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Nonlinear instabilities are responsible for spontaneous pattern formation in a vast number 
of natural and engineered systems ranging from biology to galaxies build-up. We propose 
a new instability mechanism leading to pattern formation in spatially extended nonlinear 
systems based on a periodic antiphase modulation of spectrally-dependent losses arranged 
in a zig-zag way: an effective filtering is imposed at symmetrically located wavenumbers 
k and –k in alternating order. The properties of the dissipative parametric instability differ 
from the features of the both key classical concepts of modulation instabilities: the 
Benjamin-Feir, and the Faraday instability. We demonstrate how dissipative parametric 
instability can lead to the formation of stable patterns in one and two-dimensional 
systems. The proposed instability mechanism is generic and can naturally occur or can be 
implemented in various physical systems. 

 
	

Formation of patterns in nonlinear physical and 
biological systems gives the conceptually important 
idea how simple objects can self-evolve to complex 
structures through instabilities. Spontaneous pattern 
formation in a variety of nonlinear spatially extended 
systems is initiated by modulation instabilities (MI): 
the homogeneous state becomes unstable with respect 
to growing spatial modulation modes in a given range 
of wavenumbers [1]. Possibly the best known class of 
MI is the Benjamin-Feir (BF) instability, originally 
introduced in fluid dynamics [2,3] and later identified 
in different areas of science, such as plasmas [4], 
nonlinear optics [5-7] and other fields (see, for 
example, the review [1]). The physical essence of BF 
instability is that some spatial modulation modes with 
symmetric wavenumbers k and –k can synchronize 
with the strong homogeneous mode with k=0 due to a 
nonlinear frequency shift in self-focusing 
(modulationally unstable) media, and thus can 
experience exponential growth.  

Another fundamental MI – ubiquitous in physics – 
is the Faraday instability, historically known even 
before the BF instability. This instability results from 
the periodic modulation in time of an appropriate 
dispersive parameter of the system [8]. Faraday 
unstable modes oscillate at half the frequency of the 
parametric forcing. The Faraday instability can be 
understood as a synchronization of the growing modes 
at k and –k with the homogeneous mode through the 
periodic parametric driving. Specifically, when a 
parameter is time-modulated at frequency 2ω0, the 
modes grow if their wavenumbers k and –k satisfy the 
nonlinear dispersion relation ω0=ω(k).  

The Faraday instability was observed in a variety of 
systems: originally in vertically shaken fluids [8], later 
in periodically modulated chemical systems [9], in 
vertically shaken granular media [10], in periodically 
modulated Bose-condensates [11,12] and in nonlinear 
fiber optics. In the latter case, the modulation of 
nonlinearity or dispersion in time (piecewise or in a 
continuous manner) can initiate instability [13-16] and 
lead to pattern formation [17-19]. Typically, the 
Faraday instabilities and patterns are studied in BF-
stable systems. However, they can also appear as 
additional instabilities in BF-unstable cases [20].  

In this Letter, we propose a new type of instability 
that we call dissipative parametric instability. While it 
shares some features with BF and the Faraday 
instabilities, the dissipative parametric instability is 
also very distinct from these two classical cases. 

In various applications, both BF and Faraday 
instabilities and the associated nonlinear pattern 
formation can be described using a very generic model, 
the complex Ginzburg-Landau equation [21] (CGLE), 
which (in the case of one spatial dimension) reads: 
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where A(t,x) is the complex field amplitude distributed 
in space x and evolving in time t, µ is the gain 
coefficient, s and c are the saturation and nonlinearity 
coefficients and b and d are diffusion and diffraction 
coefficients. In the case of Faraday instability, 
diffraction d(t) and/or nonlinearity c(t) are periodic 



	 2 

functions of time. Note that the modulation in time of 
dissipative parameters, such as µ, s or the diffusion b 
(which effectively acts as dissipation for large k 
components), does not result in Faraday instability. In 
conservative systems, such as nonlinear fibers and 
Bose-Einstein condensates, both BF and Faraday 
instabilities are studied within the framework of the 
nonlinear Schrödinger equation (NLSE), the 
conservative limits of CGLE. 

