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Serial Innovators in the UK: Does Size matter? 

 

Abstract 

This paper aims to shed light on the presence and importance of a significant number of small 

firms amongst serial innovators. Contrary to the common expectation in the innovative 

persistence literature, we posit that also small serial innovators benefit from operating within 

patterns of creative accumulation. However, it is in the quality of the technology and in the 

very nature of the knowledge accumulation process that the differences between small and 

large serial innovators can be found. Using a sample of 811 UK-based, highly innovative 

companies that patented over 66000 inventions from 1990 to 2006, we find evidence in 

support of our theory. While large serial innovators experience higher innovation rates due to 

the scale of their innovation efforts to generate further innovations, small serial innovators 

benefit more from processes of search depth characterised by the internal recombination of 

previous own knowledge. We find that fundamental differences exist also in the very nature 

of the technologies being developed. 
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1. Introduction 

The literature on technological change assumes persistence in innovation to take place within 

a technological environment characterized by Schumpeterian patterns of creative 

accumulation, where innovation advantages due to knowledge accumulation and 

technological learning generate concentration-increasing growth (Schumpeter, 1942; Nelson 

and Winter, 1982). Such patterns are characterised by high barriers to innovative entry, 

stability in the ranks of innovators and routinised processes that sustain the innovative 

activity of a small number of large established firms competing in highly concentrated 

oligopolies (Winter, 1984; Malerba and Orsenigo, 1996, 1999).  

 

In this picture, small firms have a smaller presence and a lower likelihood of survival (Acs 

and Audretsch, 1987; Audretsch, 1995). Thus, while the relationship between firm size and 

innovation persistence is acknowledged to be non-linear, with many large firms showing no 

sign of persistence and some small firms being persistent innovators (Cefis and Orsenigo, 

2001; Geroski et al., 1997; Malerba et al., 1997), the emphasis in the literature has 

traditionally been on large firms. Conversely, the specific characteristics of persistently 

innovating small firms and the differences with their large counterparts have been much 

overlooked. This paper contributes to the innovative persistence literature by exploring this 

question in more detail. 

 

We argue that innovation persistence is defined by the role of technological regimes 

characterised by high opportunity conditions and cumulativeness discussed by previous 

literature, as well as the specific technological characteristics of the innovations, such as 

technological impact, generality and originality.  

While we expect these effects to apply to all serial innovators, we suggest important 

differences can be found in the very nature of the process of knowledge accumulation defined 
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by the fundamental differences in the scale and structure of small and large firms. While the 

presence of dynamic economies of scale in innovation is important for both the small and 

large serial innovators, the larger scale of research activity makes this effect more prominent 

among large firms. Similarly, while both small and large serial innovators build on their 

existing accumulated knowledge trajectory to generate future inventions, we posit the 

specialised technological nature of small serial innovators leads to more pronounced dynamic 

increasing returns resulting from search depth defined by the exploitation of the internal 

combinative capabilities and knowledge spillovers from previous innovative activities. 

We posit that differences between large and small serial innovators are to be found also in the 

technology specific characteristics. In particular, we expect small serial innovators to benefit 

more than large serial innovators from high impact technologies, as they signal and reinforce 

their presence and dominance in a specialised technological niche and further increase the 

potential for internal knowledge spillovers. 

 

Using patent data from the EPO PATSTAT database for the period between 1990 and 2006, 

we identify those UK companies characterized by a sustained record of inventive activity 

over time, defined as serial innovators
1
, and explore the effects that specific patterns of 

innovative activity and firm-specific technology characteristics exert on their rate of 

innovation. In particular, we offer a comparative perspective between small and large serial 

innovators in order to shed light on the moderating effects of firm size through which 

innovative persistence manifests itself. 

 

We find that small serial innovators, like their large counterparts, benefit from an 

environment replete with innovative opportunities and also from their accumulated 

competencies to sustain their innovative activities. In line with our research hypotheses, we 

find that it is in the role played by the scale of knowledge accumulation and the degree to 
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which firms build on their existing knowledge for further inventions that the main difference 

between small and large serial innovators can be found.  

Our results also provide partial evidence that patents characterised by high impact, generality 

and originality allow all serial innovators to sustain persistence innovation. At the same time, 

we find that small serial innovators benefit more than large serial innovators from high-

quality patents that reflect knowledge specialization in defined technological fields.  

 

These findings address an important gap in the innovative persistence literature by shedding 

more light on small serial innovators and by highlighting that subtle, yet important 

differences remain in how innovative persistence occurs in small and large serial innovators.  

 

The rest of the paper is organised as follows. Section 2 presents a review of the background 

literature and the hypotheses, Sections 3 and 4 outline the data and the methodology, Section 

5 discusses the results and Section 6 concludes the paper. 

 

 

2. Literature Review and Hypotheses 

The literature suggests that a number of factors characterize persistent innovation. In Section 

2.1, we concentrate on the characteristics of technological regimes while in Section 2.2 we 

consider technology-specific characteristics as important determinants of persistent 

innovative activity. Each section includes the relevant hypotheses to be tested in the empirical 

part of the paper. 

 

2.1 The characteristics of technological regimes 

Several empirical studies demonstrate that persistence in innovative activity may be 

explained through qualities of the relevant technological regime (Malerba and Orsenigo, 
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1996; Breschi et al., 2000), which can be seen as the knowledge environment shaping the 

firm-specific routines and boundaries; thus defining firms‘ technological trajectory (Nelson 

and Winter, 1982; Dosi, 1982). Four main dimensions have been used to describe 

technological regimes, namely opportunity conditions, appropriability conditions, properties 

of the knowledge base and cumulativeness of innovation. 

 

(a) Opportunity conditions describe the increase in sectoral innovative activities for a given 

amount of resources spent in search (Malerba and Orsenigo, 1993). By generating a rich 

innovative environment, opportunity conditions widen the scope of firms‘ technological 

frontier. At the same time, they may ease the effect of size-related disadvantages allowing for 

small innovators to exist alongside large ones (Audretsch, 1995).  

 

(b) Appropriability conditions express the possibility for the firm to protect its inventions. 

High levels of appropriability are associated with a more persistent pattern of innovative 

activity since securing the returns to innovation provides resources and incentives for further 

innovation. Companies use a wide range of formal and informal protection methods for their 

innovations. Moreover, their use in different industries can vary significantly (Levin et al., 

1987; Arundel and Kabla, 1998). Patent data used in this paper present a limitation in this 

respect, and we need to make an assumption on the level of appropriability in our dataset. 

Given the high cost of patenting, we argue that companies which present a sustained level of 

patenting activity are likely to consider patents an efficient and viable method of protection, 

in line with the findings in Arundel (2001). Therefore, we assume a high level of 

appropriability for all companies in this study. 

 

(c) Properties of the knowledge base refers to the multidimensional complexity of the 

technological knowledge on which the firm's innovative efforts are built. While the theory 
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identifies various characteristics such as specificity, tacitness and complexity (Winter, 1987), 

previous research has usually measured this variable using the simpler dichotomy between 

applied and science-based technology (Breschi et al., 2000). In this context, science-based 

technology is associated with codified and easily transferrable knowledge, while applied 

technology is sector specific and requires accumulated capabilities to be fully exploited 

(Winter, 1984).  

