
Dynamic Decision-Making based on NFR for Managing
Software Variability and Configuration Selection

André Almeida1,2, Nelly Bencomo3, Thais Batista2,
Everton Cavalcante2,4, Francisco Dantas5

1Federal Institute of Education, Science and Technology of Rio Grande do Norte, Parnamirim, Brazil
2Federal University of Rio Grande do Norte, Natal, Brazil

3Aston University, Birmingham, United Kingdom
4IRISA-UMR CNRS/Université de Bretagne-Sud, Vannes, France

5State University of Rio Grande do Norte, Natal, Brazil

andre.almeida@ifrn.edu.br, nelly@acm.org, thais@ufrnet.br,
evertonrsc@ppgsc.ufrn.br, franciscodantas@uern.br

ABSTRACT
Due to dynamic variability, identifying the specific condi-
tions under which non-functional requirements (NFRs) are
satisfied may be only possible at runtime. Therefore, it is
necessary to consider the dynamic treatment of relevant in-
formation during the requirements specifications. The asso-
ciated data can be gathered by monitoring the execution
of the application and its underlying environment to sup-
port reasoning about how the current application configu-
ration is fulfilling the established requirements. This paper
presents a dynamic decision-making infrastructure to sup-
port both NFRs representation and monitoring, and to rea-
son about the degree of satisfaction of NFRs during runtime.
The infrastructure is composed of: (i) an extended feature
model aligned with a domain-specific language for repre-
senting NFRs to be monitored at runtime; (ii) a monitor-
ing infrastructure to continuously assess NFRs at runtime;
and (iii) a flexible decision-making process to select the best
available configuration based on the satisfaction degree of
the NRFs. The evaluation of the approach has shown that it
is able to choose application configurations that well fit user
NFRs based on runtime information. The evaluation also re-
vealed that the proposed infrastructure provided consistent
indicators regarding the best application configurations that
fit user NFRs. Finally, a benefit of our approach is that it
allows us to quantify the level of satisfaction with respect to
NFRs specification.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.13 [Software Engineering]: Reusable Software; K.6.3
[Software Management]: Software Selection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX

General Terms
Algorithms, Design, Measurement

Keywords
SPLs, Variability, Non-functional requirements, Monitoring

1. INTRODUCTION
The growing demand for software solutions to be used in

different domains associated with the interest in satisfying
customers in highly dynamic environment, have led software
industry to face the need of dealing with variability-rich soft-
ware [7]. Developers should construct systems to manage
variability, allowing dynamic derivation of different software
versions in order to meet user requirements.

Software product lines (SPLs) have been widely used to
address variability [16]. SPLs enable the creation of a family
(or product line) of similar products by identifying common-
alities between members of the family, as well as character-
istics that vary among them, the so-called variabilities. At
design time, SPL engineering uses the so-called feature mod-
els [15] to express commonalities and variabilities in terms of
features and their relationships. As an example, consider the
feature model presented in Figure 1, which describes an SPL
for a mobile application configuration. This feature model
specifies two features, Connectivity and Storage. Alterna-
tives for Connectivity are 2G, 3G, and WiFi. For Storage,
the alternatives are Amazon DynamoDB and SQLlite.

Although feature models are used in SPL to capture the
essential requirements of a system, they lack of expressive-
ness for describing non-functional requirements (NFRs) [14].

MobileSPL

Connectivity Storage

2G WiFi Amazon
DynamoDB SQLite

Mandatory feature Alternative feature group Dependency

requires

3G

Figure 1: Feature model of MobileSPL.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/78897914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


For example, consider a user concerned with the battery con-
sumption of a device and another user particularly interested
in improving the performance of the storage system. Can the
continuous use of a WiFi connectivity reduce the battery
performance so that it would be better to use 3G or 2G con-
nectivity? Can the use of the Amazon DynamoDB storage
compromise the performance of the system so that the use of
SQLite is preferred to improve performance? The answer to
these questions will depend on information that can be gath-
ered only at runtime. We argue it is necessary to specify and
monitor the associated NFRs to feed the decision-making
process aiming to meet user requirements. As traditional fea-
ture models are not able to capture these concerns, extended
feature models [3] enable the representation of properties in
feature models for selecting variants. Such properties can be
the basis for expressing NFRs and hence supporting selec-
tion of application configurations. However, if the values of
these properties change over time, it might affect the user
perception of the NFRs satisfaction.

