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Abstract—Designers of self-adaptive systems often formulate adaptive
design decisions, making unrealistic or myopic assumptions about the
system’s requirements and environment. The decisions taken during this
formulation are crucial for satisfying requirements. In environments
which are characterized by uncertainty and dynamism, deviation from
these assumptions is the norm and may trigger “surprises”. Our method
allows designers to make explicit links between the possible emergence
of surprises, risks and design trade-offs. The method can be used to
explore the design decisions for self-adaptive systems and choose among
decisions that better fulfil (or rather partially fulfil) non-functional
requirements and address their trade-offs. The analysis can also provide
designers with valuable input for refining the adaptation decisions
to balance, for example, resilience (i.e. satisfiability of non-functional
requirements and their trade-offs) and stability (i.e. minimizing the
frequency of adaptation). The objective is to provide designers of self-
adaptive systems with a basis for multi-dimensional what-if analysis to
revise and improve the understanding of the environment and its effect
on non-functional requirements and thereafter decision-making. We have
applied the method to a wireless sensor network for flood prediction. The
application shows that the method gives rise to questions that were not
explicitly asked before at design-time and assists designers in the process
of risk-aware, what-if and trade-off analysis.

I. INTRODUCTION

Recently, research on self-adaptive systems has been pri-
marily concerned with run-time solutions for self-adaptive
decision-making and has not sufficiently discussed the role that
off-line design and systematic evaluation can play in informing
the problem. The need becomes crucial in systems which
exhibit scale, dynamism, uncertainty and risks in the execution
environment, where hidden and unexpected behaviours are the
norm. The fundamental premise is that early exploration and
“stress” evaluation of self-adaptive design space can uncover
hidden behaviours, reveal likely risks and magnify some trade-
offs. This exercise can provide better understanding of the
requirements and more realistic assumptions of the environ-
ment. It can consequently feed into better formulation and
elaboration of the self-adaptive design decisions, enhance our
assumptions of the system and even support a more efficient
decision-making mechanism at runtime. As a motivating ex-
ample, consider self-adaptive multi-agents systems that operate
in environments that are dynamic, stochastic, and partially
observable. The agents collect information and revise their
plans at run-time. Variables that describe the properties of the
environment can take a range of continuous values. Run-time
decisions made by the agent depends on the belief state at each
point in time, i.e. the posterior probability distribution over all

possible states, given all evidence to date [1]. The agent often
uses little evidence to update its beliefs about the likelihood of
all the possible future states. Certain types of agents make use
of evidence provided to them from the environment through
sensor models. They can revise their plans to handle further
evidence [2]. They can exhibit graceful degradation under
time pressure and in complex environments [2]. This situation
can be prevented with better design time decision support to
probe for risks in the design space and formulate self-adaptive
decisions that can better work under uncertainty.

Our previous work on decision-making for self-adaption
under uncertainty has been primarily concerned with online
decision problem [3], [4]. That contribution was concerned
with adaptation of the system’s behaviour at run-time in
response to changes in the operational requirements and the
environment. Our contribution here however, aims at support-
ing the designers of self-adaptive systems at design time.

We posit that designers of self-adaptive systems often for-
mulate design decisions making unrealistic assumptions about
the system’s requirements and environment. In environments
which are characterised by uncertainty and dynamism, devi-
ation from these assumptions are common and may trigger
“surprises”. A surprise measures how an observed event affects
assumptions [3]–[5]. Specifically, in this context a surprise is
defined as the difference between the belief distributions of
the designer prior to and posterior to a given event regard-
ing the need to trigger adaptations when changes occur in
the execution environment. We propose a systematic method
which makes the link between the emergence of surprises,
risks and design trade-offs explicit. The method can be used
to explore the design decisions of self-adaptive systems and
choose among decisions that better (and perhaps partially)
fulfil non-functional requirements (NFRs) and their trade-offs.
We specify partial fulfiment here due to the vagueness of NFR
formulation [6]; partial fulfilment is referred to from hereon
as “satisficement”.

The method searches for surprises through “exploratory
analysis”; it probes for large range of values for a moni-
torable, which exceeds designer’s expectation of the execu-
tion environment, to reveal new and hidden behaviours. As
surprises can manifest into risks, we devise a multi-attribute
decision-making mechanism to evaluate the significance of
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the surprises (along with other likely risks) and, also, the
impact of those risks. The mechanism quantifies the added
value of the self-adaptive design decisions in satisfying NFRs
and their potentials in mitigating risks (including surprises).
The mechanism draws inspiration from the Security Attribute
Evaluation Method [7] and includes two stages: (1) multi-
attribute risk assessment of the consequence of surprises
(and other risks) and (2) multi-attribute benefit assessment of
the self-adaptive design decisions in mitigating risks. Pareto
analysis is used to explore the solution space, represented
by design decisions. Specifically, the analysis looks for a
decision that satisfices NFRs and their trade-offs. The overall
objective of the method is to provide designers of self-
adaptive systems with a basis for multi-dimensional what-if
analysis. The method can provide insights into formulating
and elaborating adaptive design decisions. It can also inform
whether (i) the benefits of triggering adaptations are likely to
outweigh the cost/overheads; (ii) partial satisficement of the
NFRs can be tolerated, (iii) adaptations are unavoidable and/or
(iv) the need for new adaptive decisions or refining/elaborating
existing one. We have applied the method to a wireless sensor
network for flood prediction. The application shows that the
method gives rise to questions that were not explicitly asked
before at design-time and assist designers in risk-aware what-if
and trade-off analysis.