The linear stability of the homogenous solution of 
the CGLE with periodic coefficients can be studied 
using the Floquet stability analysis. The homogeneous 
state Ahs=A0 exp(ic|A0|2t), in which µ=s|A0|2, is weakly 
perturbed by modulation modes a+k(t)exp(ikx) and      
a–k(t)exp(−ikx), such that a+k(t), a−k(t) << |A0|2. 
Calculating numerically the amplitudes of 
perturbations after one modulation period, building a 
matrix-map of a resonator roundtrip, and diagonalizing 
it (see Supplemental Material [22] for details) allows to 
calculate the Floquet multipliers F. A mode k is 
considered unstable when at least one of the absolute 
values of its multipliers is greater than 1. In order to 
visualize the instability spectrum, we plotted 
Max(|F(k)|).  

The BF instability, in the CGLE and in its 
conservative limit (NLSE), is a long-wave instability, 
because the band of unstable wavenumbers always 
extends from k=0; see Fig. 1(a). For particular systems, 
described e.g. by Manakov equations [23] or the 
Lugiato-Lefever equation [24], BF is not purely a long-
wave instability but its spectrum can slightly detach 
from k=0. The Faraday instability is a short wave 
instability: the area of unstable modes is clearly 
detached from the axis k=0; see Fig. 1(c). There are 
multiple Faraday instability tongues. In the first tongue, 
the growing modes oscillate with half the frequency of 
the parametric drive, in the second tongue - with the 
frequency of the drive, and so on. Another fundamental 
difference is that BF unstable modes grow 
monotonically, as shown in Fig. 1(b), whereas the 
growth of Faraday unstable modes is oscillatory and 
synchronized with the parametric drive, as in Fig. 1(d) 
(see also Supplemental Material [22]). 

The new type of instability – dissipative parametric 
instability – occurs in systems in which dissipative 
terms are periodically modulated in time in an 
antiphase (zig-zag) manner with respect to k and –k 
modes, Fig. 2(a).  

First, the complex field evolves nonlinearly and 
homogeneously in time according to the CGLE with 
non-modulated coefficients. Next, spectral losses are 
imposed over the wavenumber range −Δk at time 
instant t=Tf/2. Then a new stage of homogeneous 
nonlinear evolution takes place, followed by spectral 
losses over the wavenumber range +Δk at t=Tf. Note 
that the unmodulated dissipation in the k-domain 
(constant diffusion coefficient b in Eq. (1)) or the 
symmetrically (for k and −k modes) modulated 
dissipation does not result in any instability. 
Additionally, we would like to point out that the 
dissipative term remains positive on average at every 
instant of time, i.e. the losses are never converted into 
gain. 

 

 
FIG. 1. (a, c) Floquet spectrum calculated using the Floquet 
stability analysis of the homogeneous solution of the CGLE, 
instability occurs above the horizontal continuous line. (b, d) 
The dynamics of complex amplitude a(k) of the most 
unstable mode (indicated by dashed vertical lines on the 
instability spectrum) is calculated by direct integration of the 
CGLE. Arrows indicate the direction of temporal evolution. 
Parameters are µ=1, s=0.3, b=0.1�10–6, full integration time 
T=1. In the case of BF instability (a, b): c=1, d=−3�10−6. In 
the case of Faraday instability (c, d): c=4.85, d1=5�10−6, 
d2=1�10−6, and a piecewise modulated diffraction coefficient 
is considered: d=d1 for 0<t<0.2 (orange line on (d)), then 
d=d2 for 0.2<t<0.4 (red line), and so on. 

Such antiphase spectrally modulated losses can 
occur in periodic (cyclic) systems with spectrally 
shifted dissipative components. In the one-dimensional 
case, dissipative parametric instability can arise in 
transmission fiber systems, lasers or amplifiers, in 
which dissipative elements (such as filters) are imposed 
in alternating (zig-zag) order in frequency domain [25, 
26]. A laser is a natural example of a system exhibiting 
dissipative parametric instability if the frequency 
reflectivity profile of one mirror is shifted with respect 
to that of the other mirror; see Fig. 2(b). Such detuning 
results in periodic antiphase losses at every half cavity 
round-trip. 

