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ABSTRACT 

Purpose: To assess the validity and repeatability of the Aston Halometer. 

Setting: University clinic, UK. 

Design: Prospective repeated-measures experimental study 

Methods: The Aston Halometer comprises of a bright Light-Emitting-Diode (LED) 

glare source in the centre of an iPad4. Letters, subtending 0.21° (~0.3logMAR), were 

moved centrifugally from the LED in 0.05º steps in 8 orientation separated by 45° for 

each of 4 contrast levels (1000, 500, 100 and 25 Weber contrast units [Cw]) in random 

order. Bangerter foils were inserted in front of the right eye to simulate monocular glare 

conditions in 20 subjects (mean age 27.7±3.1 years). Subjects were positioned 2m from 

the screen in a dark room with the iPad controlled from an iPhone via Bluetooth 

operated by the researcher. The Oculus C-Quant was also used with each of the foils to 

measure the level of straylight over the retina. Halometry and straylight repeatability 

was assessed at a second visit. 

Results: Halo size increased with the different Bangerter foils and target contrasts 

(F=29.564, p<0.001) as expected and in a similar pattern to straylight measures 

(F=80.655, p<0.001). Lower contrast letters showed better sensitivity, but larger glare-

obscured areas resulting in ceiling effects due to the screen’s field-of-view, with 500Cw 

being the best compromise. Intra-observer and inter-observer repeatability of the Aston 

Halometer was good (500Cw: 0.84-0.93 and 0.53-0.73) and similar to the CQuant.  

Conclusions: The Aston Halometer provides a sensitive, repeatable way of quantifying 

a patient recognised form of disability glare in multiple orientations to add objectivity to 

subjectively reported discomfort glare. 

Keywords: Halometry; Aston Halometer; dysphotopsia; glare; light scatter; validation; 

repeatability; C-Quant 
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Introduction  

Photopic phenomenon, termed dysphotopsia,  can be induced by refractive surgery, the 

extent of which may be related to the ablation profile and pupil size,1,2 corneal and 

crystalline lens opacities,3 and is one of the few clinical tests correlated with night 

driving performance.4 Glare can also result from multifocal intraocular lenses (MIOL) 

implantation, and are often described as haloes.5 This is a major cause of multifocal 

dissatisfaction6 and is largely responsible for a relatively high frequency of MIOL 

explantations.7 To measure the retinal blur circle or halo, several instruments, often 

referred to as halometers, have been created. These devices quantify the size of a 

photopic scotoma created by a central glare source, assessing forward light wide angle 

scatter rather than the narrower straylight.6 Early methods to assess halos required 

patients to draw the outline of the perceived halo produced by a candle at a set 

distance.8 Others involve visually ‘bracketing’ the edges of the halo with the examiners 

hands,9 comparison of their halo with objects of known diameter,10 or mechanical 

movement of a target towards or away from the light source in limited meridians.11 

Namiki and Tagami attached a glare source within an OCTOPUS 500E (Haag-Streit, 

Koeniz, Switzerland) automated perimeter to determine the extent of visual field loss 

surrounding a central glare source.12 A similar approach was adopted by Gutiérrez and 

colleagues (2003) lighting LEDs in sequence in increasing eccentricity from a central 

glare source.2 Many of these technique have not been validated ,9,10 have ill-defined 

repeatability2,9,10 and are unable to identify any differences between MIOLs and 

monofocal IOLs.9,12  
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The halometers described by Lee and colleagues (2006) and by Allen and associates 

(2009) both used computer programs, which present a central screen glare source 

(single white spot or a red cross with a white ring respectively) requiring the subject to 

circle the perceived photopic phenomenon.13,14 These halometers have been used to 

examine dysphotopsia following MIOL implantation14 and post LASIK under 

physiological,13 and pharmacological (with a miotic agent) conditions.15 Lee and 

colleagues observed good repeatability with their halometer,15 however, the design 

used for examining MIOLs was not assessed for repeatability and was found to show 

similar results with both MIOL and monofocal IOLs.14 

 