The remainder of this paper is structured as follows: Section
II elaborates on the quantifications needed for the method
and explains briefly the techniques used to provide those
quantifications. Section III presents the method. Section IV
applies the method to a case study and V discusses its
application. Section VI presents the related work. Section VII
concludes and discusses future work.

II. CONCEPTS TO SUPPORT DECISION MAKING

This section presents the concepts needed by the method
to quantify the effect of partially anticipated execution en-
vironments on the satisficement of NFRs and analyze the
effect of alternative design decisions on the NFRs considered.
Section II-A sets the context for the method presenting the
quantifications needed in order to address the offline decision
problem of deciding the initial behaviour of a self-adaptive
system. Section II-B presents existing concepts which will be
used to quantify the effects named above.

A. Needed Quantifications

A way to quantify the impact of different execution en-
vironments on the level of satisficement of NFRs is needed.
This is due to the need of analyzing how different execution
environments will affect the behaviour of the self-adaptive
system and therefore, the need for triggering adaptations. On
the other hand, a threshold is required to identify when an
adaptation needs to be triggered in the self-adaptive system.
In addition, techniques are needed to quantify the effectiveness
of different adaptation design decisions on staying below this
threshold. They will assist the self-adaptive system designers
in deciding which decision is optimal in terms of satisficing

conflicting NFRs while aiming to continue satisfying the NFRs
without the need to trigger an adaptation. Finally, a method to
integrate these quantities into one representation across several
NFRs is needed for trading-off analysis across different NFRs.

In essence, the method presented in this paper aims to
balance the satisficement of conflicting NFRs as well as
assisting the designer of the self-adaptive system in defining
better design decisions. Also, design-time analysis, as it is
presented here, is an exploratory approach compared to run-
time analysis. In other words, the questions that arise while
conducting this method would not otherwise come to light if
the focus had only been on the run-time analysis of the self-
adaptive system. The exploratory approach gives the designers
of the self-adaptive system as well as the stakeholders a deeper
understanding of the expected behaviour of the system before
it is deployed. This justifies the overhead of combining several
quantities in a single method.

B. Available Quantification Techniques

Given the needed quantifications identified above, this sec-
tion presents concepts available in the literature that could be
used to represent the quantities needed. First, the concepts
are presented separately. Then, their combination into a single
systematic method is presented in the following section.

1) Bayesian Surprise: The concept of Bayesian surprise is
defined as a measure of how observed data affects the models
or assumptions of the world during runtime [5, p. 1]. The
unit of measurement of surprises is “wow’’. The “wow” unit
permits the quantification of how much beliefs increase or
decrease according to observed data. A large surprise value
means that the evidence provided from the environment has
caused a large difference between the prior and posterior
probabilities of an event. Lets us have a non-functional re-
quirement NFRi, and D representing the evidence provided
by the properties monitored as variables in the execution
environment (from hereon called monitorables). P(NFRi) is the
prior probability of the non-functional requirement NFRi being
partially satisficed and P(NFRi|D) is the posterior probability
of the NFRi being partially satisficed given the evidence D.
The surprise estimates the divergence between the prior and
posterior distributions and is calculated by using the Kullback-
Leibler divergence (KL) [8]:

S(NFRi, D) = KL(P (NFRi|D), P (NFRi)) =∑
i

P (NFRi|D) log
P (NFRi|D)

P (NFRi)
(1)

The initial values of P(NFRi|D) and P(NFRi) are given as
an input to the approach from stakeholders. In [5], the system
accumulates knowledge at runtime about the environment. The
assumption made is that the greater the magnitude of the
surprise value, the higher the likelihood that an adaptation in
the behaviour of the system needs to be triggered.

In [5], Bayesian surprises are exploited during runtime to
support decision-making at runtime. The approach supports



the quantification of uncertainty over different time slices at
runtime and helps the system improve its behaviour based
on learning. The dynamic decision networks (DDN) approach
developed in [3] makes use of the surprises concepts to
reason about uncertainty in the decision-making problem over
different time slices. However, this learning process is memory
intensive and therefore, carrying out the analysis extensively
would consume memory. In contrast, in the method presented
here, and since it is a design-time method, instead of moving
across time, only 1 time slice is used.

Our method aims to select an optimal design decision, with
respect to balancing the satisficement of conflicting NFRs, at
design time by:

• Assisting designers of self-adaptive systems in coming
to an informed decision for the initial design of the self-
adaptive system. It has to be noted that the decision made
here will not necessarily remain the optimal decision
throughout the life of the system, but it creates a more
informed starting point.

• Formulating the range of identifiable execution environ-
ments and the effect they have on the satisficement of the
NFRs.

• Highlighting the monitorables in the execution environ-
ment which have the highest effect on the satisficement
of the NFRs.

• Creating a basis for multi-dimensional what-if analysis at
design-time to assess the behaviour of the system in dif-
ferent independent execution environments. What-if anal-
ysis pushes the envelope and stresses the system. Even if
some of the scenarios considered in the what-if analysis
might not initially seem reasonable, at some point in the
future these might be realistic requirements for changing
the design of the system in response to changes in the
execution environment. Stakeholders therefore might like
to understand the ramifications of such changes [9].

• Creating a quantified documentation of the beliefs at
design-time to be compared with the behaviour of the
system later at run-time.