In this paper, we argue that NFRs must be dynamically
assessed in order to check whether they are being satisfied or
not. In order to perform this assessment, NFRs specification
must encompass quantifiable properties regarding an appli-
cation configuration as the foundation for describing such
requirements. Furthermore, flexibility of NFRs is an impor-
tant concern mainly in scenarios whose conditions do not
allow the strict meeting of the NFRs, but it is still possible
to provide a suitable solution from the user point of view.

We propose an infrastructure for monitoring and reason-
ing about NFRs at runtime, aiming to continuously verify
if NFRs are met and to optimally select features to com-
pose configurations. To achieve this goal, we present: (i)
an extended feature model with properties that can be as-
sessed and monitored at runtime (Section 2.1); (ii) a domain-
specific language, called DynamicNFR, to specify NFRs us-
ing the properties defined in the feature model (Section 2.2);
(iii) a monitoring system for continuously assessing the val-
ues of the properties at runtime; and (iv) a decision-making
process to select the best available configuration and its sat-
isfaction degree in terms of the defined NFRs (Section 3).
We discuss the correlation between selected configurations
and their degree of user satisfaction in Section 4. Finally, we
present related work (Section 5) and some conclusions and
directions to future work (Section 6).

2. VARIABILITY MODELING AND NFR
SPECIFICATION

2.1 Extended Feature Models
SPL approaches usually identify commonalities between

all members of the family as well as characteristics that vary
among them, the variabilities, so that these members have a
basic set of common features and associated variations that
individualize each of these members. Commonalities, vari-
abilities, and variation-related constraints are represented
by feature models [9] in terms of features and their rela-
tionships. Feature models are typically structured as a tree
in which features are represented by nodes, whereas varia-
tions between features are represented by edges and feature
groups. Features can be [12]: (i) mandatory ; (ii) optional ;
(iii) or-inclusive, so that at least one feature is selected from
a set of related features; and (iv) alternative, so that exactly

MobileSPL

Connectivity Storage

2G WiFi Amazon
DynamoDB SQLite

Mandatory feature Alternative feature group Dependency

requires

3G

responseTime : double
availability : double

batteryConsumption : double
throughput : double

Figure 2: Extended feature model of MobileSPL.

one feature is selected among a set of related features.
There are multiple notations for feature modeling. In our

approach, we use an extended feature model inspired in the
one proposed by Czarnecki et al. [8], which allows introduc-
ing attributes to features. In this perspective, we ground on
this idea with the notion of properties, <name, type> pairs
that represent any information about a given feature. These
properties are applied to features that have sub-features rep-
resenting variabilities (the leaves of the feature model). Fig-
ure 2 depicts a new version of the feature model described
in Figure 1 with some properties. For instance, the Connec-
tivity feature has two properties: (i) batteryConsumption,
which represents the consumption of the battery of a mo-
bile phone when using one of the possible technologies (2G,
3G or WiFi), and; (ii) throughput, which measures the rate
of successful message delivery using the selected technol-
ogy. For the Storage feature, other properties are defined:
(i) responseTime, which measures the time spent for stor-
age operations, and; (ii) availability, which represents the
availability rate of the used strategy.

2.2 DynamicNFR: a DSL for Specifying NFRs
After describing the feature model in terms of variabilities

and properties, NFRs are specified in order to support the
selection of the application configuration. These NFRs are
described based on the properties modeled in the feature
model by using DynamicNFR, a domain-specific language
(DSL) proposed in the context of this work. DynamicNFR
was partly inspired in RELAX [20], a language for specify-
ing requirements for self-adaptive systems. We have taken
advantage on the quantifiable operators defined in RELAX
for establishing thresholds in the NFRs specifications, which
are used to bring flexibility to such NFRs. In this work, such
thresholds are defined by the user.

Each specification of a given NFR is composed of a name
and at least one high-level description. Similarly to the model
used by NFR-Framework (NFR-F) [6], each NFR can be de-
scribed in terms of other NFRs. However, different from our
proposal, the NFR-F does not use properties that can be
dynamically monitored.