 

(d) Cumulativeness describes the degree to which innovations in a specific period of time 

depend on previous innovations. This aspect of the knowledge regime has been the most 

extensively discussed aspect in the innovative persistence literature (Malerba and Orsenigo, 

1993) and two main elements of cumulativeness have been proposed to explain the presence 

of persistence in innovation. The first element is ‘dynamic economies of scale’, where the 

volume of previous innovation exerts a positive effect on the successive rounds of 

innovations, as commercial success and the firm‘s enriched absorptive capacity provide the 

resources that sustain new research activities (Nelson and Winter, 1982; Cohen and 

Levinthal, 1989). In other words, ―the more innovations a firm produces, the more likely it is 

to continue to innovate‖ (Geroski et al., 1997: 33). This hypothesis can also be seen as related 

to the concept of sunk costs (Sutton, 1991), as the accumulated stock of knowledge generates 

high barriers to entry and exit in innovation, thus supporting persistent innovation. 

The second element is related to the notion of ‘search depth’, which describes ―how deeply a 

firm reuses its existing knowledge‖ (Katila and Ahuja, 2002, p.1183). This reflects the 

‗increasing returns‘ property of knowledge accumulation, as building upon, reusing and 

recombining its specialised knowledge results in the firm gaining a deeper understanding of 

internal technological components and capabilities (Hall et al., 2001; 2005). Such process 

promotes persistent innovation supporting a more effective selection and exploitation of 

related opportunities for future innovations (Kogut and Zander, 1992; Fleming, 2001).  
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The abovementioned four dimensions of technology regimes (a-d) are important elements 

that shape the innovative activities of firms. Within the analytical framework of 

Schumpeterian patterns of technological change, persistence is an inherent quality of creative 

accumulation characterised by high opportunity and strict appropriability conditions, more 

cumulativeness and a knowledge base more applied in nature (Winter, 1984; Malerba and 

Orsenigo, 1993; Breschi et al., 2000). Accordingly, we hypothesise that: 

 

Hypothesis 1. For both small and large serial innovators, the rate of innovation is enhanced in 

the presence of high opportunity conditions, a knowledge base close to applied technology 

and high levels of cumulativeness. 

 

While these characteristics are associated with innovative persistence dynamics for all serial 

innovators, we expect to find significant differences in the process of knowledge 

accumulation for small and large firms given their fundamental differences in terms of 

resources, markets and technological organization (Acs and Audretsch, 1987; Cohen and 

Klepper, 1996). As discussed above, knowledge accumulation benefits innovative persistence 

through two distinct, yet related channels: (1) scale effects and (2) search depth. While both 

channels are important for large and small serial innovators to develop further innovations 

and sustain persistence in innovation, significant differences exist in terms of how effectively 

these channels serve the two types of firms.  

 

As dynamic economies of scale foster persistence through increased financial returns and 

enriched absorptive capacity, their presence may offer two advantages to large serial 

innovators as opposed to small ones. Operating on a larger scale across broader markets, 
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large serial innovators can apply the fruits of their innovation over a greater output, attaining 

higher returns from an increasing volume of innovative activities (Nelson and Winter, 1982; 

Levin and Reiss, 1988; Cohen and Klepper, 1996). Similarly, large serial innovators are also 

engaged in a broader number of products and technological fields compared to small firms 

(Breschi et al., 2003; Corradini et al., 2012). In this sense, their broader search scope allows 

for a more effective application of the increasing stock of knowledge across the wider set of 

technological opportunities (Fleming, 2001; Katila and Ahuja, 2002). Therefore, we 

hypothesise that: 

 

Hypothesis 2: Compared to small serial innovators, large serial innovators benefit more from 

scale effects in knowledge creation to enhance their rate of innovation.  

 

The second dimension of cumulativeness, search depth (i.e. building on the firm‘s existing 

knowledge), is also an important facilitator of persistent innovation for both the small and 

large serial innovators. However, we expect the processes of search depth to be more 

important across small firms compared to large serial innovators.  

Compared to large firms, the constraints in both resources and output of small firms limit 

their extent of scale effects in fostering further innovation and restrict their opportunities to 

explore knowledge sources outside the firm‘s knowledge base. In line with this, small serial 

innovators have been described as specialised technology developers centred on the 

development of a key core technology (Hicks and Hegde, 2005).  

Previous literature on the economics of innovation indicates that focusing on previous 

internal knowledge to generate further innovation allows firms to develop a strong 

competitive position within a specific technological trajectory (Hall et al., 2005), as the 

enhanced combinative capabilities increase internal knowledge spillovers and improve the 
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selection and the exploitation of useful components in future innovation (Fleming, 2001; 

Fleming and Sorenson, 2004). As focusing on core technological competencies allows small 

firms to avoid ineffective solutions in favour of more useful technological combinations 

(Freel, 2000; Nesta and Saviotti, 2005), processes of search depth may constitute a key 

element in fostering innovation persistence among small serial innovators. 

Consequently, as small serial innovators narrow down in their technological trajectory and 

specialise within a niche of expertise, they can obtain greater benefits from search depth than 

large serial innovators which engage in a broader scale and scope of research activities. In 

fact, integrating and reconfiguring knowledge embedded in previous innovations becomes 

more complex when search activities grow in scale, and it can be increasingly difficult for 

large firms to manage and combine the greater number of different pieces of knowledge 

located in different parts of the organisation (Carlile, 2002). Thus, small serial innovators 

may benefit more from the increasing returns resulting from search depth into their existing 

core knowledge to generate further knowledge compared to large serial innovators. 

Therefore, we hypothesise: 

 

Hypothesis 3. Compared to large serial innovators, small serial innovators benefit more from 

search depth to enhance their rate of innovation. 

 

2.2. Technology specific characteristics 

Technological regimes are essential in defining the technological trajectory followed by 

companies. Yet, their innovative behaviour is also shaped by the specific qualities of the 

technologies they develop. In particular, previous literature discusses elements of three main 

characteristics of technology - high impact, generality and originality – that it is possible to 
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argue may exert an important role for serial innovators by generating technology dynamics 

that reinforce persistence in innovation.  

 

The impact of innovation represents the value of a given technology. High impact 

technologies yield higher financial returns that can be channelled into further inventive 

efforts, and companies developing such innovations receive a higher market return for their 

innovations (Chen and Chang, 2010; Hall et al., 2005). At the same time, the higher impact of 

innovations reflects the higher quality of the knowledge creation process within firms‘ 

innovative activity (Trajtenberg, 1990) and reinforces their position over a specialised 

technological area. Thus, innovations with higher technological impact exert a strong effect 

on firms‘ accumulated technological competencies, providing new resources and knowledge 

for further inventive efforts.  

 

Generality of innovation describes technology that is generic and can be used for the 

development of a wide variety of products. Generality of innovation resembles the concept of 

'general purpose technology' (GPT) introduced by Bresnahan and Trajtenberg (1995). They 

describe GPTs as 'enabling technologies', characterized by high levels of dynamism and 

pervasiveness, which generate processes of 'innovational complementarity'. Innovations 

characterised by higher levels of generality act as platforms that enable the expansion and 

diversification of firms‘ technological trajectory in derivative technologies, opening up 

opportunities for further innovations and supporting innovative persistence (Kim and Kogut, 

1996). 