The main contribution of using the concept of surprises for
the offline decision problem is the what-if analysis mentioned
in the third point above. A Bayesian surprise in this method
is used to revise the designers’ initial understanding of the
execution environment and the system’s interaction it. This
update happens by exploring the range of possible values
associated with the monitorable rather than just the anticipated
values at the time of system deployment. Because a large range
of monitorables is analysed rather than just the anticipated
values, the need for triggering adaptations over the long term
can be analysed updating the belief of the stakeholders about
the relatively long-term impact of the execution environment
on the system’s behaviour beyond the deployment time.

2) Multi-attribute analysis: “Multi-attribute analysis tech-
niques help decision makers evaluate alternatives when con-
flicting objectives must be considered and balanced and when
outcomes are uncertain” [10]. Multi-attribute analysis used
in our method is done in two stages: (1) multi-attribute

risk assessment and (2) multi-attribute benefit assessment.
For multi-attribute risk assessment in relation to security, for
example, threats are defined as events, such as denial of
service attacks, procedural violations, IP spoofing, etc., which
could lead to an information system compromise. Butler and
Fischbeck [11] define the multi-attribute analysis as: an attack
(a) is an instance of a threat that results in information of the
system being compromised and produced an outcome (Oa) of
one or more consequences (Xi). For example, compromising
the system may ultimately result in lost revenue (X1), public
embarrassment (X2), lost productivity (X3), and damaged
corporate image (X4) [11, p. 3]. The impact of these threats
can be quantified using the threat index [7]. The calculation
of threat index considers the expected, high, and low out-
comes possible for a threat in terms of their consequences
(consequences hereby called risk outcome attributes), and
the probability of each of this outcomes. The formula for
calculating threat index is defined in [7]. Furthermore, benefit
assessment can be carried out to assess the effectiveness of
alternative tasks on reducing the threat index [7]. A novelty
of the method presented here is that it allows the assessment of
the effectiveness of the alternative decisions while optimising
the behaviour of the system in such a way that it does not
exceed a given surprise tolerance threshold.

3) Pareto Analysis: The original reason behind using the
Pareto analysis in [12] was to develop an environment where
defining the decisions that satisfy the functional requirements
is controlled by the designer, while identifying decisions that
satisfice the NFRs is left to the machine [12, p. 1]. The human
designer specifies the NFRs which need to be satisficed, but an
automated decision is made regarding a sub-optimal solution
that can satisfice them. The method presented here uses a
Pareto front to used to explore the solution space. The dimen-
sions represent NFRs which trade-off each other. Each point
on the Pareto front represents a possible design decision that
satisfices each of the NFRs to some extent. The coordinates of
each point represent contribution of each alternative decision
to the satisficment of each NFR respectively. There is no limit
on the number of NFRs (dimensions) used. The value of each
coordinate is derived from the multi-attribute analysis phase.

III. DECISION MAKING METHOD

This section presents the steps of the method. An overview
of the method is illustrated in Fig. 1. For this method, we
assume that NFRs and possible design decisions that satisfice
them can be deduced from goal models (e.g. i* framework).
NFRs are “fine-grained goals under the sole responsibility of
the software-to-be [13, p. 1].”

A. Exploratory Analysis to Detect Surprises
1) Calculating Surprise Value Distributions: Designers

have to agree on critical NFRs that need to be monitored to
identify hidden and new surprises. The exploratory analysis to
search surprises aims at stressing the system with a wide range
of monitorable values. Consequently, this exercise can help
in studying the potential that the design decisions withstand



Fig. 1. Overview of the method. T signifies the alternative design decisions; M signifies each NFR; D1..Dn signify the monitorables; R signifies the set of
risks that can disrupt the NFR satisficement

these surprises and succeed in mitigating their risks. The
involvement of various stakeholders and end users to decide
on the range of inputs is highly desirable; users should be
treated as collaborators in the design process rather than pure
consumers of system’s functionalities [14, p. 15]. The values
of P(NFRi|D) and P(NFRi) are given as input to the method.
Although outside the scope of the method, one possibileto
derive the values of P(NFRi|D) and P(NFRi) is to use the
Discrete Time Markrov chains [15]. It helps encode the NFRs
and the domain knowledge about the system into states and
then the PRISM probability checker is used to derive the
probability that each NFR is satisfied. The P(NFRi|D) values
form a probability distribution over the random variable D.

Each monitorable is linked to the list of NFRs which it
affects. For each pair of non-functional requirements and
monitorables (D), the surprise of associated with each expected
value of the monitorable is calculated using: (1) D=value
of monitorable, (2) P(NFRi|D)= probability that NFRi is
satisficed given that value of D and (3) using the formula
for calculating surprises in II-B. Repeating the calculation for
some or all of the values that D can take will produce a
distribution of surprise values for each pair of monitorable and
NFR. The granularity of the distribution can be increased with
iterations of this exercise to help the designer identify a design
decision at the level of granularity s/he needs. Granularity
refers to the number of monitorable values for which the
surprise value was calculated explicity (the more values the
more granular the distribution is).

To generate a surprise value distribution, the range of values
for each monitorable is first used to generate the x-axis of
the plot area. For monitorables that can be seen as continuous

variables, “calibration” values are used instead to calculate the
surprises (e.g. if the monitorable is response time in seconds
and it can take the values 0-1000 seconds, surprise values
are calculated for response times 0,100,200. . . 1000 seconds
respectively). In turn, the stakeholders would only need to
identify the P(NFRi|D) given these monitorable values. The
y-axis is generated ranging from 0 to the maximum surprise
value calculated. The x coordinate of each value in the plot
area is then taken as the value of D and y coordinate is the
surprise value associated with that value of D.