Currently, the Glare & Halo test (Tomey, AG, Erlangen) is the only standardized, 

commercially available, computerised test used to measure the size of photopic 

phenomenon. Here, a central white target 15 mm in size is displayed on a screen 

(luminance 86.6 cd/m2) and the subject is required to place a mark with a mouse the 

boundary of the ensuing photopic phenomenon for 12 equidistant orientations 

separated by 30º degrees surrounding the glare source. The central glare area in 

degrees is then calculated in accordance with the working distance of the subject. The 

Glare & Halo test has been used in three studies examining the difference in halo sizes 

between the Array refractive MIOL (Abbott Medical Optics Inc. (AMO), Santa Ana, CA, 

USA) and a monofocal IOL with a similar aspheric profile. Pieh and colleagues found a 

significant difference in dysphotopsia between the two types of pseudophakic 

correction,16 however, two earlier studies did not find a significant difference.17,18  

Repeatability studies have not been conducted using this instrument. Another 
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approached recently demonstrated was software (Halo v1.0) run on a computer 

designed to quantify discrimination capacity under low-illumination conditions which will 

be affected by visual disturbances. The test consists of the discrimination of 

customisable luminous peripheral stimuli around a more luminous central one (the glare 

source) at 3 positions along 12 axes to calculate a visual-disturbance index. It has been 

shown to be sensitive to retinal disease,19cataract,20 age20 and myopic LASIK,21 but 

repeatability studies have not been published. 

 

The aim of the study is to validate the Aston Halometer, a new halometer with a brighter 

central target and performed on a standard mobile tablet designed to be able to quantify 

and analyse the extent of dysphotopsia in multiple directions of gaze. 
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Patients and Methods 

The experimental study instrument validation required patients with clear media using 

filters to induce standard amounts of glare to assess the accuracy and reliability of the 

halometer, hence 20 young subjects (10 males, 10 females) of mean age 27.7 ± 3.1 

years were recruited from Aston University. The inclusion criteria were: uncorrected 

visual acuity of at least 0.10 logMAR in each eye; mean spherical error within -0.75 D to 

+0.75 D; spectacle astigmatism less than 0.75 D; the absence of any ocular pathology 

and previous surgery; and an aged between 18 and 40 years. Ethical approval was 

obtained prospectively for this study from the Institutional Review Board and informed 

consent was obtained from each subject following explanation of the details of the study 

and any possible consequences. The study was conducted in accordance with the 

tenets of the Declaration of Helsinki. Subjects were refracted and fully corrected with 

contact lenses, if necessary, following a non-cycloplegic subjective refraction, with the 

end-point of the maximum plus prescription consistent with optimum visual acuity.  

 

The C-Quant provides a measure of the level of straylight (forward light scatter) over the 

retina. Straylight originates from the scattering of light and creates a veil over the vision 

that is known to increase with age, ocular pathology and with refractive surgery.22 With 

the C-Quant three repeats are necessary to achieve an accurate measurement of 

straylight and measurement of straylight was considered reliable if the estimated 

standard deviation (ESD) was below 0.8 and the quality factor for the psychometric 

sampling (Q) was above 1.00.23  
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The Aston Halometer provides a measure of the degree of obscuration of a target from 

a glare source, measured in degrees. It comprises of a bright Light Emitting Diode 

(LED; Golden Dragon Plus LCW W5AM.PC; 5000K colour temperature; pulse width 

modulation duty cycle of 15.6%, forward current 40mA, 3.7V; Osram Licht AG, Munich, 

Germany) in the centre of an iPad 4 (Apple, Cupertino, CA, USA), with a 2048 x 1536 

pixel resolution and a 240 x 169.5mm screen (Figure 1). Subjects were positioned 2 

meters from the screen (6.8 x 5.6 degrees field of view) with the iPad controlled from an 

iPhone over Bluetooth operated by the researcher. Halometry was conducted in a dark 

room with the Aston Halometer as the only light source with an adaptation time of 1 

minute. Letters were moved centrifugally from the central LED glare source in 0.05 

steps in each of 8 directions of orientation in succession separated by 45°. The smallest 

eccentricity at which the letter could be correctly recognised in 2 out of 3 randomised 

presentations was recorded before the next direction of orientation was assessed. Four 

letter contrast levels were tested: 1000, 500, 100 and 25 Weber contrast units (Cw= 

luminance of the features minus the luminance of the background divided by the 

luminance of the background).24 The photopic scotoma size was measured in all 8 

positions for each of the 4 contrast levels in random order using a letter height of 0.21° 