 

Originality of innovation indicates the degree to which a given innovation is novel or 

creative, encompassing a diverse set of previous ideas (Trajtenberg et al., 1997).  Firms 

whose innovations derive from a broad range of technology fields demonstrate the presence 
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of strong absorptive capacities and the ability to effectively synthesise different pieces of 

knowledge (Granstrand et al., 1997). Original innovations enrich firm‘s knowledge base and 

strengthen their position in a given technology. More generally, the may open up new 

opportunities to explore new technological possibilities across related and less related 

technology fields (Cohen and Levinthal, 1990), fostering technology persistence dynamics. 

 

These three technology-specific qualities represent different channels that reinforce 

innovation persistence. High impact technologies sustain serial innovation by increasing the 

high quality knowledge available to the firm as well as providing financial returns that can 

fuel further innovative efforts. Similarly, original innovation has a widening effect on internal 

combinative capabilities and further technological search. Technologies that are general and 

have a wide applicability open up novel directions of research, fostering technology 

branching. Therefore, we hypothesise: 

 

Hypothesis 4. High levels of technological impact, generality and originality in innovations 

enhance the rate of innovations for both small and large serial innovators.    

 

 

As small serial innovators are more likely to focus on the opportunities arising from internal 

specialised knowledge, they are likely to gain more benefits from developing innovations that 

increase the number and the quality of potential knowledge combinations available to the 

firm. Such effects do not depend as much on the volume or breadth of innovation previously 

developed, but rather on the qualities of the knowledge created within the firm (Hicks and 

Hegde, 2005). 
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High impact technologies provide companies with a richer and more valuable set of 

knowledge components, which increases the potential for internal knowledge spillovers along 

firms‘ specific research trajectory (Fleming, 2001). In this sense, as the quality of 

combinative opportunities generated by high impact technologies enhances the benefits that 

the process of search depth can offer, such technologies are likely to be particularly 

significant for small serial innovators specialised on a core technology where they possess 

advanced capabilities
2
. Moreover, they may reinforce the expertise and dominance of small 

serial innovators over their research trajectory (Nesta and Saviotti, 2005) as well as creating 

high barriers to entry in their technological niche (Winter, 1984; Malerba and Orsenigo, 

1996; 1999). Therefore, we hypothesise:   

 

Hypothesis 5. Compared to large serial innovators, small serial innovators benefit more from 

innovations defined by high technological impact to enhance their rate of innovation.  

 

 

3. Data  

We define as serial innovators those companies that are independent throughout the 

observation period, with at least five years of technological patenting activity calculated as 

the difference between the first and the last patent published by the company in the period of 

time considered and that possess at least 10 patented inventions with an overall ratio of 

patents to years at least equal to 1
3
. Small serial innovators are then defined as having less 

than 250 employees
4
. 

 

The use of patent data is widespread in the literature as patents are officially recorded and 

easily accessible, provide a large quantity of detailed data at the firm level and are available 
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for long time series. Moreover, the inventive step required to obtain a patent ensures an 

objective degree of novelty. Drawbacks are also well known
5
. In particular, patents are 

criticised for the wide variance in their value, yet several studies indicate that the use of 

patents weighted by citation, also utilised in the paper, may resolve this issue (Trajtenberg, 

1990; Hall et al., 2005).  

 

To build our dataset, we proceeded as follows. All applicants based in the UK with at least 

one patent application between the years 1990 and 2006 were selected. Then, single inventors 

or University applications were excluded. The data were manually checked to identify 

misspelled names or different names referring to the same entity. At this stage, a set of 

roughly 30 thousand companies was obtained. Patent families were used as a proxy for firms' 

inventions
6
, with patent family being defined as ―a set of patents taken in various countries to 

protect a single invention‖ (OECD, 2001). This allowed us to uniquely identify single 

inventions, regardless of the number of applications made in different patent offices to protect 

the same new technology
7
.  

In order to complete the dataset with information on economic and business variables such as 

size, ownership and SIC code, all records were integrated with information from the FAME 

database and Companies House website, which contains the official UK register of 

companies. Then, all patents belonging to subsidiaries which were part of a group throughout 

the period of time considered were grouped together with the main holding company in order 

to enable consistent counting of patents. 

 

Following our definition, at the end of this process a total of 1410 serial innovators were 

identified. However, for 296 companies it has not been possible to extract information on 

size, ownership and sector, and they have been removed from the analysis. Excluding also 

those companies which changed ownership and therefore, presented multiple links with 
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various business groups in the period of time considered, the final dataset contained 

information on 811 companies: 472 large and 339 small companies.  

 

 

3.1. Serial innovators: some stylised facts 

Table 1 reports descriptive statistics for the firms in our dataset by size group. As expected, 

the differences between large and small-sized companies are sensible, with the first group 

accounting for the large majority of patents in the dataset, with the mean equal to 126 patents 

for large firms and 20 for small ones. Such difference is largely due to the higher skewness 

for large companies. In fact, as the second quartile underlines, half of the large companies 

have less than 37 patents, with the ten highest patenting companies holding almost one third 

of the patents considered. Instead, small companies show a median value of 16 inventions 

over the sixteen years analysed.  

 

Considering the difference between the first application and the last in this time-period, the 

difference between large and small companies is less noticeable; with a mean of respectively 

12 and 10 years. It is interesting to note that the majority of small serial innovators are not 

short-lived, with half of the small companies being active for at least 9 years in the period of 

time considered. If we look at the date of incorporation, many are much longer lived, with the 

average number of years of innovative activity being equal to 20.  

A detailed distribution across industrial sectors of small sized companies is reported in Table 

2. Research & Development is the most represented sector, accounting for roughly a third of 

the total number of companies (28%). The manufacturing sectors constitute the other main 

group in the data, with the predominance of metal products and machinery (10% and 6%) 

followed by plastic products, precision instruments and chemical products (6%, 6% and 4% 

respectively). 
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[Tables 1 & 2 about here] 

 

 

 

4. Model specification 

We model the inventive performance of serial innovators as a function of two broad 

categories of explanatory variables reflecting the characteristics of technological regimes (see 

Hypotheses 1 to 3) and the quality of the technology specific inventive activity, (see 

Hypotheses 4 and 5) as discussed in Sections 2.1 and 2.2. Within the first category, we 

include opportunity conditions (OPPORTR), one variable for properties of the knowledge 

base (KNOWTR) and two distinct variables to reflect cumulativeness, namely, scale of 

previous innovation (SCALE) and search depth (SELFCITE). Within the second category, 

we measure technology specific characteristics including impact (IMPIN), generality 

(GENIN) and originality (ORIGIN) of innovation. 

To investigate if any significant differences exist across small and large firms, we make use 

of firm size interaction terms. To test the robustness of our results we also estimate the model 

for small and large firms separately.  

 

4.1. Dependent Variables 

In order to measure the rate of innovation of serial innovators, we use the number of patents 

applied for by firm i with publication date in year t (PATENTSit). However, patents present a 

significant variance in their individual technological and economic value. To account for this 

issue, a recent strand of literature has focused on the use of citation-based indices, providing 

evidence that patent citations are significantly correlated with the technological importance of 

inventions (Trajtenberg, 1990; Trajtenberg et al., 1997, Hall et al., 2001). Accordingly, we 

use a second dependent variable which is the citation-weighted patent count CITATIONSit
8
.  
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4.2. Independent Variables 

4.2.1. Proxies for the Characteristics of Technological Regime 

The first group of independent variables refers to the concept of technological regime and 

describes the nature of the technological environment that bounds firms‘ knowledge base.  