2) Calculating Surprise Tolerance Threshold: The NFR
of the highest priority is the one which the stakeholders
will always thrive to satisfice by triggering adaptations. This
can be reflected on the distributions of surprise values by
setting a threshold on each distribution to signify the surprise
tolerance level related to that NFR. The significance of the
threshold is that it can also help designers in the refinement
and elaboration of NFRs that need to be satisficed through
adaptation. It informs scenarios where the existence of an
obstacle in the environment makes triggering an adaptation
unavoidable. Conversely, it can inform scenarios where goals
can still be relaxed to avoid unnecessary adaptation. It can be
argued that this tolerance threshold is useful either addressing
the offline or online decision problems. However, only the
offline problem is the focus of this paper.

Fig. 2 illustrates an example of this. To interpret what
this threshold means, let us consider the point where the
surprise value is 0.02986. Only if the surprise value associated
with 3.06 minutes increases from 0.02986 to 0.0675 will the
system’s behaviour be adapted. Below that, it is not worth
trying to reduce the time to restart after failure to less than



3.06 minutes. The exact threshold value depends on the range
of surprise values generated for that specific pair of NFR and
monitorable.

Furthermore, the reason behind using a percentage to set
the threshold is that there might be more than one surprise
value distribution associated with each NFR if it is affected
by many monitorables. Setting a hard and fast value as the
threshold across all the distributions that are associated with
an NFR is not reasonable. Percentages prove to be more
flexible in setting the threshold. Prioritizing the NFRs and
thereafter coming up with the percentages which will make
up the surprise threshold can itself prove to be a challenge.
One technique for prioritization of NFRs is used in [3]. The
business value of satisficing the NFR and the risk associated
with not satisficing it are both to be considered as well as
comparing the resources required for satisficing that NFR
against the available resources. The possibility of further
surprises being triggered due to a design decision choice
should also be considered. A simplifying assumption made
here is that the percentage of tolerated surprise should be no
more than 50% of the overall range of surprise values of the
distribution due to the overhead of triggering adaptations if
the surprise tolerance is beyond that.
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Fig. 2. Surprise value distribution against monitorable

B. Multi-attribute Analysis for Surprise Risks and Design
Decisions Benefits

We devise a multi-attribute decision-making mechanism,
which draws inspiration from the Security Attribute Evalu-
ation Method (SAEM) [7] but abstracts it to any NFR. The
mechanism encompasses two stages: (1) multi-attribute risk
assessment of the consequence of risks that can disrupt the
NFR satisficement and (2) multi-attribute benefit assessment
of the self-adaptive design decisions in mitigating risks.
1) For each NFR, the stakeholders need to identify the risks

that can hinder the satisficement of that requirement as
well as the expected frequencies of each risk. Although the
specific method for identifying risks is outside the scope of
this method, we suggest the taxonomy-based questionnaire

as a systematic technique for identifying risks [16]. The
risk set of each NFR includes the risk of the surprise value
exceeding its threshold (in the form “surprise value >x,
when monitoring D” rather than “surprise value >x%”).
This form of describing the risk related to the surprise
tolerance threshold is needed to distinguish the pairs NFRs
and monitorables from one another. Exceeding the surprise
tolerance threshold is included as a risk because of the costs
incurred in triggering adaptations if the surprise tolerance
threshold is exceeded.

2) For each NFR, stakeholders need to identify the outcome
attributes of the risks and then rank and weigh those
attributes on a scale from 1-100, where 100 is the attribute
that is most important to stakeholders. These weights are
then normalized to a value between 0 and 1.

3) For each NFR, stakeholders identify the values of the
outcome attributes for each risk associated with that NFR.

4) The values of the outcome attributes under each conse-
quence need to be normalized by the designer of the system
to one scale so that an overall threat index for each risk
can be calculated. The method uses ideas from the AHP
scale [17] which rely on stepwise comparison between
alternatives using a 1-9 scale of relative importance. We
compare the relative importance of the values of a certain
outcome attribute under each risk.

5) The threat index of each risk is then calculated using the
equation defined in [7]. After calculating the threat index
of each threat, the summation of the threat indexes is also
calculated.

6) For all the available design decisions, the % effectiveness
of each alternative decision in reducing the risk is estimated
by designers. It is not necessary that a design decision can
reduce the threat index of all the risks. If design decisions
can only reduce the threat index of a risk when combined,
then the combination of the two decisions is considered as
a separate design decision with its own % effectiveness.

7) For each design decision, the new threat index that each
risk can achieve is calculated using the threat index values
from Step 5 and the % effectiveness values from Step 6.
The summation of these updated threat index values is then
calculated to see the overall change that each decision can
achieve. The % change in threat index which the decision
can achieve is also calculated.