Another possibility is to implement alternating 
losses in wavenumber domain. This could be realized 
in transverse nonlinear optics, such as self-imaging 
resonators [27] or self-imaging arrays of lenses, if the 
access to the far field distribution at different positions 
along the resonator is possible. Selective losses for the 
+k  and −k components can be imposed by placing 
corresponding spatial filters, see Fig. 2(c). The 
dissipative parametric instability could also be 
implemented in dissipative Bose-Einstein atomic or 
exciton-polariton condensates in semiconductor 
microcavities [28]. In the first case velocity 
(momentum) resolved losses have to be imposed; in the 
second case Bragg mirrors with suitable reflectivity 
profiles must be used (Fig. 4(a), Supplemental Figs. 
5(a) and 5(c)).  
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FIG. 2. (a) Dissipative parametric instability arises if periodic 
in time losses are introduced asymmetrically in the k-domain, 
so that the modes with only positive or negative wave vectors 
are damped every half of the period Tf. (b) Dissipative 
parametric instability can be realized by alternating losses in 
frequency domain, i.e. in a laser with detuned (in frequency) 
cavity mirrors. (c) A self-imaging resonator or self-imaging 
array of lenses with spatial filter displaced relative to the 
system’s axis is another possibility. 

We calculated the properties of the dissipative 
parametric instability in a system described by Eq. (1), 
modelling without loss of generality the dissipative 
elements as super-Gaussian spectral filters: 
f1,2(k)=exp(–(k±k0)8/σ8). The specific spectral shape of 
the filter function is not critical for the properties of the 
dissipative parametric instability. We performed the 
Floquet analysis for periodic in time and antiphase in k-
domain losses (see Fig. 3). The parameters used in the 
calculations are µ=1, s=0.2,  c=3.5,  b=0.1�10−6, 
d=5·10−6, k0=1822.1 and σ = 1885, modulation period 
is fixed, Tf=2, except in Fig. 3(d) where Tf  has been 
varied.  

The dissipative parametric instability band starts 
from k=0, Fig. 3(a), which makes its spectrum similar 
to the BF-instability (compare with Fig. 1(a)). We 
stress that the system considered on average and in 
every instant of time remains in the BF-stable regime. 
At the same time, the dissipative parametric instability 
spectrum has several tongues, as in Fig. 3(a) and 3(d), 
which is characteristic to Faraday instability. We note 
that the dissipative parametric instability spectrum 
could be also tailored to make modes with small wave-
numbers stable, or to modify the number of instability 
tongues by changing the dissipation function, such as 
its shift over frequency and the modulation period over 
time. 

As in Fig. 3(b), on average, the amplitudes of the 
unstable modes grow exponentially, but oscillate 
synchronously with external forces like in the Faraday 
instability case, and unlike the monotonous evolution 
of BF instability (see Supplemental Fig. 1 [22] for 
comparison). The complex amplitudes of the 

modulation modes perform looping in the phase space 
synchronized with the external modulation of 
dissipation, as in Fig. 3(c). The evolution in the phase 
space for the dissipative parametric instability is 
different from the cases of both BF and Faraday 
instabilities. 

 

 
 
FIG. 3. (a) Spectrum of dissipative parametric instability. The 
dashed line indicates the most unstable mode. (b) Evolution 
of the absolute values of the amplitudes of the most unstable 
modes a(k) and a(−k), red and blue lines, respectively. The 
losses are introduced at points f1, f2 etc. in time. (c) The 
complex amplitude of the mode a(k) evolves in loops in 
phase space synchronized with external forcing. (d) Spectrum 
of dissipative parametric instability as a function of the 
modulation period Tf, the dashed line is the analytically 
estimated scaling law of the instability. (e) The generalized 
phase Φ locks to the optimum value (dashed line) at which 
the mode’s amplitudes are growing at the fastest rate through 
periodic reset of the phase at instances of time at which the 
losses are applied. (f) Asymptotically stable pattern in one-
dimensional system. 

 
Despite the fact that modes with wavenumbers 

close to zero are unstable (see Figs. 3(a) and 3(d)), 
similarly to BF case, the dissipative parametric 
instability exhibits different scaling laws compared to 
BF instability. Indeed, whereas in the BF-instability 
case the instability spectrum does not scale over the 
modulation period (system length) [7], the scaling is 
well pronounced in the case of dissipative parametric 
instability, as depicted in Fig. 3(d). To characterize the 
scaling law, we phenomenologically assumed the 
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parametric resonance condition, as for Faraday 
instability, by imposing that the first unstable mode 
oscillates in time at frequency ωf/2, with ωf as 
frequency of the forcing and has wavenumber kinst 
related to ωf/2 through the dispersion relation. The 
resulting analytically derived scaling law (See 
Supplemental Material [22]) coincides well with the 
numerical calculation, Fig. 3(d).  