The realization of NFRs are described as Rules applied to
the properties modeled in the feature model. Rules can be
Objectives or Constraints. Objective rules are described in
terms of maximization (max) and minimization (min) func-
tions applied to a specific feature/property described in the
feature model. In turn, Constraint rules define threshold op-
erators that are applied in the process for selecting the best
available configuration. The as far as possible operator es-
tablishes that a value for a given property should be as far
as possible to the defined threshold. Similarly, the as close -
as possible operator establishes the opposite, i.e., the value
of a property should be as close as possible to the defined



1 nfrequirement AchieveEffectiveness
2 begin
3 MaintainPerformance
4 MaintainDependability
5 ImproveBatteryLife
6 end
7 nfrequirement MaintainPerformance
8 begin
9 as_close_as_possible Connectivity . throughput 80

allowance 10
10 min Storage . responseTime
11 end
12 nfrequirement MaintainDependability
13 begin
14 max Storage . availability
15 end
16 nfrequirement ImproveBatteryLife
17 begin
18 min Connectivity . batteryConsumption
19 end

Figure 3: DynamicNFR specification of NFRs 1-4.

threshold. Another aspect tackled by the DynamicNFR lan-
guage is enabling users to express how much they are able to
accept configurations that do not strictly meet their needs in
terms of the defined thresholds. In order to specify the flex-
ibility of a given threshold, operators defined for Constraint
rules have a third parameter (allowance), a percentage that
establishes the range of flexibility for such a threshold.

To illustrate the language, consider the extended feature
model presented in Figure 2. Figure 3 shows a DynamicNFR
specification of the following NFRs:

• NFR1: The application should be effective. To achieve
effectiveness, the application must be dependable, main-
tain its performance, and improve battery life.

• NFR2: To improve battery life, battery consumption
on sending data over a connection should be mini-
mized.

• NFR3: To achieve dependability, storage availability
should be maximized.

• NFR4: To improve performance, throughput must be
as close as possible to 80% and storage response time
should be minimized.

The AchieveEffectiveness NFR (line 1) can be achieved
by fulfilling the MaintainPerformance, MaintainDependabil-
ity, and ImproveBatteryLife NFRs (lines 3 to 5). The
MaintainPerformance NFR (line 7) is composed of two Rules:
(i) the as close as possible Constraint in line 9 establishes
that throughput should be near 80% with allowance of 10%,
thus meaning that a 72% rate for throughput is in an ac-
ceptable range; and (ii) the min Objective in line 10 for min-
imizing responseTime for the Storage feature. The same
applies to the MaintainDependability (lines 12 to 15) and
ImproveBatteryLife (lines 16 to 19) NFRs.

3. DECISION-MAKING ARCHITECTURE
Figure 4 depicts the architecture of our proposed decision-

making infrastructure. Each application/domain has a spe-
cific Monitoring System, which is responsible for gathering
data used to select the best available application configura-
tion. Acquired data stored at the Monitored Data database

extended
feature model

NFRs
specication

application
conguration

satisfaction
degree

monitoring agents

decision algorithm

NFRHandler

FMHandler

monitored datamonitoring system

Figure 4: Architecture of the proposed decision-
making infrastructure.

are time-stamped to support either just-in-time decisions
and historical analysis if required by the decision-making
mechanism. In the proposed solution, Monitoring Agents are
entities responsible for querying the database to support the
decision process. The FMHandler component analyzes the
specification of the feature model and generates the solution
space, which consists of the possible configurations of the
application, as described in the feature model. In turn, the
NFHandler component parses the DynamicNFR specifica-
tion by translating it to a function used by the Decision Al-
gorithm to select the best available configuration, as detailed
in Section 3.2. The next subsections detail these elements.

3.1 Handling Feature Models
The feature model is represented as an XML file adapted

from the one generated by FeatureIDE [19], a framework
for creating XML representations of feature models. In or-
der to encompass an extended feature model with anno-
tated features, we have introduced two new tags into such
an XML representation, namely properties and property.
The properties tag starts a section in which each property
associated to a specific feature is described by a property
tag. For each variation point (feature tag), there is a Moni-
toring Agent responsible for gathering the values associated
with the described properties. In turn, the FMHandler com-
ponent parses such an XML representation of the feature
model, thus allowing the Decision Algorithm to query for
the possible configurations that can be generated from the
feature model.

Figure 5 presents an XML fragment of the extended fea-
ture model description presented in Figure 2. A mandatory
feature named Storage is defined in line 3 with two alterna-
tive features, AmazonDynamoDB (line 4) and SQlLite (line 5).
For each alternative feature, an agent attribute is defined to
point to the class name of the Monitoring Agent responsi-
ble for querying the Monitored Data database regarding the
monitored properties. These properties are defined in lines
7 to 10 with their respective name and type.