C. Pareto Analysis for Design Decisions & NFR Trade-offs
The previous phase can inform trade-off analysis between

design decisions in relation to individual NFRs. However,
NFRs exhibit conflicts and trade-offs among each other. De-
signers can decide to compromise the satisficement of some
NFRs in order to satisfice others. Because of this trade-
off between NFRs, Pareto analysis is included. One crucial
condition for the Pareto analysis is ensuring that all design
decisions that make up the Pareto front satisfy the functional
requirements of the system (conformant analysis [12]). Each
NFR in question forms a dimension for the space in which the
Pareto front will be plotted. Each dimension has a scale from



0-100 which signifies the percentage effectiveness in reducing
risks associated with that NFR. Each design decision is then
plotted as a point, where every coordinate is the percentage ef-
fectiveness of the design decision in reducing the threat index
in relation to the respective dimension. Thereafter, analyzing
the Pareto front can lead to the discovery of knee points: a
subset of design decisions where a small enhancement of one
NFR can lead to a significant deterioration in another one.It is
argued that finding the knee point corresponds to finding the
optimal solution to the decision problem; the solution hopes
to satisfy NFRs trade-offs [18]. An optimal solution in this
context means a design decision that balances the satisficement
of conflicting NFRs. A knee point is almost always the most
preferred solution, since it requires an unfavourably large
sacrifice in one objective to gain a small amount in the other
objective. However, if a single knee point does not exist, then
an area of optimal solutions is called the knee region. There
are many techniques for identifying the knee-point on a Pareto
front [18]. Iterations of Pareto analysis can be carried out to
explore the design space refining the design decision choice.
The significance of carrying out Pareto analysis as the last step
of the method is carrying over the knowledge the likelihood of
adaptations being triggered from the first phase of the method.
Otherwise the plotted points on the Pareto front would have
been an overestimation the added value of each design decision
along each dimension.

In the next section, an application of the method on a
self-adaptive system is presented using hypothetical data. In
particular, the quantified NFRs, P(NFRi), P(NFRID), risks as-
sociated with each NFR, the outcome attributes, their weights,
values, and the percentage effectiveness of each design deci-
sion in mitigating the risk are all inspired by empirical data
provided by a prototype of the case study.

IV. CASE STUDY

A. GridStix

“The GridStix system is a wireless sensor network (WSN)
for detecting and predicting flooding” [19]. Our choice for the
case stems from the fact that its design space for self-adaptivity
exhibits adequate level of complexity. It is characterized by: (i)
numerous conflicting NFRs, (ii) vast possibilities of adaptation
design decisions and (iii) execution environments which can
be represented by monitorables. Specifically, the design space
contains alternative design decisions that address an NFR
at the cost of another one, which is needed for illustration
of the method. The case illustrates how the method can be
systematically applied and better informs design decisions for
self-adaptivity in software systems. The fact that the case
study is very well documented [19] allows us to highlight and
discuss the benefits and improvements which are outcomes of
our method. The latter was an extra reason to chose GridStix
as the case study.

In a nutshell, GridStix provides: (i) “a resilient and adaptive
sensor network, which collects information from a range of
sensors and transmits the collated data off-site where it is used

Fig. 3. General behaviour of GridStix [19]

to perform spatial flood prediction [20, p. 4]”, (ii) a light-
weight computational Grid which performs local point-based
flood prediction and calculation of flow rates from images [20]
and (iii) a flood warning tool for local stakeholders, such as
residents and businesses [20]. Adaptation to changing execu-
tion environments in GridStix relies on the use of instances of
overlay component frameworks. Instances are made up of the
overlay plug-ins which are the per-node implementations of
network overlays [19]. Adaptation provides a base for building
application-level networks (or overlays), which are typically
used to implement new networking services not provided by
the underlying network

Experts have defined three main “domains” of river be-
haviour: quiescent (most common), high flow and flooding
[21] (Fig. 3 ). Each domain can be seen as a different
state of the execution environment which requires a different
behaviour from the self-adaptive system. Design decisions for
GridStix are designed to take into account the NFRs, their
trade-offs, their satisficement, suprise tolerance thresholds and
monitorables for those 3 domains.

Goal models are used to specify and monitor NFRs. The
NFRs in question are: (1) Average power consumption per 1KB
of data from node to gateway must be <1500 mW (refining the
energy efficiency soft goal) and (2) Number of routes to the
gateway must be >12 (refining the fault tolerance soft goal).
For simplicity, only river depth is used as the monitorable
to indicate the domain; it is measured using sensor nodes
deployed in the river. The alternative design decisions can
comprise one or more of the following choices:

1) BlueTooth BT (for communication between sensor nodes
along the river)

2) WiFi (for communication between sensor nodes along the
river)



3) Shortest-Path SP spanning tree algorithm (this is used to
search for the best path to transmit sensor readings)

4) First-Hop spanning FH tree algorithm (this is used to
search for the best path to transmit sensor readings

5) Designing an alternative instance of the overlay compo-
nent framework

6) Designing an alternative plug-in component
7) Adaptive design alternative with WiFi and SP
8) Adaptive design alternative with WiFi and FH
9) Adaptive design alternative with BT and SP

10) Adaptive design alternative with BT and FH

B. Application

The analysis of the case is based on empirical data collected
from a prototype of GridStix that employs 14 sensor nodes;
deployed at River Ribble in the North West England. Recorded
river depth values were (1) 1.14-2.25 m for the “quiescent”
domian and (2) >4.34 m for the “flooding” domain [22]. The
graphs in the [21] are used to define the NFRs and infer the
P(NFRi) and P(NFRi|D) values. The claim refinement model
in [21] is used to choose the monitorable. The risks, risk
outcome attributes and risk outcome attribute values are then
inferred from the explanation of the GridStix framework in
[19], [20].
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Fig. 4. Surprise value distributions and tolerance thresholds