How and why the dissipative parametric instability 
emerges becomes clear through the calculation of the 
generalized phase Φ=ϕ+k+ϕ–k−2ϕ0, where ϕ+k and ϕ-k 
are the phases of the modes with wavenumbers +k and 
−k, respectively, and ϕ0 is the phase of the 
homogeneous mode. For a BF stable system, if the 
dissipation is not modulated, the generalized phase Φ 
evolves freely over time, resulting in periodical growth 
and decay of amplitudes of modulation modes 
depending on the instantaneous phase in the way that 
the period-average amplitude remains the same. In the 
conservative limit, such periodically oscillating modes 
are well known under the name of Bogoliubov-De 
Gennes excitations - sound waves of a condensate [29]. 

The situation is completely different when the 
modes at +k or −k are periodically damped in zig-zag 
fashion. In this case, at the instant of time during which 
the damping is applied the generalized phase is reset to 
the value at which the amplitude is growing; see Fig. 
3(e). Despite the increased dissipation on average, the 
exponential growth of the unstable modes sets in. We 
directly checked that such dynamics cannot be 
sustained if both modes were damped in phase. In this 
way, dissipative parametric instability is fundamentally 
different from the Faraday instability, where the modes 
at +k and −k are modulated in phase. 

The dissipative parametric instability eventually 
leads to pattern formation. For one-dimensional 
systems, we provide an example of a stable pattern 
evolved from the homogenous solution, in Fig. 3(f). 
The character of final patterns crucially depends on 
nonlinearity through the saturation of the amplitudes of 
unstable modes. Typically, stable and regular periodic 
patterns are excited, however, depending on 
parameters, dynamic irregular patterns are observed, 
characterized by a permanent creation and annihilation 
of the pulse-like localized structures during the 
temporal evolution (see Supplemental Fig. 4 [22]).  

The increase of the nonlinearity leads to decrease of 
the wavenumber of the modulation pattern; the increase 
of the modulation period Tf and of dispersion 
coefficient d have the same effect, in agreement with 
Supplemental Eq. 9 [22].  

 Furthermore an increase of the filters width or a 
reduction of their separation leads to a lower 
modulation wavenumber, however a minimum 
separation is needed in order to excite the instability. 

More comments on the patterns characterization, 
stability and temporal evolution can be found in 
Supplemental Material [22].  

 
The dissipative parametric instability is of generic 

nature and could also be realized in higher dimensional 
systems. An example is a two-dimensional system that 
is stable with respect to BF instability, and where we 

apply the profile of the dissipation function in a zig-
zagging manner, as depicted in Fig. 4(a). 

As a result, see Fig. 4(b), the dissipative parametric 
instability appears with a corresponding instability 
spectrum and leads to pattern formation. Different 
patterns could be obtained depending on the system 
parameters that vary from completely stable and 
regular modulation patterns, as in Fig. 4(c), to irregular 
ones, as in Fig. 4(d). The resulting periodic patterns in 
saturated regimes (when they are stable) are of 
wavenumbers within the area in k-space, where the 
losses are modulated. The dissipative parametric 
instability in 2D spatial systems could be controlled by 
managing the shape of the dissipation function with 
significant flexibility (further examples of two-
dimensional patterns are reported in Supplemental 
Material [22]). 

 
 

 
 
FIG. 4. (a) Zig-zagging losses in wavenumber space (kx,ky), 
(b) the instability area in (kx,ky) space as obtained by the 
Floquet analysis  and (c) 2D intensity patterns. Parameters 
are µ=0.2, d=0.05, b=0.08, c=0.35, s=0.3, Tf=5π, σ=1.0905. 
Losses are centred at k0x=−1, k0y=+1; (d) By setting b=0, the 
pattern becomes irregular in space and nonstationary in time.  