3.2 Handling NFR Specifications
The NFRHandler component parses a NFR specification

by translating it to a function used by the Decision Algo-
rithm. Such a NFR specification for selecting a configura-
tion can be viewed as a multi-objective problem as there is
more than one NFR to be simultaneously satisfied. In order
to simplify the decision process, this work assumes that all
NFRs have the same priority (i.e., there is a single-objective
function). In order to transform the multi-objective prob-
lem into a single-objective one, we define an utility function
(UF) expressed by Equation 1:



1 <?xml version ="1.0" encoding ="UTF -8"?>
2 ...
3 <alt mandatory ="true" name=" Storage ">
4 <feature mandatory ="true" name=" AmazonDynamoDB "

agent ="com.spl. monitoring .
MonitorAmazonDynamoDB "/>

5 <feature mandatory ="true" name=" SQlLite " agent =
"com.spl. monitoring . MonitorSQlLite "/>

6 </alt >
7 <properties >
8 <property name=" availability " type=" double "/>
9 <property name=" responseTime " type=" double "/>

10 </ properties >
11 ...

Figure 5: XML fragment of the description of the
MobileSPL extended feature model.

UF = maximize

(
n∑

i=1

l∑
j=1

norm(pij) +

o∑
y=1

m∑
k=1

dist(pyk, cy)

)
(1)

in which pij represents a property of a commonality i and
a variability j in the feature model. As the monitored prop-
erties can vary in terms of scale from a feature to another,
it is necessary to normalize these values in order to have an
uniform scale to be used in UF. According to the Objective
rule to be applied to a property, its value is normalized by
applying the norm function, as expressed by Equations 2
and 3 (for minimization and maximization, respectively):

norm(pij) =

{
pmax
i −pij

pmax
i −pmin

i
, pmax

i − pmin
i 6= 0

1, pmax
i − pmin

i = 0
(2)

norm(pij) =

{
pij−pmin

i

pmax
i −pmin

i
, pmax

i − pmin
i 6= 0

1, pmax
i − pmin

i = 0
(3)

As a NFR specification can be composed of a set of thresh-
old definitions, the second part of Equation 1 is related to
the normalized distance of the current value associated to
a property from the threshold established by the associated
Constraint rules. In Equation 4, the dist function takes the
value of the property p indicated by the constraint y and
the variability k, and the threshold value c:

dist(pyk, cy) =

{
norm(cy − pyk), if as close as possible

norm(pyk − ck), if as far as possible

(4)

3.3 Decision Algorithm
A strategy for dynamically selecting configurations based

on NFRs can be designed in several ways and it can con-
sider the specificities of a given application/domain. Our
solution aims to support developers in terms of deploying
their own decision algorithm based on their needs. Algo-
rithm 1 presents a generic view of how the proposed solution
works. The algorithm takes the XML representation of the
feature model (FM ) and the NFRs specification (NFRSpec)
as fixed inputs and it returns the best available application
configuration (BSolution) and the satisfaction degree (SD)

1 <configuration featuremodel =" MobileSPL ">
2 <feature name=" Connectivity ">
3 <variability >3G</ variability >
4 </ feature >
5 <feature name=" Storage ">
6 <variability >SQLlite </ variability >
7 </ feature >
8 </ configuration >

Figure 6: XML description of a selected configura-
tion for MobileSPL.

on how the selected configuration meets the NFRs. The first
step (line 1) is to parse the NFRSpec for generating the util-
ity function (UF ) used to evaluate a given configuration.
For each monitoring cycle of the Monitoring System, the re-
quired data are loaded (line 3) by associating the feature
model and the monitored data (MData). Next, the decision
algorithm is applied to generate the selected configuration
as an XML file containing the selected features (line 4). Fig-
ure 6 shows a selected configuration based on the feature
model of Figure 2, in which the 3G and SQlLite variants
were selected for the Connectivity and Storage features, re-
spectively. Finally, the BSolution configuration is evaluated
in terms of the given NFRSpec to generate the satisfaction
degree (SD).