1) Exploratory Analysis for Detecting Surprises: The
distributions of surprise values in Fig. 4 assume that the soft
goal fault tolerance – operationalized by the NFR Number
of routes to the gateway >12 – is of the highest priority.
The surprise tolerance threshold for this NFR is 25% of
the range of surprise values, as opposed to a threshold of
50% for the other NFR. This is a drastically simple way of
calculating the surprise tolerance threshold – assuming there
are only two NFRs and not considering any external factors.
The distributions illustrate the effect of evidence has on the
system’s belief that the NFR can be satisficed. The lowest
points in the graphs are when the river is 3.06 m deep; this
depth is closest to the median of the quiescent “domain”
river depth range. Since the quiescent “domain” represents the
most common river behaviour, river depths in this domain do
not provide further evidence to the system about the current
execution environment and thereby the prior belief that the
NFR will be satisficed does not differ much (i.e. the surprise
value is low). River depths outside the quiescent “domain”
present higher surprise values; they indicate a transition from
one execution environment to another which would possibly
trigger an adaptation depending on the surprise tolerance
threshold. Surprise values that have more than 1 river depth
associated with them signify that it is only the magnitude of
the surprise that matters. Calculating surprise values for the
river depths greater than 1.53 m yields a negative surprise
value. However, as the magnitude of surprise matters the most,
the sign is ignored. The change in surprise values is said to
be significant only when the change is such that it exceeds
its tolerance threshold. Such information is useful to planning
alternative adaptation decisions in an attempt to satisfice the
conflicting NFR(s). It is worth noting that due to the use of
logarithm in the calculation of surprises, using P(NFRi|D)=0
or P(NFRi)=0 will result in an undefined value of surprise
which cannot be plotted. The significance is attributed to the
fact that a designer can embrace the uncertainty in the expected
execution environments and design decisions. In particular,
this can feed into eliciting possible causes (i.e. obstacles
[23]) of the NFR disruption and re/thinking of alternative
design decisions, which can cope with the risks/extreme cases.
Alternatively, if the NFR has proven to be difficult to satisfice
at design time, it is then imperative for the designers to use
this information to further refine and elaborate the NFRs to
improve the likelihood of their satisficement. Again, obstacle
handling and resolution can be adopted to systematically refine
and elaborate NFRs which are most likely hard to satisfice
through goal relaxation, splitting, substitution, etc. [23].

2) Multi-attribute Analysis for Surprise Risks and Design
Decisions Benefits: Figures 5 and 6 show part of the risk
assessment and corresponding benefit assessment process for
choosing the most effective adaptation design decision for
the NFR Number of routes to the gateway>12. To illustrate
what the numbers mean, the risk of exceeding the tolerance
threshold is used as an example. The expected impact of this
risk 0.167 delay in prediction and 0.142 regulatory penalties.
The impact values do not have units in this case since



they have been normalized using the AHP scale for relative
importance. The overall threat index of this risk is 38.302 and
if WiFi is used as a design decision it is expected to reduce
the threat index of that risk to 13.02. Furthermore, WiFi can
reduce the threat index of risk 2 (which is not shown in Fig.
5) to 0 and reduce the threat index of the third risk from
24.925 to 19.94. Overall, WiFi can reduce the total threat
index by 40.29%. The risk outcome attributes used in the risk
assessment process are specific to each NFR. The risk of the
surprise value exceeding the threshold would have the highest
impact on the satisficement of that NFR since it has the largest
threat index value (according to the calculations over all the
risks not shown in the figure). Such information would entail
the design of alternative adaptation design decisions, which
minimize the impact of fragmentation in the sensor network.
Looking at the benefit assessment table, the design decision
with the highest effectiveness in mitigating the risks related to
the NFR is that of WiFi for communication between the sensor
nodes. In other words, if the designer wishes to optimize on
that NFR, s/he would use a design decision which uses this
communication medium in the design of GridStix. As it is
inevitable that NFRs conflict, we use Pareto analysis in the
next step.

Fig. 5. Fault tolerance risk assessment

Fig. 6. Fault tolerance benefit assessment

3) Pareto Analysis for Design Decisions and NFR Trade-
offs: Fig. 7 shows the application of Pareto analysis to
the GridStix case. The graph produced is sparse due to
the simplicity of the illustrative example. Its complexity can
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grow with the design alternatives and dimensions (i.e. NFRs)
under analysis. The points on this graph can be split into
3 regions (forming the 3 circles in Fig. 7). If the designer
wishes to favour the satisficement of Number of routes to the
gateway >12, then the designer examines the decisions within
the blue circle. Iterations of Pareto analysis can be carried
out exploring refined alternative design decisions within that
region (e.g. exploring different bandwidths of WiFi or looking
at specific functionalities to be incorporated in alternative
plug-in components). If the designer wishes to favour the
satisficement of Average power consumption per 1KB of data
from node to gateway <1500 mW, then the decisions in the
green circle would be more favourable option. Finally, to get
a moderate satisficement for both NFRs, the design decisions
in the red circle are considered. The choice of the region to
consider depends on the prioritization of the NFRs and the
expected execution environment at deployment time.