 

Given its complexity and the multifaceted nature, opportunity conditions (OPPORTR) have 

been formalized and measured in different ways in the applied literature. We follow the 

approach of Patel and Pavitt (1998) based on the increase in the patenting activity within a 

sector, and build an index of opportunity conditions (OPPORTR) by taking into account the 

year-over-year percentage increase in the number of patents for each IPC sector where the 

firm patented: 

 

, , 1
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 (4.1)  

 

where Pit is the number of patents of the company i in year t, while ap,t and ap,t - 1 represent 

the total number of patents in the same IPC technological class of the patent p in time t and t-

1 respectively.  

Properties of the knowledge base (KNOWTR) refers to the nature of the technology and the 

knowledge embedded in the firm‘s innovative activities. Following Breschi et al. (2000), our 

measure is obtained by the relative number of patent citations made to science-based or 

applied sectors, with the number of patent citations on academic patents included in the first 
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group, where positive values indicate a close relationship with science-based sectors. The 

index is: 
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                                                                                (4.2)  

 

where cb is the number of citations from science-based sectors and ca that of applied sectors. 

The u represents citations made to university patents, while C is simply cb + ca.  

 

Cumulativeness summarizes the idea that inventions in time t depend on existing knowledge 

capabilities and the previous level of innovation. To capture these aspects we use two distinct 

variables reflecting the cumulativeness effects in innovation: the scale of previous innovation 

(SCALE) and search depth (SELFCITE).  

The first one is a proxy measure for dynamic economies of scale in innovation (see Bloom 

and Van Reenen, 2002; Hall et al., 2005) whereby increases in the volume of innovation up 

to a given time period lead to further increases in the innovation produced in subsequent 

periods. In line with the existing literature we measure the scale of previous innovation 

(SCALE) using the firm‘s patent stock: 

   

1(1 )it it itSCALE P SCALE   
                                                                                                     (4.3) 

 

where Pit represents the number of patents at the beginning of year t and δ is the depreciation 

rate, which is assumed to be 15%
9
 (Cockburn and Griliches, 1988, Hall et al., 2005). 

Following Hall et al. (2005), we account for the effect of the missing initial condition by 

collecting information on the number of patents for all companies in the study from 1985, 
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while our regressions use data starting from 1995, allowing for a lag of at least 10 years 

between the first year for which we have patent data and the first year analysed. To control 

for potential endogeneity, we allow SCALE to enter the estimating equation with a lag after 

being log transformed.  

The second variable search depth (SELFCITE) may be considered a direct measure of the 

reuse of firms‘ previous knowledge and internal knowledge spillovers (Hall et al., 2005), and 

it is calculated as the average percentage of self-citations made by the ith firm in year t. In 

other words, this variable measures how intensively the firm dips into its own knowledge for 

generating further innovations. For every patent p, we count the number of citations made to 

other patents with the same assignee Nsamep, divided by the total number of citations Np
10

: 
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4.2.2. Proxies for Technology Specific Characteristics 

The second group of variables is used to test our fourth and fifth hypotheses on the 

characteristics of the technology developed internally to the firm. To control for potential 

endogeneity, these variables are lagged one period. 

 

The impact of innovation (IMPIN) reflects the importance of patents in terms of both 

knowledge creation and as financial signals. In order to take into account the substantial 

differences in citation rates across different technologies and over time, we make use of the 

citation index proposed by Hicks and Hegde (2005), defined as the ratio of the citation count 

over the citation count of all patents in the same year and technological class. More formally 

we have: 
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Where Nfpit,k  represent the number of forward citations for the patent p of company i in the 

technology class k, while Nft,k  is the total number of forward citations for any patent 

published in year t in the same class k.  

 

Generality of innovation (GENIN) is related to the idea that innovative companies benefit 

from the development of pervasive technologies which may generate successive innovations 

in different sectors. To calculate this variable, we follow the approach proposed by 

Trajtenberg et al. (1997). Including the bias correction presented in Hall (2005), the 

generality index is here defined for each patent as: 
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where K is the number of different IPC technological classes where the patent was cited, Nfp,k 

is the number of forward citations for the k sector and Nfp the total number of forward 

citations. The index is the inverse of the Herfindahl index, with values closer to 1 for patents 

with citations from a large spread across different technological classes and values close to 0 

for patents cited in a small number of technological classes. Hence, the index for the 

generality of invention is defined for each company i in year t as follows: 
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Originality of innovation (ORIGIN) is related to the argument that more original innovations 

build upon technological advances from a broad set of sectors. Following Trajtenberg et al. 

(1997), the index is calculated as the generality index, except that citations received are 

replaced by citations made by the company. Including the bias correction introduced above, 

we have: 
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where K is the number of different IPC technological classes where the patent made citations, 

Nbp,k is the number of backward citations made to the k sector and Nbp the total number of 

backward citations. Our originality index is: 
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4.2.3. Firm Size and Other Control Variables 

To study the role of firm size, we run separate regressions on the samples of small and large 

serial innovators. To directly compare if significant differences exist in the size of the 

marginal impact and to test the robustness of our results, we also estimate the model over the 

full sample of serial innovators making use of a firm size dummy variable (SMALL) equal to 

one if the company has less than 250 employees. In order to  test out the differences in how 

these variables affect small and large companies we allow SMALL to interact with 
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OPPORTR, KNOWTR, SCALE, SELFCITE, IMPIN, GENIN and ORIGIN. We also include 

sectoral
11

 and time dummies as control variables. 

 

Table 3 reports the descriptive statistics for all variables used in the regressions. We observe 

that large serial innovators have a higher average value for patents, citations and knowledge 

stock but also much dispersion around the mean. Interestingly, small serial innovators present 

a more sustained level of self-citations, as well as generality and originality within their 

technological output. Finally, correlation figures from Table 4 as well as VIF and Tolerance 

values reported in Table 3 suggest that multicollinearity is not a significant concern in this 

study. 

 

[Tables 3 & 4 about here] 

 

4.3. The negative binomial count model and truncation 

 

Given the stochastic nature of the inventive process, the flow of patenting activity of a 

company is usually dotted with years where a new discovery or invention does not take place. 

Hence, given the discrete and non-negative nature of both our dependent variables PATENTS 

and CITATIONS, traditional linear estimators such as ordinary least squares are limited, 

yielding inconsistent, inefficient and biased estimates (Cameron and Trivedi, 1998). In this 

case, count models provide a more appropriate means of analysis. 

 

The common starting point for count data is the Poisson model. However, one of the main 

assumptions of the Poisson model is that the conditional mean should equal the conditional 

variance. To test the mean-variance assumption, we run Z-tests and the Lagrange Multiplier 

test for over-dispersion, with both tests rejecting the hypothesis of no over-dispersion at the 

.01 level
12

 (Hilbe, 2011). Many possible extensions have been proposed to account for this 
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issue (See Hausman et al., 1984; Cameron and Trivedi, 1998). Among these, negative 

binomial models are the most common, and constitute the standard approach in the studies 

based on patent counts. To fit such model, we make use of generalized estimating equations 

(GEEs), first proposed by Liang and Zeger (1986), with a negative binomial distribution
13

.  

Another common problem when using citation data is that of truncation. To address this 

issue, we follow the fixed-effects approach discussed by Hall et al. (2001), which is built 

around the assumption that all systematic variations across different cohorts of patents are 

artefactual and therefore should be removed.  