Input : MData – monitored data, FM – feature model,
and NFRSpec – NFRs specification

Output: BSolution – best available solution and SD –
satisfaction degree

1 UtilityFunction ← ParseNFRs(NFRSpec)
2 while monitoring cycle is active do
3 LoadData(FM, MData)
4 BSolution ← ApplyDecisionAlgorithm(FM,

UtilityFunction)
5 SD ← EvaluateSD(BSolution, NFRSpec)

Algorithm 1: Decision-making generic algorithm for se-
lecting an application configuration.

4. DISCUSSION
Our approach is illustrated using HW-CSPL, an SPL de-

veloped from the Health Watcher system [18]. In Section 4.1,
we describe an instantiation of the architecture proposed in
Figure 4 for the specific case of HW-CSPL. In Section 4.2,
we discuss findings obtained from our investigation.

4.1 Study Illustration
Extended Feature Models. Figure 7 illustrates the HW-

CSPL extended feature model, which contains three manda-
tory features representing commonalities: (i) Persistence,
i.e., the persistence mechanism; (ii) Log System, i.e., the in-
frastructure used for storing log information; and (iii) File
Storage, to define how files are managed. Each of these top-
features has different variants. For instance, the Persistence
feature has three dynamic properties (price, availability, and
responseTime) and offers three options for data persistence,
respectively represented by: (i) Relational Amazon RDS,
the cloud database service by the Amazon Web Services
platform; (ii) the Google Cloud SQL feature, the relational
database service by the Google’s cloud platform; and (iii)
the RackSpace Databases feature, the SQL database service
by the Rackspace cloud platform.



HW-CSPL

Persistence File Storage

Dropbox

Mandatory feature Alternative feature group

responseTime : double
availability : doubleprice : double

availability : double
responseTime : double

Log System

Relational
Amazon RDS

Rackspace
Databases

Google
Cloud SQL

Rackspace
Cloud Files

Amazon
DynamoDB Amazon S3 Rackspace

Cloud Files
Dropbox

responseTime : double
availability : double
price : double

Figure 7: HW-CSPL extended feature model.

1 nfrequirement EffectivenessAchieved
2 begin
3 PerformanceMaintained
4 DependabilityMaintained
5 end
6 nfrequirement PerformanceMaintained
7 begin
8 min LogSystem . responseTime
9 as_far_as_possible FileStorage . responseTime 1

allowance 5
10 as_far_as_possible Persistence . responseTime 1.5

allowance 20
11 end
12 nfrequirement DependabilityMaintained
13 begin
14 max Persistence . availability
15 as_close_as_possible FileStorage . availability

99.50
16 end

Figure 8: DynamicNFR specification of NFRs 1-3.

Monitoring System. As previously discussed, a Moni-
toring System is required for each application/domain to ac-
quire data related to the properties defined in the extended
feature model to support the selection of the best available
configuration. For HW-CSPL, we have used QoMonitor [2]
as the monitoring solution. In order to monitor the defined
properties,QoMonitor requires to: (i) write a Web service
that invokes a service on a specific cloud platform; (ii) reg-
ister such a Web service in the Monitoring System; and (iii)
define the time interval between information gathering, thus
establishing the monitoring cycle.

NFRs Specification. NFRs are specified by using the
DynamicNFR language based on the extended feature model
and the properties whose values are gathered by the mon-
itoring system. Figure 8 illustrates the DynamicNFR spec-
ification of the following three NFRs: (1) the application
should be effective, i.e., it must be dependable and maintain
its performance; (2) to improve performance, the response
time for log services should be minimized and the response
time for storage and persistence should be as far as pos-
sible from 1 s (with a tolerance of 5%) and 1.5 s (with a
tolerance of 20%), respectively; and (3) to achieve depend-
ability, the availability for persistence should be maximized
and the availability for storage should be as close as possible
to 99.5%.

Decision Algorithm. The NFRHandler generates the
utility function (UF) presented in Equation 5 based on the
requirements specification presented in Figure 8. This func-
tion aims to maximize the expected utility for a given config-

uration selected from the HW-CSPL extended feature model.
For each Rule in the NFRs specification, an operand is gen-
erated by using the process described in Section 3.2. For
instance, dist far(FileStorage.responseT ime, 1.05) is the
mathematical representation for the Rule in Figure 8 (line
9). The value 1.05 represents the defined threshold (1.0) in-
creased by the allowance of 5% defined in the specification.
The different configurations analyzed by UF were selected
by using a well-known algorithm, the so-called Branch-and-
Bound (B&B) [13], as detailed in our previous work [1]. In
order to apply the B&B technique, the problem is described
as a tree in which each node represent a partial solution.
The algorithm analyzes the UF value for the current se-
lected configuration (node) and it verifies whether the given
partial configuration improves such a selected configuration,
thus branching a sub-node. The best available configuration
is returned by the algorithm when there is no other node to
search and analyze.