   In conclusion, we proposed and examined the 
dissipative parametric instability, a novel type of 
instability that can lead to pattern formation. The 
dissipative parametric instability occurs as a result of 
the periodic, in time, antiphase (zig-zagging) 
modulation of the spectral losses in the wavenumber 
(or frequency) domain. We have shown that this novel 
instability can lead to the formation of stable patterns 
in one and two-dimensional systems. The dissipative 
parametric instability is generic and can occur in 
various physical systems, including fiber optics, lasers 
and Bose-Einstein condensates. 
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In order to perform the numerical stability analysis of 
Eq. (1), we first calculated the homogeneous solution. 
Then we added a small complex perturbation to each 
spectral mode of the spectrum and integrated the 
CGLE for one modulation period Tf. To be more 
specific, a 4 by 4 transfer matrix M was obtained for 
each mode pair +k and –k, whose first and second row 
entries are the real and imaginary parts of the modes +k 
and –k amplitudes after the evolution of real and 
imaginary perturbations to mode k. The third and 
fourth rows of M contain the real and imaginary parts 
of +k and –k mode amplitudes, respectively, after the 
evolution of real and imaginary perturbations of mode 
–k. The resulting modes' amplitudes were normalized 
to the initial perturbation’s absolute value. 

The diagonalization of matrix M provides a set of 
four eigenvalues F(k) for modes +k and −k: the so-
called Floquet multipliers. A mode k is considered 
unstable when at least one of the absolute values of its 
eigenvalues is greater than 1. To visualize the 
instability spectrum, we plotted Max(|F(k)|) – the 
maximal absolute value of the Floquet multipliers – for 
each mode. As the instability spectrum is symmetric, 
only the positive part the spectrum (k>0) has been 
plotted. 
  The mechanism of dissipative parametric modulation 
instability differs from those of the classical Benjamin-
Feir and Faraday instability due to its antiphase 
modulation dynamics depicted in Fig. 3(b) of the main 
article. Specifically, the amplitudes of modulation 
modes symmetrically located at +k and –k, 
respectively, both grow on average over time. During 
this increase, however, their amplitudes are not equal at 
every instant point of evolution due to the action of the 
spectrally dependent losses. This feature clearly 
distinguishes the reported dissipative parametric 
instability from the BF and the Faraday ones. 

In the case of Faraday instability, the growth 
process is synchronized with the external forcing. In 
the Benjamin-Feir case, since no periodic forcing is 
applied, the growth is due to the increase of the small 
perturbations during the evolution (see Supplemental 
Fig. 1). Hence, the synchronization with the external 
forcing is a common feature of both Faraday and 
dissipative parametric instability. 

 

Supplemental FIG. 1. Growth process of the symmetrically 
(in wavenumber space) located maximally unstable modes 
a(+k) and a(–k) (blue and dashed red line) (a) and generalized 
phase (b) for the BF instability. The same for the Faraday 
instability: modes (c) and generalized phase (d). Dashed lines 
in (b) and (d) correspond to the optimum value of the 
generalized phase for synchronization with the homogeneous 
mode. For Faraday instability, the oscillatory growth process 
is synchronized with the external forcing. The parameters 
used are those considered in Fig. 1 of the main article. 

We provide now a heuristic explanation of the growth 
of the unstable modes in the dissipative parametric 
instability of the CGLE, showing how, in presence of 
the alternating (zig-zag) damping, the coupling 
between modes can provide the energy necessary for 
the growth. Let us consider the CGLE (Eq. (1) of the 
main article). After perturbation of the homogeneous 
solution choosing the following ansatz for the field 
A(t,x)=A0exp(ic|A0|2t)[1+a+exp(ikx)+a−exp(−ikx)]; and 
linearization of CGLE with respect to the small 
perturbations, the evolution equation for the 
modulation mode a+k(t), reads: 
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!34
!#
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256 + +,7

256 + +0 56 + 58
∗ &:

2 −

1 256 + 58
∗ &:

2.                                   (SE 1) 
                      
The (+) mode is coupled to the mode a–k

*(t): 
!3=

∗

!#
= %58

∗ − )7258
∗ − +,7258

∗ − +0 56 + 58
∗ &:

2 −

1 258
∗ + 56 &:

2.                                               (SE 2) 

 