 

 

 

5. Results 

 

In Table 5, we report the results of the negative binomial model. For both measures of 

innovativeness (PATENTS and CITATIONS), we separately report the results for small firms 

(column 1 and 2), large firms (column 3 and 4) and all serial innovators with interactions by 

firm size in the sample (column 5 and 6).  As good practice when analysing interaction 

variables in nonlinear models and for ease of interpretation, the coefficients are expressed in 

terms of incidence rate ratios (IRRs) in all models. IRRs can be read as the percentage 

increase/decrease in the dependent variable following a unit change in the independent 

variable, ceteris paribus
14

. The percentage increase/decrease in the dependent variable is 

determined by whether the IRR coefficient is below or above 1. For example, an IRR of 

1.270 on the OPPORTR variable in column (1) of Table 5 indicates that the patenting rates 

increase by 27% for every one unit of increase in the OPPORTR variable while the IRR of 

0.857 on the KNOWTR variable suggests that patenting rates decrease by an average of 

14.3% (1-0.857) for every 1 unit increase in KNOWTR. The interaction effects and their 

statistical significance can also be observed directly, although the effect should be read in 

multiplicative terms. In column (5) of Table 5, for example, the effect of OPPORTR for small 
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firms is expected to decrease by 5.5% with respect to large companies, based on the 

estimated coefficient of the OPPORTR_SM variable. 

 

[Table 5 about here] 

 

In line with Hypothesis 1, we find the impact of the variables reflecting the characteristics of 

technological regimes (OPPORTR, KNOWTR, SCALE and SELFCITE) is significant for all 

serial innovators irrespective of the firm size (see column 1 to 6). The estimates are consistent 

across both dependent variables (PATENTS and CITATIONS) with the exception of the 

impact of SELFCITE upon PATENTS for large serial innovators. This issue is discussed in 

more detail below. 

 

For small serial innovators, opportunity conditions present a positive relationship with the 

rate of innovation, with a one unit increase in its value resulting in an increase in the rate of 

PATENTS by a factor of 1.27 and a factor of 1.48 for CITATIONS (see column 2). For large 

serial innovators, a one unit increase in the value of the OPPORTR variable results in an 

increase in the rate of PATENTS by a factor of 1.33 and a factor of 1.44 for CITATIONS 

(see column 3 and 4 respectively).  These results confirm that an economic environment 

replete with new technological discoveries (captured by the OPPORTR variable) provides 

fertile ground for the innovation activities of both the small and large serial innovators. With 

respect to KNOWTR, the IRRs less than 1 in columns (1) (2) and (3) (4) suggest that both 

small and large serial innovators benefit from having linkages with applied sectors, as 

opposed to basic sectors.  

 

Our findings indicate that cumulativeness (SCALE and SELFCITE) exerts an overall positive 

effect on the rate of innovation for both small and large serial innovators. Yet, important 
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differences also emerge. In particular, the impact of SCALE is lower for small serial 

innovators across both dependent variables (PATENTS and CITATIONS), suggesting that 

accumulated knowledge stock enhances the rate of innovations more for large serial 

innovators compared to their small counterparts as proposed in Hypothesis 2.  

The impact of search depth (proxied by the SELFCITE variable) is also different for small 

and large serial innovators. We find that the variable SELFCITE exerts a negative effect upon 

PATENTS for large companies as shown in column (3) (i.e. IRR smaller than 1) and a 

relatively lower effect (IRR=1.314) upon CITATIONS compared with the case of small firms 

(IRR=1.917). These findings suggest that even though the process of search depth increases 

the quality of innovation across large firms, the increased search depth appears to restrict the 

quantity of further innovations large firms can introduce.  

 

Overall, comparing small and large serial innovators, our findings indicate that processes of 

search depth building on firms‘ core competencies are particularly effective for generating 

further innovations across small serial innovators. These results support Hypothesis 3. 

 

To better capture the significance of any differences across firms of different size, we include 

a size dummy (SIZE) and size interaction variables in the models reported in column 5 and 6 

to better understand how firm size moderates the effects of the sets of variables we focus on 

in the analysis. We note that the coefficient of the SMALL dummy variable is insignificant in 

both columns, revealing that there are no significant differences in the patenting rates of 

small and large serial innovators once we account for technological regime specific and 

technology specific variables. This is an interesting insight that highlights the similarities 

between the innovation rates of small and large serial innovators.  
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Looking at the interaction variables, opportunity conditions have an effect that is around 6% 

higher for large companies (see column 5), suggesting that small serial innovators may be 

less responsive than large serial innovators to opportunities presented by the technological 

environment. This is in line with our earlier finding that their innovation activity may be 

characterized more by search depth based on the degree of specialisation within the 

technology class and the exploitation of internal capabilities and competencies, providing 

additional evidence for Hypothesis 3.  

Small companies seem to be slightly more related to basic science technologies compared to 

large companies even though the coefficient of KNOWTR_SM is significant only at 10% 

level in column (5) and not significant at all in column (6).  

 

The estimates related to cumulativeness SCALE_SM and SELFCITE_SM reveal the most 

important differences between small and large firms. In line with Hypotheses 2, the positive 

effect on PATENTS derived from having a larger patent stock is reduced for small companies 

by around 15% compared to large companies. On the other hand, we observe the opposite 

effect for SELFCITE_SM, which is 1.3 times higher among small serial innovators for the 

model based on PATENTS and 1.5 times higher with respect to CITATIONS, providing 

further support for Hypothesis 3.  

 

To test Hypothesis 4, we refer to the second group of variables classified under Technology 

Specific variables. Our results reveal that high impact innovations (IMPIN) increase the 

patenting rate for small serial innovators across both dependent variables (PATENTS and 

CITATIONS). The same cannot be said for large firms, where a significant and positive 

effect is found only for CITATIONS.  

Looking at differences across firm size, we note that IMPIN exerts a positive increase in the 

rate of CITATIONS by a factor of 1.204 for small firms compared to a factor of 1.157 for 
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large firms, offering evidence for Hypothesis 5. Further evidence for Hypothesis 5 is 

provided by the interaction variable (column 5 and 6) for high impact patents (captured by 

IMPIN_SM), which indicates a stronger positive effect on the rate of patenting activity 

(PATENTS) of small compared to large serial innovators. These results confirm that high 

quality innovations are particularly important for small serial innovators that have a smaller 

knowledge stock but act as important specialised technology providers in the market. 

 

Considering the other Technology Specific variables, we find no evidence that either 

generality (GENIN) or originality (ORIGIN) of innovation have a significant impact upon the 

citation rate of serial innovators with respect to PATENTS. In the case of CITATIONS, we 

observe a positive effect for ORIGIN among small serial innovators (see column 2). This 

suggests original patents, as high impact innovations, may also reinforce the competitive 

advantage of small serial innovators within their technological trajectory. 

 

Looking at the interactions, we observe higher generality (GENIN_SM) to have a stronger 

effect for large firms when considering CITATIONS. The unexpected negative effect for 

GENIN_SM may point to the importance of complementary capabilities available to large 

firms in order to fully exploit the ‗enabling‘ effect of generic technologies. In the case of 

ORIGIN_SM, no significant difference is found with respect to either patents or citations of 

small serial innovators.  

