 for any 

displacement in Fig. 1 because any power 
launched in LP21a couples preferentially with 
LP21b (and vice-versa) and in the second place to 
LP02. Given the higher values of XTLP02

, we 
define Lc for this mode. Note that XTm values 
above 10 dB mean that almost all power 
launched in mode m has been transferred to 
other modes.  

In the literature, the mode coupling values of 
fabricated FMFs range from -50 dB/100m 
to -40 dB/100m for fibres with step-index or 
graded-index profiles7,8, going up to -28 dB/100m 
for coupled multi-core fibres9 and -7 dB/100m for 
fibres with ring-index profiles10. In the next 
section, the impact of these coupling values on 
the GD spread is accessed. 

Results 
In this section, we evaluate the statistics of the 
GDs of the PMs. The FMF considered guides 6 
modes and presents a DMD of 5.19 ps/km (we 
assumed zero DMD between degenerate LP 
modes)11. The XTLP02

 value was varied from -50 
to 0 dB/100m by varying the amplitude of the 
variation in lateral section offset, assuming a 
section length of 100 m. This range fully covers 
the range of coupling values presented in the 
literature7-10. Finally, the GDs of the PMs were 
calculated through direct numerical solution of 
the coupled-mode equations describing the linear 
mode propagation6. 
 Fig. 2 shows the standard deviation of the GDs 
of the PMs (σgd) as a function of distance up to 
10,000 km, obtained by averaging over 2000 
different realizations of lateral offsets giving rise 
to a given XTLP02

 value. As was found for 3 LP 

 
modes3, Fig. 2 shows a good agreement between 
numerical simulation and the analytical 
expression deduced from the 2-mode 
approximation Eq. (1), for any coupling value 
studied and for any distance up to 10,000 km. 
This verifies that Eq. (1) remains valid for 6-mode 
fibres (the validity for 3-mode fibres had been 
studied in3). In Fig. 2, it can be seen that for 
coupling values ranging from -50 to -40 dB/100m, 
σgd scales approximately linearly with distance. 
But, at -40 dB/100m the deviation from linear 
growth is already noticeable above 1,000 km, 
thus even with such a low coupling, the FMF is 
operating in intermediate coupling regime. 
Increasing XTLP02

, σgd	gradually converges to the 
strong coupling regime. However, even for a 
XTLP02

 equal to -7.01 dB/100m (the highest value 
found in literature10) the fibre is still not fully 
operating in the strong coupling regime when 
considering a section length of 100 m. In this 
case, assuming strong coupling regime (random 
unitary matrices every 100 m), would 
underestimated σgd by a factor of 2.76. 
 Fig. 3 shows the PDF of the ordered GDs (߬m, 
߬1 ൑ ߬2 ൑ ⋯ ൑ ߬6), normalized by the σgd of the 
PMs, after 1000 km for two different coupling 
values, overlapped with the analytical joint PDF 
(thin black line) derived for the strong coupling 
regime1. Note that the normalization factor (σgd) 
depends on the XTLP02

 (Lc) value, see Eq. (1). 
Fig. 3 (a) shows that for -30 dB/100m the GDs of 
the PMs vaguelly resemble the GDs of the LP 
modes given the impulse-like PDF of ߬2 (“LP11a”) 
and ߬ 3 (“LP11b”). Further results for lower coupling 
values shown that all GDs present impulse-like 
PDFs. In Fig. 3 (b), for -20 dB/100m, the match 
between the simulated PDFs and the analytical 
PDF for strong coupling is good, even though the 
GDs have been normalized by different factors 
(Eq. (1)). Further results shown that the match 
between the simulated PDFs and the analytical 
PDF improves for higher coupling values. A 
similar match was obtained for 3 modes. 

 
 

Fig. 1: XTm averaged over the azimuth displacement as 
a function of the radial displacement 

 

 
 

Fig. 2: Standard deviation of the GDs of the PMs as a 
function of transmission distance showing simulation 
results (markers) and analytical results (solid lines). 

 



 In a MDM system, in order to fully compensate 
for DMD and mode coupling, the MIMO equalizer 
must span a temporal memory at least as long as 
the system GD spread ሺτ6‐τ1ሻ. Fig. 4 shows the 
complementary cumulative distribution function 
(CCDF) of the normalized GD spread,  
Pr൫ሺτ6‐τ1ሻ σgd⁄ >p൯, obtained through simulation 
after 1000 km for different coupling values 
(averaging over 6000 different realizations). 
Fig. 4 shows that for XTLP02

൒-30 dB/100m the 
CCDFs are very similar to the analytical 
approximation obtained for strong coupling12 
(dashed line). Conversely, for XTLP02

 lower 
than -30 dB/100m the normalized GD spread is 
significantly smaller than the normalized GD 
spread for strong coupling. 
 Combining this observation with the 
normalisation factor (Eq. (1)), we find that the 
required temporal equalizer memory length 
(∆TEQ) to span the channel memory with a given 
probability p and for a given mode coupling 
strength is given by (in time units): 

 

∆TEQ≅U(p)·σgd ൌ U(p)·√2στLc ቀe-L/Lc+
L

Lc
-1ቁ

1/2
 (2) 

 

where U(p) can be calculated using eq. 6 in [12], 
dashed line in Fig. 4. A ∆TEQ from 4σgd to 5σgd is 
sufficient to span the channel memory with 
probability from 10−4 to 10−6. 

Conclusions 
In this paper, we reported an investigation on the 
statistics of the group-delays in FMFs. The 
investigation shows that even for the FMFs in the 
literature presenting high coupling strength 
(-7 dB/100m), the performance is not accurately 

 
modelled by random unitary matrices (every 
~100 m), which give a factor of 2 error. 
Furthermore, for the first time, an analytical 
estimation for the maximum GD spread as a 
function of the coupling strength, was validated 
for FMFs guiding up to 6 LP modes and for any 
coupling regime. Therefore, this analytical 
estimaton is a valuable tool for the development 
of future FMF systems. 
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Fig. 3: Probability density function of the ordered 
normalized GDs (߬m σgd⁄ ), obtained through simulation 

after 1000 km, with different XTLP02
 values. 
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Fig. 4: Complementary cumulative distribution of the 
normalized GD spread, obtained through simulation 

after 1000 km, with different XTLP02
 values. 

Normalized GD spread
2 2.5 3 3.5 4 4.5 5

-6

-5

-4

-3

-2

-1

0

-50 -40 -35

XTLP02 [dB/100m].

[12]

-50
-40
-35
-30
-20
-10
0