UF = maximize(norm min(LogSystem.responseT ime)

+dist far(FileStorage.responseT ime, 1.05)

+dist far(Persistence.responseT ime, 1.8)

+norm max(Persistence.availability)

+dist close(FileStorage.availability, 99.5))
(5)

4.2 Utility Function vs. Satisfaction Degree
In our investigation, we have monitored 1000 different cy-

cles based on the utility function defined in Equation 5. The
values of UF were generated based on the translation of the
NFRs specified in Figure 8 by using the process presented
in Section 3.2.

Figure 9 illustrates the variation of the user satisfaction
during these cycles1. This variation refers to the average
values for the final configuration, which is composed of the
respective variabilities (cloud services) regarding the Persis-
tence, Log System, and File Storage features of HW-CSPL.
The satisfaction degree has varied from 70% to 100% (92.73%
in average) and there was a concentration of values around
100% when the value for UF is maximum, thus indicating
a tight relationship between UF values and the degree of
user satisfaction. It is important to mention that the B&B
algorithm used in our study ensures selecting the optimal
solution.

As shown in Figure 9, it is noteworthy that there are cases
in which the value of UF is maximum and equal to 5.0 (the

1The monitored data used to generate the chart are available
at http://www.dimap.ufrn.br/splmonitoring.

http://www.dimap.ufrn.br/splmonitoring


Figure 9: Utility function vs. satisfaction degree.

best configuration for the current scenario), whereas the sat-
isfaction degree is less than 100%. This means that even if
the best possible configuration is selected, it does not fully
meet the user expectations. If NFRs are described by using
only the max and min operators, one can have a 100% of
satisfaction with UF = 5.0 (max) as the approach always
finds a maximum and minimum values. However, as the as -
far as possible or as close as possible criteria are also used in
our approach, even if a configuration has UF = 5.0, it might
not fully meet the requirements as it is out of the thresh-
olds defined by these operators. For instance, this is the case
of a response time of 2 s (the best available) despite NFRs
indicate that 1 s is the optimal response time expected by
the user. The opposite situation also occurs with UF < 5.0
and satisfaction degree of 100%. This means that even when
the best configuration value found by the B&B algorithm is
lower than 5.0, the presented solution satisfies the NFRs.

5. RELATED WORK
Non-functional properties in SPLs. The Benavides

et al.’s work [3] is one of the first works that consider non-
functional properties in SPLs. The authors introduce the
idea of annotating features with attributes in order to en-
able reasoning about product derivation based on measures
of such properties. Moreover, they present a technique based
on Constraint Satisfaction Problem (CSP) solvers to find an
optimal product. After mapping the feature model to a CSP,
a CSP solver evaluates the values of the attributes attached
to the features and then it computes an optimal configu-
ration for a small number of features. However, in such a
proposal, the measurement of the values of the properties is
an open problem.

Few proposals in literature systematically consider mea-
surements of non-functional properties within SPLs or en-
able to optimize the feature selection for a specific non-
functional property. As an example, Siegmund et al. [17] in-
troduce SPL Conqueror, an approach that is quite similar to
ours in terms of annotating features with measurable proper-
ties in order to select features/configurations that meet both
functional and non-functional requirements, as well as to
find the best product configuration based on such properties.
The activities performed by the SPL Conqueror tool are: (i)
to specify the extended feature model with the respective
properties; (ii) to specify mechanisms/tools responsible for
assessing the defined properties, similarly to our monitoring
agents; (iii) to specify constraints based on the defined prop-

erties to remove feature/variants that do not meet NFRs;
(iv) to find an optimal variant that meets NFRs by using a
CSP solver; and (v) to perform a post-derivation optimiza-
tion, which stands for applying optimizations after selecting
a variant/set of features. Nevertheless, SPL Conqueror lacks
of support for monitoring non-functional properties at run-
time, so that it regards properties as static ones. Therefore,
the decision-making process about selecting application con-
figurations does not consider dynamic information. For this
reason, it is not possible to ensure that an application con-
figuration that initially meets user NFRs continues to satisfy
such requirements after its deployment/execution.