 

 

6. Conclusions 

This paper shows that sustained innovative activity over time is not a specific quality of large 

companies but extends to a significant number of highly innovative small companies.  We 

argue that, irrespective of the size of the firm, the nature of innovation persistence lies within 
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the technological regimes defined by high opportunity conditions and cumulativeness, with 

technology specific characteristics of the innovation having contrasting effects. However, 

differences between small and large serial innovators reside in the very nature and 

characteristics of knowledge accumulation defined by the scale and depth of innovative 

search as well as in the technological impact of innovations. Empirically, we examine 

persistence in innovation using UK firm level patent data sourced from the PATSTAT 

database. In particular, we test the impact of the technological regimes and technology 

specific characteristics upon the rate of innovation of 811 UK serial innovators responsible 

for over 66000 patents during the period 1990–2006. Our findings provide evidence that 

opportunity conditions and cumulativeness are central elements in persistent innovation, with 

the specific qualities of cumulativeness representing the main difference between small and 

large serial innovators. While the higher resources and output of large firms allow them to 

benefit more from economies of scale in innovation, small companies have higher returns 

from processes of search depth defined by reuse of internal knowledge through ‗combinative‘ 

capabilities to generate further innovations. Accordingly, we also find that small serial 

innovators benefit more from high-quality patents that reflect knowledge specialization in 

specific technological fields.  

 

The study has certain limitations. First, although patents constitute an important means of 

appropriability for small R&D companies (Arundel, 2001), they allow to study only a 

specific kind of serial innovators. Patents are more widespread in certain industries and 

technologies (Arundel and Kabla, 1998), thus our results must be considered cautiously 

outside those sectors where patents are usually applied for. In particular, we were not able to 

test the role of appropriability, and we deem this an interesting area for future research.  

Second, while this study has focused on the technological level of serial innovation, we 

believe that the role of finance and especially the presence of innovation networking are 
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likely to be decisive elements in the activity of small serial innovators. We were unable to 

test these hypotheses and we deem it an interesting avenue for future research. 

 

In summary, our results contribute to the literature on innovative persistence by highlighting 

the presence and importance of small serial innovators amongst the population of persistently 

innovating firms. We also shed light on the structural differences underlying innovative 

persistence for small and large serial innovators. The findings in this paper call for further 

research into better understanding the dynamics of knowledge generation and accumulation 

as well as innovation persistence within small serial innovators. 

 

 

 

 

 

 

 

 

 

 

References 

Acs, Z. J. and D. B. Audretsch (1987), ‗Innovation, Market Structure, and Firm Size‘, The 

Review of Economics and Statistics, 69(4), 567-574. 

 

Arundel, A. (2001), ‗The relative effectiveness of patents and secrecy for appropriation‘, 

Research Policy, 30(4), 611-624. 

 

Arundel, A. and I. Kabla (1998), ‗What percentage of innovations are patented? empirical 

estimates for European firms‘, Research Policy, 27(2), 127-141. 



 

29 

 

 

Audretsch, D. B. (1995), ‗Innovation, growth and survival‘, International Journal of 

Industrial Organization, 13, 441-457. 

 

Bloom, N., and J. Van Reenen (2002), ‗Patents, Real Options and Firm Performance‘, 

Economic Journal, 112, C97-C116. 

 

Breschi, S., Malerba, F. and L. Orsenigo (2000), ‗Technological regimes and Schumpeterian 

patterns of innovation‘, The Economic Journal, 110(4), 388-410. 

 

Breschi, S., Lissoni, F. and F. Malerba (2003), 'Knowledge-relatedness in firm technological 

diversification', Research Policy, 32, pp. 69-87. 

 

Bresnahan, T. F. and M. Trajtenberg (1995), ‗General purpose technologies ‗Engines of 

growth‘?‘, Journal of Econometrics, 6(1), 83-108.  

 

Cameron, A. C. and P. K. Trivedi (1998). Regression analysis of count data. Cambridge 

University Press. 

 

Carlile, P. R. (2002), ‗A pragmatic view of knowledge and boundaries: Boundary objects in 

new product development,‘ Organization Science, 13(4), 442–455. 

 

Cefis, E. and L. Orsenigo (2001), ‗The persistence of innovative activities, a cross-countries 

and cross-sectors comparative analysis‘, Research Policy, 30(7), 1139–1158. 

 

Chen, Y.-S., K.-C., Chang (2010) ‗The relationship between a firm‘s patent quality and its 

market value—the case of US pharmaceutical industry‘,Technological Forecasting and 

Social Change, 77 (1), 20–33. 

 

Cockburn, I. and Z. Griliches (1988), ‗Industry effects and appropriability measures in the 

stock markets valuation of R&D and patents‘, American Economic Review, 78(2), 419-423. 

 

Cohen, W. M. and Klepper, S. (1996), ‗A reprise of size and R&D‘, The Economic Journal, 

106, 925-951. 



 

30 

 

 

Cohen, W. M. and D. A. Levinthal (1989), ‗Innovation and Learning: The Two Faces of 

R&D‘, The Economic Journal, 99, 569-596. 

 

Cohen, W. M. and D. A. Levinthal, (1990), ‗Absorptive Capacity: A New Perspective on 

Learning and Innovation‘, Administrative Science Quarterly, 35(1), 128-152. 

 

Corradini, C., Battisti, G. and P. Demirel, (2012), ‗Determinants of Technological 

Diversification in Small Serial Innovators‘, Nottingham University Business School Research 

Paper, n.2012-10. 

 

Dosi, G. (1982), ‗Technological paradigms and technological trajectories: A suggested 

interpretation of the determinants and directions of technical change‘, Research Policy, 11(3), 

147-162. 

 

Fleming, L. (2001), ‗Recombinant uncertainty in technological search‘, Management Science, 

47, 117–132. 

 

Fleming, L. and O. Sorenson (2004), ‗Science as a map in technological search,‘ Strategic 

Management Journal, 25(8–9), 909–928. 

 

Freel, M. S. (2000), ‗Strategy and structure in innovative manufacturing SMEs: the Case of 

an English Region‘ , Small Business Economics, 15(1), 27–45. 

 

Geroski, P. A., Van Reenen, J. and C. F. Walters (1997), ‗How Persistently Do Firms 

Innovate?‘, Research Policy, 26(1), 33–48. 

 

Granstrand, O., Patel, P. and K. Pavitt, (1997), ‗Multitechnology corporations: Why they 

have ―distributed‖ rather than ―distinctive core‖ competencies‘, California Management 

Review, 3(4), 8-25. 

 

Griliches, Z. (1990), ‗Patent Statistics as Economic Indicators: A Survey‘, Journal of 

Economic Literature, 28(4), 1661-1707. 

 



 

31 

 

Hall, B. H. (2005), ‗A Note on the Bias in Herfindahl-Type Measures Based on Count Data‘, 

Revue d'Économie Industrielle, Programme National Persée, 110(1), 149-156. 

 

Hall, B. H., Jaffe, A. and M. Trajtenber (2001), ‗The NBER Patent Citation Data File: 

Lessons, Insights and Methodological Tools‘, NBER Working Paper 8498. 

 

Hall, B. H., Jaffe, A. and M. Trajtenber (2005), ‗Market Value and Patent Citations‘, The 

RAND Journal of Economics, 36(1), 16-38.  

 

Hausman, J., Hall, B. H. and Z. Griliches (1984), ‗Econometric Models for Count Data with 

an application to the Patents-R&D Relationship‘, Econometrica, 52(4), 909-938. 