The solution of Supplemental Eqs. (1) and (2) can be 
sought in the form of exponentially decaying 
oscillations (Bogoliubov-De Gennes excitations): 
a(t)=exp(Dt) [a1 cos(ωBt)+a2 sin(ωBt)]. The frequency 
of the oscillations ωB and the damping rate D, are given 
by the imaginary and real part of the eigenvalue 
spectrum of the CGLE, respectively: 

 
. (SE 3) 

 
In the limit d2k4+2cdk2µ/s > µ2, the frequency and the 
damping coefficient are, respectively: 

  (SE 4) 

D = −µ−bk2    (SE 5) 
and the corresponding solutions of Supplemental Eqs. 
(1) and (2) read: 

 

56 > = ?@A −% − )72 > 56 cos EF> +
58
∗ EF +0 % 1 − % + 56 EF +,72 +

+0 % 1 sin EF>    (SE 6) 

 
58
∗ > = ?@A −% − )72 > 58

∗ cos EF> +
56 EF −+0 % 1 − % + 58

∗ EF −+,72 −
+0 % 1 sin EF>    (SE 7) 

 

with a+(0) = ã+ and a*
−(0) = ã−*. We can obtain the 

temporal evolution for the mode a–k(t) by taking the 
complex conjugate of Supplemental Eq. (7): 

58 > = ?@A −% − )72 > 58 cos EF> +
56
∗ EF +0 % 1 − % + 58 EF +,72 +

+0 % 1 sin EF>    (SE 8) 

 
where ã− = a−(0). 

The amplitudes of the excitations exponentially decay 
asymptotically, oscillating at frequency ωB as 
illustrated in Supplemental Fig. 2(a). However, when 
the initial amplitude of one mode, say a−, is much 
lower than the amplitude of the other one, a+, then the 
amplitude of a− grows due to the coupling, as depicted 
in Supplemental Fig. 2(b). 

 

Supplemental FIG. 2. Temporal evolution of Bogoliubov-De 
Gennes modes for k = ±100×2π obtained evaluating 
Supplemental Eqs. (6) and (8) with the same parameters as in 
Fig. 3 of the main article. The excitations experience 
oscillatory behavior with asymptotic decay of the amplitudes 
(blue and over-imposed dashed red line) (a) when the initial 
conditions are equal; in particular, we have chosen ã+ = ã– = 
1. When one mode is damped, a rapid growth of its amplitude 
occurs, as shown in (b); in this case ã+ = 1 and ã– = 0.3. 
Alternating the damping of modes ±k with a temporal 
periodicity, which allows the successive growth of the 
damped mode, leads to the average growth of both sidebands, 
resulting in the dissipative parametric instability. 

When the losses for modes a– and a+ are introduced in 
an alternating way and with a period large enough to 
allow for the growth of the damped mode – but not too 
large – to avoid the asymptotic decay, then an average 
growth of a− and a+ occurs.  
The evolution described in terms of Supplemental Eqs. 
(6) and (8) is valid in the linear regime, when the 
quadratic terms in the mode amplitudes are negligible. 
In order to describe the nonlinear dynamics, numerical 
integration of the master Eq. (1) of the main paper is 
required. Nevertheless, the linear analysis presented 
above sheds light on how the instability develops 
before entering the nonlinear regime, where the 
sidebands amplitudes are no longer small and the 
saturation process takes place. In principle, the 
instability can develop as a result of periodically 
imposed losses only on one mode (say with 
wavenumber k) or on a spectral region (say +Δk), this 
kind of excitation could not lead to pattern formation – 
only to a frequency shift in the spectrum. In order to 
achieve pattern formation, the spectral zig-zag 
modulation configuration is required. 
 