Quantification of NFRs satisfaction due to Uncer-
tainty. Several research initiatives have started tackling the
challenge of quantifying levels of uncertainty associated with
NFRs. As an example, the RELAX language [20] can be
used to specify requirements of self-adaptive systems un-
der uncertainty. A system whose requirements have been
specified using RELAX is able to temporarily relax a non-
critical requirement to ensure that critical requirements (in-
variants) can still be satisfied, so that analysts can identify
the requirements that are RELAXable. DynamicNFR uses
the quantifiable operators defined in RELAX to establish
thresholds that are used to bring quantification of satisfac-
tion levels of NFRs based on feature properties. Different
from RELAX that solves such a quantification using tem-
poral fuzzy logic, in DynamicNFR the user is required to
specify the thresholds of tolerance, which are then used to
quantify how close (or far) are the levels of NFRs satisfac-
tion from those ideals. As in RELAX, the authors in [11] also
use fuzzy logic to reason about NFRs under uncertainties.

The authors in [4, 5] use Bayesian machine learning tech-
niques to quantify the impacts of NFRs on configurations
to therefor support decision-making. In [10], the authors ex-
ploit probability theory and probabilistic model checking to
label possible alternative behaviours (or execution flows) in-
dicating the likelihood of meeting the NFRs to enable in-
formed decision-making. As in the case of any implemen-
tation of RELAX and [11] (and different from ours), these
research initiatives use their specific techniques (either ma-
chine learning or model checking) to quantify levels of uncer-
tainty and support decision-making. In our case, the thresh-
old values provided by the user are used to guide the deci-
sion algorithm to provide an optimal solution. Our approach
can therefore quantify how distant (close or far) the solution
provided is from the required levels of satisfaction.

6. CONCLUSION AND FUTURE WORK
SPL techniques are used to represent commonalities and

variabilities by using feature models to depict a clear view of
possible configurations that an application can have. These
configurations are conceived to satisfy both functional and
non-functional requirements and are usually selected at de-
sign time. However, due to dynamic changes, the selected
configuration may not fulfill the specified NFRs. In this pa-
per, we argue that it is imperative to dynamically assess if
such NFRs are met at runtime in order to select a better
configuration when needed. For this purpose, we have intro-
duced: (i) an extended feature model with annotated proper-
ties that can be monitored at runtime in order to represent
the possible application configurations; (ii) DynamicNFR,
a language to specify NFRs by using such properties; (iii)
a monitoring system for assessing the values of the prop-



erties; and (iv) a decision-making process for selecting the
best available configuration and for evaluating the degree of
user satisfaction regarding this configuration. Our solution
aims to be independent from specific domains/applications,
thus enabling developers to plug their own monitoring so-
lutions and/or decision algorithms. In order to evaluate the
proposed solution, a SPL related to a Cloud Computing ap-
plication was used to assess if a given NFRs specification
was met at runtime. The results showed that the selected
configuration had high satisfaction degree for almost 90% of
the monitoring cycles.

The presented approach can be improved in several ways.
First, we will expand the specification of NFRs to encom-
pass not only properties related to features, but also prop-
erties related to configurations. In this perspective, NFRs
can be specified based on properties that are assessed for
a configuration/set of features, thus reducing the number
of Rules described in a specification. Furthermore, as SPLs
typically involve multiple stakeholders that might specify
different NFRs, it is important to manage such a multiplicity
of concerns and to provide means to solve possible conflicts
between NFRs among different stakeholders. Moreover, we
intend to consider a multi-objective perspective for the util-
ity function in order to provide solutions that simultaneously
optimize the defined Objective rules, mainly in cases of con-
flicting NFRs. Finally, we envision proposing a systematic
strategy to define thresholds used in Constraint rules.

7. REFERENCES
[1] A. Almeida, F. Dantas, E. Cavalcante, and T. Batista.

A Branch-and-Bound algorithm for autonomic
adaptation of multi-cloud applications. In Proc. of
14th IEEE/ACM Int. Symposium on Cluster, Cloud
and Grid Computing, pages 315–323. IEEE, 2014.

[2] C. Batista, G. Alves, E. Cavalcante, F. Lopes,
T. Batista, F. C. Delicato, and P. F. Pires. A
metadata monitoring system for Ubiquitous
Computing. In Proc. of 6th Int. Conf. on Mobile
Ubiquitous Computing, Systems, Services and
Technologies, pages 60–66, 2012.