V. DISCUSSION AND FUTURE WORK

The method provides systematic guidance for designers of
self-adaptive systems through a set of self-contained steps. It
makes explicit the link between surprises, adaptation design
decisions and risk. Crucially, it puts trade-offs at the heart of
the decision-making process. This is relevant as the method
could be used, for example, to balance resilience (i.e. the
extent to which NFRs are satisficed) with respect to stability
in self-adaptive systems (i.e. when to avoid unnecessary adap-
tation versus considering a necessary one). The designers of
GridStix would have initially chosen design decisions which
use BT and SP, assuming that the initial state of the river
behaviour would be quiescent. Instead, we argue that a better
choice can involve decisions which use WiFi and SP since
it provides a balance between the two conflicting NFRs. In
particular, plotting surprise value distributions gives rise to
situations in the execution environment that the designers have
not been considered before. Including a surprise tolerance
threshold in the analysis can inform about situations where
(i) unnecessary adaptations can potentially be avoided and (ii)
trade-off between NFRs could be further elaborated, refined or
relaxed to stabilize the system while having resilience qualified
as“good enough”. In GridStix, for example, energy efficiency



was a candidate to be relaxed to stabilize the system while
satisficement was achieved. Including the multi-attribute risk
analysis serves the objective of quantifying the impact of risk
and added value of the available design decisions on more
than one dimension. Pareto analysis provides a powerful tool
to visualize the solution space and the contribution of design
decisions to NFR trade-offs. Iteration of this Pareto analysis
can lead to more refined decisions.

There are however a number of practical challenges involved
in applying the method. We present these challenges below and
suggest possible solutions to them that can be integrated in the
future with the presented method.

1) Validity of the choice made: In the original work [21],
running a simulator of GridStix falsified claims that BT was
too risky to use due to its low benefit to fault tolerance. The
falsified claims were (1) the mean number of nodes reachable
with BT <WiFi and (2) data collected over >n hours is less in
BT than in WiFi. The experiment in [21] concluded that BT
had higher net impact on energy efficiency and fault tolerance
than WiFi. The results of applying the method here are not
consistent with this conclusion, although they are consistent
with the original intuition of the strengths and weaknesses of
the design decisions [19]. The difference between the conclu-
sion of [21] and the conclusion of this method is due to the
different views of the analysis. The method presented here is
not relying on running a simulation of GridStix, which makes
the conclusions present in the method arguable compared to
[21]. Ultimately, at least running a simulator or prototype of
GridStix can help validate the results presented here against
[21]. However, by applying the method to the case study, the
results can be used to update the stakeholders’ beliefs about
the system’s run-time behaviour. After all, the satisifiability
of the NFRs given the chosen design decision can only
be tested at run-time. Furthermore, the extent to which the
chosen design decision balances between conflicting NFRs’
satisficement can only be shown at run-time.

2) Scalability of the analysis: The scalability of the analysis to a
large number of NFRs and monitorables tend to be limited in
the absence of dedicated tools for processing the information
gathered from experts or historical data which is required for
applying the method. Moreover, including more dimensions
(i.e. NFRs) in the Pareto analysis can complicate that phase by
producing a Pareto front that is too hard to visualize. However,
pragmatic solutions exist to deal with this problem including
the use of projection, graphics or virtual reality solutions to
help visualize Pareto fronts and identify the knee-point or
knee region [12]. These solutions are desirable in scenarios
exceeding 3D space (i.e. 3 conflicting NFRs).

3) Visualization of the results: It is acknowledged that “human
fatigue” is a common problem in methods involving Pareto
analysis with a large number of points on the Pareto front. The
problem needs smart selection and presentation techniques
that can quickly and unobtrusively extract human assessments
[12]. The use of automated pattern analysis and eye-tracking

techniques have been cited as one solution to the problem
[12].

4) Stakeholder identification and reliability of inputs: En-
suring the reliability and completeness of the inputs to the
method is a prerequisite for meaningful analysis and has been
cited as an inherent challenge for human-centred analysis
methods. Perfect knowledge, sound judgement, and a consen-
sus of opinion among the considered stakeholders are not real-
istic to assume. However, the Software Engineering literature
provides pragmatic solutions and systematic approaches that,
if adopted, can minimize the effect of this problem. Contribu-
tions including stakeholders identification (e.g. Stakenet [24]),
multi-perspective analysis and negotiation [25] and classical
architectural evaluation methods (e.g. ATAM [9]) are among
the few approaches that can further improve our method.

5) Balancing resilience and stability: Resilience comprises two
key attributes: dependability and robustness. Dependability is
“the ability to deliver service that can justifiably be trusted
[26, p. 13]” despite continuous changes. Robustness refers to
the ability of the system “to deliver a service in conditions
which are beyond its normal domain of operation [27].”
Resilience is therefore the persistence of service delivery that
can justifiably be trusted when facing changes. Persistence
is determined by the capability of (effective) self-adaptation
and the impact of changes on the service provided (from the
user’s perspective) [28]. Stability, however, is concerned not
as much with the quality of the performance of the system
but rather with the consistent non-variable performance in the
system. In self-adaptive systems, one of the critical measures
for stability is the frequency of adaptations. Reducing the
frequency of unnecessary adaptations can lead to more stable
systems. Interestingly, a system can be resilient and still
fluctuate greatly. Moreover, low stability can be beneficial
for continuously appraising resilience. An open question is
whether the decisions provided by this method can “sustain”
balancing between resilience, stability, conflicting NFRs and
mitigating residual risk. Dynamic search-based techniques can
render neat solutions to this; and therefore it is a subject of
future work.

VI. RELATED WORK

The related work presented here is divided into 2 categories:
(A) work done on quantifying the uncertainty in design
decisions and (B) work done on identifying the added value
of alternative design decisions.