(approximating a 0.3 logMAR letter). This letter height best approximates the driving 

standard in many countries.25  

 

To simulate glare conditions, Bangerter foils were inserted in front of the right eye with 

the left eye occluded. Bangerter foils contain a series of micro-bubbles, the density of 

which determines the spread the light. They were developed for optical penalisation 
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therapy and were designed to reduce vision in standardised steps from 1.0 to 0.1 

designated filters. However, the point spread function of the 0.6, 0.4 and 0.3 foils have 

been found to be similar, reducing visual acuity by equal amounts, whereas the 0.8 foil 

spreads light by a lesser degree and so has a reduced effect on visual acuity.26 Hence 

the 0.8 and 0.6 Bangerter foils were used to simulate different levels of light spread on 

the retina compared to no filter (control), secured within a trial lens plastic housing. 

Ocular straylight and halometry were measured three times each in random sequence 

with each of the Bangerter foils. Straylight and halometry repeatability was assessed at 

a second subject visit separated by at least two hours and by no more than 2 weeks by 

a second investigator, blind to the results of the first investigator.  

 

Data Analysis 

Repeated measures at each visit were averaged for validity comparison. The area 

obscured by the halometry glare source was calculated from the eccentricities along the 

8 meridians. As the data for straylight and halometry were found to be normally 

distributed (one-sample Kolmogrov-Smirnov test > 0.05) the influence of the Bangerter 

foils was calculated using a one-way repeated analysis of variance (ANOVA); where 

significant differences were found pair-wise differences were determined using the 

Bonferonni post hoc test. Intra-observer and inter-observer variability was tested for 

each Bangerter foil separately using intraclass correlation co-efficient (ICC) based on a 

two-way mixed ANOVA model with a 95% confidence interval.  
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Figure 1: Aston Halometer; comprising of a LED in the centre of an iPad tablet 
which is positioned at 2m in a dark room. Remote iPhone control via 
Bluetooth allows the 0.3logMAR equivalent letters to be moved more 
eccentric from the central LED glare source in 0.05º steps until they are 
first consistently recognised. This eccentricity is recorded and the 
assessment repeated in each of the 8 orientations to plot the objective 
area of obscuration caused by the patient’s halo in degrees. 
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Results 

Straylight (as measured by the C-Quant) increased with the 0.8 Bangerter foil (1.48 ± 

0.12 Log(s)) compared to no filter (1.03 ± 0.21 Log(s); p < 0.001), with the 0.6 Bangerter 

foil further increasing (1.97 ± 0.18 Log(s); p < 0.001) the straylight (F = 80.655, 

p<0.001). 

 

There was a significant difference in the size of halos measured using the different 

Bangerter foils and target contrasts (F1.799=29.564, p<0.001; Table 1; Figure 2). Lower 

contrast letters showed larger glare obscured areas resulting in ceiling effects due to the 

screen’s field of view.  

 

Intra-observer and inter-observer variability’s of the C-Quant and Aston Halometer at 

each contract level with each Bangerter foil are presented in Table 2. 
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Table 1: Differences in contrast measured between each Bangerter foil and contrast level 

(n=20).  

CW is the Weber contrast units 

  

 
 No Filter 0.8 Bangerter 0.6 Bangerter 

  500 Cw 100 Cw 25 Cw 1000 Cw 500 Cw 100 Cw 1000 Cw 500 Cw 

N
o
 f

il
te

r
 

1000 Cw 
p < 

0.001 

p < 

0.001 

p < 

0.001 

P < 

0.001 

p < 

0.001 

p < 

0.001 

p < 

0.001 

p < 

0.001 

500 Cw  
p < 

0.001 

p < 

0.001 

P < 

0.001 

p < 

0.001 

p < 

0.001 

p < 

0.001 

p = 

0.001 

100 Cw   
p < 

0.001 

P = 

0.072 

p < 

0.001 

p < 

0.001 

p < 

0.001 

p = 

0.001 

25 Cw    
P = 

1.000 

p = 

0.170 

p < 

0.001 

p = 

0.001 

p = 

0.005 

0
.8

 B
a
n

g
er

te
r 

1000 Cw     
p = 

0.002 

p < 

0.001 

p = 

0.001 

p = 

0.006 

500 Cw      
p = 

0.001 

p = 

1.000 

p = 

0.450 

100 Cw       
p = 

0.010 

p = 

1.000 

0
.6

 B
a
n

g
er

te
r 

1000 Cw        
p = 

0.300 
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Table 2:  Intra-observer and inter-observer variability intraclass correlations of the C-