 

Hicks, D. and D. Hegde (2005), ‗Highly innovative small firms in the markets for 

technology‘, Research Policy, 34(5), 703-716.  

 

Hilbe, J. M. (2011). Negative binomial regression. Second edition. Cambridge University 

Press. 

 

Katila, R. and G.  Ahuja (2002), ‘Something old, something new: a longitudinal study of 

search behavior and new product introduction‘, Academy of Management Journal, 45(6), 

1183-1194. 

 

Kim, D. J. and B. Kogut (1996), ‗Technological platforms and diversification‘, Organization 

Science, 7, 283-301. 

 

Kogut, B and U. Zander (1992), ‗Knowledge of the Firm, Combinative Capabilities, and the 

Replication of Technology‘, Organization Science, 3(3), 393-397. 

 

Levin, R. C., Klevorick, A. K., Nelson, R. R. and S. G. Winter (1987), ‗Appropriating the 

Returns from Industrial Research and Development‘, Brookings Papers on Economic 

Activity, 18(3), 783-832. 

 

Levin, R C. and P. C. Reiss (1988), ‗Cost-reducing and demand-creating R& D with 

spillovers‘, Rand Journal of Economics, 19, 538-56. 



 

32 

 

 

Liang, K. and S. Zeger (1986), ‗Longitudinal Data Analysis Using Generalized Linear 

Models‘, Biometrika, 73(1), 13-22. 

 

Malerba, F. and L. Orsenigo (1993), ‗Technological regimes and firm behaviour‘, Industrial 

and Corporate Change, 2(1), 45-71.  

 

Malerba, F. and L. Orsenigo (1996), ‗Schumpeterian patterns of innovation are technology-

specific‘, Research Policy, 25(3), 451-478.  

 

Malerba, F. and L. Orsenigo (1999), ‗Technological Entry, Exit and Survival: An Empirical 

Analysis of Patent Data‘, Research Policy, 28, 643–660. 

 

Malerba, F., Orsenigo, L. and P. Peretto (1997), ‗Persistence of innovative activities, sectoral 

patterns of innovation and international technological specialization‘, International Journal 

of Industrial Organization, 15(6), 801-826. 

 

Martinez, C. (2011), ‗Patent families: When do different definitions really matter?‘, 

Scientometrics, 86(1), 39-63. 

 

Nelson, R. R. and S. Winter (1982). An Evolutionary Theory of Economic Change. Belknap 

Press. 

 

Nesta, L. and P. P. Saviotti (2005), ‗Coherence of the knowledge base and the firm's 

innovative performance: evidence from the US pharmaceutical industry‘, The Journal of 

Industrial Economics, 53, 123–142. 

 

OECD (2001), Science, technology and industry scoreboard: towards a knowledge-based 

economy. OECD Publishing.  

 

Patel, P., and K. Pavitt (1998), ‗The Wide (and Increasing) Spread of Technological 

Competencies in the World's Largest Firms: A Challenge to Conventional Wisdom‘, in A. D. 

Chandler, P. Hageström and Ö. Slölvell (Eds), The Dynamic Firm. The Role of Technology, 

Strategy, Organization, and Regions. Oxford: Oxford University Press. 



 

33 

 

 

Schumpeter, J. A. (1942/2008). Capitalism, socialism and democracy. New York: Harper 

Perennial. 

 

Sutton, J. (1991). Sunk costs and market structure. MIT Press. 

 

Trajtenberg, M. (1990), ‗A Penny for Your Quotes: Patent Citations and the Value of 

Innovations‘, The Rand Journal of Economics, 21, 172-187. 

 

Trajtenberg, M., Henderson, R. and A. Jaffe (1997), ‗University versus Corporate Patents: A 

Window on the Basicness of Invention‘, Economics of Innovation and New Technology, 5, 

19-50. 

 

Winter, S. (1984), ‗Technological competition in alternative technological regimes‘, Journal 

of Economic Behaviour and Organization, 5, 287-320. 

 

Winter, S. (1987), ‗Knowledge and competence as strategic assets‘, in D. J. Teece (Ed), The 

competitive challenge: Strategies for industrial innovation and renewal  (pp. 159-184). 

Cambridge: Ballinger Publishing Company. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

34 

 

TABLES 

 

Table 1: Serial innovators: total number of patents (PAT), years of innovative activity (Year Diff.), 

average number of patents per year of innovative activity (Ratio) 

   MEAN SD Q25 Q50 Q75 MAX MIN Patents Firms 

LARGE PAT 125.87 335.75 20 37.5 90 4832 10 59410 472 

 Year Diff. 11.57 3.64 8 12 15 16 5   

 Ratio 10.03 23.11 2.15 3.64 7.41 304.69 1   

SMALL PAT 20.5 17.16 12 16 21 181 10 6948 339 

 Year Diff. 9.59 3.44 7 9 12 16 5   

  Ratio 2.3 1.72 1.38 1.83 2.5 17.22 1     

TOTAL PAT 81.82 261.49 15 23 49 4832 10 66358 811 

 Year Diff. 10.74 3.69 8 10 14 16 5   

  Ratio 6.8 18.07 1.63 2.5 4.7 304.69 1     

 

Table 2: Small Serial innovators by industrial classification (Two-digit SIC code) 

Sector SIC Code Patents % Firms % Patents 

Extraction of Crude Petroleum and Natural Gas 11 55 0.88% 0.79% 

Manufacture of Wearing Apparel 18 11 0.29% 0.16% 

Manufacture of Pulp, Paperand Paper Products 21 64 1.18% 0.92% 

Manufacture of Chemicals and Chemical Products 24 265 4.42% 3.81% 

Manufacture of Rubber and Plastic Products 25 367 6.19% 5.28% 

Manufacture of Other Non-metallic Mineral Products 26 37 0.59% 0.53% 

Manufacture of Basic Metals 27 20 0.59% 0.29% 

Manufacture of Fabricated Metal Products, Except Machinery  28 696 10.32% 10.02% 

Manufacture of Machinery and Equipment Not Elsewhere Classified 29 326 6.19% 4.69% 

Manufacture of Office Machinery and Computers 30 39 0.88% 0.56% 

Manufacture of Electrical Machinery and Other Apparatus  31 165 2.65% 2.37% 

Manufacture of Radio, Television and Communication Equipment 32 118 2.36% 1.70% 

Manufacture of Medical, Precision and Optical Instruments 33 413 5.90% 5.94% 

Manufacture of Other Transport Equipment 35 28 0.59% 0.40% 

Manufacture of Furniture; Manufacturing Not Elsewhere Classified 36 463 7.67% 6.66% 

Wholesale Trade and Commission Trade 51 133 2.36% 1.91% 

Retail Trade, Except of Motor Vehicles and Motorcycles 52 10 0.29% 0.14% 

Post and Telecommunications 64 95 1.47% 1.37% 

Computer and Related Activities 72 108 2.06% 1.55% 

R&D 73 2576 28.32% 37.08% 

Other Business Activities 74 652 9.73% 9.38% 

Health and Social Work 85 29 0.59% 0.42% 

Recreational, Cultural and Sporting Activities 92 68 0.88% 0.98% 

Other Service Activities 93 98 1.47% 1.41% 

Miscellaneous 
 

112 2.06% 1.61% 

TOTAL   6948 100% 100% 
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Table 3: Descriptive statistics 
Small Serial Innovators 