Motivated by the synchronization between the growing 
modes and the external forcing shown in Fig. 3(b) of 
the main article, we present here an analytical estimate 
of the wavenumber of the maximally growing mode of 
the dissipative parametric instability (dashed black line 
in Fig. 3(d)). This is done by imposing the parametric 
resonance condition to the dispersion relation of the 
dissipative Bogoliubov modes of the CGLE. This 
condition assumes that the first excited mode has a 
wavenumber that is related, via the dispersion relation 
ω(k), to a temporal frequency equal to half of the 
forcing one. Starting from the instability spectrum of 
the CGLE, the dispersion relation is given by 
Supplemental Eq. (4). In the long wave limit, 
2cdk2µ/s>>d2k4, Supplemental Eq. (4) simplifies to: 

λ± = −µ − bk
2 ± −d 2k 4 − 2cdk2 µ s+µ 2

ωB = d 2k 4 + 2cdk2 µ s−µ 2
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, which allows straightforwardly 
to estimate, for µ ≤ π/Tf, the wavenumber of the first 
excited mode kinst by imposing the parametric 
resonance condition: 
 

.    (SE 9) 

Supplemental Eq. (9) is generic and gives the estimate 
of the first unstable mode for the parametric 
instabilities. In the presence of strongly detuned filters, 
the homogeneous field intensity |A0|2 is not exactly 
equal to the nominal value µ/s, since the strongly 
detuned filters can damp the homogeneous mode. 
However, we have checked that the minor damping of 
the homogeneous mode due to the detuned filters is not 
a necessary condition for the development of the 
dissipative parametric instability. In the absence of 
filters, selective and alternate damping of modes placed 
at ±k leads to their average growth. To plot the 
theoretical prediction (on Fig. 3(d)), we calculated kinst 
from Supplemental Eq. (9), using the intensity 
numerically averaged over one modulation period, 
instead of µ/s. In Supplemental Fig. 3(c) this scaling is 
compared with the one that results from Supplemental 
Eq. (9) evaluated with the nominal value of µ/s. 
We have also considered an instability map similar to 
the one shown in Fig. 3(d) of the main article, but 
obtained for fixed modulation period and varying µ. 
The instability map depicted in Supplemental Fig. 3(a) 
shows the unstable region as a function of the average 
intensity, which differs from the nominal value µ/s 
(Supplemental Fig. 3(b)) for the reasons mentioned 
above. 

Another distinctive feature of the dissipative 
parametric instability is the scaling of the wavenumber 
of the most unstable mode with respect to the 
amplitude of the background wave. Our calculations at 
different wave amplitudes A0 indicate that the 
maximally growing wavenumber decreases with field 
intensity (Supplemental Fig. 3), as can be expected for 
Faraday instability. This phenomenon contrasts with 
the well-known BF instability scaling in which the 
wavenumber of the maximally unstable mode always 
increases with the amplitude of the homogeneous field, 
in other words, with nonlinearity.  

 Despite its phenomenological origin Supplemental Eq. 
(9) provides a useful tool for a qualitative (or semi-
quantitative) description of the dissipative parametric 
instability. 

 
Supplemental FIG. 3. Instability map obtained varying µ 
from 0.5 to 2.142 and plotted in the wavenumber-average 
intensity space (a); the coloured regions correspond to 
instability; the remaining parameters are the same as in Fig. 3 
of the main article. The scaling of the maximally unstable 
mode kinst versus the field intensity (b): red points are the 
results of Floquet analysis, the black line is Supplemental Eq. 
(9) with µ/s substituted by the effective average intensity 
calculated numerically. In (c), the scaling of the maximally 
unstable mode versus Tf, corresponds to Fig. 3(d) in the main 
article. The black line corresponds to Supplemental Eq. (9) 
using the average intensity, while the blue one is 
Supplemental Eq. (9) with the nominal value of the ratio µ/s. 

In the main article, we have provided an example of a 
pattern formation initiated by the dissipative parametric 
modulation instability. Even though a detailed study of 
the pattern stability conditions in the asymptotic 
nonlinear regime is beyond the scope of this study, we 
provide here two examples of regular and irregular 
patterns showing their temporal evolution. In 
Supplemental Fig. 4(a), a regular periodic pattern is 
depicted corresponding to the parameters used in Fig. 3 
of the main article. Supplemental Fig. 4(b) shows the 
possibility of irregular patterns where repeated 
processes of creation and annihilation of spatial 
structures occur. The irregular pattern has been 
generated by reducing the detuning of the filters while 
retaining the remaining parameters as in the case of 
regular patterns. Supplemental Figs. 4(a) and 4(b) both 
depict a set of frames showing the spatial distribution 
of field intensity taken at the end of each modulation 
period, right after the second filter. We call a pattern 
“stable” if its shape remains unchanged for used long 
simulation time. Note, that this consideration does not 
prove true stability, but it gives a good indication of a 
possible stability of such patterns. As further check we 
have verified that performing the simulations which 
lead to pattern formation like the ones in Figs. 3(f) and 
4(c), also in presence of additive noise, the resulting 
patterns remain unchanged. Stable patterns form when 
the noisy background which develops between the 
coherent structures is efficiently suppressed due to the 