Quant and Aston Halometer at each contract level with each Bangerter foil (n=20) 

CW is the Weber contrast units 

 

 

Figure 2: Area of photopic scotoma for each Bangerter foil at each contrast level 
(n=20). Line with box = median, box limits = 1 standard deviation, error 
bars = 95% confidence interval and points = outliers. 

 

 

C-Quant 
Aston Halometer 

1000 Cw 500 Cw 100 Cw 25 Cw 

Control lens 
0.875 / 0.774 

0.876 / 0.776 0.843 / 0.729 0.775 / 0.632 0.806 / 0.675 

0.8 Bangerter 

foil 

0.871 / 0.499 
0.979 / 0.696 0.929 / 0.675 0.874 / 0.532  

0.6 Bangerter 

foil 

0.873 / 0.845 
0.929 / 0.576 0.840 / 0.529   
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Discussion 

As glare is a major source of visual discontent,22 especially with simultaneous image 

presbyopia corrections, there is a clinical need to quantify this parameter. Hitherto, 

halometry has been used for this purpose, but with previous halometers, discrimination 

and reliability have rarely been assessed, and few techniques allow the halo to be 

quantified in all directions of gaze, which is a valuable outcome measure for the 

evaluation of non-concentric optical designs (Table 1). All instruments which quantify 

glare assess disability rather than discomfort glare, although these measures are 

generally correlated.27 Light scatter measurement with the C-Quant does not provide 

meridional quantification and is not directly related to a regular patient phenomenon with 

which they are familiar (such as car headlights or street lamps at night). Also, while C-

Quant measurements of forward light scatter have been shown to correlate reasonably 

strongly with cataract density,28 they have been shown to be relatively insensitive to 

patient reported glare with refractive IOL designs for presbyopia, although the latter 

change the optical aberrations as well as scatter light.29   

 

As determined by the C-Quant, Bangerter foils were shown as an effective method of 

inducing light scatter in a repeatable way, as they have a detrimental effect on the point 

spread function.26 The Aston Halometer was able to detect this change in light scatter 

with high to low contrast letters. The sensitivity appeared to increase with the 

decreasing contrast of the letter optotypes, but lower contrast detection of greater glare 

sources conflicted with the halometer screen’s field of view. Decreasing the working 

distance will mitigate this effect, but at the expense of larger step sizes in optotype 
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position. Although newer tablet technology pixel size is decreasing, having the screen at 

2m negates the need for a reading addition in pseudophakes or effects of evoking 

accommodation in the young and was, therefore, selected as the test working distance. 

At this distance, the selected letter size of 0.3 logMAR enabled all subjects to identify 

the letter at the 500 Cw contrast level with the highest light scattering filter and therefore 

seemed an appropriate setting for the Aston Halometer. The effects of dysphotopsia are 

reported to be most evident during night driving22 and therefore a level of acuity 

matching that of the typical driving standard was deemed an appropriate size target for 

the halometer optotype.25 

 

The repeatability of the C-Quant was comparable to that previously demonstrated23 and 

the Aston Halometer repeatability was shown to be similar. Hence the Aston Halometer 

appears to provide a sensitive, repeatable way of quantifying a patient recognised form 

of disability glare in multiple orientations, thus adding a level of objectivity to the 

subjective reporting of discomfort glare.  

 

What was Known: 

 Photopic phenomenon, termed dysphotopsia, can result from multifocal 
intraocular lenses (MIOL) implantation. 

 The symptom is often described as haloes round bright lights such as driving at 
night. 

 Previous research has attempted to quantify the effect through subjectively 
marking the extent of the halo.  

What this paper adds:  

 An objective technique to determine the size of the halo is validated and shown 
to be sensitive and repeatable. 
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