[3] D. Benavides, P. Trinidad, and A. Ruiz-Cortés.
Automated reasoning on feature models. In Proc. of
17th Int. Conf. on Advanced Information Systems
Engineering, volume 3520 of LNCS. Springer,
Germany, 2005.

[4] N. Bencomo and A. Belaggoun. A world full of
surprises: Bayesian theory of surprise to quantify
degrees of uncertainty. In Companion Proceedings of
the 36th Int. Conf. on Software Engineering, pages
460–463. ACM, 2014.

[5] N. Bencomo, A. Belaggoun, and V. Issarny. Dynamic
decision networks to support decision-making for
self-adaptive systems. In Proc. of 8th Int. Symposium
on Software Engineering for Adaptive and
Self-Managing Systems, pages 113–122. IEEE, 2013.

[6] L. Chung and J. C. P. Leite. On non-functional
requirements in Software Engineering. In Conceptual
modeling: Foundations and applications, volume 5600
of LNCS, pages 363–379. Springer, Germany, 2009.

[7] P. Clements and L. Northrop. Software product lines:

Practices and patterns. Addison-Wesley Longman
Publishing Co., Inc., USA, 2001.

[8] K. Czarnecki, T. Bednasch, P. Unger, and
U. Eisenecker. Generative Programming for embedded
software: An industrial experience report. In Proc. of
the 2002 Conf. on Generative Programming and
Component Engineering, volume 2487 of LNCS, pages
156–172. Springer, Germany, 2002.

[9] K. Czarnecki and S. Helsen. Feature-based survey of
model transformation approaches. IBM Systems
Journal, 45(3):621–645, 2006.

[10] C. Ghezzi, L. S. Pinto, P. Spoletini, and
G. Tamburrelli. Managing non-functional uncertainty
via model-driven adaptivity. In Proc. of the 35th Int.
Conf. on Software Engineering, pages 33–42. IEEE,
2013.

[11] P. Jamshidi, A. Ahmad, and C. Pahl. Autonomic
resource provisioning for cloud-based software. In
Proc. of the 9th Int. Symposium on Software
Engineering for Adaptive and Self-Managing Systems,
pages 95–104. ACM, 2014.

[12] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical report,
Software Engineering Institute, Carnegie Mellon
University, USA, Nov. 1990.

[13] T. Murata, H. Ishibuchi, and H. Tanaka.
Multi-objective genetic algorithm and its applications
to flowshop scheduling. Computers & Industrial
Engineering, 30(4):957–968, 1996.

[14] J. Myopoulos, L. Chung, and B. Nixon. Representing
and using nonfunctional requirements: A
process-oriented approach. IEEE Transactions on
Software Engineering, 18(6):483–497, 1992.

[15] K. Pohl, G. Böckle, and F. van der Linden. Software
Product Line Engineering: Foundations, principles,
and techniques. Springer, Germany, 2005.

[16] K. Pohl and A. Metzger. Variability management in
Software Product Line Engineering. In Proc. of the
28th Int. Conf. on Software Engineering, pages
1049–1050. ACM, 2006.

[17] N. Siegmund, M. Rosenmüller, C. Kästner, P. G.
Giarrusso, S. Apel, and S. S. Kolesnikov. Scalable
prediction of non-functional properties in software
product lines: Footprint and memory consumption.
Information and Software Technology, 55(3):491–507,
2013.

[18] S. Soares, P. Borba, and E. Laureano. Distribution
and persistence as aspects. Software – Practice and
Experience, 36(7):711–759, 2006.

[19] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke,
G. Saake, and T. Leich. FeatureIDE: An extensible
framework for feature-oriented software development.
Science of Computer Programming, 79(1):70–85, 2014.

[20] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng,
and J.-M. Bruel. RELAX: A language to address
uncertainty in self-adaptive systems requirement.
Requirements Engineering, 15(2):177–196, 2010.


	Introduction
	Variability Modeling and NFRSpecification
	Extended Feature Models
	DynamicNFR: a DSL for Specifying NFRs

	Decision-Making Architecture
	Handling Feature Models
	Handling NFR Specifications
	Decision Algorithm

	Discussion
	Study Illustration
	Utility Function vs. Satisfaction Degree

	Related Work
	Conclusion and Future Work
	References