A. Quantifying Uncertainty in Design Decisions

Different techniques have been used to quantify the uncer-
tainty of a software decision. Leiter et al. address uncertainty
with the following question: ”If, before making a decision,
decision makers could pay someone to obtain additional in-
formation that reduce uncertainty about the cost and benefits
of alternatives, how much would that information be worth to
them?” [29]. The quantified answer to this question, called the
expected value of perfect information (EVPI), helps decision
makers focus on reducing uncertainty in decisions where



reducing uncertainty would actually be worthwhile. While
EVPI helps decision makers define the aspects of the system
which are worth focusing on in terms of reducing uncertainty,
the use of surprise values in this method helps assess the effect
of information on the need to make a decision (i.e. trigger an
adaptation in the system’s behaviour).

RELAX [30] enables developers to identify uncertainty in
the requirements, thereby facilitating the design of systems that
are, by definition, more flexible and amenable to adaptation in
a systematic fashion. RELAXation modifiers like “eventually”
or “until” are used to specify uncertainty in dynamically
changeable requirements. A relevant possible avenue for future
work is the use of the surprise tolerance threshold as suggested
thresholds for RELAXation of NFRs at runtime.

B. Identifying Added Value of Alternative Design Decisions

Several approaches have been developed to manage the
decision-making process in self-adaptive systems. Elkhodary
et al. [31] developed the feature-based FUSION framework in
which the engineers’ knowledge of the self-adaptive system is
represented in a model that classifies the possible configura-
tions of the system according to validity and practicality. In
contrast, the method presented here uses Pareto analysis as a
top-down approach to making a decision, reifying and refining
it with each iteration of Pareto analysis. This approach is more
flexible than FUSION since it gives designers of the system
the freedom to choose the level of detail of the analysis done.

Further away from self-adaptive systems is the net option
value (NOV) approach developed in Sullivan et al.’s [32]
approach to evaluate software modularity. Similar to the idea
of EVPI, each alternative in this approach creates an option in
the sense that it gives designers the right to invest in searching
for a better alternative and replacing the current choice or
deciding to keep it. This approach is tailored to the fine-
grained software modularity design problem. The equivalent
of this in the method presented here would be an iteration of
the Pareto analysis where the design space is more refined.
The decision problem addressed by this method looks at a
more general decision problem where the design space is still
to be explored.

The following text summarizes the delta with respect to the
reviewed literature:

• Our method is more comprehensive in terms of the variety
of questions it raises. Previous decision-making techniques
address fewer aspects of the decison problem [29], [32].

• The aspects addressed are formulated flexibly in this method
(e.g. NFRs). Previous work relies on a more rigid formulation
of the design space (e.g. encoding the designers knowledge as
features in FUSION [31], creating the design structure matrix
to formulate the NFR constraints in NOV [32]).

• One aspect the method addresses is the issue of conflicting
NFRs and the possibility to optimize the resilience and
stability of the self-adaptive system at run-time. This has not
been addressed in the reviewed literature.

• The method introduces the possibility to revisit NFRs through
the concept of the surprise tolerance threshold aiming to

optimize the stability of the system at run-time. This has not
been addressed before in the context of self-adaptive systems.

• Fundementally, we address the design-time problem as op-
posed to runtime decision-making techniques where knowl-
edge about the environment can be accumulated (e.g. [3]).

VII. CONCLUSION

We have contributed a systematic method – which makes
the link between the emergence of surprises, risks and design
trade-offs explicit – by combining techniques from surprise
values, multi-attribute risk analysis and Pareto fronts analysis.
The method explores the design time space of self-adaptive
systems and searches for surprises. It probes for a large range
of surprise values which stress the design to reveal new and
hidden behaviours. A prioritized list of the NFRs which the
system needs to satisfice is among the inputs. The expected
execution environment properties are modelled as variables
(monitorables) that can take a range of values. Surprise value
distributions are used to assess the impact of the monitorable
on the satisficement of NFRs. Observations of this step can
feed into the design of new adaptive strategies or it can inform
the elaboration of design decisions given the different values of
the monitorables. The method uses a multi-attribute decision-
making mechanism to evaluate the significance of the surprises
(along with other risks) and magnitude of the impact they
have. In addition, the mechanism quantifies the added value
of the self-adaptive design decisions in satisfying NFRs and
their potentials in mitigating risks (including surprises). The
mechanism encompasses (1) multi-attribute risk assessment
of the consequence of the surprises and (2) multi-attribute
benefit assessment of the self-adaptive design decisions in
mitigating risks. Pareto analysis is used to explore the solution
space, represented by design decisions, aiming to find a
design decision which satisfices NFRs and addresses their
trade-offs. The use of Pareto front can assist in identifying
decisions which balance between satisficing conflicting NFRs.
The analysis can be carried out iteratively to come to a more
refined decision. The analysis can serve the fundamentals of
balancing between resilience and reducing the overheads of
unnecessary adaptations. We have applied the method to a
wireless sensor network for flood prediction. The analysis of
the case is based on empirical data collected from a prototype
of GridStix that employs sensor nodes realistically deployed
at River Ribble in the North West England. The application
shows that the method gives rise to questions that were not
explicitly asked before at design-time and assist designers
in risk-aware what-if and trade-off analysis. The method can
aid designers of self-adaptive systems in performing design-
time what-if analysis. The method can provide insights into
formulating and elaborating adaptive design decisions. It can
also inform whether (i) the benefits of triggering adaptation are
likely to outweigh the cost/overheads; (ii) partial satisficement
of the NFRs can be tolerated, (iii) adaptation is needed or can
be unavoidable and/or (iv) the need for new adaptive decisions
or refining/elaborating existing ones.
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