ωB = 2cdk2 µ s−µ 2

kinst ≈
π Tf( )
2cdµ s
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combined action of nonlinear-dispersive spectral 
broadening and dissipative periodic filtering. If such 
suppression does not occur, then neighbor structures 
can grow between the already existing ones entering 
into competition with them with a related creation and 
annihilation process, as it is illustrated in Supplemental 
Fig. 4(b). The presence of diffusion helps the pattern 
stabilization. 

 

Supplemental FIG. 4. Temporal evolution of the one-
dimensional patterns generated by the dissipative parametric 
instability. In (a), a stable pattern corresponding to the case of 
Fig. 3 of the main article is depicted; while in (b) the 
temporal dynamics of an unstable pattern shows continuous 
processes of creation and annihilation of coherent structures. 
Figure (b) has been obtained using k0 = 1570.8, while 
keeping the remaining parameters as in (a). 

Pattern formation through dissipative parametric 
instability in the two-dimensional system gives more 
freedom in the choice of the structure of the dissipative 
elements. Here we provide more details of the scheme 
illustrated in the main article and show them in 
Supplemental Figs. 5(a) and 5(b) where the dissipation 
function takes the form: 

f1,2 = exp[–(kx±k0x)2/σ2].   (SE 10) 

In contrast with the results presented in Fig. 4 of the 
main article, the patterns shown in Supplemental Fig. 5 
are not tilted, because of the different shape of the 
dissipation in wavenumber space. A similar pattern, but 
with a spatial modulation along the orthogonal 
direction y, can be obtained by using the same 
dissipation function as in Supplemental Eq. (10), but 
replacing kx with ky and k0x with k0y (see Supplemental 
Figs. 5(c) and 5(d)). 

 

Supplemental FIG. 5. The two Gaussian transmission 
functions used to modulate the dissipation (a) and the 
corresponding 2-dimensional pattern created due to 
dissipative parametric instability (b) for k0x=1. A π/2 
rotation in k-space of the transmission function (exchange of 
kx with ky and k0x with k0y) for k0y = 1, leads to the generation 
of a pattern with a periodicity along the spatial direction y 
(d). The parameters used are as follows: µ = 0.2, d = 0.05, b = 
0.001, c = 0.35, s = 0.3, Tf = 5π, and σ = 1. 

We finally provide a phenomenological 
characterization of the patterns temporal evolution and 
functional shape. Once the pattern has appeared 
through progressive increase of the modulation of the 
homogeneous field background, the individual 
coherent structures which form the pattern evolve 
dynamically and periodically during each modulation 
period. The evolution in normal diffraction, in presence 
of gain, resembles the formation of similaritons in fiber 
amplifiers and leads to a considerable broadening 
associated with a modification of the original Gaussian 
shape into an almost parabolic one. The patterns shapes 
at the end of the nonlinear evolution just before the 
filter action are reported in Supplemental Fig. 6. 
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Supplemental FIG. 6. In (a) the 1-D pattern just before the 
filter action is depicted: the structures exhibit a clear 
broadening towards parabolic shape, while high frequency 
noise spikes are clearly visible between neighbour structures. 
In 2D we have the same broadening effect towards parabolic 
shape: (b), (c) and (d) are the corresponding intensity profiles 
before filter action for Fig. 4(c), Supplemental Figs. 5(b) and 
5(d).   
 
We have characterized the functional shape of 
individual structures fitting them with Gaussian and 
parabolic functions respectively after and before the 
action of the filter as it is clearly depicted in 
Supplemental Fig. 7. 
 

 
 
 
Supplemental FIG. 7. In (a) we present a section of the 
pattern depicted in Supplemental Fig. 5(b), in blue is the 
intensity profile before filtering while in red after filtering. In 
(b) and (c) are the fits of the single structures respectively 
after (Gaussian fit) and before (parabolic fit) the filter action. 
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