  Mean St.Dev Median Max Min VIF Tolerance 

Patents 3.30 3.19 2 44 1 
  

Citations 9.35 14.25 5 288 2 
  

Opportr 2.65 1.64 2.45 7.62 -0.82 1.09 0.92 

Knowtr -0.21 0.80 -0.50 1 -1 1.05 0.95 

Scale 9.94 10.71 7.28 104.47 1 1.08 0.92 

Selfcite 0.35 0.59 0 4 0 1.13 0.89 

Impin 1.13 1.74 0.56 16.96 0 1.02 0.98 

Genin 0.39 0.33 0.40 1 0 1.17 0.86 

Origin 0.37 0.30 0.38 1 0 1.17 0.86 

Large Serial Innovators 

 
Mean St.Dev Median Max Min VIF Tolerance 

Patents 14.11 30.03 5 356.00 1 
  

Citations 32.93 85.45 9 1171.00 2 
  

Opportr 2.53 1.46 2.41 7.62 -0.85 1.06 0.94 

Knowtr -0.36 0.69 -0.67 1 -1 1.06 0.95 

Scale 71.34 158.86 21.66 1749.12 1 1.07 0.93 

Selfcite 0.26 0.50 0 9 0 1.04 0.96 

Impin 1.26 1.49 0.97 21.15 0 1.02 0.98 

Genin 0.36 0.26 0.34 1 0 1.15 0.87 

Origin 0.34 0.22 0.34 1 0 1.16 0.86 

 

 

Table 4: Correlation matrix 

  Patents Citations Opportr Knowtr Scale Selfcite Impin Genin Origin 

Patents 1.00 
   

 
    

Citations 0.87 1.00 
  

 
    

Opportr 0.22 0.21 1.00 
 

 
    

Knowtr 0.04 0.05 -0.05 1.00  
    

Scale 0.87 0.76 0.16 0.06 1.00 
    

Selfcite 0.12 0.15 0.21 -0.07 0.11 1.00 
   

Impin 0.11 0.15 0.15 -0.05 0.09 0.15 1.00 
  

Genin -0.01 0.01 0.00 0.11 0.00 0.04 0.05 1.00 
 

Origin 0.01 0.02 0.00 0.10 0.01 0.05 0.09 0.36 1.00 
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Table 5: GEE Negative binomial regression estimates for serial innovators 

    (1) (2) (3) (4) (5) (6) 

  PATENTS CITATIONS PATENTS CITATIONS PATENTS CITATIONS 

Sample Definition Small Firms  Only Large Firms Only Small and Large Firms 

Technological regimes variables 

Opportr 1.270*** 1.483*** 1.330*** 1.443*** 1.346*** 1.477*** 

 
(0.022) (0.064) (0.019) (0.039) (0.018) (0.041) 

Knowtr 0.857*** 0.668*** 0.846*** 0.797*** 0.827*** 0.738*** 

 
(0.038) (0.075) (0.030) (0.052) (0.028) (0.053) 

Scale 1.783*** 1.848*** 2.022*** 1.963*** 2.020*** 1.957*** 

 
(0.070) (0.176) (0.032) (0.058) (0.031) (0.064) 

Selfcite 1.190*** 1.917*** 0.910** 1.314*** 0.900** 1.217** 

 
(0.059) (0.263) (0.039) (0.104) (0.041) (0.115) 

Technology specific variables 

Impin 1.059*** 1.204*** 1.012 1.157*** 1.012 1.140*** 

 
(0.015) (0.044) (0.014) (0.028) (0.014) (0.031) 

Genin 1.056 0.761 0.980 1.134 0.969 1.200 

 
(0.096) (0.164) (0.074) (0.155) (0.071) (0.181) 

Origin 1.051 1.571* 1.094 1.267 1.104 1.267 

 
(0.115) (0.412) (0.106) (0.221) (0.104) (0.242) 

Size and interaction variables 

SMALL     1.042 0.743 

  
   (0.138) (0.174) 

Opportr_SM  
 

  0.945*** 0.979 

   
  (0.0173) (0.0365) 

Knowtr_SM     1.102* 1.017 

     (0.0546) (0.102) 

Scale_SM     0.863*** 0.947 

   
  (0.0374) (0.0752) 

Selfcite_SM     1.290*** 1.557*** 

   
  (0.0857) (0.213) 

Impin_SM 
    

1.046** 1.061 

     
(0.0214) (0.0419) 

Genin_SM 
    

1.066 0.634** 

     
(0.131) (0.147) 

Origin_SM 
    

0.967 1.317 

     
(0.148) (0.379) 

N Obs 1152 1152 2359 2359 3511 3511 

Lagrange Multiplier Test (p-value)   
 

0.001 

All columns report IRRs. 
   

All regressions include year and sectoral dummies. S.E. in parentheses 

* p<0.10  ** p<0.05  *** p<0.01   
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1
 We use this term, as opposed to persistent innovators, as our definition resembles the one introduced by Hicks 

and Hegde (2005). 

2
 Potential differences may also occur for original and generic patents. However, while their presence may offer 

small companies additional opportunities to increase internal combinative capabilities and strengthen their 

position over a specialised technological trajectory, they often require complementary resources that are more 

likely to reside in large firms. Thus, we leave to the empirics to determine possible differences for originality 

and generality across firm size. 

3
 The traditional approach to the study of persistent innovation focuses on the presence of innovation in 

subsequent periods of time. In this paper we follow the approach of Hicks and Hegde (2005), imposing a 

minimum threshold of innovative activity within a larger window of time. That allows us to focus on the overall 

stream of inventions rather than their sequence over time. 

4
 This definition follows the European Commission Recommendation (96/280/EC) of 3 April 1996, where 

SMEs are defined by the upper of 250 employees. According to this threshold, only three small companies 

turned into large companies in the period considered. We have carried out a number of modelling exercises and 

we can conclude that their inclusion/exclusion does not significantly affect the parameters estimates. For 

obvious reasons no further analysis of their innovation mode and innovation performance was carried out.   

5
 For a discussion of strengths and weaknesses of patent data see Griliches (1990). 

6
 See Martinez (2011) for a detailed discussion on the use of patent families as proxies for firms' inventive 

activity. 

7
 Note that, unlike studies that use patent data from  a single patent office (e.g: USPTO), identification of patent 

families is crucial to this study in order to avoid multiple counting based on different patents issued for the same 

invention in different countries since PATSTAT combines patent applications from various patent offices.  

8
The weighting scheme adopted to obtain CITATIONS follows the approach presented by Trajtenberg (1990), 

who suggested to weight each patent i by the total number of citations received in the following years. See also 

Section 5.3 for our approach to the issue of truncation in citations. 

9
 As a further test we have also set δ = 20% and δ = 25%, but estimates do not change significantly. 

10
 Note that this is the index proposed by Trajtenberg et al. (1997) to measure appropriability.  

11
 Sectoral dummies are based on the main technological class of firms‘ patent portfolio, as these reflect more 

accurately the nature of the knowledge base of companies than SIC codes. Also, their distribution is more 

balanced across large and small firms.    

12
 We report the p value for the LM test in Table 5.   

13
 We estimated the negative binomial heterogeneity parameter α using the STATA command nbreg, following 

Hilbe (2011).   

14
 Incidence rate ratios are simply the ratio of two ratios, which are defined by the occurrence of an event in a 

given time period.  


